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Abstract—In this paper, we propose a congestion-aware 
routing algorithm based on Dual Reinforcement Q-routing. In 
this method, local and global congestion information of the 
network is provided for each router, utilizing learning packets. 
This information should be dynamically updated according to the 
changing traffic conditions in the network. For this purpose, a 
congestion detection method is presented to measure the average 
of free buffer slots in a specific time interval. This value is 
compared with maximum and minimum threshold values and 
based on the comparison result, the learning rate is updated. If 
the learning rate is a large value, it means the network gets 
congested and global information is more emphasized than local 
information. In contrast, local information is more important 
than global when a router receives few packets in a time interval. 
Experimental results for different traffic patterns and network 
loads show that the proposed method improves the network 
performance compared with the standard Q-routing, DRQ-
routing, and Dynamic XY-routing algorithms. 

Keywords;  Networks-on-Chip, Adaptive Routing, Dual 
Reinforcement Learning, Q-routing 

I. INTRODUCTION 

As technology scales further and chip integration density 
grows, on-chip communication is playing an increasingly 
dominant role in System-on-Chip (SoC) design [1][2]. 
Network-on-Chip (NoC) is a new generation of 
communication infrastructures for SoC [1][4]. A mesh NoC 
consists of several cores where each core is connected to a 
router by a local network interface. Each router is also 
connected to its neighboring routers through bidirectional 
links [4][5][6][7]. So, the cores can communicate with each 
other by propagating packets through routers in the on-chip 
network.  

 The performance of NoC strongly depends on the routing 
techniques. Network routing is the mechanism which allows 
packets to be forwarded between any pair of source and 
destination nodes. A routing algorithm should be able to adapt 
dynamically to the traffic changes in the network. An efficient 
routing algorithm can alleviate congestion by distributing 
packets through less congested paths. Generally, routing 
algorithms can be classified into deterministic and adaptive 
[8][9][10]. In deterministic routing algorithms [11], a transfer 
path is completely determined by the source and destination 
addresses. For example, in the XY routing algorithm, packets 
first transfer along the X direction, then along the Y direction. 
In adaptive routing algorithms [9][15], each packet’s transfer 
path determines based on the current network conditions. When 

network congestion happens, they choose paths with low 
latencies to avoid congested links and routers.  

In our approach, we use a strong method of reinforcement 
learning —Q-learning.  It learns to control a dynamic system 
optimally through scalar values or rewards. In Q-learning, an 
agent first percepts the environment and chooses an action. 
After the action executes, the agent receives a reward. In this 
way, the agent learns a policy for selecting among actions. 
Such a policy should maximize the expected sum of discounted 
rewards. In the other hand, Q-learning allows an agent to learn 
on-line from experiences, and then by using them, it improves 
performance [16].  

Q-routing [17] is an adaptive routing algorithm which uses
the Q-learning [18]. In Q-routing, each node makes routing 
decisions based on its neighboring nodes information. A node 
stores a table of Q-values that estimates the quality of 
alternative paths. These values are updated each time a node 
sends a packet to one of its neighbors [19]. This way, as the 
node routes packets, its Q-values gradually incorporate more 
global information. In DRL method [20], a novel dual 
reinforcement learning was applied to the satellite 
communication. This approach is adapted on-line when the 
system is performing. Dual Reinforcement Q-routing (DRQ-
routing) [21] utilizes DRL approach for packet routing. In the 
DRQ method, each node in the network learns routing policies, 
results in reducing the average packet delivery time. Learning 
is performed by carrying the latency information to 
intermediate nodes (backward exploration unique to DRQ-
Routing) and by receiving the learning packets from the 
neighboring node where a data packet is sent to (forward 
exploration similar to Q-Routing). At high injection loads, the 
routing policy learned by DRQ-routing leads to higher 
performance than Q-routing in terms of average packet delivery 
time [22]. 

In this paper, we propose a congestion-aware routing 
algorithm named Dual Q-routing Adaptive learning Rate 
(DuQAR).  The goal of the presented routing algorithm is to 
enhance DRQ-routing performance in NoC once the network 
becomes congested. To make effective routing decisions, the 
congestion information (Q-values) should be updated 
continually on the foundation of congestion in the network. 
Otherwise the routing decision based on unreliable Q-values 
cannot be accurate. For this purpose, we consider a congestion 
detection technique which updates the learning rate according 
to the congestion in each node. The learning rate determines 
the rate at which newer information overwrites the older one. 
Therefore, this method adaptively learns an optimal routing 
strategy and be able to find a less congested path among 
available paths from the source to destination nodes. 



