
Design of Fault-Tolerant and Reliable
Networks-on-Chip

Junshi Wang∗, Masoumeh Ebrahimi†‡, Letian Huang∗, Axel Jantsch§, Guangjun Li∗
∗ University of Electronic Science and Technology of China, Chengdu, China,

Email: wangjsh@std.uestc.edu.cn, {huanglt, gjli}@uestc.edu.cn
† Royal Institute of Technology, Stockholm, Sweden

‡ University of Turku, Turku, Finland, E-mail: masebr@kth.se
§ Vienna University of Technology, Vienna, Austria, E-mail: axel.jantsch@tuwien.ac.at

Abstract—Networks-on-Chips (NoCs) are at the core of high
performance multi-processor systems-on-chips. As the number
of cores and sub-systems on chip grow, the size and complexity
of NoCs increase as well. Due to the process variation, aging
effects and soft-errors in current and expected future process
generations, the probability of failure in the NoCs rises and has
to be fought at all levels: circuit, architecture, and communication
protocols.

This paper discusses appropriate fault models for NoCs
and their effects on the architecture and network levels. A
method to design fault-tolerant NoCs comprising of techniques
at the link level, the routing level, and the end-to-end level
of the communication is presented. In addition, the proposed
method offers an isolation technique where the computing cores
are decoupled from the faults in the network. This technique
avoids or at least attenuates the severe impacts of faults on the
network performance and functionality. These point techniques
are combined together to design fault-tolerant and reliable NoCs.

I. INTRODUCTION

With technology scaling, process variation, wear-out effect-
s, IR drop, thermal hotspots and other phenomena are increas-
ingly challenging. Rather than striving for a perfect chip, it
may be more effective to allow failures sometimes to happen
and tolerate them. Three steps are required to provide fault
tolerance: detection, diagnosis, correction/reconfiguration. In
Network-on-Chip (NoC), fault can be detected and handled
at several layers in the communication stack and at different
places. Link-level error coding, fault-tolerant routing and end-
to-end retransmission are three types of point techniques that
are located in different layers and components. Although there
is a plethora of publications describing these point techniques
[1], attempts to combine several of them into a complete
solution are rare.

In this work, we cover detection, diagnosis, and correction
and formulate a comprehensive design flow for providing
a complete solution for a fault-tolerant NoC (FT NoC). In
particular we make the following contributions:

1) A layered fault model is described and a fault notation
is proposed to describe the faults at the circuit layer.

2) We propose a comprehensive design flow to cover
all types of faults, all communication layers and all
components.

3) We demonstrate the flow by realizing a partial FT
NoC that covers only the datapath links between
routers.

4) We compare fault detection and fault-tolerant meth-
ods with respect to their capacity for dealing with
transient, intermittent and permanent faults.

II. RELATED WORK

The common goal of all fault-tolerant techniques is to
increase the reliability but at the cost of larger area, power,
and delay. A fault-tolerant design for NoCs can be discussed at
different layers (physical, data link and transport layer) and for
different types of faults, i.e. transient, permanent, and intermit-
tent. There are many proposed techniques in literature targeting
isolated problems while there are few attempts proposing a
comprehensive solution for the reliability of the NoC platform
as a whole [1]. This section covers a small portion of different
attempts.

Faults may change the content of a packet, for example a bit
flip caused by the low noise margin [2], the electromagnetic
coupling effects [3], or the crosstalk [4]. The faults on the
data path of the routers can be detected and possibly corrected
using Error Detecting Codes (EDC) and Error Correcting
Codes (ECC) such as hamming codes [5][6]. Complex coding
techniques provide a higher correctness and are even capable
of correcting burst errors, but the increasing on execution
time limits their protection capability [7]. Data redundancy
mechanisms such as retransmission at the Link-to-Link or
End-to-End levels are also well-known solutions to tackle
faulty packets [8][6]. The End-to-End retransmission, however,
significantly increases packet latency besides the need of a
supporting infrastructure such as an Ack/Nack protocol.

