
Jesús Carabaño1,†, Francisco Dios1,†, Masoud Daneshtalab2, Masoumeh Ebrahimi2

1Åbo Akademi, Finland , 2University of Turku, Finland
{jescar,fmdibu}@abo.fi, {masdan,masebr}@utu.fi

Abstract— Heterogeneous computing represents a trendy way
to achieve further scalability in the high-performance computing
area. It aims to join different processing units in a networked-
based system such that each task is preferably executed by the
unit which is able to efficiently perform that task. Memory
hierarchy, instruction set, control logic, and other properties may
differ in processing units so as to be specialized for different
variety of problems. However, it will be more time-consuming for
computer engineers to understand, design, and program on these
systems. On the other hand, proper problems running on well-
chosen heterogeneous systems present higher performance and
superior energy efficiency. Such balance of attributes seldom
makes a heterogeneous system useful for other fields than
embedded computing or high-performance computing. Among
them, embedded computing is more area and energy efficient
while high-performance computing obtains more performance.

GPUs, FPGAs or the new Xeon Phi are example of common
computational units that, along with CPUs, can compose
heterogeneous systems aiming to accelerate the execution of
programs. In this paper, we have explored these architectures in
terms of energy efficiency, performance, and productivity.

Index Terms— Heterogeneous Computing, GPU, GPGPU,
Xeon Phi, FPGA, OpenCL.

I. INTRODUCTION

eterogeneous computing introduces a simple idea that is
to run each task on the proper processing unit in order to

achieve the optimal performance [1]. In reality, however, this
is mostly impractical because heterogeneous systems require
complex designs as well as advanced and intricate
programming methods [10], [17-18]. In other words, both
hardware and software become so complicated such that the
obtained advantages may not be worthwhile regarding the
development costs. Therefore, the theoretical interpretation
should never be followed radically. Instead, the wise guideline
would be: if the problem is considerable, a heterogeneous
system might be profitable.

The most remarkable drawback is the difficulty of
knowing when to utilize heterogeneous designs. This affair
becomes decisive since the cost of developing heterogeneous
systems could be very high, so we need to ensure that the
achieved advantages will overcome this cost.

Principally in problems with high requirements,
heterogeneous ideas perform well considering the fact that
regular systems cannot meet those requirements [2]. For
instance, on the Embedded Computing (EC) area, systems
such as routers, mobile phones, mp3 players or medical
devices have to process signals in real time. The simplest way
would be to use general-purpose processors; however they
cannot satisfy the area, response time and energy requirements

that some embedded systems demand [3]. Hence, specific
digital signal processors (DSP) are used instead. Scientific
simulations are another example; they might take so much
time while at the end of executions the results would not be
useful. One option is to extend the system, but in then, it
consumes considerably more area and power. For these
problems, a high-performance heterogeneous system would
provide the required performance to speed up simulations
while saving in power consumption [14].

As a proof of the model, realistic videogames and intensive
graphic applications have been executed with the cooperation
of two processing units (CPU and GPU) since 90s, and their
performance requirement would not have been met without
such heterogeneous combination. Thus, heterogeneous
computing is not a novel approach; it has been always
presented wherever energy efficiency, performance or both
were indispensable. The EC community has used
heterogeneous designs mainly for area and energy efficiency
while the High Performance Computing (HPC) community
has used them for higher performance.

Heterogeneous computing has been always present
although it has not received much attention in the past than
today in the HPC community [26-32]. It is not obvious which
factors made the concept so popular nowadays; however, the
most likely reason is that few years ago the HPC market was
too focused on getting more scalability by just stacking up
servers of general-purpose processors. When GPUs proved to
be very successful for massive parallel problems, the
community took this as a revolutionary way to scale up the
computational platforms. Then, in contrast to the
homogeneous architectures that were dominating the market,
this trend in HPC was called heterogeneous computing.

