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Abstract—3D ICs can take advantage of a scalable communication platform, commonly referred to as the Networks-on-Chip (NoC). In

the basic form of 3D-NoC, all routers are vertically connected. Partially connected 3D-NoC has emerged because of physical limitations

of using vertical links. Routing is of great importance in such partially connected architectures. A high-performance, fault-tolerant and

adaptive routing strategy with respect to the communication flow among the cores is crucial while freedom from livelock and deadlock

has to be guaranteed. In this paper we introduce a new routing algorithm for partially connected 3D-NoCs. The routing algorithm is

adaptive and tolerates the faults on vertical links as compared to the predesigned routing algorithms. Our results show a 40� 50%

improvement in the fraction of intact inter-level communications when the fault tolerant algorithm is used. This routing algorithm is light-

weight and has only one virtual channel along the Y dimension.

Index Terms—3D network-on-chip, routing algorithm, deadlock-free, reliability, formal analysis, fault tolerance
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1 INTRODUCTION

GLOBAL interconnect does not scale well with the tech-
nology advancement and it has become as one of the

major concerns in current and future high-performance Sys-
tem-on-Chip (SoC) designs. Scalability, higher bandwidth,
better throughput and lower power consumption of NoCs
have encouraged researchers to consider NoCs as a promis-
ing alternative for conventional interconnects [1], [2]. How-
ever, as the number of cores increases, two-dimensional
NoC-based (2D-NoC) infrastructures suffer from long
latency and power overhead.

Three dimensional ICs have attracted a lot of attention in
the past few years [3], [4]. 3D ICs provide better perfor-
mance, more flexibility and higher throughput as compared
with traditional ICs [5], [6], allowing for continued perfor-
mance improvements using CMOS technology [7]. More-
over, transistor density has increased in three dimensional
(3D) ICs by vertically stacking multiple dies using a dense
and high-speed die-to-die interconnection [8]. Because of
the positive correlation between the length of long global
wires and performance bottlenecks such as delay and
power consumption, it is anticipated that a decrease in the

wiring footprint leads to low latency and energy efficient
3D integration.

Among the vertical interconnection technologies,
Through-Silicon-Via (TSV) is the most promising solution
since it has the greatest vertical interconnect density and
exploits an extremely small inter-wafer distance. However,
two architectural level design issues appear when TSVs are
considered. First, a large area overhead will be imposed
because of the TSV interconnect pitch. Second, several extra
and costly manufacturing steps will be involved when the
TSV technology is used for fabricating 3D ICs. Besides, the
risk of defects will increase as the number of TSVs increases
which results in yield reduction.

Partially connected 3D-NoC is the result of 3D integra-
tion of 2D-NoCs where only a subset of all possible vertical
links is available. In such architectures, planar topologies
are partially connected using a number of vertical links.

The main problem in vertically partially connected 3D-
NoC is the packet routing strategy where the traditional
simple routing algorithms such as XYZ are not applicable.
Routing algorithms are classified as deterministic and adap-
tive. While the former is simple, it is incapable of balancing
the load across the links in non-uniform traffic [9]. The latter
is applied to address the mentioned limitation. By better
distributing load across the links and avoiding congested
regions, adaptive routing algorithms can enhance the net-
work performance [10].

Designing an adaptive deadlock-free routing algorithm
in partially connected 3D-NoC is very challenging due to
the possibility of forming a cycle within and between three
planes (i.e., XY , XZ, and YZ) and the current state-of-the-
art is still lacking a viable solution.

Another concern with the use of TSVs is the ensuing reli-
ability issues. While the reliability aspects of 2D networks
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have been extensively studied, investigation of TSV fault
sources and their implication in terms of network perfor-
mance is still a developing topic. Consequently, it is desir-
able to evaluate the reliability and performance of the
designed routing algorithm under the influence of TSV
faults and non-idealities.

These issues motivated us to develop an efficient routing
algorithm for partially connected 3D-NoCs, called East-
Then-West (ETW) [11]. This algorithm is reliable as long as
there is at least one TSV at the eastmost column while the
performance can be improved by increasing the number of
TSVs. The ETW algorithm is extremely light-weight. That is,
it only requires one virtual channel along the Y dimension.
This algorithm provides adaptivity to deliver packets, pref-
erably using the shortest paths. Besides, this adaptivity can
be applied to avoid congestion in the network. Whenever
there are more than one valid output channels available to
deliver a packet, the utilization of the input buffer of the
neighboring routers is used to prioritize one output channel
over the other.

The remainder of this paper is organized as follows:
Related work is elaborated in Section 2. The proposed dead-
lock-free routing algorithm is discussed in Section 3. Section
4 includes the elevator assignment techniques used by the
proposed routing algorithm. Sections 5 and 6 contain formal
modeling and reliability analysis of the network. Results
including latency analysis and reliability evaluation are pre-
sented in Section 7 and finally Section 8 concludes the paper.

2 RELATED WORK

2.1 3D Integration and 3D NoC

In the past few years a large amount of research has been
devoted to 3D IC design [3], [4]. The main driving force
behind this effort is the higher density, better performance,
more flexibility and higher throughput offered by 3D ICs as
compared to the traditional ICs [5], [6], [8]. To connect mul-
tiple die layers, Through-Silicon-Via has proven to be a
promising candidate. The modeling and performance eval-
uation of TSVs have been studied in different works [12],
[13]. Unfortunately, TSVs are expensive, impose large area
overhead, and suffer from lower yield as compared to hori-
zontal links.

In order to take advantage of reduced interconnection
latency offered by 3D ICs and to address the scalability and
bandwidth bottleneck in NoC, many works [7], [14], [15]
consider 3D-NoC with limited TSV as a realistic design
option. Partially connected 3D-NoCs reach a compromise
between the advantages and disadvantages of vertical inter-
connections. In other words, as the provision of TSVs intro-
duces higher speed and shorter wiring as compared to 2D
systems, a smaller number of TSVs mitigates the disadvan-
tages such as degraded reliability and area issues of vertical
interconnections.