Unlike the faults affecting the content of packets, faults
in the control path of the routers are hard to detect and
can barely be tolerated. A fault (e.g. stuck-at-1 or stuck-
at-0) in the control path may lead to the miscalculation of
the routing algorithm or a wrong connection between the
input and output ports. When these faults occur, packets may
be forwarded to a wrong direction and eventually lead to
the deadlock or livelock. A common solution to overcome
these types of faults is to disable the faulty components and
employ a proper routing algorithm to bypass the disabled
faulty links [9][10][11], routers [12], or both[13][14][15]. In
almost all of these methods, to deal with the deadlock, the



network operation has to be stopped and the system has to
be reset. The new topology is then discovered during the
setup period and then the network can start working again
under a new configuration. Some proposals avoid the costly
reset [15][13][14]. However, some packets might be lost in
the transition phase but the network is protected from entering
any deadlock situation without being reset.

Redundancy techniques such as the triple modular redun-
dancy or multiple data sampling are also well-known and can
be adapted to NoCs [16]. A rigorous analysis on the use of
spare wires and cores to replace defective ones is performed
in [8], suggesting that the effective yield of the chip and its
overall cost can be significantly improved by using redundant
modules. The redundancy techniques are popularly used in
safety-critical systems and typically avoided in non-critical
systems due to their large overhead.

In [16], several approaches such as architectural solutions
and retransmission techniques have been proposed and com-
bined together to improve the reliability of the network against
transient faults. To avoid costly end-to-end retransmission, the
hop-by-hop retransmission scheme is used. In this approach, a
flit transmission over a link takes 3 cycles including 1 cycle for
detecting an error, 1 cycle for sending an acknowledgement,
and 1 cycle for the transmission itself. In addition, to overcome
the faults in the router logics, a mechanism to detect the
deadlock and recovery from this situation is proposed, which
has a considerable latency overhead. In general, although
different approaches are carefully designed and combined to
satisfy the low area and power overhead, they are not suitable
to tackle permanent faults due to large latency penalties.

In Bulletproof [17], different techniques such as triple
modular redundancy, end-to-end error detection and resource
sparing are combined. Combinations of techniques at different
levels such as the system level, component level, and gate level
are examined and the tradeoff between area, power, latency,
and reliability are reported accordingly. Bulletproof offers a
design space exploration but it lacks a comprehensive method
satisfying different tradeoffs.

Before dealing with a fault, it must be detected. Many of
the fault detection methods rely on off-line testing mechanisms
[18][19][20]. However, faults caused by temporary conditions
such as overheating, IR-drop, and wear-out can be hardly
detected by off-line testing. This is mainly because of the
difficulty in creating similar working conditions in a dynamic
environment and designing a proper testing mechanism for
them. Built-in self-test (BIST) is a common mechanism in
digital circuits to detect faults at run-time [9][21][22][19].

NoCAlert [23] provides a comprehensive on-line and real-
time fault detection mechanism specific to the NoC platform.
It employs a group of lightweight micro-checker modules
that collectively implement real-time hardware assertions. The
checkers operate concurrently with the normal NoC operation
and are capable of detecting a wide range of faults instanta-
neously.

In this paper, we suggest a combination of fault-tolerant
techniques at different layers which are complementary to each
other in order to achieve reliability against transient, intermit-
tent and permanent faults at run time. The area, power, and

delay overheads are taken into consideration when choosing
the techniques.

III. FAULT MODEL

A. Layer structure of fault model

Fault models are categorized according to three different
layers (as shown in Table I): physical layer, circuit layer, and
network layer.

TABLE I: Layer structure of fault model
Network Layer Miss-routing, packet loss, deadlock, ...

Circuit Layer
Behavior stuck-at-0, stuck-at-1, interval

Occurrence transient, intermittent, permanent
Location data path, control path

Physical Layer Thermal, Process variation, IR-drop, Crosstalk, ...

Physical level. Continuous models describe the physical
phenomena leading to misbehavior. They are rooted in the
physical laws governing the operation of the devices.

Circuit level. The errors of circuit output value are defined
as faults in circuit layer. The faults in circuit layer have three
aspects (as shown in Table I). The first aspect, called “value”,
focuses on the changes of value, including stuck-at-0, stuck-
at-1 and reversal. The second aspect, called “Occurrence”,
describes the time aspect of faults (see examples in Figure. 1).
“Location” distinguishes between data path and control path.

