
Adaptive Reinforcement Learning Method for Networks-on-Chip

Fahimeh Farahnakian, Masoumeh Ebrahimi, Masoud Daneshtalab, Juha Plosila, Pasi Liljeberg
Department of Information Technology, University of Turku, Turku, Finland

{fahfar, masebr, masdan, juplos, pakrli}@utu.fi

Abstract—In this paper, we propose a congestion-aware
routing algorithm based on Dual Reinforcement Q-routing. In
this method, local and global congestion information of the
network is provided for each router, utilizing learning packets.
This information should be dynamically updated according to the
changing traffic conditions in the network. For this purpose, a
congestion detection method is presented to measure the average
of free buffer slots in a specific time interval. This value is
compared with maximum and minimum threshold values and
based on the comparison result, the learning rate is updated. If
the learning rate is a large value, it means the network gets
congested and global information is more emphasized than local
information. In contrast, local information is more important
than global when a router receives few packets in a time interval.
Experimental results for different traffic patterns and network
loads show that the proposed method improves the network
performance compared with the standard Q-routing, DRQ-
routing, and Dynamic XY-routing algorithms.

Keywords; Networks-on-Chip, Adaptive Routing, Dual
Reinforcement Learning, Q-routing

I. INTRODUCTION

As technology scales further and chip integration density
grows, on-chip communication is playing an increasingly
dominant role in System-on-Chip (SoC) design [1][2].
Network-on-Chip (NoC) is a new generation of
communication infrastructures for SoC [1][4]. A mesh NoC
consists of several cores where each core is connected to a
router by a local network interface. Each router is also
connected to its neighboring routers through bidirectional
links [4][5][6][7]. So, the cores can communicate with each
other by propagating packets through routers in the on-chip
network.

 The performance of NoC strongly depends on the routing
techniques. Network routing is the mechanism which allows
packets to be forwarded between any pair of source and
destination nodes. A routing algorithm should be able to adapt
dynamically to the traffic changes in the network. An efficient
routing algorithm can alleviate congestion by distributing
packets through less congested paths. Generally, routing
algorithms can be classified into deterministic and adaptive
[8][9][10]. In deterministic routing algorithms [11], a transfer
path is completely determined by the source and destination
addresses. For example, in the XY routing algorithm, packets
first transfer along the X direction, then along the Y direction.
In adaptive routing algorithms [9][15], each packet’s transfer
path determines based on the current network conditions. When

network congestion happens, they choose paths with low
latencies to avoid congested links and routers.

In our approach, we use a strong method of reinforcement
learning —Q-learning. It learns to control a dynamic system
optimally through scalar values or rewards. In Q-learning, an
agent first percepts the environment and chooses an action.
After the action executes, the agent receives a reward. In this
way, the agent learns a policy for selecting among actions.
Such a policy should maximize the expected sum of discounted
rewards. In the other hand, Q-learning allows an agent to learn
on-line from experiences, and then by using them, it improves
performance [16].

Q-routing [17] is an adaptive routing algorithm which uses
the Q-learning [18]. In Q-routing, each node makes routing
decisions based on its neighboring nodes information. A node
stores a table of Q-values that estimates the quality of
alternative paths. These values are updated each time a node
sends a packet to one of its neighbors [19]. This way, as the
node routes packets, its Q-values gradually incorporate more
global information. In DRL method [20], a novel dual
reinforcement learning was applied to the satellite
communication. This approach is adapted on-line when the
system is performing. Dual Reinforcement Q-routing (DRQ-
routing) [21] utilizes DRL approach for packet routing. In the
DRQ method, each node in the network learns routing policies,
results in reducing the average packet delivery time. Learning
is performed by carrying the latency information to
intermediate nodes (backward exploration unique to DRQ-
Routing) and by receiving the learning packets from the
neighboring node where a data packet is sent to (forward
exploration similar to Q-Routing). At high injection loads, the
routing policy learned by DRQ-routing leads to higher
performance than Q-routing in terms of average packet delivery
time [22].

In this paper, we propose a congestion-aware routing
algorithm named Dual Q-routing Adaptive learning Rate
(DuQAR). The goal of the presented routing algorithm is to
enhance DRQ-routing performance in NoC once the network
becomes congested. To make effective routing decisions, the
congestion information (Q-values) should be updated
continually on the foundation of congestion in the network.
Otherwise the routing decision based on unreliable Q-values
cannot be accurate. For this purpose, we consider a congestion
detection technique which updates the learning rate according
to the congestion in each node. The learning rate determines
the rate at which newer information overwrites the older one.
Therefore, this method adaptively learns an optimal routing
strategy and be able to find a less congested path among
available paths from the source to destination nodes.