The reminder of this paper is organized as follows. In 
Section II, the related work is discussed. Some background 
information on Q-routing and DRQ-routing techniques is given 
in Section III. In Section IV, the proposed algorithm is 
explained. The results are reported in Section V, while the 
summary and conclusion are given in the last section. 

II. RELATED WORK

In recent year, significant research has been done to 
improve the routing efficiency of NoC while most existing 
adaptive routing techniques are presented to avoid congestion. 
Adaptive routing policies can be categorized into congestion-
oblivious and congestion-aware schemes [23]. In congestion-
oblivious algorithms, routing decisions are independent of the 
congestion condition of the network. Random [24] and Zigzag 
[25] are two examples of congestion-oblivious methods. In
Random routing method, output ports are chosen randomly,
while in Zigzag, the output ports are selected based on the
remaining hop counts in each dimension. DyXY [26] and
DyAD [27] are two approaches of the congestion-aware
routing algorithms. These routing algorithms consider the
congestion status of the network in the routing decision [28].
Congestion-aware routing policies can be further classified
based on whether they rely on purely local congestion
information or take into account the congestion status at other
points in the network [9]. DyXY uses local information, the
current queue length of the corresponding input port in the
neighboring routers, to decide on the next hop. DyXY may lead
to forward packets through congested area as employing local
information is not sufficient. ANOC [29] was proposed to
reduce the network congestion using a cluster-based network.
However, it cannot provide global information using the
clustering approach.

The Q-routing method is proposed in [17] which is able to 
find the optimal paths among available paths from the source 
node to the destination node. This algorithm allows a network 
to continuously adapt to changing traffic condition by routing 
packets on routes which estimate the least delivery time. 
However, Q-routing suffers from the unreliability of the 
estimated Q-values. The reason is that depending on the traffic 
pattern and load levels, only few Q-values might be updated 
regularly while most of the Q-values in the network are 
unreliable. To address this problem, some other algorithms are 
presented such as CQ-routing  [30] and PQ-routing [31]. In CQ-
routing, each Q-value is attached with a confidence value (C-
value) which is a measure of how closely the corresponding Q-
value represents the current state of the network. PQ-routing 
keeps track of the last update time and the best Q-values seen 
so far. PQ-routing is able to explore paths that have been 
inactive for a long time, and thereby able to restore the 
previous policy. The same idea is extended to DRQ-routing 
[21]. The speed of restoration is expected to be higher in DRQ-
routing than in the PQ-routing because of the enhanced 
exploration in DRQ-routing.   

Reinforcement learning approaches have rarely been 
investigated in NoC. The algorithm in [32] is proposed to 
handle communication among modules which are dynamically 

placed on a reconfigurable NoC. Another method, named fault-
tolerant deflection routing algorithm (FTDR), is presented in 
[33] which inspired by Q-learning techniques for tolerating
faults in NoC. In another approach [34], Q-routing  is used to
provide the different levels of Quality-of-Service (QoS) such as
Best Effort (BE) and Guaranteed Throughput (GT) in NoC. It
contrasts the performance of Q-routing with the XY routing
strategy in context of QoS.  In addition, C-routing [35] is a new
cluster-based adaptive routing method which reduces the size
of routing  tables.

III. BACKGROUND

This section briefly reviews Q-routing and DRQ-routing 
techniques.  

A. Q-routing

Q-routing first learns a representation of the network state
in terms of Q-values and then uses these values to make routing 
decisions. Each node stores a table of values named Q-values 
that estimate the quality of the alternative routes. These values 
are updated each time a node sends a packet to one of its 
neighbors.  

 Assume that a message is generated at the source node s 
and it is already at node x. This message is going to be sent to 
the destination node d via one of its neighboring nodes, 
assumed to be y (Figure 1). The maximum amount of time it 
takes for a packet to reach its destination from the node x is 
bounded by the sum of three quantities: (1) the waiting time 
(qy) in the input queue of the node y (2) the transmission delay 
(δ) over the link from node x to y, and (3) the minimum time, 
Qy(z, d), it would take for the node y to send this packet to the 
destination via one of the node y's neighbors, assumed to be z. 