Today heterogeneous computing is clearly popular in the
HPC area. Hundreds of research groups accelerate their
projects with heterogeneous systems, numerous documents
related to the subject are published continuously and new
supercomputers increasingly incorporate heterogeneous
designs, predominantly with GPUs. Modern cost-effective
heterogeneous systems are commonly composed of few
complex general-purpose cores and some specialized
processing units, usually working as accelerators. Examples
are a cluster of x86 cores along with GPUs, FPGAs and/or the
brand new Xeon Phi [15].

II. BACKGROUND OF HETEROGENEOUS COMPUTING FROM
HPC VIEWPOINT

Since the invention of the computer in the middle of the
last century, the concept of domain-specific processing unit

An Exploration of Heterogeneous Systems

H

†
The first two authors contributed equally to the work.

was slightly disregarded by HPC engineers. The reason was
that computing capacities were increasing continuously
according to Moore’s Law in such way that even high
complex problems of that time could be easily solved few
years later [4]. Furthermore, the matter was already difficult
such that attempts in that epoch were to make everything
simple and generic rather than to develop new architectures.
So, not many domain-specific processing units or architectures
were designed; only few institutions such as NASA (MPP),
prestigious universities (CM5, ILLIAC IV) or computer
manufacturers (Cray-1) have done some research in this
domain [36]. In all cases, there are groups who could afford
the extravagance cost of these systems and who do not mind
about its rapid obsolescence due to the fast improvements in
all areas of computing.

Over that period, the leading goal for most hardware
engineers was to improve the single-core general-purpose
CPUs. In fact, significant improvements were achieved, e.g.
superscalar, pipelines, multithreading, branch prediction, and
out-of-order execution [33]. On the other hand, most efforts in
the software field at the same time were related to sequential
programming on single-core CPUs, e.g. smarter compilers,
new programming languages (Assembly, Haskell, C, Java,
etc.), and highly optimized libraries.

By the end of the century, the single-core era has reached
its end due to physical limitations [5]. The principal causing
factors were power consumption, power dissipation, and
complexity. As a simplification, we could say that power
consumption increases exponentially with regard to the scalar
performance. Therefore, several low-frequency cores could
attain the same performance as one high-frequency core, but
with the great advantage of consuming less power [5]. On the
other hand, the power dissipation issue was getting to such
unacceptable level that higher clock rates would have needed
expensive cooling systems with prices exceeding the cost of
the processor itself. Furthermore, making faster cores not only
exacerbate these limitations but also miniaturization,
reliability, design and manufacturing costs, which increase the
complexity.

With the incoming millennium, a new period that we could
call multi-core era was began. The above limitations made it
impossible to grow in frequency and the only escape was to
grow in space. Two roads emerged: multi-core architectures
(few medium-high frequency complex cores) and many-core
architectures (many low-medium frequency simple cores). The
first model aimed to replace the previous single-core general-
purpose processors while the second was intended for
embarrassing parallel problems. Over that period hardware
designers had to solve further issues caused by those new
architectures [37][38] e.g. shared memory protocols, routing
protocols, and the cache coherence problem. On the software
side, developments were about parallel programming
languages (e.g. MPI, OpenMP, and TBB). With regard to
HPC, the common way to get higher performance was
stacking up many general-purpose computers in clusters of
hundreds of them [34].

Unfortunately for the multi-core era, problems are not
always parallelizable and if they are, their scalability does not
usually allow further performance improvement when the
number of cores increases [6]. According to this philosophy,
more and simpler cores have the potential of higher
performance; however what actually makes that performance
gain applicable is the available parallelism in programs and
algorithms. Scalar codes with no parallel sections perform
worse on these architectures compared to the first generation.
For this reason many-core architectures were not became as
popular as general-purpose processor. In addition, multi-core
architectures were not expanded to use many complex cores.
The reason was that the physical limitations of the previous
era were still present when trying to place many complex
cores [7][37].

Meanwhile something extraordinary happened. The
tendency to make more generic GPUs turned into real general-
purpose GPUs, which are able to efficiently solve any problem
having potential data parallelization. Besides, their
programmability was significantly improved. That is why the
trend of stacking up servers was questioned, when just a
simple GPU could achieve the same scalability than a little
counterpart cluster.