The reminder of this paper is organized as follows. In
Section II, the related work is discussed. Some background
information on Q-routing and DRQ-routing techniques is given
in Section III. In Section IV, the proposed algorithm is
explained. The results are reported in Section V, while the
summary and conclusion are given in the last section.

II. RELATED WORK

In recent year, significant research has been done to
improve the routing efficiency of NoC while most existing
adaptive routing techniques are presented to avoid congestion.
Adaptive routing policies can be categorized into congestion-
oblivious and congestion-aware schemes [23]. In congestion-
oblivious algorithms, routing decisions are independent of the
congestion condition of the network. Random [24] and Zigzag
[25] are two examples of congestion-oblivious methods. In
Random routing method, output ports are chosen randomly,
while in Zigzag, the output ports are selected based on the
remaining hop counts in each dimension. DyXY [26] and
DyAD [27] are two approaches of the congestion-aware
routing algorithms. These routing algorithms consider the
congestion status of the network in the routing decision [28].
Congestion-aware routing policies can be further classified
based on whether they rely on purely local congestion
information or take into account the congestion status at other
points in the network [9]. DyXY uses local information, the
current queue length of the corresponding input port in the
neighboring routers, to decide on the next hop. DyXY may lead
to forward packets through congested area as employing local
information is not sufficient. ANOC [29] was proposed to
reduce the network congestion using a cluster-based network.
However, it cannot provide global information using the
clustering approach.

The Q-routing method is proposed in [17] which is able to
find the optimal paths among available paths from the source
node to the destination node. This algorithm allows a network
to continuously adapt to changing traffic condition by routing
packets on routes which estimate the least delivery time.
However, Q-routing suffers from the unreliability of the
estimated Q-values. The reason is that depending on the traffic
pattern and load levels, only few Q-values might be updated
regularly while most of the Q-values in the network are
unreliable. To address this problem, some other algorithms are
presented such as CQ-routing [30] and PQ-routing [31]. In CQ-
routing, each Q-value is attached with a confidence value (C-
value) which is a measure of how closely the corresponding Q-
value represents the current state of the network. PQ-routing
keeps track of the last update time and the best Q-values seen
so far. PQ-routing is able to explore paths that have been
inactive for a long time, and thereby able to restore the
previous policy. The same idea is extended to DRQ-routing
[21]. The speed of restoration is expected to be higher in DRQ-
routing than in the PQ-routing because of the enhanced
exploration in DRQ-routing.

Reinforcement learning approaches have rarely been
investigated in NoC. The algorithm in [32] is proposed to
handle communication among modules which are dynamically

placed on a reconfigurable NoC. Another method, named fault-
tolerant deflection routing algorithm (FTDR), is presented in
[33] which inspired by Q-learning techniques for tolerating
faults in NoC. In another approach [34], Q-routing is used to
provide the different levels of Quality-of-Service (QoS) such as
Best Effort (BE) and Guaranteed Throughput (GT) in NoC. It
contrasts the performance of Q-routing with the XY routing
strategy in context of QoS. In addition, C-routing [35] is a new
cluster-based adaptive routing method which reduces the size
of routing tables.

III. BACKGROUND

This section briefly reviews Q-routing and DRQ-routing
techniques.

A. Q-routing

Q-routing first learns a representation of the network state
in terms of Q-values and then uses these values to make routing
decisions. Each node stores a table of values named Q-values
that estimate the quality of the alternative routes. These values
are updated each time a node sends a packet to one of its
neighbors.

 Assume that a message is generated at the source node s
and it is already at node x. This message is going to be sent to
the destination node d via one of its neighboring nodes,
assumed to be y (Figure 1). The maximum amount of time it
takes for a packet to reach its destination from the node x is
bounded by the sum of three quantities: (1) the waiting time
(qy) in the input queue of the node y (2) the transmission delay
(δ) over the link from node x to y, and (3) the minimum time,
Qy(z, d), it would take for the node y to send this packet to the
destination via one of the node y's neighbors, assumed to be z.

),(min),(
)(

dnQdzQ yyNny ∈
=

Where N(y) is a set of the y’s neighboring nodes.