2.2 TSV Reliability

An analytical model for reliability evaluation of 2D NoC has
been reported in [16], but it does not consider unexpected
sources of faults in 3D die-stacked designs. The impact of
sub-micron TSVs on future 3D ICs is still unknown [17].
Chip warpage, TSV coupling [18], and thermal stress are

known as main causes of TSV failure [19]. To alleviate
mechanical reliability issues in 3D ICs, [20] presented an
analysis tool as well as a design optimization framework.
Reliability evaluation of a specific TSV technology devel-
oped by Austria Microsystems AG has been reported in
[21]. An analytical reliability analysis for a fault-intolerant
3D NoC under transient TSV failures has been proposed in
[22]. While [22] focuses on the evaluation of the fraction of
time slots that are affected by transient TSV faults under the
assumption of temporally and spatially uniform traffic, here
we intend to investigate the effect of permanent faults on
inter-level communications.

2.3 Routing Algorithms

3D-NoC routing algorithms have been considered in LA-
XYZ [23], AFRA [24], DyXYZ [25], [26], [27] and [28], but
there are few related works concerning routing algorithms
in the 3D-NoC with limited vertical bandwidth.

A fully adaptive routing algorithm with congestion con-
sideration is presented in [25]. DyXYZ works on fully
connected 3D meshes and it is proven to be deadlock free
by using 4, 4, and 2 virtual channels along the X, Y and Z
dimensions, respectively.

Limited bandwidth in the vertical dimension has been
discussed in [29] which is a congestion-aware routing algo-
rithm for the 3D mesh network. In this algorithm, when a
router wants to determine the output port, it considers the
congestion information of the neighboring nodes along with
the distance from the current node to the destination node.
So, different weights are assigned to the router outputs and
then routing is done based on the congestion information
and the assigned weights. This algorithm allows using a
non-minimal and adaptive routing algorithm to distribute
traffic load over the network.

4NP-First [30] introduces a fault-tolerant routing algo-
rithm for 3D-NoC. In this routing algorithm, when the fault
rate is above a threshold value, two redundant packets are
transmitted to the destination: one using the 4N-First turn
model and the other using 4P-First.

The 3D-FAR algorithm in [31] is another fully adaptive
routing algorithm which uses two, two and four virtual
channels along the X, Y and Z dimensions respectively. In
this algorithm, the network is divided into four disjoint vir-
tual subnetworks and packets can use any shortest paths
between the source and destination nodes. Non-minimal
routes are used in the case of faults.

A distributed routing algorithm, named Elevator-first,
for vertically partially connected 3D-NoC has been pro-
posed in [32]. In this algorithm, two virtual channels per
physical link in X and Y dimensions are employed while
there is no additional virtual channel in the Z dimension. A
modification on the Elevator-first algorithm has been made
in Redelf [33] which requires no virtual channels to ensure
deadlock-freedom. In Redelf, certain rules are applied for
choosing an elevator. To make distinguishable differences
between Elevator-first and Redelf, it is necessary to mention
that in the Elevator-first routing algorithm, there is no limi-
tation on choosing an elevator when a packet traverses
between layers. In other words, the packet is free to take
any elevator in order to reach the destination layer. How-
ever, it is at the cost of using two virtual channels in both X



and Y dimensions to ensure deadlock-freedom. Redelf on
the other hand omits using virtual channels, but in order to
guarantee deadlock-freedom, certain rules are applied
which are limitative. Both of the routing algorithms are
deterministic and are not able to distribute packets in con-
gested networks.

In comparison with the Elevator-first algorithm, the ETW
routing algorithm in this paper uses one less virtual chan-
nel. Elevator-first is a deterministic algorithm offering adap-
tivity with no significant limitation as is the case with
dimension order routing. In ETW, a group of eligible TSVs
is selected to support the communication between a source
and destination. Then, a single TSV is selected from these
eligible TSVs. The ETW fault tolerance is based on runtime
elevator selection for every single node upon packet arrival.
On the contrary, the Elevator-first algorithm assigns a fixed
elevator to a packet which results in packet being blocked if
the elevator is faulty. In the Elevator-first algorithm, a new
header is added to the packet containing the address of the
elevator leading to both hardware and timing overhead.
There is no such a header update in ETW. Besides, the main
difference between the ETW routing algorithm and the Ele-
vator-first routing algorithm is that adaptivity in the former
enables different paths for the same source and destination
pair depending on the network condition.

3 DEADLOCK-FREE ROUTING ALGORITHM

The suggested routing algorithm is proposed for vertically
partially connected 3D-NoCs. The conventional routing
algorithms, such as XYZ, are not applicable anymore since
the topology is not fully connected. In ETW, every router is
statically informed about the location of the vertical links.
This information is stored locally at router registers. The
vertical links are considered to be pillars. That is, the TSV in
the first layer connects to all the other layers. In vertically
partially connected 3D-NoCs, in order to deliver a packet to
the destination, the packet needs to be delivered to the des-
tination layer through a vertical link (elevator), and then
routed toward the destination.

In the ETW algorithm, two virtual channels along the Y
dimension is needed while there is no need to have any fur-
ther virtual channel along the X and Z dimensions. To
prove freedom from deadlock, the network can be virtually
partitioned into two disjoint subnetworks including differ-
ent channels: Subnetwork1 ðXþ; Y 0�; ZþÞ and Subnetwork2
ðX�; Y 1�; Z�Þ where +, - represent channels along the posi-
tive and negative directions respectively, while * stands for
both positive and negative directions (bidirectional chan-
nels) as shown in Fig. 1.

