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Abstract—3D-NoC has emerged to provide fast and power
efficient connection between the layers of 2D-NoCs using
Through-Silicon-Vias (TSV). Thermal stress, warpage, impuri-
ties and misalignment during the manufacturing process make
these expensive TSVs vulnerable to faults. Chips with faulty
TSVs should be either discarded or utilized by providing a
proper fault-tolerant method. In this paper, we target designing
a reconfigurable fault-tolerant routing algorithm capable of
tolerating fabrication-time or run-time TSV failures. The pro-
posed algorithm ensures a fault-free communication between
any two nodes in the presence of TSV failures. Experimental
results show that the proposed fault-tolerant routing algorithm
provides 100% reliability as long as there is one healthy TSV
in the eastmost or westmost column. The reliability of the
counterpart algorithm, the Elevator-first routing algorithm,
drops to 75% and 45% in presence of one and two faulty
TSVs, respectively.

1. Introduction

The positive correlation between the length of long
global wires and performance bottlenecks such as delay
and power consumption, has driven the research toward
vertically stacking multiple dies using TSVs [1]. The main
issues regarding the use of TSVs are the large area overhead
of TSV pitches, the yield reduction caused by the large num-
ber of TSVs, and TSV cost. Moreover, the manufacturing
process of TSVs has become a main challenge due to the
variability of the manufacturing process [2] [3]. The cost of
high yield TSV manufacturing process is only justifiable in
presence of a practical solution to counteract TSV related
effects (such as voids in TSVs, TSV pinch-off, oxide defects
such as pinholes, thermo-mechanical stress, cracks in micro-
bumps, chip warpage, and impurities [4]) which may render
the entire chip useless [5]. Also TSV failures may be
introduced at run-time because of e.g. thermal issues and
Single Event Effect (SEE) [6]. For all these reasons, TSVs
are vulnerable and prone to failure. Instead of discarding
the entire chip with defective TSVs, measures are taken to
enhance the fault tolerance of the 3D-NoC for dealing with
TSV failures. A comprehensive list of both fabrication and
runtime TSV failure sources have been presented in [6].

Employing traditional routing algorithms such as XYZ
in vertically partially connected 3D-NoCs ensues perfor-
mance degradation due to lack of mechanisms to handle
faulty TSVs. Hence, a routing algorithm capable of spotting
healthy TSVs in the presence of defective TSVs enhances
the fault tolerance of 3D-NoC considerably.

In this paper we propose a reconfigurable fault-tolerant
algorithm, named Column-Based Routing algorithm (Co-
BRA). CoBRA is an adaptive routing algorithm which has
two virtual channels along the Y dimension, called Y 0
and Y 1. CoBRA suggests a dynamic elevator assignment,
meaning that the elevator selection is performed at each
router while the packet is forwarded toward the destination.
The routing decision is made based on the partial knowledge
of routers about the location of TSV failures. This partial
knowledge avoids packets from being forwarded to faulty
TSVs. Therefore, performance improves and faults are tol-
erated.

2. Related work

Routing is responsible to deliver packets to their desti-
nations. Generally routing algorithms are divided into static
and adaptive [7] [8] where adaptive routing is a better
candidate for a fault-tolerant routing due to its inherent path
redundancy.

Examples of fault-tolerant routing algorithms in 3D-
NoCs have already been presented in [9] and [10]. Hamil-
tonian path strategy [9] tolerates one faulty links either
horizontal or vertical in 3D mesh NoCs without using any
virtual channels. [10] deals with multiple faults in the 3D-
NoC architecture with a limited quantity of TSVs; the au-
thors apply deadlock recovery schemes rather than avoiding
deadlock. Elevator-first [11] is a routing algorithm which
has been proposed for partially connected 3D-NoCs. The
elevators for vertical transmission are planned at design
time based on the location of TSVs. Thereby, the algorithm
cannot be reconfigured by any TSV failure which have
been occurred after the manufacturing process or at runtime.
Elevator-first is a deterministic routing algorithm having two
virtual channels along the X and Y dimensions.

3. CoBRA Routing Algorithm

In this algorithm, routers do not have a global knowledge
about the location of TSVs as it is the case in the Elevator-
first routing algorithm. The only information that routers
maintain is the presence of any healthy TSV in the same
column (with the same X value) as the current router. The
details on the propagation of TSV statuses are elaborated in
Section 4.