The node y sends its best estimate Qy(z,d) for the destination d
back to the node x. Upon receiving Qy(z,d), the node x
computes the new estimate for Qx(y,d) as follows:

δ++= yyestx qdzQdyQ),(),(

Qx(y, d)est is the node x's best estimated delay that a packet
would take to reach its destination node d from the node x
when sent via its neighboring node y. So, this value includes
the total waiting time and transmission delay over the entire
path that it would take starting from the node y. Q-value is
modified by the following formula after receiving the Qx(y, d)est
value:

() () () ()()oldxestxoldxnewx dyQdyQdyQdyQ ,,,, −+= γ (1)

Learning is performed by updating the Q-values. Learning rate,
γ, determines the rate at which newer information overwrites
the older one. Learning rate can take a value between zero and
one; the value of zero means no learning is made by the
algorithm; while the value of one indicates that the most recent
information is used.

Step 1: Sending a data packet from the node x to the node y

1. Select a data packet from the queue.
2. Find minimum Q-value from Q-table when destination node is
d. Assume that, the value belongs to the neighboring node y.

),(min
)(

dmQy xxNm∈
=

3. Forward the packet to neighbor y.

Step 2: Receiving a data packet by the node y

1. Node y receives a data packet from neighbor x.
2. Find the minimum Q-value from the Q-table of node y. Assume
that, the neighboring node z has the minimum estimated latency
to reach the destination node d.

),(min),(
)(

dnQdzQ yyNny ∈
=

3. Measure the waiting time of the packet at the input buffer of
node y (qy) before sending the packet to the neighboring node z.
4. Send y’s estimate back to node x including Qy(z,d) and qy using
a learning packet.

Step3: Receiving a learning packet by the node x

1. Node x receives the learning packet from node y.
2. Extract the estimated Q-value from node y containing Qy(z,d)
and qy from the learning packet.
3 . Update the Q-value, Qx(y, d), regarding the destination node
d and neighboring node y using formula (1).

Figure 1. An example of Q-routing method

The Q-routing algorithm has three main steps as follows:

B. DRQ-routing
Dual Reinforcement Q-routing (DRQ-routing) combines Q-

routing with Dual Reinforcement Learning [21]. The Q-routing
only updates the Q-value whenever the node receives a
learning packet. In other words, when a data packet is sent
from the node x to the node y, the learning packet sends back to
the node x and thus only the Q-table of the node x is updated.
Therefore, the Q-routing algorithm only uses forward
exploration. The idea of DRQ-routing is to update the Q-tables
of both the node x and the node y. Thereby, the DRQ-routing
utilizes the Q-routing for both backward and forward
exploration. Forward exploration determines the latency of the
remaining path from the current node to the destination node,
while backward exploration indicates the latency of the
traversed path from the current node to the source node. For an
example of the backward exploration consider a case where the
node x sends a packet to its destination node d via its
neighboring node y. When the data packet is traveling from the
source to the destination, it carries some Q-value information

between each two neighboring nodes. As the node y receives
this packet, it uses this information for updating its own
estimate of sending a packet to node s via node x.

As shown in Figure 2, suppose that the packet is currently
at the node x. This packet contains the minimum latency value
from the node s to the node x passing though the node h. This
value can be defined as:

),(min),(
)(

snQshQ xxNnx ∈
=

When the packet arrives at node y, it can update the estimation
of sending a packet to the node s via neighbor x. The new value
includes Qx(h,s) and the waiting time at the input buffer of node
x (qx):

() () () ()()oldyxxoldynewy sxQqshQsxQsxQ ,),(,, −+++= δγ (2)

Where qx is the waiting time for the packet in the input buffer
of the node x.
In this way, each packet carries the routing information from a
source to a destination. These values are used to update the Q-
values of intermediate nodes. In other words, the receiving
node uses the latency information of the traversed path by
packets to update the Q-values.

Figure 2. An example of DRQ-routing method

IV. DUAL Q-ROURING ADAPTIVE LEARNING RATE

Dual Q-routing Adaptive learning Rate (DuQAR) provides
the ability to adapt the congestion condition of the network in
order to alleviate congestion in a NoC. At first the routing table
is defined in a way that it could be employed in NoC. Then,
the packet header format is modified in order to handle
backward exploration. In addition, the learning packet format
is defined to be used for carrying information relevant to
forward exploration. Finally, the proposed algorithm is
presented.

A. Routing table
Each node needs a routing table to maintain information

about the routing cost from itself to the possible destination
nodes. The table contains n entries, where n is the number of
nodes in the network. As indexed in Table I, each entry has
three fields: Next-Router, Latency, and Destination-Router.
The Next-Router field determines neighboring nodes which
can be used to deliver a packet from the current router to the
given destination through shortest paths. The Latency field
represents the estimated latency value to deliver a packet from
the current node to the destination node via one of the
neighboring routers. The Destination field indicates the
destination address ID. For example, the contents of Table I

Step 1: Sending a data packet from the node x to node y

Step 2: Receiving a data packet by the node y from node x

are related to the routing table of the node 5 in the 3×3 mesh
network (Figure 3).