Packets in Subnetwork1 have the flexibility to move along
the following directions in any order: (1) Eastward ðXþÞ, (2)
Northward using the virtual channel number zero ðY 0þÞ, (3)
Southward using the virtual channel number zero ðY 0�Þ, or
(4) upward ðZþÞ. Similarly, valid movements in Subnet-
work2 are as follows: Westward ðX�Þ, moving Northward
or Southward using the virtual channel number one ðY 1�Þ,
or moving downward ðZ�Þ. Packets in each subnetwork can
switch between the directions dynamically and do not neces-
sarily follow the dimension order routing.

The basic idea of this routing algorithm is that packets are
allowed to use any channels either in Subnetwork1 or Subnet-
work2 or move from Subnetwork1 to Subnetwork2 and then
use any channels of Subnetwork2 (no transfer from Subnet-
work2 to Subnetwork1 is allowed). Thereby, if any Eastward
movement is needed, a channel of Subnetwork1 should be
used before using any channels of Subnetwork2. At the worst
case, packets should reach the East-most column with the
flexibility to take Y 0�, deliver to the desired layer and then to
the destination node. In other words, having at least one TSV
in the East-most column guarantees delivery of packets
between each pair of source and destination nodes.

3.1 Proof of Deadlock-Freedom

A sufficient condition for a routing algorithm to be dead-
lock-free is the exclusion of cycles [31]. A cycle occurs if
both positive and negative directions along at least two
dimensions can be adopted by a packet. As an example, to
form a cycle in the XY plane, it is necessary to take the
Xþ; X�; Y þ and Y � directions. The same trend is true for
XZ and YZ as well. No U-turn (360-degree turn) is allowed
in the algorithm. As can be obtained from the subnetwork
definition in Table 1, only the Y dimension is completed
(i.e., both positive and negative directions of Y can be taken
by packets) in each subnetwork, and thus there is no possi-
bility of forming a cycle. In order to prove the deadlock-
freedom between subnetworks, it suffices to show that two
subnetworks are disjoint. A pairwise comparison in Table 2

Fig. 1. Two different regions.

TABLE 1
Completed Pairs within Each Subnetwork

Subnetworks Pair ðXþ; X�Þ Pair ðY þ; Y �Þ Pair ðZþ; Z�Þ Complete Pair

ðXþÞðY 0�ÞðZþÞ X� is missing Pair exists Z� is missing Y
ðX�ÞðY 1�ÞðZ�Þ Xþ is missing Pair exists Zþ is missing Y

TABLE 2
Disjoint Subnetworks

Subnetwork1 Subnetwork2 X Dimension Y Dimension Z Dimension
ðXþÞðY 0�ÞðZþÞ ðX�ÞðY 1�ÞðZ�Þ Different in direction Different in VC number Different in direction



between the two subnetworks reveals that these two subnet-
works are different in X and Z direction and the virtual
channel number along Y . That is, Subnetwork1 only covers
positive direction of X and Z while Subnetwork2 covers the
negative parts. The two subnetworks are disjoint in virtual
channel number along Y . Packets are allowed to use any
channels either in Subnetwork1 or Subnetwork2 or move
from Subnetwork1 to Subnetwork2 and then use any chan-
nels of Subnetwork2. Since no transfer from Subnetwork2 to
Subnetwork1 is allowed, a cycle can never be formed.
Therefore, moving toward Xþ and Zþ will not be made
after moving toward X� and Z� and the freedom from
deadlock is proved.

3.2 Routing Algorithm Procedure

Based on the presented Subnetwork definition, the routing
algorithm can be generally described as follows:

3.2.1 Source and Destination Are on the Same Layer

If the destination is to the East of the source, Subnetwork1
will be used to deliver the packet to the destination; other-
wise, Subnetwork2 will be applied.

3.2.2 Destination Is on the Upper Layer

Subnetwork1 should be used first since moving upward is
allowed only in Subnetwork1. When the packet reaches the
destination layer, depending on the position of the destina-
tion router, the packet either continues routing in Subnet-
work1 (destination is to the East of the current node) or
switches to Subnetwork2 (destination is to the West of the
current node). In more details, the destination region can be
in East-Up or West-Up of the source. When the destination
is in East-Up of the source, only Subnetwork1 will be used
to deliver the packet to the destination. In the other case (i.e.
the destination is on West-Up of the source), the channels of
Subnetwork2 will be used when the packet reaches the des-
tination layer. In order to illustrate the two scenarios, a

4� 3� 2 network is shown in Fig. 2 having four TSVs con-
necting the nodes 0 to 12 (0-12), 8-20, 10-22, and 7-19. The
TSVs are bidirectional. Based on the introduced algorithm,
if the source node 17 targets the node 1 or node 4 as the des-
tination, two elevators (i.e., 10-22 and 7-19, bolded in the
figure) can be taken to transmit the packet to the destination
layer and finally Subnetwork2 is used for delivering the
packet to the destination node. Moreover, when the source
node 17 wants to send a packet to the destination node 7,
again both bolded elevators are eligible and Subnetwork1
will be sufficient to deliver the packet to the destination.

3.2.3 Destination Is on the Lower Layer

Packets should be delivered to the destination layer through a
TSV which is located to the east side of the destination. The
reason is that once the downward channel is used (Z� from
Subnetwork2), no further movement to the East direction is
possible. So, the packet has to move toward East sufficiently
before moving downward. The destination can be in East-
Down or West-Down of the source. In both cases, the packet
is first forwarded to an elevator in the east side of the destina-
tion (using Subnetwork1). Then Subnetwork2 will be utilized
to deliver the packet to the destination layer and finally to the
destination node. Let us consider two examples shown in
Fig. 3. First, the source node 6 sends a packet to the destination
19. In this case, the elevator 10-22 should not be used as the
packet has to take the East direction after delivering to the
destination layer and it is not possible when the packet is in
Subnetwork2. The elevator 7-19 is the only eligible elevator in
this example. Second, for sending a packet from the source
node 6 to the destination 17, the elevator 10-22 is between the
source anddestination nodes, and thus it can be used. The ele-
vator 7-19 is also valid and can be used. It is the same condi-
tion as the case when the source node 1 wants to send a
packet to the destination 17. Since there is no elevator between
the source and the destination, the elevators on the East side
of the destination are eligible which are the elevator 10-22 and
elevator 7-19.