CoBRA uses two virtual channels along the Y dimension
to guarantee the freedom from deadlock. For this purpose,
the network is virtually partitioned into two disjoint sub-
networks: Subnetwork1 (X+, Y 0∗, Z+) and Subnetwork2



(X−, Y 1∗, Z−) where +, - represent channels along positive
and negative directions respectively, while * stands for both
directions. Based on this partitioning, packets can use the
channels of either Subnetwork1 or Subnetwork2. In addition
packets can move from Subnetwork1 to Subnetwork2 or vice
versa but switching is allowed only in one direction at a
time to avoid deadlock. The deadlock-freedom is elaborated
in Section 5.

In CoBRA, the default transition occurs from Subnet-
work1 to Subnetwork2. If all TSVs fail in the eastmost
column, the algorithm is reconfigured to route packets first
in the Subnetwork2 and then in Subnetwork1. This reverses
all the conditions and thus TSV failures are tolerated again
as long as there is one healthy TSV in the westmost column.

In more details, CoBRA routing algorithm can be de-
scribed as follows:

Current and destination are on the same layer:
If the destination is on the east side of the current node,

Subnetwork1 is used to deliver the packet (i.e. channels X+

and Y 0∗). On the other hand, if the destination is on the west
side of the current node, the channels of Subnetwork2 are
used (i.e. channels X− and Y 1∗).

Current and destination are not on the same layer:
As it was mentioned, the routers are aware of TSV

statuses in their columns. If no elevator is found in the
column, the packet is forwarded one hop to the east and
the process is repeated until a healthy TSV is found. In the
worst case, if no TSV is found at the eastmost column, the
packet has to be dropped. This implies that a healthy elevator
in the eastmost column guarantees the delivery of packets to
all destinations no matter how many elevators are available
in the network or disabled at runtime. Upon the loss of all
TSVs in the eastmost column, CoBRA routing algorithm is
reconfigured to deliver the packets toward the west direction.
After this reconfiguration, every router forwards the packet
one hop to the west if there is no healthy elevator in the
same column.

Figure 1 shows a 4 × 4 × 2 network where the source
node 20 sends a packet to the destination node 6. Since
there is no TSV at the source column, packets are forwarded
toward east through Subnetwork1. In the next column (with
X = 1), there are two available TSVs, located at node 17
and 25. Since the node 6 is in the upper Y -half plane, the
elevator located at the node 17 is a better choice to deliver
the packet. The routing path is as follows: 20 → 21 →
17 → 1 → 2 → 6, or alternatively the packet can take the
path 20 → 21 → 17 → 1 → 5 → 6. When the source node
10 targets the destination node 21, the elevator at the node
2 is used since the destination is in the upper Y -half plane.

4. Providing Partial Knowledge

Propagation of TSV statuses locally enhances the re-
liability of 3D-NoC significantly. Providing global infor-
mation about the location of healthy and faulty elevators
in a network may improve the performance but in turn it
consumes more resources. In CoBRA, routers in the same
column share the TSV statuses with each other. For this
purpose, a router is equipped with two signals as it is shown
in Figure 2, one transferring the TSV status from north to
south (i.e. called signal A) and another one from south to
north (i.e. called signal B). Figure 2 represents how these

Figure 1: An example of a 3D-NoC

signals have been connected among four routers located in
the same column. According to the figure, the signal A
reflects the fault information on the north neighbors of a
router. If this signal value is one, it means that there is at
least one healthy elevator on the north direction of the node.
Similarly, the signal B propagates the fault information in
the south direction. The signal A and the TSV information
of the current router are ORed together to form the signal
A that should be sent to the next router. Therefore, if A = 1
or the current node has an elevator, the signal A of the next
router gets the value of one representing the existence of a
healthy elevator in the north direction of a node. The same
trend is applied to the signal B.

Figure 2 (a) shows the value of signals when there are
two TSVs at the routers 4 and 12. As it is clear, the router at
the node 4 does not have any elevator at the north direction
while there is one at the south direction which is indicated
by the value of the signals A = 0 and B = 1, respectively.
The router at the node 4 does not exactly know where the
healthy elevator is located or how many healthy elevators
there are on the south direction. The router just knows that
there are healthy elevators in the south direction that can be
used for vertical transmission.