SEU (Single Event Upset) and thermal breakdown, lead
to functional faults of transistors and result in wrong output
values. High temperature, IR-drop, and process variation cause
delay fluctuations, which may also result in the errors of output
values. Aging phenomena typically start with increasing delays
but eventually lead to functional faults.

The relationship between faults in the physical layer and
circuit layer are a many-to-many mapping. For example, high
temperature can lead to intermittent faults and can also result
in permanent damage to a circuit. IR-drop can lead to transient
faults when the computation load changes rapidly, or can lead
to intermittent faults when the power grid has fluctuations.

Network layer. Network behavior disorder is the abstraction
of circuit level faults considering the meaning behind the
binary values. Many kinds of network faults have been defined,
like mis-routing, packet damage, data error, deadlock, and so
on [23].

As network layer faults are highly diverse and depend on
the particular behavior and component. Of concern, we have
not identified a unified, elegant fault model. Hence, we find
network layer fault models are unsuitable to guide the selection
and design of NoC fault-tolerant methods. Circuit layer faults
are abstractions of physical effects, but there is no simple and
direct relation. Since circuit level faults have the virtue to be
simple and can be uniformly applied to all components and
functions in the network, we use a circuit level fault model as
the basis for design and evaluation of a fault-tolerant NoC.

B. Fault models in circuit layer

An error is described as FM = {PO, PL, PR, e}, in
which e is the type of fault, PO, PL, and PR describe
the temporal and spatial distribution of faults by defining



the occupation probability, impact probability and recovery
probability, respectively. These three parameters can be a
constant value or a function. Faults can recover naturally when
the causing condition (like high temperature or low voltage)
ends. PR describes duration before the recovery, by defining
the expectation of the duration as 1

PR
. Transient faults usually

recover quickly, intermittent faults recovery may take longer,
while permanent faults never recover. PL is only relevant to
intermittent faults and describes the probability that the fault
actually changes the value of a signal. When an intermittent
fault occurs and if PL is 0.5, there is a 50% chance that a
value is changed in a particular cycle. Three examples (Fig.
1) of fault notation are given as follow:

Example 1 (Transient fault) FM1 ={
1× 10−4, 1, 0.9, Inverted

}
. The duration time of this

transient fault is 1/0.9 ≈ 1.1 cycles on average.

Example 2 (Intermittent fault) FM2 ={
1× 10−7, 0.5, 0.0625, Stack − at− 0

}
. The duration

of this intermittent fault is 1/0.0625 = 16 cycles on average.
During this time, the value is impacted by the fault in half of
the cycles on average.

Example 3 (Permanent faults) FM3 ={
1× 10−10, 1, 0, Stack − at− 1

}
. There is a new stack-at-1

fault every 1010 cycles on average and the fault never
recovers (PR = 0). These faults are enable in every cycle
after occurrence (PL = 1).

Fig. 1: Fault model examples. A circle means an error. 1-
transient faults. 2-intermittent faults. 3-permanent faults

A given signal can suffer from more than one kind of fault.
A fault scenario S = {FM1, FM2, FM3, . . .} combines the
fault notations of different kinds of faults.

IV. COMPREHENSIVE FAULT-TOLERANT DESIGN

In this section, we compare several fault detection and
fault-tolerant methods and we proposed a comprehensive fault
tolerant design flow.

A. Choosing Fault Detection Methods

Fault detection methods are necessary to detect and diag-
nose faults in the NoC. First, they detect and report faults.
Then, they locate the faulty components. For the data path,
detection methods should point out the error bits. For the
control path, they should be able to locate the faulty component
(RC-route compute, VA-virtual buffer allocation, SA-switch
allocation, buffers) in a router. Usually, the capacity of location
is lower than the capacity of detection.

Three typical fault detection methods are compared in
Table II. Error Detection Coding is often used on the data
path while assertions can detect errors on the control path by

checking certain rules. Build-in Self-Tests (BIST) can provide
detailed detection and diagnosis on every component.