From now to a near future is a heterogeneous era, at least
in the HPC domain. High performance engineers agree that
systems composed by few complex general-purpose cores and
some specialized processors are a real alternative to just
stacking up symmetric servers as well as a promising way to
achieve high performance while saving energy. With these
two key benefits, heterogeneous computing is in the spotlight
of the community and all indications are that this trend will be
the driving force to reach exascale-level of computing.

The final compelling reason for heterogeneous computing
comes with the limits in performance. If physical limitations
make it impossible to achieve indefinite performance
improvements, it is very likely that there will be a turning
point (see fig. 1) after which general-purpose processors will
not reach domain-specific processors anymore. In our opinion
this turning point should be close to the beginning of the
predicted heterogeneous era.

Fig. 1: Performance evolution of general-purpose processors against
domain-specific processors.

III. PROCESSING UNITS

In this section we give an overview of the most relevant
processing units usually incorporated into high performance

Multi-Core Era
(linear increase)

Pe
rf

or
m

an
ce

Single-Core Era
(exponential increase)

Heterogeneous Era
(sublinear increase)

General-Purpose Processor █

Domain-Specific Processor █

Turning point

heterogeneous systems. We highlight their strong suits, expose
their disadvantages and compare their designs.

A. Central Processing Units
As the elder of processors, CPU has been always the center

of attention when talking about computer architectures. Since
first models appeared, its mission has not been changed at all
while its design has been enhanced in order to achieve greater
performance. Significant improvements were about exploiting
simple parallelism as instruction level parallelism (superscalar
architectures and instruction pipelines), thread level
parallelism (multithreading technologies), and data level
parallelism (vector units). Additional improvements, not
related to parallelism but in the level of importance, were to
maximize the pipelines’ flow (cache memories, branch
prediction, speculative execution and out-of-order execution).
In general, all the mentioned improvements have been focused
to make CPUs robust and moderately fast running any code.
Important features of CPU [8] can be summarized as follows:

· The degree of productivity is very high having mature
programming languages with optimized compilers.

· Capable of running an operating system.

· Processing elements (few complex x86 cores) are able
to execute 2 to 8 instructions per cycle with small
vector units.

· Robust processor for nearly all problems and can
execute any code moderately fast through an intensive
use of the above technologies.

· Simple multithreading, supporting 2 threads per core.

· High clock rate which makes CPU the best choice for
scalar problems but with high power consumption per
thread.

· Large cache memories with up to 3 levels in order to
hide memory latencies.

· The single precision float performance is theoretically
up to 200 GFlops with vector units and 50 GFlops
without them.

· Energy efficiency is around 2 GFlops/watt with vector
units and 0.5 without them.

Table 1 shows a simple comparison between two CPUs (i7
Sandy Bridge and Xeon Sandy Bridge) regarding theoretical
peak, thermal design power (TDP), and energy efficiency.

Table 1: Technical details of modern CPUs.

System
Theoretical

Peak
(GFlops)

TDP
(Watts)

Energy
Efficiency

(GFlops/watt)

i7 Sandy Bridge 200~ 130 1.5

Xeon Sandy
Bridge 200~ 87 2.3

B. Graphic Processing Units
Since first graphic cards, the design of their processors has

changed significantly; from hard-coded pipelines to totally
programmable massive parallel processors [9]. These changes
have led to the use of GPUs as the real general-purpose
processing units which can accelerate not only videos or
images, but also problems where processing of large blocks of
data should be done in parallel. This causes GPUs to become
an important device for scientists and high performance
programmers as their parallel capacity can suppose a powerful
boost for embarrassing parallel problems. Therefore, GPUs are
beneficial for certain types of problems in order to quickly
achieve high performance in a simple way while saving
power.

Beside high performance, the energy efficiency is actually
the second success key. GPUs are in an order of magnitude
more efficient than CPUs and due to this reason even
supercomputers incorporate numerous GPUs as an affordable
way to reach high performance without overflowing the
system power consumption. Some of the features of GPUs
[11-13] when used as accelerators are listed below:

· The degree of productivity is medium: programming
languages are extensions of C, but programmers have
to be aware of the underlying hardware.