),(min),(
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dnQdzQ yyNny ∈
=

Where N(y) is a set of the y’s neighboring nodes. 

The node y sends its best estimate Qy(z,d) for the destination d 
back to the node x. Upon receiving Qy(z,d), the node x 
computes the new estimate for Qx(y,d) as follows: 

δ++= yyestx qdzQdyQ ),(),(     

Qx(y, d)est is the node x's best estimated delay that a packet 
would take to reach its destination node d from the node x 
when sent via its neighboring node y. So, this value includes 
the total waiting time and transmission delay over the entire 
path that it would take starting from the node y. Q-value is 
modified by the following formula after receiving the Qx(y, d)est
value: 

( ) ( ) ( ) ( )( )oldxestxoldxnewx dyQdyQdyQdyQ ,,,, −+= γ     (1) 

Learning is performed by updating the Q-values. Learning rate, 
γ, determines the rate at which newer information overwrites 
the older one. Learning rate can take a value between zero and 
one; the value of zero means no learning is made by the 
algorithm; while the value of one indicates that the most recent 
information is used.  



Step 1: Sending a data packet from the node x to the node y 

1. Select a data packet from the queue.
2. Find minimum Q-value from Q-table when destination node is
d. Assume that, the value belongs to the neighboring node y.

),(min
)(

dmQy xxNm∈
=  

3. Forward the packet to neighbor y.

Step 2: Receiving a data packet by the node y 

1. Node y receives a data packet from neighbor x.
2. Find the minimum Q-value from the Q-table of node y. Assume
that, the neighboring node z has the minimum estimated latency
to reach the destination node d.

),(min),(
)(

dnQdzQ yyNny ∈
=  

3. Measure the waiting time of the packet at the input buffer of
node y (qy ) before sending the packet  to the neighboring node z.
4. Send y’s estimate back to node x including Qy(z,d) and qy using
a learning packet.

Step3: Receiving a learning packet by the node x 

1. Node x receives the learning packet from node y.
2. Extract the estimated Q-value from node y containing Qy(z,d)
and qy from the learning packet.
3 . Update the Q-value, Qx(y, d), regarding the destination node
d and neighboring node y using formula (1).

Figure 1. An example of Q-routing method 

The Q-routing algorithm has three main steps as follows: 

 

 
 

 

 
 
 

B. DRQ-routing
Dual Reinforcement Q-routing (DRQ-routing) combines Q-

routing with Dual Reinforcement Learning [21]. The Q-routing 
only updates the Q-value whenever the node receives a 
learning packet. In other words, when a data packet is sent 
from the node x to the node y, the learning packet sends back to 
the node x and thus only the Q-table of the node x is updated. 
Therefore, the Q-routing algorithm only uses forward 
exploration. The idea of DRQ-routing is to update the Q-tables 
of both the node x and the node y. Thereby, the DRQ-routing 
utilizes the Q-routing for both backward and forward 
exploration. Forward exploration determines the latency of the 
remaining path from the current node to the destination node, 
while backward exploration indicates the latency of the 
traversed path from the current node to the source node. For an 
example of the backward exploration consider a case where the 
node x sends a packet to its destination node d via its 
neighboring node y. When the data packet is traveling from the 
source to the destination, it carries some Q-value information 

between each two neighboring nodes. As the node y receives 
this packet, it uses this information for updating its own 
estimate of sending a packet to node s via node x.  

As shown in Figure 2, suppose that the packet is currently 
at the node x. This packet contains the minimum latency value 
from the node s to the node x passing though the node h. This 
value can be defined as: 

),(min),(
)(

snQshQ xxNnx ∈
=  

When the packet arrives at node y, it can update the estimation 
of sending a packet to the node s via neighbor x. The new value 
includes Qx(h,s) and the waiting time at the input buffer of node 
x (qx): 

( ) ( ) ( ) ( )( )oldyxxoldynewy sxQqshQsxQsxQ ,),(,, −+++= δγ (2) 

Where qx is the waiting time for the packet in the input buffer 
of the node x.  
In this way, each packet carries the routing information from a 
source to a destination. These values are used to update the Q-
values of intermediate nodes. In other words, the receiving 
node uses the latency information of the traversed path by 
packets to update the Q-values. 