If a fault disconnects one of the TSVs during runtime,
the new status is propagated in the column through the
wires. The ORed signals will be updated and routers will
adapt themselves to TSV failures. Figure 2 (b) shows the
value changes on the signal A when the TSV at the router
4 becomes faulty.

5. Discussion of Deadlock Freedom

We have already mentioned that the network will be
deadlock free if packets use either the channels of Sub-
network1 or Subnetwork2 in addition to the possibility of
switching from Subnetwork1 to Subnetwork2. Based on
subnetwork definition, there are no circular dependencies
in each subnetwork. Moreover, when packets are switched
from Subnetwork1 to Subnetwork2, there cannot exist any
circular path since the direction of moving along X and Z,
as well as the virtual channel index along Y , change upon



Figure 2: Implementation of TSV status propagation.

subnetwork switch. In this section, we use formal methods
to verify three properties. The routing logic has to ensure
deadlock- and livelock-freedom. Additionally, even in the
presence of faulty TSVs, the routing logic should always
be connected. In other words, for any pair of source and
destination, there must be at least one possible route. All
these properties depend on the assumption that between each
pair of layers, there is at least one non-faulty TSV.

Let a configuration be an assignment of TSVs (faulty
or not) to nodes. Each configuration induces a new channel
dependency graph as each configuration causes the routing
logic to make different choices. Let x, y and z be the
dimension of the mesh and let t be the number of TSVs.
The total number of configurations is:

∑
f≤t

(
xyz

e

)
·
(
e

f

)
(1)

For example, in a 4 × 4 × 4 mesh with 6 TSVs there
are 512, 512 different configurations. It is infeasible to run
simulations for all these configurations or perform a manual
proof.

To address this issue, we have used DCI2 to formally
verify CoBRA for all of the above properties [12]. DCI2
takes as input a model of the routing logic in the form
of a function R :: N × N �→ P , i.e., a function R that
takes as input the current node and the destination node
and produces as output the port to which the packet is
routed. DCI2 enumerates all configurations and generates
the corresponding channel dependency graphs. Based on
these graphs, it checks a necessary and sufficient condition
for deadlock-free adaptive routing.

We integrated DCI2 and AccessNoxim and instead of
analyzing a separate model, DCI2 has been applied to the
exact same routing code as was used for AccessNoxim.

When given a 4× 4× 4 mesh with 6 TSVs, all 512, 512
configurations are generated. Among all, 208, 252 configura-
tions satisfy the assumption that there is at least one healthy
elevator at the eastmost column. All these configurations are
formally proven to be deadlock- and livelock-free and to
be connected. Other configurations are not considered. We
have verified CoBRA for any number of elevators from 0
up to and including 6. The total verification time is about
90 minutes on a 4 core 2 GHz Intel Core i7 machine. Table
1 reports the required verification time for 1, 2, 4, and 6

Figure 3: Performance under random traffic for 4 TSVs

elevators. A configuration is an assignment of locations to
elevators.

6. Results and Discussion

The efficiency of the proposed routing algorithm under
different number of faults has been evaluated using Access-
Noxim simulator [13].

A 4× 4× 4 mesh NoC has been considered for experi-
ments. All the routers have 5-flit FIFO and the packet size
is 8 flits. The simulator is warmed up for 1000 cycles and
then the reliability is evaluated over another 20, 000 cycles.
The defective TSV is modelled as an open fault. Therefore,
if a TSV or a bundle of TSVs are faulty, the entire vertical
connection is considered broken.

To evaluate the reliability of the proposed routing al-
gorithm against available routing algorithms, Elevator-first
is implemented in AccessNoxim alongside CoBRA. It is
necessary to mention that there are few algorithms in liter-
ature tolerating faults in partially connected 3D-NoCs. For
this reason, the performance of CoBRA cannot be compared
with the commonly used routing algorithms, such as XY Z
which is proposed for the fully connected 3D-NoCs. The
measure of reliability defined in this article is the percentage
of flits successfully delivered to the target destinations.

In order to model run-time TSV failures, faults are
injected at every 5000 cycles. This value is selected to
ensure that the network is stabilized before injecting a
new fault. Moreover, results for different traffic patterns
including synthetic and real traffic scenarios are reported
[14] [15].