· Composed of many simple cores in SIMD groups that
can dispatch few thousands instructions per cycle.

· No robustness technologies, but compensated by
complex multithreading supporting tens of threads.

· Medium clock rate which is inadequate for little
workloads but with medium-low energy consumption
per thread.

· Very wide memory bandwidth in order to feed all its
cores.

· Very small on-chip memory that can behave as L1
cache or shared memory.

· Memory design goal is to save area in favor of more
processing elements, which increases the latency and
reduces its proficiency with complex access patterns.

· Overall design aims to data parallel problems with
simple memory accesses and arithmetic intensive work.

· The single precision float performance is up to 3500
GFlops theoretically.

· Energy efficiency is about 16 GFlops/watt
theoretically.

Table 2 shows a simple comparison between two GPUs
(Geforce GTX 680 and Tesla K20X) regarding theoretical
peak, thermal design power and energy efficiency.

Table 2: Technical details of modern GPUs.

System Theoretical Peak
(GFlops)

TDP
(Watts)

Energy Efficiency
(GFlops/watt)

Geforce GTX 680 3000~ 195 15.85

Tesla K20X 3500~ 235 16.8

C. Xeon Phi
Xeon Phi is the first commercialized product based on the

Intel MIC Architecture (code name Knights Corner). It is a
many-core processor with PCI connection, acting as a
coprocessor, intends to gain a foothold in the HPC
heterogeneous computing market. Its design consists of 60 x86
cores with dedicated 512-bit SIMD units, coherent L2 cache
and ultra-wide ring bus connecting processors and memory
blocks.

Its future and position in the market is still uncertain; the
only indisputable fact is that Xeon Phi is the direct competitor
of the general-purpose GPUs. The x86 compatibility, unlike in
GPUs, is its best tactic to capture the attention of programmers
who do not want to spend too much time translating projects
to heterogeneous systems. Another major benefit is that
programs can be executed in standalone mode by the Linux
system that resides in its chip and therefore, the
communication overhead between the host and device is
reduced. Expected features of this new device [15-16] include
the following:

· The degree of productivity is between high (codes
designed for x86 processors are compatible) and
medium (several modes of execution, wide vector
units).

· They can perform as an accelerator or as a standalone
processor, with four modes of execution.

· Each core (60 simple x86) is able to execute 16 double
precision float operation per cycle with its vector unit.

· No robustness technologies, but compensated with
moderate multithreading that supports 4 threads per
core and hardware prefetching.

· Medium clock rate which makes it inadequate for little
workloads but with medium energy consumption per
thread.

· Ultra-wide memory bandwidth and ring
interconnection.

· Small cache memories with 2 levels and coherence at
the second with higher latency than CPU caches.

· Memory design goal is to save area in favor of more
cores.

· Overall design aims to solve massive parallel problems
with no necessary data parallelism. Nevertheless, it is
far better for data parallelism because of the wide
vector units.

· The single precision float performance is up to 2,000
GFlops theoretically, but extremely lower if vector
units are not used.

· Energy efficiency is about 10 GFlops/watt
theoretically.

D. Field Programming Gate Array (FPGA)
A FPGA is a semiconductor device containing logic blocks

whose interconnections and function can be programmed in
order to create a temporal hardware design. Such design maps
into the device, an application-specific circuit that could
implement from simple logic gates to highly complex circuitry
like x86 cores.

FPGA emerges as an evolution of the concepts of
programmable device developed in PAL and CPLD. Its main
purpose is to act as a programmable ASIC and, in fact, it is
very often used as a prototyping platforms of ASIC designs. In
heterogeneous computing a well programmed FPGA can be
the most powerful accelerator with about an order of
magnitude of higher energy efficiency than other accelerators
whether problems suit in its model. Its features [35] are the
following:

· The degree of productivity is low: very complex and
slow programming languages because the engineer is
responsible of not only software but also hardware
design.