Figure 2. An example of DRQ-routing method 

IV. DUAL Q-ROURING ADAPTIVE LEARNING RATE

Dual Q-routing Adaptive learning Rate (DuQAR) provides 
the ability to adapt the congestion condition of the network in 
order to alleviate congestion in a NoC. At first the routing table 
is defined in a way that it could be employed in NoC. Then, 
the packet header format is modified in order to handle 
backward exploration. In addition, the learning packet format 
is defined to be used for carrying information relevant to 
forward exploration. Finally, the proposed algorithm is 
presented. 

A. Routing table
Each node needs a routing table to maintain information

about the routing cost from itself to the possible destination 
nodes. The table contains n entries, where n is the number of 
nodes in the network. As indexed in Table I, each entry has 
three fields: Next-Router, Latency, and Destination-Router. 
The Next-Router field determines neighboring nodes which 
can be used to deliver a packet from the current router to the 
given destination through shortest paths. The Latency field 
represents the estimated latency value to deliver a packet from 
the current node to the destination node via one of the 
neighboring routers. The Destination field indicates the 
destination address ID. For example, the contents of Table I 



Step 1: Sending a data packet from the node x to node y

Step 2: Receiving a data packet by the node y from node x

are related to the routing table of the node 5 in the 3×3 mesh 
network (Figure 3). 

Figure 3. 3×3 mesh architecture 

Each entry of the table is allocated to a specific destination 
in the network that can be reached by the node 5. The latency 
values are obtained by Formula (1) for forward exploration or 
by Formula (2) for backward exploration. As shown in the 
table if there is only one minimal path option, the second field 
for the Next-Router and the Latency values are set to -1. 

Table I. Adjusted Routing Table in NoC 
Next- 

Router Latency Destination 

2 4 0 0 Node 0 
2 4 0 0 Node 1 
2 -1 0 -1 Node 2 
4 -1 0 -1 Node 3 
4 -1 0 -1 Node 4 
- - - - Node 5 
4 8 0 0 Node 6 

4 8 0 0 Node 7 

8 -1 0 -1 Node 8 

B. Data Packet and Learning Packet Formats

Two types of packets can be propagated through the
network: data packets and learning packets. They use separate 
virtual channels to propagate information.  
The format of the learning packet is illustrated in Figure 4, 
which consists of four fields as follows: 
• Receiving node ID: contains the neighboring node ID
which is used to forward a learning packet.
• Forward local latency: determines the waiting time of a
packet in the input buffer before delivering to the next router.
In Formula (1), the value of qy indicates the forward local
latency.
• Forward global latency: determines the expected latency
of a packet from the next node to the destination. In Formula
(1), the term Qy(z,d) indicates the global latency.
• Destination node ID: is used for the destination address ID.

Figure 4. A learning packet format 

The header flit format of a typical data packet is shown in 
Figure 5(a). To support backward exploration, an extra 10-bit 
is integrated into the header flit as shown in Figure 5(b). The 
additional fields are described as follows:   
• Sending node ID: determines the sending node of the data
packet. Since each node is connected to at most four

neighboring nodes, two bits are enough to encode the 
neighboring node ID.  
• Backward local latency: determines the packet’s waiting
time in the input buffer of the sender node. In the Formula (2)
the term qx represents the local latency. We have assigned four
bits to the local latency.
• Backward global latency: the expected latency of a packet
to propagate from the current node to the source node by 
passing through the previous node. In Formula (2), the term 
Qx(h,s) indicates the backward global latency. We have 
assigned four bits to this parameter. 

Figure 5. Header of the data packet format 

C. DuQAR Algorithm
The DuQAR algorithm can be summarized in three steps:

 

1. Select a packet from the queue.
2. Find the minimum estimated latency from the node x to the
destination node through one of the neighboring nodes, assumed
y:

),(min
)(

dmQy xxNm∈
=

3. Find the minimum estimated latency from the node x back to the
source node s through the neighboring node h (Qx(h,s)):

),(min),(
)(

snQshQ xxNnx ∈
=  

Also, find the waiting time of the packet in the input buffer of the 
node x (qx). Finally, include these two values into the header of the 
data packet. 
4. Forward the packet to the neighbor y.