Three architectures have been used to evaluate the effi-
ciency of the CoBRA routing algorithm. The first one has
four elevators at four corners located at nodes 0, 3, 12 and 15
based on the numbering given in Figure 1. The second one
has eight TSVs at nodes 0, 2, 5, 7, 8, 10, 13 and 15. Finally,
the third one has five TSVs located at nodes 0, 2, 7, 8 and
10. Figures 3, 4 and 5 illustrate the latency comparison for
the fault-free Elevator-first and CoBRA routing algorithms
for the three architectures under random, real traffic, and
shuffle, respectively.

According to Figure 3, under the uniform random traffic
pattern and by the availability of four TSVs, Elevator-first
outperforms CoBRA. According to Figure 4, CoBRA and
Elevator-first perform relatively close under the real traffic.
As it is clear in Figure 5, CoBRA outperforms Elevator-first
under shuffle traffic if there are five elevators in the network
at nodes 0, 2, 7, 8 and 10. Therefore, the number and the
location of elevators affect the performance of CoBRA and
Elevator-first.



Number of elevators Number of faults Total number of config Number of eastmost config Verification time (Sec)
1 0 16 4 2

2 0 120 54 3
1 240 60 3

4 0 1820 1325 28
1 7280 4420 93
2 10920 4914 113
3 7280 1280 46

6 0 8008 7084 127
1 48048 39336 640
2 120120 87450 1355
3 160160 97240 1655
4 120120 54054 980
5 48048 12012 248

TABLE 1: Verification results

Figure 4: Latency comparison under real traffic for 8 TSVs

Figure 5: Performance under shuffle traffic for 5 TSVs

6.1. Reliability Comparison under Synthetic Traffic

The reliability comparison for the architecture with four
TSVs at four corners have been represented in this section.
For this architecture, the effects of single, double and triple
faults have been assessed. According to the results (Figure
6), CoBRA provides full reliability in the presence of a sin-
gle fault. The reliability of Elevator-first drops to nearly 85%
and 70% under random and transpose traffic, respectively.
Since the transpose traffic is based on vertical transmission
for every pair of source and destination, a single fault has
more severe effect on this traffic. As it is clear, Elevator-first
can not adapt itself to faults at runtime.

The effect of changing the location of double faults is
presented in Figure 7. CoBRA is fully fault-tolerant as long
as there exists one healthy TSV at the eastmost column.
When both TSVs in the eastmost column fail, CoBRA is
reconfigured to switch from Subnetwork2 to Subnetwork1.
By routing packets to the west, CoBRA will be able to
tolerate faults as long as there exists at least one healthy
TSV in the westmost column. For all of the presentend fault
scenarioa, the reliability of Elevator-first falls within 47% to
78%.

Figure 6: Reliability under single faults for 4 TSVs

Three failure scenarios have been considered in the
Figure 7, where in each scenario two TSVs have been
disconnected:

1) Faulty TSVs at nodes 0 and 12: under this scenario
CoBRA supports full reliability since it dynami-
cally seeks for the healthy elevators by forwarding
the packet to the east direction.

2) Faulty TSVs at nodes 3 and 15: In this case the
reliability of CoBRA decreases considerably as no
elevator can be found in the east direction. The
reconfiguration, to the contrary, provides full re-
liability due to the existence of healthy elevators
in the westmost column. It should be noted that
some packets are dropped in the reconfiguration
phase until the network backs to its stable condition
again. Elevator-first drops 30% of flits under this
condition.

3) Faulty TSVs at nodes 0 and 15: CoBRA provides
full reliability because of one healthy elevator at
the node 3.

Figure 8 illustrates the effect of triple faults. According
to this figure, only one healthy elevator located at the node
15 guarantees the delivery of all packets to destinations in
CoBRA while Elevator-first delivers only 45% and 15% of
packets to destinations under random and transpose traffic
respectively. Moreover, triple faults at locations 0, 3 and
15 provide a reliability of 50% for the Elevator-first. On
the other hand, no healthy elevator at the eastmost column
drops the reliability by 55% and 70% for the random and
transpose traffic in CoBRA, respectively compared to full
reliability support in the first triple fault scenarios. Again,
reconfiguration solves the problem.



Figure 7: Reliability under double faults for 4 TSVs

Figure 8: Reliability under triple faults for 4 TSVs

6.2. Reliability Comparison under Real Traffic

The fault tolerance of CoBRA versus Elevator-first for
single, double and four faults have been evaluated for the
real traffic Barnes and Freqmine. The Streamcluster and
Blackscholes perform relatively close to Freqmine so they
have been omitted due to the lack of space. Based on Figure
9, CoBRA delivers all the packets to destinations unless
double faults are located at nodes 7 and 15. Figure 10
illustrates the reliability comparison under 4 faults.