· There are no processing elements or cores itself; the
design can be totally adapted to the needs of the
problem.

· They can exploit many techniques such as heavy
pipelines, parallel work lines, optimal control logic
designs, tuned functional units, lookup tables, etc..

· The clock rate is slow and limited by the design,
routing and placement. In turn, the energy consumption
is very low.

· The memory hierarchy is totally customizable:
latencies, widths, interconnections and switching
protocols.

· In general they are suitable for static problems with any
kind of parallelism (data and task parallelism).

· Inadequate for dynamic problems that change at run-
time or have a very complex or unpredictable flow.

· The single precision float performance will depends on
the design, but fabricants claim up to 1 TFlop.

· Energy efficiency is again design dependent, but if
normal consumptions are about 20~40W, the efficiency
could theoretically be even 25 GFlops/watt.

E. Comparisons
With the above described features, we have compared the

four processing units and represented the results in the
following figures. Notice that this information has been
collected for the current generation of processors and could
change with the incoming generations (Intel 4th-gen, Nvidia
Maxwell, etc.).

Fig. 2 shows how CPUs outperform in terms of
productivity. It goes from very high productivity when using
shared memory models to medium-high with message-passing
languages. GPUs follow an unusual programming model that

we place in the middle of the scale. It could go slightly up or
down depending on the interaction with the on-chip memories.
Xeon Phi processor has great productivity as a normal CPU.
However, its compiler still needs important improvements and
by now it does not automatically vectorize most of the codes.
Thus, programmers have to vectorize by hand, what drops the
productivity significantly. FPGAs get the lowest place because
programmers have to care about all the aspect of the design.
Their productivity goes from very low when using hardware
description level languages to medium-low when utilizing
high level synthesis tools.

Productivity

CPU
GPU
PHI

FPGA
High Medium Low

Fig. 2: Productivity comparison.

Its high clock rates, complex processing element, memory
hierarchy and robustness technologies make CPUs the best
options for scalar and complex codes. According to fig. 3,
GPUs become the worst choice since they are specialized for
massive data parallelism. Xeon Phi, with architecture
somewhere between CPUs and GPUs, stays accordingly in the
middle. FPGAs get a middle-low position since they have the
ability to place very tuned designs that can eventually run
specific codes in fewer cycles than CPUs, but in contrast their
clock rate is lower.

Performance: scalar-complex codes

CPU
GPU
PHI
FPGA

High Medium Low

Fig. 3: Scalar-complex codes comparison.

As we can see in Fig. 4, CPUs might reach medium
performance for parallel and simple codes. This occurs when
taking advantage of their little vector units; otherwise this
class of performance would be low for CPUs. GPUs obtain the
higher place in all probability as they are designed for that
intention. Xeon Phi, though having fewer cores than GPUs,
still gets a considerable performance when using its wide
vector units. FPGAs can route as many parallel path as needed
as long as the area is not fully occupied, therefore their
parallel performance becomes high in general.

Performance: parallel-simple codes

CPU
GPU
PHI
FPGA

High Medium Low

Fig. 4: Parallel-simple codes comparison.

As Fig. 5 shows, CPUs are very ineffective in terms of

energy efficiency. One way to decrease their power
consumption is using application-specific instructions such as
vector instructions or CRC instructions; another is choosing
more parallel oriented architectures with lower frequency and
more cores. GPUs get high energy efficiency because, though
their power consumption is one of the highest, their
performance is high as well and the relation becomes
profitable. The Xeon Phi reaches medium-high performances
due to its daring architecture between CPU and GPU. FPGAs
achieve the highest position because of their low power
consumption.

Energy Efficiency

CPU
GPU
PHI

FPGA
High Medium Low

Fig. 5: Energy efficiency comparison.

IV. RESULTS AND DISCUSSIONS

In order to present reasonable conclusion, we have
explored publications claiming speedups for different
problems through the use of our three heterogeneous models:
CPU + (GPU / Xeon Phi / FPGA). Therein CPU becomes the
leader while the secondary device acts as an accelerator.