1. The node y receives a data packet from the neighbor x
2. Backward exploration: Extract the estimation )),(( xx qshQ +

from the received packet. Set the learning rate according to the
Congestion Detection Method (described in section D) and update
the Q-value (Qy(x, s)) using Formula (2).
3. Forward exploration: Find the minimum latency estimation
from the node y to the destination node d through the neighboring
node z:

),(min),(
)(

dnQdzQ yyNny ∈
=

Also, find the waiting time of the packet in the input buffer of the 
node y (qy).  
4. Send the learning packet back to the node x including Qy(z,d)
and qy.

   Step 3: Receiving a learning packet by the node x from node y 

1. Receive a learning packet from the node y containing Qy(z,d)
and qy.
2. Set the learning rate according to the Congestion Detection
Method (described in D) and update the Q-value (Qx(y, d)) using
Formula (1)



Step 2: Congestion detection method 

D. Congestion Detection Method
The main objective of the DuQAR routing algorithm is to

minimize congestion by sending packets through paths with 
minimum Q-values. Therefore, Q-values should represent the 
current status of the network. For this purpose, it is necessary 
to dynamically adapt the Q-values with changing congestion 
condition of the network; otherwise Q-values are unreliable. If 
Q-values are frequently updated when the network gets
congested, global congestion values from distance nodes
become reliable. In contrast, a router may receive few packets
in a specific time interval. In this case the values from distance
nodes are not accurate and the local values should be more
emphasized than the global ones.

Congestion is determined by calculating the average of free 
buffer slots for each router at a predetermined time interval. 
The average of free buffer slots is compared with maximum 
and minimum thresholds at each time interval. If the average of 
free buffer slots in a router is less than the minimum threshold 
value, it indicates that the router is not congested and it is 
unnecessary to update the Q-values regularly. Therefore, the 
learning rate is set to a minimum value amplifying the impact 
of local congestion statuses. Moreover, if the average of free 
buffer slots in a router is greater than the maximum threshold 
value then the learning rate is set to a large value in order to 
keep the Q-values as updated as possible. In this way, global 
information gets more emphasis than local values. 

1. thrmin=25% (Total_queue_size);
2. thrmax=65% (Total_queue_size);
3. AvgFreeBufferSlots, counti =0;
4. for  t = current simulation time  to 200ns OR 100 clk then
5. if  routeri  received a flit
6. counti=counti+1;
7. FreeBufferSlotsi += FreeBufferSlotsi[t]; 
8. end if;
9. end for;
10. AvgFreeBufferSlotsi = FreeBufferSlotsi /counti ;

------------------------------------------------------------------------------------ 
11. if  AvgFreeBufferSlotsi< =thrmin

12. LearnRate= 0.1;
13. else if  Tmin < AvgFreeBufferSlotsi<thrmax

14. LearnRate = 0.5;
15. else if  AvgFreeBufferSlotsi>=Tmax

16. LearnRate= 0.9;
17. End if;

We set the minimum and maximum threshold values to 25% 
and 65% of the total queue size of a router, respectively. The 
average of free buffer slots is initialized to zero. The average 
value is obtained in 200 nanoseconds (100 cycles) time 
interval (step 4-10) and then the learning rate value will be 
updated based on the following rules (step 10-17): 
Rule1: If the average of free buffer slots is less than the 
minimum threshold value, then the learning rate is set to 0.1. 

Rule2: If the average of free buffer slots is less than the 
maximum threshold value and greater than the minimum 
threshold value, then the learning rate is set to 0.5. 
Rule3: If the average of free buffer slots is greater than the 
maximum threshold value, then the learning rate is set to 0.9. 