TABLE II: Fault Detection and Location Methods
(-: no coverage; P: partial coverage; A: Complete coverage)

(Ref.=Reference, Tran.=Transient, Inter.=Intermittent, Perm.=Permanent)
Method Ref. Data Path Control Path

Tran. Inter. Perm. Tran. Inter. Per.
Error Detection Code [5][9] P P P - - -

Assertion [23] - - - A A A

Build-In Self Test

[9] P P A P P A
[21] P P A P P A
[22] P P A P P A
[19] P P A - - -

When choosing a fault detection method, the impact of
the testing procedure is also an important metric. ECC and
assertions introduce additional delays, and BISTs have to
isolate the components under tests with wrappers. The method
proposed by [9][21] isolates one router with its ports while [22]
and [19] totally stop the network before the testing. When only
testing the link, [9] blocks the packets on the link.

B. Choosing Fault-tolerant Methods

Fault-tolerant methods can be classified into real-time
tolerance, reconfiguration and retry.

Real-time tolerance. Methods correct faults at each cycle,
e.g. error correction coding (ECC) and multi-sampling (MS).
These methods have the capacity for fault detection and fault
tolerance at the same time and they can cover transient,
intermittent and permanent faults.

Reconfiguration. Faults are tolerated using the redundant
resources in the network by reconfiguring routers or paths.
Typical methods of this kind include triple modular redundancy
(TMR), spare-wire (SW), split-transmission (ST), and fault-
tolerant routing algorithms (FTR). To use these methods, faults
must already have been diagnosed, hence they cannot work for
transient faults.

Retry tolerance. Hop-to-hop retransmission and end-to-end
retransmission cannot tolerate any persistent faults. Instead,
they wait for the faults to disappear. Similarly, stochastic
routing tries different paths at the same time and expects one
of them can arrive correctly.

Typical methods are compared in Table III.

TABLE III: Fault-tolerant Methods
(-: no coverage; P: partial coverage; A: Complete coverage)

(Ref.=Reference, Tran.=Transient, Inter.=Intermittent, Perm.=Permanent)
Method Ref. Data Path Control Path

Tran. Inter. Perm. Tran. Inter. Per.
Error Correct Code [5][9] P P P - - -

Fault-tolerant Routing [24] - P A - P A
[11][15][25] - P P - P P

Triple Modular Redundancy [26] P P P P P P
Multi Samples [26] P P P P P P

Stochastic Routing [27] A A A A A A
Split-Link transaction [6] - P P - - -

Hop-to-Hop Retransmission [16] A A - A A -
End-to-End Retransmission [16] A A - A A -

C. Comprehensive Design

As shown in table II and table III, using only one method
cannot address all challenges on reliability. It is necessary to



Fig. 2: General flow of fault tolerance

combine different fault detection and fault-tolerant methods
following the general flow shown in Figure 2.

The fault-tolerant flow contains four steps. At first, the
faults in flits and control signals are detected and, if possible,
corrected by real-time tolerance. Error correcting codes (on
the data path), assertions (on the control path), triple modular
redundancy and multi-sampling can be used in this step.

When faults are detected, a fault diagnosis process (step 2
in Figure 2) is triggered. It can also be triggered periodically.
BIST is the most common method to run exhaustive tests.

Faults detected by the first two steps will be reported to
the fault control unit. The fault control unit manages and
configures different fault-tolerant methods. The fault control
unit can be deployed centrally or distributively and located
in each router and even each port. Reconfiguration methods
will be called in this step. With increasing number of faults in
the network, the strategy moves from router reconfiguration to
path reconfiguration, because router configuration can maintain
the topology but its fault-tolerance capacity is limited. If the
faults cannot be recovered by router reconfiguration, fault-
tolerant routing algorithms are called to reconfigure paths by
abandoning links or routers.

The fourth step deals with faulty flits. Damaged flits have
to be dropped and retransmitted. The fault-tolerant flow only
drops packets. Retransmission is activated by a time-out of not
acknowledged packets or handshake signals.

To design reliable FT NoCs, all four steps are necessary but
in each step only one or two candidate methods are chosen. For
example, designers can choose one method for the data path
and one method for the control path protection in step one.
Either hop-to-hop retransmission or end-to-end retransmission
is enough to make sure that no packets are lost.

V. EVALUATION

We simulated a fault-tolerant design for an 8 × 8 mesh
network where we implemented part of the comprehensive
design flow, as shown in Figure 3. The FT NoC tolerates
faults on the links between routers. It does not provide a
complete solution for a FT NoC but it serves to demonstrate
the comprehensive design flow and studies the effectiveness
of several methods with respect to transient, intermittent and
permanent faults.