Figure 3. 3×3 mesh architecture

Each entry of the table is allocated to a specific destination
in the network that can be reached by the node 5. The latency
values are obtained by Formula (1) for forward exploration or
by Formula (2) for backward exploration. As shown in the
table if there is only one minimal path option, the second field
for the Next-Router and the Latency values are set to -1.

Table I. Adjusted Routing Table in NoC
Next-

Router Latency Destination

2 4 0 0 Node 0
2 4 0 0 Node 1
2 -1 0 -1 Node 2
4 -1 0 -1 Node 3
4 -1 0 -1 Node 4
- - - - Node 5
4 8 0 0 Node 6

4 8 0 0 Node 7

8 -1 0 -1 Node 8

B. Data Packet and Learning Packet Formats

Two types of packets can be propagated through the
network: data packets and learning packets. They use separate
virtual channels to propagate information.
The format of the learning packet is illustrated in Figure 4,
which consists of four fields as follows:
• Receiving node ID: contains the neighboring node ID
which is used to forward a learning packet.
• Forward local latency: determines the waiting time of a
packet in the input buffer before delivering to the next router.
In Formula (1), the value of qy indicates the forward local
latency.
• Forward global latency: determines the expected latency
of a packet from the next node to the destination. In Formula
(1), the term Qy(z,d) indicates the global latency.
• Destination node ID: is used for the destination address ID.

Figure 4. A learning packet format

The header flit format of a typical data packet is shown in
Figure 5(a). To support backward exploration, an extra 10-bit
is integrated into the header flit as shown in Figure 5(b). The
additional fields are described as follows:
• Sending node ID: determines the sending node of the data
packet. Since each node is connected to at most four

neighboring nodes, two bits are enough to encode the
neighboring node ID.
• Backward local latency: determines the packet’s waiting
time in the input buffer of the sender node. In the Formula (2)
the term qx represents the local latency. We have assigned four
bits to the local latency.
• Backward global latency: the expected latency of a packet
to propagate from the current node to the source node by
passing through the previous node. In Formula (2), the term
Qx(h,s) indicates the backward global latency. We have
assigned four bits to this parameter.

Figure 5. Header of the data packet format

C. DuQAR Algorithm
The DuQAR algorithm can be summarized in three steps:

1. Select a packet from the queue.
2. Find the minimum estimated latency from the node x to the
destination node through one of the neighboring nodes, assumed
y:

),(min
)(

dmQy xxNm∈
=

3. Find the minimum estimated latency from the node x back to the
source node s through the neighboring node h (Qx(h,s)):

),(min),(
)(

snQshQ xxNnx ∈
=

Also, find the waiting time of the packet in the input buffer of the
node x (qx). Finally, include these two values into the header of the
data packet.
4. Forward the packet to the neighbor y.

1. The node y receives a data packet from the neighbor x
2. Backward exploration: Extract the estimation)),((xx qshQ +

from the received packet. Set the learning rate according to the
Congestion Detection Method (described in section D) and update
the Q-value (Qy(x, s)) using Formula (2).
3. Forward exploration: Find the minimum latency estimation
from the node y to the destination node d through the neighboring
node z:

),(min),(
)(

dnQdzQ yyNny ∈
=

Also, find the waiting time of the packet in the input buffer of the
node y (qy).
4. Send the learning packet back to the node x including Qy(z,d)
and qy.

 Step 3: Receiving a learning packet by the node x from node y

1. Receive a learning packet from the node y containing Qy(z,d)
and qy.
2. Set the learning rate according to the Congestion Detection
Method (described in D) and update the Q-value (Qx(y, d)) using
Formula (1)

Step 2: Congestion detection method

D. Congestion Detection Method
The main objective of the DuQAR routing algorithm is to

minimize congestion by sending packets through paths with
minimum Q-values. Therefore, Q-values should represent the
current status of the network. For this purpose, it is necessary
to dynamically adapt the Q-values with changing congestion
condition of the network; otherwise Q-values are unreliable. If
Q-values are frequently updated when the network gets
congested, global congestion values from distance nodes
become reliable. In contrast, a router may receive few packets
in a specific time interval. In this case the values from distance
nodes are not accurate and the local values should be more
emphasized than the global ones.