Fig. 2. An example of destination in the upper layer. Fig. 3. An example of destination in the lower layer.



In order to extend the routing algorithm to topologies
other than mesh, the corresponding example has been
extended to the torus topology. Based on Fig. 3, the link
from node 2 has been connected to node 10 as an example
of a torus link in a torus topology. Consider the source node
1 targets the destination at the node 17. In this case, after the
packet is delivered to the node 2, it can be directly for-
warded to the node 10 to reduce the hop count. In general,
the routing algorithm can be applied to different topologies
as long as the given rules for subnetworks in delivering
packets are respected.

4 ALGORITHMS FOR ELEVATOR ASSIGNMENT

Since ETW suggests different routing options, one of the
most important steps in ETW is choosing an elevator among
eligible options. The way in which elevators are assigned to
each pair of source and destination has a considerable
impact on the performance of the routing algorithm. In this
section, we introduce two algorithms which can be used on
top of the proposed mechanism for the selection of an eleva-
tor among the eligible options.

4.1 Static Elevator Assignment (SEA)

The basic idea of this method is that elevators are assigned to
the nodes statically according to the region of the destination.
The important consideration in assigning elevators to nodes
is the destination region, regardless of how far the destina-
tion is from the source node. In this method, each router
stores the location of three elevators which will be used for
the destinations located Up, East-Down and West-Down of
their source according to Table 3. In other words, each router
registers the location of the nearest eastern and western ele-
vators relative to its location as well as the east-most elevator
in the network. The first one (elevator_east)will be used for all
the destinations located on upper layer for that specific
router without considering how far they are from their
source node.Moreover, this elevator will be used for the des-
tinations located on west down side of that router, if there is
no elevator between the source router and the destination.
The second elevator (elevator_west) will be used for all desti-
nations in west down of the source. That is, when a router
wants to send packets to a destination located on its west
down region, first it tries to find an elevator between the
source and destination that is the nearest elevator in west
side of the node. If not, then the nearest elevator in the east
side of the nodewill be used. Finally, the third elevator (eleva-
tor_east_down) is for all the destinations on east down of the
current router. Since this elevator assignment is done offline,
for all the destinations on east down of the source the east
most elevator will be used because no further east transmis-
sion is allowed after taking down direction. Therefore, it is
necessary tomove toward east as much as possible.

The pseudo code for assigning elevators to the nodes is
shown in Algorithm 1. In order to assign an elevator to a
node, three conditions must be satisfied. The first condition
forces theX coordinate of the candidate elevators to be either
greater or less than the X coordinate of the current node,
depending on the destination location. Among these candi-
date elevators, the second condition chooses the elevators
with the least Manhattan distance from the elevator to the
current node. Lines 10 and 13 of Algorithm 1 summarize the
first two conditions. The third condition further narrows
down the selection by choosing the elevators with minimum
X distance (lines 11 and 14). At this point, there could be at
most two candidate elevators on the same column, one of
which is selected arbitrarily as the target elevator (lines 12
and 15) and the corresponding elevator ID is stored before
runtime in local registers for all routers. Then, the routing
will be done according to Algorithm 2. As an example in
Fig. 2, elevator_east registered in the node 16 is 12. Therefore,
the node 16will use the elevator at node 12 for all the destina-
tions on east side (i.e., the nodes 0, 1, 2, 3, 4, 5,... , 11).

Algorithm 1. SEA Pseudo code

1: E ¼ feig (set of elevator indices)
2: Xc, Yc, Zc X, Y , Z coordinates of current router
3: Xe, Ye, Ze X, Y , Z coordinates of elevator e
4: MDðe; cÞ ¼ ðjXe �Xcj þ jYe � YcjÞ
5:
6: if (current node is an elevator) then
7: address elev east current node
8: address elev west current node
9: else
10: S1 fe 2 E : ðXe � XcÞ andMDðe; cÞ ¼ miniðMDðei; cÞÞg
11: S1 argmine2S1Xe

12: address elev east S1ð1Þ
13: S2 fe 2 E : ðXe � XcÞ andMDðe; cÞ ¼ miniðMDðei; cÞÞg
14: S2 argmaxe2S1Xe

15: address elev west S2ð1Þ
16: end if
17: address elev east down fe 2 E : Xe ¼ maxiðXeiÞ and

MDðe; cÞ ¼ miniðMDðei; cÞÞg

Another example is that, according to Fig. 2, the source
node 1 generates a packet destined for the node 18. Since
the destination is in the east down side of the source, the
elevator at node 7 will be used while there is a closer eleva-
tor at node 10. This suboptimal selection is an inherent
requirement of the offline/static elevator assignment that
should work for any east-down destination. In other
words, whenever the destination is on the east-down of
the source, the statically assigned elevator should be such
that the routing constraints hold regardless of the exact
location of source and destination. The only solution that
would work for all such situations is the east-most elevator

TABLE 3
Elevator Assignment in ETW-SEA

Destination Region

Used Elevator East-Up West-Up East-Down West-Down
Elevator-right Elevator-right Elevator-right-down Elevator-right or elevator-left



named elevator_east_down. Since no further east movement
is allowed after taking the down direction, the packet has
to be forwarded toward east sufficiently in the source
layer. Therefore, for all the destinations located at east
down of their source, the packet will use the elevator
located at the east most column. The main drawback of
this technique is that if the elevator is faulty, no further
rerouting will be possible. The following technique miti-
gates this problem by enabling elevator assignment during
runtime.