Figure 6 shows an example of the DuQAR algorithm 
where a packet is transmitted from the source 0 to the 
destination 4 in a 3×3 mesh network. Suppose that the 
congestion conditions in the node 0, node 1, and node 4 are 
medium, low, and high, respectively. At first, the node 0 
selects the path with minimum Q-value belonging to one of 
the neighboring nodes 1 and 3. Suppose that the Q-value in the 
node 1 is smaller than the Q-value in the node 3. Therefore, 
the node 0 sends the data packet to the node 1. As shown in 
Figure 6(a), the local latency in the header flit of the data 
packet is set to q0 indicating the waiting time of the packet in 
the input buffer of node 0. The global latency is equal to zero 
because the node 0 is the source node. When the intermediate 
node 1 receives the data packet from the node 0, backward 
exploration information is extracted from the data packet. 
Based on this information, the corresponding row of the 
routing table in the node 1is updated. Since the congestion 
condition of router 1 is low, the Rule1 is satisfied and the 
learning rate is set to 0.1. This learning rate is used in updating 
the Q-values. Therefore, according to Formula (2), the new Q-
value is:  

( ) ( ) ( )( )oldoldnew QqQQ 0,0001.00,00,0 1011 −+++=  

We suppose that the link delay, δ, is a constant value. In 
this work, we set it to 0.  
As can be seen from Figure 6(b), the node 1 not only sends the 
data packet to the destination node but also generates a 
learning packet and sends it back to the node 0. As the node 0 
receives the learning packet, it updates the Q-value related to 
the destination node 4 using the Formula (1). Since the 
average of free buffer slots value is between the maximum and 
minimum threshold in the last time interval, the learning rate γ 
is set to 0.5. 

( ) ( ) ( ) ( )( )oldoldnew QqQQQ 4,14,45.04,14,1 01100 −+++= δ  

The Q1(4,4) value is equal to the link delay (assumed to be 
zero) because a packet can reach its neighboring node in one 
hop. The node 4 uses the latency value in the data packet. This 
value is essentially an estimation of the minimum time it 
would take for the packet to reach back to its source 0 from 
the node 1.  
Upon receiving this estimation, the node 4 computes the new 
estimation for Q4 (1, 0) as follows: 

( ) ( ) ( ) ( )( )oldoldnew QqQQQ 0,100,09.00,10,1 41144 −+++=  
Finally, the Q-value in the node 1 is updated by receiving the 
learning packet from the node 4 (as can be seen in Figure 6(c)). 
The node 1 extracts forward exploration information from 
learning packet. The Q1(4,4)new is computed as: 

( ) ( ) ( )( )oldoldnew QqQQ 4,405.04,44,4 1411 −+++= δ  



Figure 6. DuQAR algorithm for a 3×3 mesh 

V. EXPERIMENTAL RESULT
To evaluate the efficiency of our approach, 

implementations have been performed on the OMNET 
framework [36]. OMNeT++ is an extensible, modular, open-
source component-based C++ simulation library and 
framework, primarily aimed at building network simulators 
[37]. The proposed approach has been compared with three 
other algorithms, the standard Q-routing, DQ-routing, and 
DyXY-routing. Two dimensional mesh configurations have 
been used for the NoC. The simulator inputs include the 
network size, the network offered load, the routing algorithm, 
and the traffic type. The amount of packets injected into the 
network depends on the value of the network offered load. 
Below is the Formula for calculating the network offered load: 

Network offered load = flit_size/flit-arrival-delay 

flit_size represents the size of the flit. It is assumed that the data 
packets have a fixed length of 8 flits with the flit width of 32 
bits. Flit-arrival-delay represents the delay time between a 
previous flit generation and next flit generation. 

The simulations were conducted on a 4×4 mesh under various 
traffic patterns. For each simulation, packet latencies are 
averaged over 10,000 packets. To propagate data packets, two 
virtual channels are used along the x and y dimensions, while a 
separate virtual channel is allocated to learning packets. The 
buffer size of first two virtual channels is set to eight flits. 
Since the network performance is greatly influenced by the 
traffic pattern, we applied three traffic patterns, namely 
uniform random, hotspot and transpose. 

A. Uniform Random Traffic Profile
In the random traffic profile, each core sends a packet to

another core with a random probability. The destination of 
different packets in each router is determined randomly using a 
uniform distribution. Figure 7 shows the average 
communication latency as a function of the average packet 
injection rate. As it can be observed from the results, DuQAR 
learns an effective policy nearly as fast as Q-routing and DRQ-
routing in low traffic loads. DuQAR routing algorithm leads to 

a lower latency than the other algorithms in medium and high 
traffic loads.  