Congestion is determined by calculating the average of free
buffer slots for each router at a predetermined time interval.
The average of free buffer slots is compared with maximum
and minimum thresholds at each time interval. If the average of
free buffer slots in a router is less than the minimum threshold
value, it indicates that the router is not congested and it is
unnecessary to update the Q-values regularly. Therefore, the
learning rate is set to a minimum value amplifying the impact
of local congestion statuses. Moreover, if the average of free
buffer slots in a router is greater than the maximum threshold
value then the learning rate is set to a large value in order to
keep the Q-values as updated as possible. In this way, global
information gets more emphasis than local values.

1. thrmin=25% (Total_queue_size);
2. thrmax=65% (Total_queue_size);
3. AvgFreeBufferSlots, counti =0;
4. for t = current simulation time to 200ns OR 100 clk then
5. if routeri received a flit
6. counti=counti+1;
7. FreeBufferSlotsi += FreeBufferSlotsi[t];
8. end if;
9. end for;
10. AvgFreeBufferSlotsi = FreeBufferSlotsi /counti ;

--
11. if AvgFreeBufferSlotsi< =thrmin

12. LearnRate= 0.1;
13. else if Tmin < AvgFreeBufferSlotsi<thrmax

14. LearnRate = 0.5;
15. else if AvgFreeBufferSlotsi>=Tmax

16. LearnRate= 0.9;
17. End if;

We set the minimum and maximum threshold values to 25%
and 65% of the total queue size of a router, respectively. The
average of free buffer slots is initialized to zero. The average
value is obtained in 200 nanoseconds (100 cycles) time
interval (step 4-10) and then the learning rate value will be
updated based on the following rules (step 10-17):
Rule1: If the average of free buffer slots is less than the
minimum threshold value, then the learning rate is set to 0.1.

Rule2: If the average of free buffer slots is less than the
maximum threshold value and greater than the minimum
threshold value, then the learning rate is set to 0.5.
Rule3: If the average of free buffer slots is greater than the
maximum threshold value, then the learning rate is set to 0.9.

Figure 6 shows an example of the DuQAR algorithm
where a packet is transmitted from the source 0 to the
destination 4 in a 3×3 mesh network. Suppose that the
congestion conditions in the node 0, node 1, and node 4 are
medium, low, and high, respectively. At first, the node 0
selects the path with minimum Q-value belonging to one of
the neighboring nodes 1 and 3. Suppose that the Q-value in the
node 1 is smaller than the Q-value in the node 3. Therefore,
the node 0 sends the data packet to the node 1. As shown in
Figure 6(a), the local latency in the header flit of the data
packet is set to q0 indicating the waiting time of the packet in
the input buffer of node 0. The global latency is equal to zero
because the node 0 is the source node. When the intermediate
node 1 receives the data packet from the node 0, backward
exploration information is extracted from the data packet.
Based on this information, the corresponding row of the
routing table in the node 1is updated. Since the congestion
condition of router 1 is low, the Rule1 is satisfied and the
learning rate is set to 0.1. This learning rate is used in updating
the Q-values. Therefore, according to Formula (2), the new Q-
value is:

() () ()()oldoldnew QqQQ 0,0001.00,00,0 1011 −+++=

We suppose that the link delay, δ, is a constant value. In
this work, we set it to 0.
As can be seen from Figure 6(b), the node 1 not only sends the
data packet to the destination node but also generates a
learning packet and sends it back to the node 0. As the node 0
receives the learning packet, it updates the Q-value related to
the destination node 4 using the Formula (1). Since the
average of free buffer slots value is between the maximum and
minimum threshold in the last time interval, the learning rate γ
is set to 0.5.

() () () ()()oldoldnew QqQQQ 4,14,45.04,14,1 01100 −+++= δ

The Q1(4,4) value is equal to the link delay (assumed to be
zero) because a packet can reach its neighboring node in one
hop. The node 4 uses the latency value in the data packet. This
value is essentially an estimation of the minimum time it
would take for the packet to reach back to its source 0 from
the node 1.
Upon receiving this estimation, the node 4 computes the new
estimation for Q4 (1, 0) as follows:

() () () ()()oldoldnew QqQQQ 0,100,09.00,10,1 41144 −+++=
Finally, the Q-value in the node 1 is updated by receiving the
learning packet from the node 4 (as can be seen in Figure 6(c)).
The node 1 extracts forward exploration information from
learning packet. The Q1(4,4)new is computed as:

() () ()()oldoldnew QqQQ 4,405.04,44,4 1411 −+++= δ

Figure 6. DuQAR algorithm for a 3×3 mesh

V. EXPERIMENTAL RESULT
To evaluate the efficiency of our approach,

implementations have been performed on the OMNET
framework [36]. OMNeT++ is an extensible, modular, open-
source component-based C++ simulation library and
framework, primarily aimed at building network simulators
[37]. The proposed approach has been compared with three
other algorithms, the standard Q-routing, DQ-routing, and
DyXY-routing. Two dimensional mesh configurations have
been used for the NoC. The simulator inputs include the
network size, the network offered load, the routing algorithm,
and the traffic type. The amount of packets injected into the
network depends on the value of the network offered load.
Below is the Formula for calculating the network offered load:

Network offered load = flit_size/flit-arrival-delay

flit_size represents the size of the flit. It is assumed that the data
packets have a fixed length of 8 flits with the flit width of 32
bits. Flit-arrival-delay represents the delay time between a
previous flit generation and next flit generation.

The simulations were conducted on a 4×4 mesh under various
traffic patterns. For each simulation, packet latencies are
averaged over 10,000 packets. To propagate data packets, two
virtual channels are used along the x and y dimensions, while a
separate virtual channel is allocated to learning packets. The
buffer size of first two virtual channels is set to eight flits.
Since the network performance is greatly influenced by the
traffic pattern, we applied three traffic patterns, namely
uniform random, hotspot and transpose.

A. Uniform Random Traffic Profile
In the random traffic profile, each core sends a packet to

another core with a random probability. The destination of
different packets in each router is determined randomly using a
uniform distribution. Figure 7 shows the average
communication latency as a function of the average packet
injection rate. As it can be observed from the results, DuQAR
learns an effective policy nearly as fast as Q-routing and DRQ-
routing in low traffic loads. DuQAR routing algorithm leads to

a lower latency than the other algorithms in medium and high
traffic loads.

Figure 7. Average packet latency under uniform random traffic

B. Transpose Traffic Profile

In this traffic pattern, a node (i,j) only sends a message to
the node (j,i). Figure 8 shows the performance of four routing
algorithms under the transpose traffic. It can be seen that
DuQAR and DQ-routing still have better performance when
network congestion happens. DuQAR performs the best when
the packet injection rate increases (offered load >1GB/sec).

Figure 8. Average packet latency under transpose traffic

C. Hotspot Traffic Profile
Under the hotspot traffic pattern, one or more nodes are

chosen as hotspots receiving an extra portion of the traffic in
addition to the regular uniform traffic. In simulations, given a
hotspot percentage of H, a newly generated message is directed
to each hotspot node with an additional H percent probability.
We simulate the hotspot traffic with a single hotspot at node 9
in the 4×4 2D-mesh network. The average packet latency of
each network with H=10% are illustrated in Figure 9. As
observed from the results, Q-routing algorithm has lowest
average latency at low traffic loads while DuQAR performs the
best in medium and high traffic loads.

Figure 9. Average packet latency under hotspot traffic

Figure 10 and Figure 11 show the Q-values (latency)
variations of routers 9 and 6 under the hotspot traffic. The
variation of Q-values is plotted on the vertical axis and
simulation time on the horizontal axis. The values on vertical
axis can be seen as the latency when the node 6 or node 9
receives a packet. We consider the node 9 as a hotspot and
node 6 as a low congested node.

The line on the chart displays the average Q-values at the
simulation time. Experimental results show that during the
learning process, the average Q-values in the node 6 are often
much less than the average Q-values in the node 9. This is
because at node 9, the learning is more happening and clearly
demonstrates that the changing of the Q-values is very high in
the node 9. After 80000 nanoseconds, the variations of Q-value
reduced to around 50% from what it was at the beginning of
the learning process.

Table II illustrates the performance gain of our proposed
method over Q-routing, DRQ-routing, and Dynamic XY-
routing algorithms near the saturation point (0.5).

Table II. Performance gain for three traffic patterns
Traffic
Pattern

DyXY-routing Q-routing DQ-routing

Uniform 8.3% 5.7% 4.6%
Transpose 14.2% 5.2% 2.4%

Hotspot 18.3% 4.6% 3.5%

D. Hardware Cost

The hardware cost of our proposed method along with Q-
routing, DRQ-routing, and Dynamic XY-routing schemes is

Figure 10.learning curve of the router 9 under hotspot traffic by DuQAR
method

Figure 11. Learning curve of the router 6 under hotspot traffic by DuQAR
method

measured. For this purpose, the on-chip router of each scheme
is implemented with VHDL and synthesized with Synopsys
Design Compiler using the 65nm standard CMOS technology
with a timing constraint of 1GHz for the system clock and
supply voltage of 1V. The synthesized netlist is verified
through post synthesis simulations. The layout areas of the four
schemes are listed in Table III. The area overhead of DuQAR
is comparable with the other learning methods.