Fig. 3: Fault tolerance flow of simulation

A. Reliable Design

The fault-tolerant flow of our design is shown in Figure 3,
which is a simplified version of general flow in Figure 2.

ECC. We implement a group Hamming(12,8) at each port,
which can tolerate 1 faulty bit and detect 2 faulty bits in 12 bits
[6]. This code word will be checked at each router. If there is
only one faulty bit in a group of 12 bits, the codec will correct
it. If there are two faulty bits, the codec will report faults to
trigger a BIST and drop the packet.

BIST. Test vectors are injected from the output port and
checked at the input port. Every port reuses the same testing
process.

Fault-tolerant Solution. We select spare-wires and a fault-
tolerant routing algorithm. The spare-wire architecture can
replace 2 permanently faulty wires in 16 bits wires. A fault-
tolerant routing algorithm, called HiPFaR [15], is designed to
tolerate faulty links.

Fault Control Unit. The fault control unit is located at each
port and makes distributed decisions. If the BIST diagnoses
faults, the faulty wires are replaced by spare wires. If spare
wires cannot tolerate all permanent faulty wires in a link, this
link is marked as faulty and bypassed by the fault-tolerant
routing algorithm.

Retransmission. End-to-End retransmission is triggered by



a time-out. To reduce the number of retransmission packets
and avoid congestion, only the first packets are retransmitted
with timer overflow. In the simulation the time-out is set as
1000 cycles.

The original width of a flit is 128 bits and extended to
192 bits due to the Hamming(12,8) code protection. Including
spare wires, the number of wires between two routers is 216
bits. The redundancy rates with and without spare-wire are
33.33% and 40.74% respectively.

B. Simulation Setup

The 8×8 network is simulated using a modified POPNET
simulator. Each router contains five physical ports (Local,
North, South, East, West). Ports on the Y-axis have two
virtual channels and ports on X-axis have one virtual channel.
Each virtual channel provides buffers for 12 flits at the input
port. The network is simulated with a low injection of 0.01
packets/cycle/router in a random, uniform traffic pattern. A
packet contains five flits.

Three fault models are exercised, each with only one
kind of faults, transient, intermittent or permanent: FMt =
{PO, 1, 0.9, Inverted}, FMi = {PO, 0.01, 0.001, Inverted}
and FMp = {PO, 1, 0, Inverted}, respectively. For the per-
manent case, we simulate the steady state after the faults
have accumulated to compress simulation time. Faults are
injected according to P ′O, which is defined as the proportion
of accumulated faults.

The following methods are simulated for comparison: 1)
ECC; 2) ECC+FTR (Fault-tolerant Routing); 3) ECC+SW
(Spare-wire); 4) ECC+SW+FTR, 5) ECC+SW+RT (Retrans-
mission); 6) ECC+SW+RE+FTR. If SW is not used, any
line with a permanent fault will be abandoned. XY-routing
is implied in those methods without fault-tolerant routing
algorithm.

The evaluation metrics are end-to-end latency, delivery rate,
and retransmission time. End-to-end latency is the time from
when a packet is injected into the network first time until this
packet is successfully received, including all retransmissions.
To measure the number of successful delivered packets, 30000
packets are injected into the network.

C. Simulation under Transient and Intermittent Fault

Fig. 4: Simulation with transient fault FM =
{PO, 1, 0.9, Inverted}.

Figure 4 and Figure 5 illustrate the performance under
transient and intermittent faults, respectively. Because spare-
wire and fault-tolerant routing are used only when there is
any permanent fault, the differences between the lines in each

Fig. 5: Simulation with intermittent fault FM =
{PO, 0.01, 0.001, Inverted}.

figure are due to retransmission. Thus, in the plots only two
distinct lines are visible.

Retransmission can provide 100% delivery rate when
facing transient faults PO < 0.005 and intermittent faults
PO < 0.0001. However, for transient faults with PO > 0.004
and for intermittent faults with PO > 7.5× 10−5, the latency
becomes excessive.

D. Simulation under Permanent Fault

In contrast to transient faults and intermittent faults, per-
manent faults accumulate over time. Faults are injected only
at the beginning of the simulation according to the given P ′O.