Figure 7. Average packet latency under uniform random traffic 

B. Transpose Traffic Profile

In this traffic pattern, a node (i,j) only sends a message to
the node (j,i). Figure 8 shows the performance of four routing 
algorithms under the transpose traffic. It can be seen that 
DuQAR and DQ-routing still have better performance when 
network congestion happens. DuQAR performs the best when 
the packet injection rate increases (offered load >1GB/sec). 

Figure 8. Average packet latency under transpose traffic 



C. Hotspot Traffic Profile
Under the hotspot traffic pattern, one or more nodes are

chosen as hotspots receiving an extra portion of the traffic in 
addition to the regular uniform traffic. In simulations, given a 
hotspot percentage of H, a newly generated message is directed 
to each hotspot node with an additional H percent probability. 
We simulate the hotspot traffic with a single hotspot at node 9 
in the 4×4 2D-mesh network. The average packet latency of 
each network with H=10% are illustrated in Figure 9. As 
observed from the results, Q-routing algorithm has lowest 
average latency at low traffic loads while DuQAR performs the 
best in medium and high traffic loads. 

Figure 9. Average packet latency under hotspot traffic 

Figure 10 and Figure 11 show the Q-values (latency) 
variations of routers 9 and 6 under the hotspot traffic. The 
variation of Q-values is plotted on the vertical axis and 
simulation time on the horizontal axis. The values on vertical 
axis can be seen as the latency when the node 6 or node 9 
receives a packet. We consider the node 9 as a hotspot and 
node 6 as a low congested node.  

The line on the chart displays the average Q-values at the 
simulation time. Experimental results show that during the 
learning process, the average Q-values in the node 6 are often 
much less than the average Q-values in the node 9. This is 
because at node 9, the learning is more happening and clearly 
demonstrates that the changing of the Q-values is very high in 
the node 9. After 80000 nanoseconds, the variations of Q-value 
reduced to around 50% from what it was at the beginning of 
the learning process. 

Table II illustrates the performance gain of our proposed 
method over Q-routing, DRQ-routing, and Dynamic XY-
routing algorithms near the saturation point (0.5). 

Table II. Performance gain for three traffic patterns 
Traffic 
Pattern 

DyXY-routing Q-routing DQ-routing 

Uniform 8.3% 5.7% 4.6% 
Transpose 14.2% 5.2% 2.4% 

Hotspot 18.3% 4.6% 3.5% 

D. Hardware Cost

The hardware cost of our proposed method along with Q-
routing, DRQ-routing, and Dynamic XY-routing schemes is 

Figure 10.learning curve of the router 9 under hotspot traffic by DuQAR 
method 

Figure 11. Learning curve of the router 6 under hotspot traffic by DuQAR 
method 

measured. For this purpose, the on-chip router of each scheme 
is implemented with VHDL and synthesized with Synopsys 
Design Compiler using the 65nm standard CMOS technology 
with a timing constraint of 1GHz for the system clock and 
supply voltage of 1V. The synthesized netlist is verified 
through post synthesis simulations. The layout areas of the four 
schemes are listed in Table III. The area overhead of DuQAR 
is comparable with the other learning methods.  

Table III.Hardware cost 

Method  Router Area (mm2) 

DuQAR –routing method 0.1705 
Dual Q-routing method 0.1689 

Q-routing  method 0.1683 
DyXY method 0.1503 

VI. CONCLUSION

In this paper, we presented a congestion-aware adaptive 
routing algorithm (DuQAR algorithm) for on-chip networks. 
The proposed method provides the routing policy to alleviate 



congestion in the network by estimating latency values 
between each pair of source and destination nodes of the 
network. For this purpose, we considered a congestion 
detection method that calculates the average of free buffer slots 
in each time interval. Then, this value is compared with 
maximum and minimum thresholds to determine congestion 
level in the router. If the router is congested, then the latency 
value must be frequently updated. So, the learning rate is set to 
a large value in order to keep the global latency values as 
updated as possible. On the other hand, local information is in 
more emphasized than global values when a router is not 
congested. The experiments show that DuQAR routing method 
is able to route packets more efficiently than Q-routing, DQ-
routing, and Dxy-routing in medium and high network loads 
with a small hardware overhead.  
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