Algorithm 2. ETW-SEA Routing Algorithm

1: Xc, Yc, Zc X, Y , Z coordinates of current router
2: Xd, Yd, Zd X, Y , Z coordinates of destination router
3: ETW(e) (function for routing through elevator e)
4:
5: if ðZd > ZcÞ then
6: ETW(address elev east)
7: else
8: if ðXd < XcÞ then
9: if ðXd � Xaddress elev west � XcÞ then
10: ETW(address elev west)
11: else
12: ETW(address elev east)
13: end if
14: else if ðXd > XcÞ then
15: ETW(address elev east down)
16: else
17: ETW(address elev east)
18: end if
19: end if

4.2 Dynamic Elevator Assignment (DEA)

In this method, elevators are assigned to routers at runtime.
This technique is proposed in order to enhance the fault tol-
erance of the routing algorithm. When the packet reaches a
faulty elevator, the current node has the capability to choose
a new elevator and reroute the packet toward a new eleva-
tor. It is considered that a faulty elevator is considered as a
node which has no vertical link. Therefore, by changing a
node status, Algorithm 3 is called to assign a new elevator
for the current node. The algorithm assigns an elevator in
the valid region according to the location of destination.
Fig. 4 shows valid regions for different locations of destina-
tion as compared to the current node.

Fig. 4a shows that if the current node receives an east-
bound packet from its western input port (packet has
already been forwarded toward East) or the case when the
current node is the source, no matter where the destination
is (upper or lower layer compared to the current node), the
valid region for selecting an elevator is at east side of the
current node. Fig. 4b represents the valid region when the

input direction to the current node is North (packet has
already been forwarded toward South). According to the
figure, the red part of the figure will not be considered
because the input direction of the node is North and for-
warding the packet toward North might make a loop.
Fig. 4c illustrates the case in which the input port is South.
Again, the red part is forbidden in order to avoid deadlock.

Algorithm 3. DEA Pseudo code

1: Input: T ¼ ft1; . . . ; tng; s; d
2: Output: t 2 T
3: Auxiliary functions:
4: MDði; jÞ ¼ ðjXi �Xjj þ jYi � YjjÞ
5: OMDðs; d; tÞ ¼MDðs; tÞ þMDðt; dÞ
6: PMDðs; tÞ ¼MDðs; tÞ
7:
8: if ðjT j ¼ 1Þ then
9: return t1

10: else
11: T  ft 2 T :
12: OMDðs; d; tÞ ¼ mini¼1���nðOMDðs; d; tiÞÞg
13: n jT j
14: if ðjT j ¼ 1Þ then
15: return t1
16: else
17: T  ft 2 T :
18: PMDðs; tÞ ¼ mini¼1���nðPMDðs; tiÞÞg
19: n jT j
20: if ðjT j ¼ 1Þ then
21: return t1
22: else
23: T  ft 2 T :
24: jXt �Xsj ¼ mini¼1���nðjXti �XsjÞg
25: n jT j
26: if ðjT j ¼ 1Þ then
27: return t1
28: else
29: if Ys < bNy=2c then
30: return t 2 T : Yt � bNy=2c
31: else
32: return t 2 T : Yt < bNy=2c
33: end if
34: end if
35: end if
36: end if
37: end if

At the next step, the algorithm attempts to find a unique
elevator in the valid region according to Algorithm 3. In the
algorithm, T is the set of eligible TSVs in the valid region.
MDði; jÞ is the Manhattan Distance between the two nodes i
and j. OMDðs; d; tÞ is the Overall Manhattan Distance from
the source node s to the destination d using the TSV at node t.
PMDðs; tÞ is the Partial Manhattan Distance from the source
node s to the TSV. The algorithm calculates, for all the eleva-
tors located in the valid region, the overall Manhattan dis-
tance, which is the Manhattan distance from the source to
TSV plusManhattan distance from the TSV to the destination.
If this calculation does not result in identifying a unique eleva-
tor, Manhattan distance from the source to the TSV will be
considered. If a unique elevator cannot be found by these two
steps, in the third step, the elevator leading to the shortest X

Fig. 4. Valid regions based on the input port to current node.



separation ðjXelev �XsourcejÞ will be chosen in order to avoid
transferring toward east prematurely. Finally, if the above cri-
teria do not lead to selecting a unique TSV, the source node
selects the TSV in the lower (upper) Y-half-plane, if the node
is in the upper (lower) Y-half plane. If the size of Y dimension
of the network isNy, a node is said to be in the upper (lower)
Y-half plane, if its y coordinate is less than or equal to (greater
than) bNy=2c. By selecting the Y-half-plane that is not the
same as Y-half-plane of the source, a larger number of TSVs
can be used to carry out the communication, leading to higher
resilience to the TSV failure.

An example is illustrated in Fig. 5. Let us consider a case
where the source node 4 targets the node 23 as its destina-
tion. For this example, all the elevators (i.e., 1, 2, 3, 9, 10, 11,
and 14) are in the valid region. Step 1 determines that six
elevators (i.e., 1, 2, 3, 9, 10, and 11) have the same overall
Manhattan distance from the source to destination. Step 2
limits the list to two elevator (i.e., 1 and 9) since they have
the least Manhattan distance from the source. Step 3 has no
effect on the list since both elevators have the same X sepa-
ration from the source. Finally, Step 4 chooses node 9 as its
elevator because it is not in the same Y-half-plane with the
source (source is in the upper Y-half-plane).

As it was discussed earlier, DEA can handle faulty eleva-
tors by selecting new ones during runtime and thus enhan-
ces the fault tolerance of the 3D NoC.

5 FORMAL MODEL OF THE NETWORK

Consider an Nx �Ny �Nz network. The nodes of the net-
work are linearly indexed from 1 to Nx �Ny �Nz. Simi-
larly, TSVs are linearly indexed by a set of numbers

T ¼ ft1; . . . ; tjTjg 	 f1; . . . ; NxNyg. If i 2 T , there is a TSV

whose base is at node i. As an example, consider the planar
view of a network with two layers as shown in Fig. 6. The
location of TSVs are highlighted in black. Each cell contains
two numbers, corresponding to the node index in each
layer. In this example, the nodes are indexed from 1 to
8� 8� 2 ¼ 128. Also, the total number of TSVs, jTj, is equal
to 10 and we have T ¼ f6; 8; 10; 13; 22; 41; 54; 55; 60; 64g ¼
ft1; . . . ; t10g.