A. Graphics Processing Units
GPUs are very suitable for high performance computing

where problems have possible massive data parallelization.
For a very widespread problem as dense linear algebra, the

comparison between an Nvidia library for GPU (CUBLAS)
and Intel library for CPU (Intel MKL, carefully optimized
math operations for CPU) shows that GPU is up to 17x faster
than CPU [20].

Folding@home is a project of Stanford University that
computes protein folding by using distributed computing. The
statistics show that every client who computes protein folding
using a GPU contributes, in average, 35x faster of what a CPU
user does [21].

Another example from the applications of GPUs is the
HotSpot technique, a simulation that tries to estimate the
temperature of a chip by using structured grids. This is a very
important simulation since nowadays one of the most
transcendent limitations of chips is temperature. According to
[22], GPUs offer a speedup of x25 over CPUs.

B. Xeon Phi
The same environment for GPU is suitable for Xeon Phi as

well, with the advantage that it is not necessary to use a
different programming model than CPU.

Financial predictions could be a very important field for
Xeon Phi since Monte Carlo algorithms are very common in
financial services. A comparison of Xeon Phi versus two Intel
Xeon E5-2670 processors for Monte Carlo shows a speedup of
10.75x [23].

Another field of application is high performance

computing domain such as astrophysics and genetics. A
simulation of N-body, problem related to interacting particles
influenced by gravitational, electric or magnetic fields (e.g.
used in astrophysics for galaxy movement), shows a speedup
of 6x for Xeon Phi versus two Intel Xeon E5-2680 processors
[24].

C. Field Programming Gate Array (FPGA)
An important application for FPGAs is cryptography. For

instance, servers that need to handle lots of encrypted
authentications are benefited by using FPGAs. Advanced
Encryption Standard (AES) is a very widespread symmetric-
cryptography algorithm for encrypting data. FPGAs offer a
good performance for this algorithm: 520x speed up versus
E5503 Xeon Processor single core, and 15.75x versus AMD
Radeon HD 7970. Besides the performance speedup, there are
other characteristics of FPGAs that make them suitable
choices for cryptography [25].

V. CONCLUSIONS AND SUMMARY

According to the exposed results, we conclude that the
heterogeneous computing paradigm has proved to be very
effective for high performance environments. The
programming languages and compilers for heterogeneous
computing have clearly improved and only minor
improvements are to be done. However, we think there is still
a lack of a unifying model for those programming languages.

OpenCL is not yet mature enough to exploit all the
advantages of the presented architectures. Intel, AMD, Nvidia
and Altera [19] have announced their support to OpenCL.
Thereby, if it finally becomes the standard, programming for
this model would be easier for heterogeneous systems while
relaxing the necessary knowledge about the underlying
hardware.

To summarize the topic in few points, we list the most
important concepts which should be considered about
heterogeneous computing as follows:

A. Performance and energy efficiency
To improve both performance and energy efficiency,

heterogeneous computing suggests executing each task with
the processing unit that can better performs that task. This will
guarantee a good utilization of the architecture’s capabilities
and hence achieving high efficiency.

B. Each code for its proper architecture
Simple codes do not take advantage of complex

architectures; neither does simple memory accesses for
complex memory hierarchies and thus quite area is unused.
Similarly, complex codes or memory accesses do not perform
well in very simple systems so efficiency is reduced.

C. Abundant parallelism
Simulations, data mining, bioinformatics, astronomy,

energy research, algebra, finances, etc. have abundant data
parallelism and can perform more efficiently on SIMD
architectures.

Servers, databases, complex software and in general
parallel tasks with individual flow will perform more
efficiently on MIMD architectures.

We recommend functional parallelism for clusters, while
data parallelism for GPUs, Xeon Phi and FPGAs.

D. Productivity and programming models
Despite the advantages, heterogeneous computing has very

different architectures and often different programming
languages as well. This obviously reduces the productivity
since it requires a better understanding of both problem and
system. A possible future option is OpenCL, which aims to
generate binary codes for different processing units regardless
of the underlying hardware.