6.3. Power and Area Comparison

In this section, the power consumption of CoBRA and
Elevator-first are compared under different fault scenarios
for the random traffic. The power reports are extracted from
AccessNoxim which accumulates energy upon flit recep-
tion/transmission at a router.

Table 2 reveals that the power consumption of CoBRA
is higher than Elevator-first in most cases. This is because

Figure 9: Single and double faults comparison for 8 TSVs
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Figure 10: Reliability comparison for 8 TSVs

Elevator-first drops packets when a TSV is faulty. Therefore,
network congestion reduces and the power consumption
decreases as well. It is in contrast with CoBRA where
packets are rerouted when they encounter a faulty TSV. In
a fault-free network, the energy consumption of CoBRA
might be higher or lower than Elevator-first depending on
the number and location of TSVs. It is worth noting that
Elevator-first consumes more static power due to the extra
buffers in the north and south input ports. However, static
power consumption is not considered in the results as it is
independent of the routing algorithm.

The packet injection rates for the fault scenarios are
adjusted to be on the saturation threshold. It can be observed
from the table that these PIRs are different for each fault
scenario. Specifically, the PIRs of the first (faults at 0 and
15) and the third fault scenario (faults at 0, 3 and 12) are
noticeably lower that the PIR of the second scenario (faults
at 3 and 15). Also, the PIR of the third faulty scenario (faults
at 0, 3 and 12) is slightly lower than the PIR of the first case
(faults at 0 and 15). This observation is based on the fact
that for example when faults are presented at 3 and 15, the
drop rate is higher compared to the other two cases, which
allows the nodes to inject more packets into the network
before reaching the saturation point.

Regarding the area, Elevator-first occupies relatively
larger area compared to CoBRA since it uses two virtual
channels along the X and Y dimensions while CoBRA has
just two virtual channels along the Y dimension.

6.4. Temperature Distribution

The traffic-thermal mutual-coupling cosimulation plat-
form [16] has been used to compare the thermal distribution
of CoBRA and Elevator-first. The tile geometry and power
model are based on Intel 80-core chip [17]. The physical
floorplans and power traces (generated during the network
traffic simulation) are used as inputs of thermal simulation.

The thermal distribution of the two routing algorithms
are compared for a 4 × 4 × 4 mesh NoC under the shuffle
traffic whose latency comparison was shown in Figure 5.
The thermal distribution is extracted under the injection rate
of 0.022. Based on Figure 11, the high temperature nodes
are located in the east side of the network for CoBRA, while
they are located in the left for Elevator-first. The distribution
of hot spot nodes, which represent points of higher traffic,
is determined by the routing algorithm and the method by
which elevators are assigned to different nodes.



Random Traffic
Average power (Whole network)

(μJ/cycle)

Average power per router

(nJ/cycle)

Routing algorithm

Double Faults
0, 15

PIR = 0.007

Double Faults
3, 15

PIR = 0.017

Triple Faults

0, 3, 12

PIR = 0.006

Double Faults
0, 15

PIR = 0.007

Double Faults
3, 15

PIR = 0.017

Triple Faults

0, 3, 12

PIR = 0.006

CoBRA without Reconfiguration 1.68 2.22 1.52 26.23 34.6 23.8

Elevator-first 1.15 2.78 0.9 18 43.5 14.12

TABLE 2: Power consumption comparison
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Figure 11: Thermal distribution a) CoBRA b) Elevator-first

7. Conclusion

TSVs are applied to stack multiple layers of 2D-NoCs
to provide fast and power efficient 3D architectures. The
vulnerability of TSVs during manufacturing process makes
these interconnections susceptible to faults. TSV failures
might occur during or after manufacturing process. Either
the TSV yield should be increased or chips with faulty
TSVs should be discarded but both solutions are costly. We
proposed a reconfigurable routing algorithm, called CoBRA,
to tolerate TSV failures during runtime and manufacturing
process. First, the routing algorithm dynamically searches
for a healthy elevator in the same column. If no TSV is
found, the packet moves to east and and if the packet
reaches the eastmost column and fails to find a healthy TSV,
the network is reconfigured to find an elevator at the west
direction. Simulation results indicate that CoBRA enhances
reliability considerably compared to Elevator-first.
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