The simulation results are drawn in Figure 6. At first,
SW significantly increases the fault-tolerance capacity in the
network. The delivery rate of ECC and ECC+FTR drops lower
than 60% for P ′O > 0.008 and P ′O > 0.013, respectively. The
methods with SW achieve delivery rates higher than 90% up
to P ′O = 0.028.

Comparing methods with and without FTR, the number
of delivered packets can be increased by reconfiguring paths.
In the best observed case, when P ′O = 0.04, 13% more
packets are delivered due to FTR. Moreover, FTR can reduce
the number of retransmissions and the end-to-end latency by
choosing another link at the second time.

At the beginning of the simulation, the network knows
nothing about faults and discovers them using ECC and BIST.
So some packets are rescued by retransmission. On the other
hand, the improvement is limited. The original paths and
retransmission paths of most packets are the same, because
the faults do not change during simulation. With P ′O = 0.04,
only 0.6% packets are delivered due to retransmission.

Finally, comparing ECC+SW+RE+FTR to ECC+SW+RE
with P ′O > 0.028, no improvement is observed, because
of deadlocks. Thus, to combine FTR with other methods,
deadlocks and livelocks must be avoided or handled properly.

VI. CONCLUSION

Fault-tolerant design takes an important role in NoCs to
overcome failures introduced by aggressive technology scal-
ing. In this paper, we have introduced a design flow for
FT NoCs and we have reported a first study in combining
several methods. From the simulation results, we draw the
following conclusions: 1) Retransmission can help to increase
the number of delivered packets significantly for transient and



Fig. 6: Simulation with permanent fault

intermittent faults. 2) Spare-wire clearly increases the fault-
tolerance capability but has significant overhead. 3) Fault-
tolerant routing helps to tolerate more faults and reduces
the overhead of retransmission and end-to-end latency, if
deadlocks and livelocks are avoided.

ACKNOWLEDGMENT

The research is support by National Natural Science Foun-
dation of China No. 61006027 and No. 61176025, New
Century Excellent Talents Program No. NCET-10-0297, the
Fundamental Research Funds for the Central Universities No.
ZYGX2012J003.

REFERENCES

[1] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, “Methods for fault
tolerance in networks-on-chip,” ACM Computing Surveys (CSUR),
vol. 46, no. 1, p. 8, 2013.

[2] S. Yang and M. Greenstreet, “Noise margin analysis for dynamic logic
circuits,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2005, pp. 406–412.

[3] I. Erdin, M. Nakhla, and R. Achar, “Circuit analysis of electromagnetic
radiation and field coupling effects for networks with embedded full-
wave modules,” IEEE Transactions on Electromagnetic Compatibility,
vol. 42, no. 4, pp. 449–460, 2000.

[4] Aniket and R. Arunachalam, “A novel algorithm for testing crosstalk
induced delay faults in vlsi circuits,” in 18th International Conference
on VLSI Design, 2005, pp. 479–484.

[5] H. Zimmer and A. Jantsch, “A fault model notation and error-
control scheme for switch-to-switch buses in a network-on-chip,” in
First IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, 2003, pp. 188–193.

[6] Q. Yu and P. Ampadu, “A dual-layer method for transient and permanent
error co-management in noc links,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 58, no. 1, pp. 36–40, 2011.

[7] J. Collet, “A brief overview of the challenges of the multicore roadmap,”
in Proceedings of the 21st International Conference on Mixed Design
of Integrated Circuits Systems (MIXDES), 2014, pp. 22–29.

[8] S. Shamshiri, A.-A. Ghofrani, and K.-T. Cheng, “End-to-end error
correction and online diagnosis for on-chip networks,” in IEEE Inter-
national Test Conference, 2011, pp. 1–10.

[9] A. DeOrio, D. Fick, V. Bertacco, D. Sylvester, D. Blaauw, J. Hu,
and G. Chen, “A reliable routing architecture and algorithm for nocs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 5, pp. 726–739, 2012.

[10] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco, “Ariadne: Agnostic
reconfiguration in a disconnected network environment,” in Internation-
al Conference on Parallel Architectures and Compilation Techniques
(PACT), 2011, pp. 298–309.