Table III.Hardware cost

Method Router Area (mm2)

DuQAR –routing method 0.1705
Dual Q-routing method 0.1689

Q-routing method 0.1683
DyXY method 0.1503

VI. CONCLUSION

In this paper, we presented a congestion-aware adaptive
routing algorithm (DuQAR algorithm) for on-chip networks.
The proposed method provides the routing policy to alleviate

congestion in the network by estimating latency values
between each pair of source and destination nodes of the
network. For this purpose, we considered a congestion
detection method that calculates the average of free buffer slots
in each time interval. Then, this value is compared with
maximum and minimum thresholds to determine congestion
level in the router. If the router is congested, then the latency
value must be frequently updated. So, the learning rate is set to
a large value in order to keep the global latency values as
updated as possible. On the other hand, local information is in
more emphasized than global values when a router is not
congested. The experiments show that DuQAR routing method
is able to route packets more efficiently than Q-routing, DQ-
routing, and Dxy-routing in medium and high network loads
with a small hardware overhead.

REFERENCES
[1] D. Wu, B. M. Al-Hashimi, M. T. Schmitz, “Improving Routing

Efficiency for Network-on-Chip through Contention-Aware Input
Selection”, in Proc. of 11th Asia and South Pacific Design Automation
Conference, pp. 36-41, 2006.

[2] T. C. Xu et al., “A Minimal Average Accessing Time Scheduler for
Multicore Processors,” In Proceedings of the 11th International
Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP), pp.287-299, 24-26 October 2011, Australia.

[3] M. Daneshtalab et al., “Adaptive Input-output Selection Based On-Chip
Router Architecture,” Journal of Low Power Electronics (JOLPE), Vol.
8, No. 1, pp. 11-29, 2012.

[4] L. Benini, G. De Micheli, “Networks on chips: A new SoC
paradigm”, Computer, pp. 70-78, 2002.

[5] J. Henkel, W. Wolf, and S. Chakradhar, “On-chip networks: A scalable,
communication-centric embedded system design paradigm”, VLSI
Design,pp. 845-851,2004.

[6] T. C. Xu et al., “A Study of 3D Network-on-Chip Design for Data
Parallel H.264 Coding,” Journal of Microprocessors and Microsystems,
Vol. 35, No. 7, pp. 603-612, October 2011.

[7] M. Daneshtalab et al., “Memory-Efficient On-Chip Network with
Adaptive Interfaces,” IEEE Transaction on Computer-Aided Design of
Integrated Circuits and Systems (IEEE-TCAD), Vol. 31, No. 1, pp. 146-
159, Jan 2012.

[8] L. M. Ni, P. K. McKinley, “A survey of wormhole routing
techniques in direct networks”, Computer, pp. 62-76,1993.

[9] M. Ebrahimi et al., “CATRA-Congestion Aware Trapezoid-based
Routing Algorithm for On-Chip Networks,” in Proceedings of 15th
ACM/IEEE Design, Automation, and Test in Europe (DATE), pp. 320-
325, Mar. 2012, Germany.

[10] F. Farahnakian et al., “Q-learning based Congestion-aware Routing
Algorithm for On-Chip Network,” in Proceedings of 2th IEEE
International Conference on Networked Embedded Systems for
Enterprise Applications (NESEA), pp. 1-7, Dec. 2011, Australia.

[11] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. Van
Meerbergen, P. Wielage, and E. Waterlander, “Trade-offs in the design
of a router with both guaranteed and best-effort services for networks on
chip”, IEE Proceedings: Computers and Digital Techniques, pp. 294-
302, 2003.

[12] E. Nilsson, M. Millberg, J. Oberg and A. Jantsch, “Load
distribution with the proximity congestion awareness in a network on
chip”, DATE, pp. 1126-1127, 2003.

[13] T. T. Ye, L. Benini, G. De Micheli, “Packetization and routing analysis
of on-chip multiprocessor networks”, Journal of Systems
Architecture, pp. 81-104, 2004.

[14] M. Daneshtalab et al., “NoC Hot Spot minimization Using AntNet
Dynamic Routing Algorithm,” in Proceedings of 17th IEEE
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), pp. 33-38, Sep 2006, USA.

[15] M. Dehyadegari et al., “An Adaptive Fuzzy Logic-based Routing
Algorithm for Networks-on-Chip,” in Proceedings of 13th IEEE/NASA-

ESA International Conference on Adaptive Hardware and Systems
(AHS), pp. 208-214, June 2011, USA.