VI. FUTURE EXPECTATIONS

Our opinion is that heterogeneous computing will become
more important in the coming years. After the boom of
GPGPU computing at the end of 2009, the community has not
talked about revolution anymore. However, all HPC groups
are increasingly incorporating heterogeneous systems to their
laboratories, what means this is not just a fad.

The future limitations on the chip miniaturization seem to
be an important ally of heterogeneous computing. As the
performance improvement is reduced year by year, the
importance of heterogeneous computing will probably grow
inversely. If eventually a time arrives when transistors cannot
be reduced anymore, then the only alternative to achieve
higher performance will be by expanding the chip area.
Nonetheless, when chip area cannot be expanded due to other
limitations or when area efficient solutions are demanded,
heterogeneous computing will be the only way to increase
efficiency, and thereby it will become significantly important,
as we show in fig. 6.

Fig. 6: Our prediction about heterogeneous computing relevance.

REFERENCES

[1] A.A Khokhar et al. “Heterogeneous computing: Challenges and
opportunities,” in Computer, 1993, vol. 26, no 6, p. 18-27.

[2] J. Manyika et al. “Big data: The next frontier for innovation,
competition, and productivity”. McKinsey Global Institute, 2011, pp. 1-
137.

[3] K.G. Shin and P. Ramanathan. “Real Time Computing A New
Discipline Of Computer Science And Engineering,” in Proceedings Of
The IEEE, 82(1), 1994, pp. 6-24.

[4] G. Moore, “Progress In Digital Integrated Electronics,” in proceeding of
International Electron Devices Meeting, vol. 21, 1975, pp. 11-13.

Ex
po

ne
nt

ia
l S

ca
le

Evolution along the time

█ Handled Data Size
█ Computing Performance
█ Het.Comp. Relevance Performance

Limit

[5] M. Horowitz, “Scaling, power, and the future of CMOS,” in proceeding
of VLSID '07, 2007, pp. 23.

[6] G.M. Amdahl, “Validity of the single processor approach to achieving
large-scale computing capabilities,” in proceeding of AFIPS ’67, 1967,
pp. 483-485.

[7] H. Esmaeilzadeh, “Dark Silicon and the End of Multicore Scaling,” in
proceeding of ISCA '11, 2011, pp. 365-376.

[8] “Intel® 64 and IA-32 Architectures Optimization Reference Manual,”
Internet: http://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-optimization-manual.html, Apr. 2012
[May. 2013].

[9] J. Nickolls and W.J. Dally, “The GPU Computing Era,” in proceeding of
IEEE Micro, 30 (2), March 2010, pp. 56-69.

[10] “Cuda C Programming Guide,” Internet:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html,
[May. 2013].

[11] “Gefore GTX 680 Whitepaper,” Internet:
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-
Whitepaper-FINAL.pdf, pp. 3-12 [May. 2013].

[12] “Tesla KSeries Overview,” Internet
http://www.nvidia.com/content/tesla/pdf/Tesla-KSeries-Overview-
LR.pdf, [May. 2013].

[13] “Tesla K20X Board Specification,” Internet:
http://www.nvidia.com/content/PDF/kepler/Tesla-K20X-BD-06397-
001-v05.pdf, Nov. 2012 [May. 2013].

[14] “Titan Supercomputer,” Internet: http://www.olcf.ornl.gov/titan, [May.
2013].

[15] “Intel MIC Xeon Phi,” Internet: http://www.intel.com/xeonphi, [May.
2013].

[16] “Xeon Phi Datasheet,” Internet:
http://www.intel.com/content/dam/www/public/us/en/documents/produc
t-briefs/xeon-phi-datasheet.pdf, [May. 2013].

[17] “OpenCL 1.2 Specification,” Internet:
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf, Sep. 2012
[May. 2013].

[18] “Heterogeneous System Architecture: a technical review,” Internet:
http://developer.amd.com/wordpress/media/2012/10/hsa10.pdf, Aug.
2012 [May. 2013].