[11] M. Ebrahimi, M. Daneshtalab, J. Plosila, and F. Mehdipour, “Md:
minimal path-based fault-tolerant routing in on-chip networks,” in 18th
Asia and South Pacific Design Automation Conference (ASP-DAC),
2013, pp. 35–40.

[12] M. Koibuchi, H. Matsutani, H. Amano, and T. M. Pinkston, “A
lightweight fault-tolerant mechanism for network-on-chip,” in Proceed-
ings of the second ACM/IEEE international symposium on networks-
on-chip, 2008, pp. 13–22.

[13] C. Feng, Z. Lu, A. Jantsch, J. Li, and M. Zhang, “A reconfigurable fault-
tolerant deflection routing algorithm based on reinforcement learning for
network-on-chip,” in Proceedings of the Third International Workshop
on Network on Chip Architectures, 2010, pp. 11–16.

[14] M. Ebrahimi and M. Daneshtalab, “A light-weight fault-tolerant routing
algorithm tolerating faulty links and routers,” Computing, pp. 1–18,
2013.

[15] M. Ebrahimi, M. Daneshtalab, and J. Plosila, “High performance
fault-tolerant routing algorithm for noc-based many-core systems,” in
21st Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), 2013, pp. 462–469.

[16] S. Murali, T. Theocharides, N. Vijaykrishnan, M. J. Irwin, L. Benini,
and G. D. Micheli, “Analysis of error recovery schemes for networks on
chips,” IEEE Design & Test of Computers, vol. 22, no. 5, pp. 434–442,
2005.

[17] K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco, S. Mahlke,
T. Austin, and M. Orshansky, “Bulletproof: a defect-tolerant cmp
switch architecture,” in The 12th International Symposium on High-
Performance Computer Architecture, 2006, pp. 5–16.

[18] J. Raik, V. Govind, and R. Ubar, “An external test approach for network-
on-a-chip switches,” in 15th Asian Test Symposium, 2006, pp. 437–442.

[19] E. Cota, F. Kastensmidt, M. Cassel, M. Herve, P. Almeida, P. Meirelles,
A. Amory, and M. Lubaszewski, “A high-fault-coverage approach for
the test of data, control and handshake interconnects in mesh networks-
on-chip,” IEEE Transactions on Computers, vol. 57, no. 9, pp. 1202–
1215, 2008.

[20] A. M. Amory, E. Brião, É. Cota, M. Lubaszewski, and F. G. Moraes,
“A scalable test strategy for network-on-chip routers,” in IEEE Inter-
national Test Conference (ITC), 2005, pp. 1–9.

[21] M. R. Kakoee, V. Bertacco, and L. Benini, “At-speed distributed
functional testing to detect logic and delay faults in nocs,” IEEE
Transactions on Computers, vol. 63, no. 3, pp. 703–717, 2014.

[22] X.-T. Tran, Y. Thonnart, J. Durupt, V. Beroulle, and C. Robach,
“Design-for-test approach of an asynchronous network-on-chip archi-
tecture and its associated test pattern generation and application,” IET
Computers & Digital Techniques, vol. 3, no. 5, pp. 487–500, 2009.

[23] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, “Nocalert:
An on-line and real-time fault detection mechanism for network-on-chip
architectures,” in 45th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2012, pp. 60–71.

[24] E. Wachter, A. Erichsen, A. Amory, and F. Moraes, “Topology-agnostic
fault-tolerant noc routing method,” in Proceedings of the Conference on
Design, Automation and Test in Europe, 2013, pp. 1595–1600.

[25] H. Hsin, E. Chang, C. Lin, and A.-Y. Wu, “Ant colony optimization-
based fault-aware routing in mesh-based network-on-chip systems,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 33, no. 11, pp. 1693–1705, 2014.

[26] P. A. Frantz, M. Cassel, F. L. Kastensmidt, É. Cota, and L. Carro,
“Crosstalk-and seu-aware networks on chips,” IEEE Design & Test,
vol. 24, no. 4, pp. 340–350, 2007.

[27] P. Bogdan, T. Dumitraş, and R. Marculescu, “Stochastic communica-
tion: A new paradigm for fault-tolerant networks-on-chip,” VLSI design,
vol. 2007, 2007.