Furthermore, denote each source-destination pair by
ðs; dÞ, where s is the source ID and d is the destination ID.
As we are concerned with vertical transmissions, we focus
on pairs in which the source and destination are in two dif-
ferent layers. In addition, it suffices to focus on two layer
networks because TSVs are pillars and cross through all
layers. Then, the total number of source destination pairs,
with the source and destination located at two different

layers, is equal to 2ðNxNyÞ2. For notational convenience in
what follows, we map each ðs; dÞ to a scalar k as follows:

ð1; NxNy þ 1Þ ! 1

ð1; NxNy þ 2Þ ! 2

..

.

ð2; NxNy þ 1Þ ! NxNy þ 1

..

.

(1)

or k ¼ NxNyðs� 1Þ þ ððd� 1Þ mod NxNyÞ þ 1. With this not-
ation, the pair ðs; dÞ can be symbolically represented by ak.

To model the dynamic routing, suppose that network
topology N and routing algorithm A are known. The com-
munication corresponding to ak attempts to use some TSV
tk;1 2 T. If TSV tk;1 fails, the algorithm attempts to use TSV
tk;2 and so on. Denote the set of prioritized TSVs for ak by
tk ¼ ðtk;1; . . . ; tk;nkÞ 	 T. As a sidenote, we require that the

routing algorithm is such that each ak corresponds to
exactly one tk. Also note that if tk has only one member for
all k, this model reduces to a static routing algorithm. Sym-
bolically, we can define a function FN ;A that maps ak to tk:

tk ¼ FN ;AðakÞ: (2)

Fig. 5. An example of the DEA algorithm.

Fig. 6. An example of an 8� 8� 2 network with 10 TSVs.



As an example, suppose that the source 1 and the destina-
tion 87 (circled in Fig. 6) are denoted by ak¼23. Also suppose
that the routing algorithm has the possibility to use TSVs
10, 13, and 22 to carry out the transmission from the source
1 to the destination 87. Thereby, we have t23 ¼ f10; 13; 22g
¼ ft23;1; t23;2; t23;3g.

It is possible to illustrate the mapping ak ! tk by con-

structing a jTj � 2ðNxNyÞ2 (row�column) binary matrix C,
where a 1 in Cði; jÞ represents the fact that TSV ti can be
used to support the communication of pair aj, or ti 2 tj. As
an example, the 23rd column of C, denoted by Cð:; 23Þ, of
the aforementioned example looks like this:

Cð:; 23Þ ¼ 0 0 1 1 1 0 0 0 0 0½ 
T : (3)

Fig. 7 shows the entire C matrix for the network of Fig. 6.
The number of columns is equal to the number of source-
destination pairs and the number of rows is equal to the
number of TSVs (10 in this example). The x axis is labeled
by k and the y axis is labeled with the ID of TSVs t1; . . . ; t10.
The black (white) bars correspond to 1 (0) in the C matrix.
By looking at a row of this figure, it is possible to estimate
the fraction of source-destination pairs that use the TSV cor-
responding to that row. For example, it is observed that the
2nd and 10th row of C (shown by arrow on Fig. 7) are the
darkest rows, signifying the fact that a large number of
source-destination pairs use the corresponding TSVs (8 and
64). In general, the tendency of our routing algorithm to
send the packets to the east leads to more usage of TSVs on
the right hand side of Fig. 6.

6 RELIABILITY ANALYSIS

Traditionally, the reliability of an ‘object’ at time t, RðtÞ, is
defined as the probability of observing a ‘fault’ in the
‘object’ after time t. We take the ‘object’ to be a source-desti-
nation pair ak, and the ‘fault’ corresponds to an unsuccess-
ful packet delivery from the source to the destination
through TSVs. Considering the mechanism of routing, a
communication fails if none of TSVs in tk are healthy. This
is equivalent to the concept of ‘parallel systems’ in reliabil-
ity theory. Following the same course of deduction, we can
write the reliability of ak as:

RakðtÞ ¼ 1� ð1�RTSVðtÞÞnk (4)

where it is assumed that all TSVs follow the same reliability
model RTSVðtÞ and fail independently. The reliability can be
readily derived from a life distribution. Fortunately, many

different life distributions have been examined in the litera-
ture and shown to either empirically fit the failure behavior
of electrical components or comply with the underlying pro-
cesses that generate the failure. Examples of such life distri-
butions include exponential, Weibull, Bayesian Weibull,
normal, lognormal, mixedWeibull, Gamma and generalized
Gamma, logistic, loglogistic, andGumbel among others.

In practice, the reliability of the communication of a spe-
cific ak is not of interest. Rather, it is of interest to evaluate a
measure of ‘overall’ reliability of the system. Such a mea-
sure is defined with the specific concept of reliability in
mind. In this article, we focus on the average fraction of
source destination pairs that communicate successfully at
time t, henceforth denoted by fðtÞ.

To calculate fðtÞ, we first focus on the fraction of ak that
does not fail if certain TSVs are faulty at time t. Let us
denote the failure status of TSVs at time t by a binary vector
‘ðtÞ of size jTj. A zero in location i of ‘ðtÞ means that TSV ti
is faulty at time t. As an instance, ‘ðtÞ ¼ ½1 1 1 1 0 0 0 0 0 0

for the example of Section 5 means that TSVs 22, 41, 54, 55,
60, and 64 are faulty at time t .To see what fraction of
source-destination pairs are still connected at time t, the
rows of C indexed by zeros of ‘ðtÞ are set to zero, resulting
in a new matrix C‘ðtÞ. The matrix C‘ðtÞ is of the same size as

C, but with certain rows of C set to 0. For example,
‘ðtÞ ¼ ½1 1 1 1 0 0 0 0 0 0
 leads to a C‘ðtÞ matrix identical to

Fig. 7 except for the 5th through 10th row set to 0. Then, the
number of non-zero columns in C‘ðtÞ represents the number

of pairs that can communicate at time t. This is because a
zero column in C‘ðtÞ means that no TSV exists to support the

communication between the source-destination pair corre-
sponding to that column. Dividing this number by

2ðNxNyÞ2 returns the fraction of connected pairs given ‘ðtÞ.
Denote this fraction by f‘ðtÞ. For example, if the 5th through

10th row of Fig. 7 are set to zero, only 7,808 out of 8,192 pairs
can communicate, which is a fraction of about 95%
(f½1111000000
 ¼ :95).