[19] “OpenCL for Altera FPGAs: Accelerating Performance and Design
Productivity,” Internet:
http://www.altera.com/products/software/opencl/opencl-index.html,
[May. 2013].

[20] “CUDA 5.0 Math Libraries Performance Report,” Internet:
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/CUDA
Downloads/CUDA_5.0_Math_Libraries_Performance.pdf [May. 2013].

[21] A. Beberg and V. S. Pande. “Folding@home: lessons from eight years
of distributed computing,” In proceeding of IEEE International
Symposium on Parallel & Distributed Processing, 1-8 (2009)

[22] P. Springer, “Berkeley Dwarfs on CUDA,” Rwth Aachen University.
Internet: http://hpac.rwth-

aachen.de/people/springer/cuda_dwarf_seminar.pdf, pp. 14-15 [May.
2013].

[23] “Intel® Xeon Phi™ Product Family Performance,” Internet:
http://www.intel.com/content/dam/www/public/us/en/documents/perfor
mance-briefs/xeon-phi-product-family-performance-brief.pdf, Apr. 2013
[May. 2013].

[24] “Test-driving Intel Xeon Phi coprocessors with a basic N-body
simulation,” Internet:
http://research.colfaxinternational.com/file.axd?file=2013%2f1%2fColfa
x_Nbody_Xeon_Phi.pdf, Jan. 2013. [May. 2013].

[25] “40Gbit AES Encryption Using OpenCL and FPGAs,” Internet:
http://www.nallatech.com/images/stories/technical_library/white-
papers/40_gbit_aes_encryption_using_opencl_and_fpgas_final.pdf,
[May. 2013].

[26] Q. Liu and W. Luk, “Heterogeneous Systems for Energy Efficient
Scientific Computing,” in proceeding of ARC'12, 2012, pp. 64-75.

[27] A.R. Brodtkorb et al, “State-of-the-art in heterogeneous computing,” in
IOS Press, 18(1), 2010, pp. 1-33.

[28] B. Gaster et al., “Heterogeneous Computing with OpenCL,” 2013.
[29] S. Che et al., “Rodinia: A Benchmark Suite for Heterogeneous

Computing,” in Proceedings of the IEEE International Symposium on
Workload Characterization, 2009, pp. 44–54.

[30] R. Inta et al., “Chimera: an off-the-shelf CPU/GPGPU/FPGA hybrid
computing platform,” International Journal of Reconfigurable
Computing, 2012, pp. 2-2, January 2012

[31] R. Inta and D. J. Bowman, “An FPGA/GPU/CPU hybrid platform for
solving hard computational problems,” in Proceedings of the eResearch
Australasia, Gold Coast, Australia, 2010.

[32] S. Che et al., “Accelerating compute-intensive applications with GPUs
and FPGAs,” in Proceedings of the Symposium on Application Specific
Processors (SASP '08), Anaheim, Calif, USA, 2008, pp. 101–107.

[33] J.L. Hennessy and D.A.Patterson, “Computer architecture: a quantitative
approach,” Morgan Kaufmann, 2011.

[34] M. Baker, “Cluster computing white paper,” arXiv preprint cs/0004014,
2000.

[35] V. Betz et al., “Architecture and CAD for deep-submicron FPGAs,”
Kluwer Academic Publishers, 1999.

[36] A.R. Hoffman and J.F. Traub, “Supercomputers: directions in
technology and applications,” National Academies Press, 1989.

[37] M. Daneshtalab et al., “Memory-Efficient On-Chip Network with
Adaptive Interfaces,” IEEE Transaction on Computer-Aided Design of
Integrated Circuits and Systems (IEEE-TCAD), Vol. 31, No. 1, pp. 146-
159, Jan 2012.

[38] M. Ebrahimi et al., “HAMUM – A Novel Routing Protocol for Unicast
and Multicast Traffic in MPSoCs,” in Proceedings of 18th IEEE
Euromicro Conference on Parallel, Distributed and Network-Based
Computing (PDP), pp. 525-532, February 2010, Italy.