[16] R.S. Sutton and A.G. Barto, “Reinforcement Learning. An
Introduction”, MIT Press, Cambridge, MA, 2000.

[17] J.A.Boyan, M. L .Littman, “Packet routing in dynamically changing
networks:A reinforcement learning approach”, Advances in Neural
Information Processing Systems, pp. 671-678,1994.

[18] C.J.C.H. Watkins and P. Dayan, “Q-Learning”, in Proc. Machine
Learning, pp.279-292, 1992.

[19] J. Boyan and M. Littman, “ A Distributed Reinforcement Learning
Scheme for Network Routing”, Technical report, Department of
Computer Science, Carnegie Mellon University,1993.

[20] P. Goetz, S. Kumar, R. Miikkulainen, “On-Line Adaptation of a Signal
Predistorter through Dual Reinforcement Learning," Proc. machine
Learning: Proceedings of the 13th Annual Conference ,1996.

[21] S. Kumar and R. Miikkulainen, ”Dual reinforcement Q-routing: An on-
line adaptive routing algorithm”, in Proc. of the Artificial Neural
Networks in Engineering Conference, pp. 231-238, 1997.

[22] S.Kumar, ”Confidence based Dual Reinforcement Q-routing: an On-line
Adaptive Network Routing Algorithm”, Master's thesis, Department of
Computer Sciences, In the University of Texas at Austin. pp. I98-
267, 1998.

[23] P. Gratz, B. Grot and S.W. Keckler, “Regional Congestion Awareness
for Load Balance in Networks-on-Chip”, in Proc. of HPCA, pp. 203–
214, 2008.

[24] H.G. Badr, S. Podar, “An optimal shortest-path routing policy for
network computers with regular mesh-connected topologies”, pp.1362-
1371, 1989.

[25] W. Feng and K. G. Shin, “Impact of Selection Functions on Routing
Algorithm Performance in Multicomputer Networks”, In International
Conference on Supercomputing, pp. 132–139, 1997.

[26] M. Li, Q. Zeng, W. Jone, “DyXY - a proximity congestion-aware
deadlock-free dynamic routing method for network on chip”, in Proc. of
DAC, pp. 849-852, 2006.

[27] 4. J.C. Hu and R. Marculescu, “DyAD – Smart Routing for
Network-on-Chip”, Design and Automation Conference, 2004.

[28] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, C. R. Das, “A Low
Latency Router Supporting Adaptivity for On-Chip Interconnects”, in
Proc. of DAC, pp. 559-564, 2005.

[29] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H. Tenhunen,
“Agent-based On-Chip Network Using Efficient Selection Method”, in
Proceedings of 19th IFIP/IEEE International Conference on Very Large
Scale Integration (VLSI-SoC), pp. 284-289, Oct 2011.

[30] S. Kumar and R. Miikkualainen, “ Confidence-based Q-routing: an
on-queue adaptive routing algorithm”, In Proceedings of Neural
Networks in Engineering, 1998.

[31] Choi, S. P. M., Yeung, D.-Y., “Predictive Q-Routing: A Memory-based
Reinforcement Learning Approach to Adaptive Trac Control”, In
Advances in Neural Information Processing Systems 8, pp. 945{951.
MIT Press, Cambridge, MA,1996.

[32] J.A.Boyan, M. L .Littman, “Packet routing in dynamically changing
networks:A reinforcement learning approach”, Advances in Neural
Information Processing Systems 6., pp. 671-678,1994.

[33] C. Feng, Z. Lu, A. Jantsch, j. Li, and M. Zhang, “A reconfigurable fault-
tolerant deflection routing algorithm based on reinforcement learning for
network-on-chip”, in Proc of NoCArc, pp.11-16 , 2010.

[34] K. K. Paliwal, J. S.George, N. Rameshan, V. Laxmi, M.S.Gaur,
V. Janyani, and R.Narasimhan, “Implementation of QoS Aware Q-
Routing Algorithm for Network-on-Chip”, pp. 370-380, 1C3 2009.

[35] M.K. Puthal, V. Singh, M.S. Gaur,and V. Laxmi, ”C-Routing: An
Adaptive Hierarchical NoC Routing Methodology” , 19th International
Conference on VLSI and System-on-Chip, pp. 392 – 397, 2011.

[36] A. Varga et al., “The OMNeT++ discrete event simulation
system”, In Proc. of the European Simulation Multiconference
(ESM’2001), pp. 319-324, 2001.

[37] Y. Ben-Itzhak, E. Zahavi, I. Cidon, and A. Kolodny, “NoCs simulation
framework for OMNeT++”, in Proc. of NOCS, pp.265-266, 2011.