In order to relate f‘ðtÞ to fðtÞ, we note that each ‘ occurs
with the time dependent probability:

p‘ðtÞ ¼ ð1�RTSVðtÞÞjTj�sumð‘ÞRsumð‘Þ
TSV ðtÞ; (5)

where sumð‘ðtÞÞ returns the sum of elements of ‘ðtÞ (i.e., the
number of healthy TSVs). Denote the set of all possible
binary vectors of length jTj by BjTj (for example, B3 ¼
f½000
; ½001
; ½010
; ½011
; ½100
; ½101
; ½110
; ½111
g). In other
words, BjTj represents all different combinations of faulty

TSVs. Then, fðtÞ is a weighted sum of f‘ðtÞ, where the

weights are probabilities of individual ‘s:

fðtÞ ¼
X
‘2BjTj

p‘ðtÞf‘

¼
X
‘2BjTj
ð1�RTSVðtÞÞjTj�sumð‘ÞRsumð‘Þ

TSV ðtÞf‘:
(6)

To further simplify this identity, note that p‘ðtÞ is the
same for all binary vectors ‘ with equal number of ones
(same sumð‘Þ). The total number of ‘s with n 1s is equal to
jTj
n

� �
. Denote the set of ‘s with n 1s by Ln ¼ f‘n;1;

Fig. 7. C matrix representation of the 8� 8� 2 network.



. . . ; ‘
n; jTjnð Þg. For example, with total number of TSVs (jTj)

equal to 3, we have L1 ¼ f½001
; ½010
; ½100
g ¼ f‘1;1; ‘1;2; ‘1;3g.
Then, the previous equation can be rewritten as a summa-
tion over the number of healthy TSVs (n ¼ sumð‘Þ):

fðtÞ ¼
XjTj
n¼0
ð1�RTSVðtÞÞjTj�nRn

TSVðtÞ
XjTjnð Þ
m¼1

f‘n;m

¼
XjTj
n¼0
ð1�RTSVðtÞÞjTj�nRn

TSVðtÞ
jTj
n

� �P jTj
nð Þ

m¼1 f‘n;m
jTj
n

� �

¼
XjTj
n¼0
ð1�RTSVðtÞÞjTj�nRn

TSVðtÞ
jTj
n

� �
�f‘n;� ; (7)

where �f‘n;� is the average fraction of connected pairs when n

TSVs are healthy. Given C, �f‘n;� can be calculated by setting

to zero different combinations of jTj � n rows of C and
counting the number of non-zero columns of C.

The following example illustrates the concept. Suppose
that the total number of TSVs is equal to 3. For notational con-
venience, temporarily replaceRTSVðtÞwithR. Thenwe have:

fðtÞ ¼ ð1�RÞ3�0R0f½000


þ ð1�RÞ3�1R1ðf½001
 þ f½010
 þ f½100
Þ
þ ð1�RÞ3�2R2ðf½011
 þ f½110
 þ f½101
Þ
þ ð1�RÞ3�3R3f½111
; (8)

where the terms with same sum (‘) have been factored
together.

7 RESULTS AND DISCUSSION

In order to perform a complete set of tests including differ-
ent traffic scenarios, the AccessNoxim simulator is used
[34]. AccessNoxim is an integration of Noxim (i.e., a cycle-
accurate SystemC NoC simulator) [35] and HotSpot (i.e.,
providing the architecture-level thermal model) [36]. This
co-simulator combines the network model, power model
and thermal model of the 3D NoC.

The experiments are carried out for a 4� 4� 4 3D-NoC.
All the routers have 5-flit FIFOs and the packet size is 8 flits.

Out of the 11,000 cycles, the first 1,000 cycles were excluded
to allow the transient faults to fade away.

7.1 Traffic Scenarios

In order to make a meaningful comparison, the Elevator-first
routing algorithm was also implemented as a baseline along
with the ETW routing algorithm. Therefore, the Elevator-
First routing algorithm and ETW algorithm with static and
dynamic elevator assignments are compared versus each
other in terms of latency and reliability by using both syn-
thetic and real traffic scenarios. In uniform traffic, each node
has the same probability to be chosen as a destination for the
other node. In transpose traffic, a node ði; jÞ only sends pack-
ets to a node ðN � 1� j;N � 1� iÞ, where N is the total
number of nodes in the network. Assuming a 4� 4� 4 net-
work, in shuffle traffic the first half of nodes (0 to 31) target
destinations which have IDs that are twice of the source
node IDs. As an example, node with ID equals 10 has node
20 as its destination. Besides, sources in the second half (32 to
63) target destinations whose IDs equal twice of the source
node minus 63. In a hotspot traffic scenario, certain nodes
receive hotspot traffic in addition to the regular uniform traf-
fic. Given a hotspot percentage h, a newly generated packet
is directed to each hotspot node with an additional h percent
probability. Finally two real traffic scenarios named barnes
[37] and streamcluster [38] are considered.

7.2 Latency Analysis

In order to evaluate the efficiency of the proposed routing
algorithms, two architectures have been tested. In the first
architecture, five elevators are used located at nodes 0, 2, 7,
8 and 10. Second, architecture with eight elevators located
at nodes 0, 2, 5, 7, 8, 10, 13, 15 is tested.

The following line graphs compare the efficiency of the
Elevator-first routing algorithm and the ETW algorithm
under SEA and DEA. It is necessary to mention that to
make a fair comparison, elevator assignment in Elevator-
first is based on the nearest elevator assignment which pro-
vides the least number of hop counts from the source to the
elevator and from the elevator to the destination. In the line
graphs, the horizontal line represents the packet injection
rate of every router (packet/cycle/node) and the vertical
line reports latency. Latency is measured in cycles.

Figs. 8, 9, 10 and 11 compare the latency results under
random, hotspot, transpose and shuffle traffic for the first

Fig. 8. Performance under random traffic for 5 TSVs. Fig. 9. Performance under hotspot traffic for 5 TSVs.



scenario where five elevators are employed. According to
Figs. 8 and 9, the Elevator-first routing algorithm enhances
latency for random and hotspot traffic. The reason is one
more virtual channel compared to the ETW. ETW-based
approaches (SEA and DEA) follow the same trend in ran-
dom and hotspot traffic.

Fig. 10 compares the latency results for the routing algo-
rithms under the transpose traffic. This traffic is based on
vertical link transmission for every pair of source and desti-
nation. This traffic pattern is the one having the most verti-
cal transmission compared to any other traffic since every
pair of source to destination are on different layers. Accord-
ing to Fig. 10 for the transpose traffic, ETW-SEA outper-
forms the other two algorithms.

Fig. 12 illustrates the number of times a specific elevator
is being used in that traffic. So, the horizontal line represents
the index of the elevators in the first layer. As it has already
been mentioned, the elevators are pillars, meaning that the
elevator at node 0 will be connected to node 48. According
to this figure, traffic on the elevators located at node 2 and 8
are extremely high in the Elevator-first routing algorithm.
Therefore, this technique suffers from long latency. A com-
parison between SEA and DEA implies that the usage of
every elevator in SEA is less than DEA except the elevator
at node 7. Traffic on this elevator is relatively high because
SEA always forwards the packets toward the east most ele-
vators especially for destinations located at east down of
their source. Due to the variety of the paths from source to

the east most elevator in SEA, traffic on horizontal link will
be distributed. Therefore, SEA performs relatively better
compared to DEA. Latency comparison in Fig. 11 for shuffle
traffic reveals that DEA outperforms the other two algo-
rithms. According to Fig. 13, the elevator usage in SEA is
higher than DEA and Elevator-first routing algorithm.
Therefore, traffic increases on the elevators and latency
increases accordingly. Moreover, elevator usage in DEA is
better than the Elevator-first routing algorithm.

Latency comparisons for architecture with eight TSVs
under different traffic patterns are shown in Figs. 14, 15, 16
and 17. According to the figures, as the number of elevators
increases, the Elevator-first routing algorithm boasts a better
latency performance compared to the other routing algo-
rithm. This is because the load is distributed among a larger
number of elevators, and each elevator receives a smaller
portion of traffic. Moreover, the network will be saturated
in higher packet injection rates. The observations for the
five elevators case also hold for eight elevators. According
to the results, ETW performs better under the lower number
of TSVs.

In order to demonstrate the performance of the proposed
routing algorithm versus the Elevator-first routing algo-
rithm, a set of application benchmarks from standard suits
including PARSEC [38] and SPLASH2 [37] have been

Fig. 10. Performance under transpose traffic for 5 TSVs.

Fig. 11. Performance under shuffle traffic for 5 TSVs.

Fig. 12. Transpose traffic elevator usage for 5 TSVs.

Fig. 13. Shuffle traffic elevator usage for 5 TSVs.



employed. Figs. 18 and 19 illustrate the latency comparison
for the routing algorithms for different applications for two
architectures. The former has only five TSVs and the latter
is for the architecture with eight TSVs. The results are based
on a 4� 4� 4 network in which buffer depth is five and the
packet size is randomly chosen between five to eight flits.
According to these figures, as the number of TSVs increases,
the performance gap between the Elevator-first and ETW
routing algorithm decreases as well. As Fig. 18 illustrates,
the Elevator-first algorithm provides better latency than
ETW with each of DEA and SEA elevator assignment. How-
ever, according to Fig. 19, the routing algorithms perform
relatively the same for different benchmarks. The results
reveal that as the number of elevators increases, especially

the centrally located elevators, a better traffic distribution
among vertical links is obtained. So, ETW provides nearly
the same performance as the Elevator-first routing algo-
rithm although it has one less virtual channel.

7.3 Reliability Evaluation

Fig. 20 compares �f‘n;� vs jTj � n (number of failed TSVs) for
ETW-DEA and Elevator-first. Compared to the dashed line
which corresponds to the Elevator-first algorithm, it is
observed that the bold line corresponding to ETW-DEA
resists falling when the number of failed TSVs increases.
This signifies the higher resilience of ETW-DEA to loss of
TSVs as compared to the Elevator-first algorithm. As an
example, with 2 failed TSVs, ETW-DEA results in 98 percent
healthy pairs, while Elevator-first retains only 80 percent of
the pairs. With 5 failed TSVs, 90 percent of pairs have suc-
cessful packet delivery while this value is less than 50

Fig. 14. Performance under random traffic for 8 TSVs.

Fig. 15. Performance under hotspot traffic for 8 TSVs.

Fig. 16. Performance under transpose traffic for 8 TSVs.

Fig. 18. Performance under table-based traffic with 5 TSVs.

Fig. 19. Performance under table-based traffic with 8 TSVs.

Fig. 17. Performance under shuffle traffic for 8 TSVs.



percent in the Elevator-first algorithm. Similarly, under 9
faulty TSVs, the average fraction of healthy pairs of ETW-
DEA is four times larger than that of the Elevator-first algo-
rithm (40 versus 10 percent).

Next, we use �f‘n;� to calculate fðtÞ and obtain the overall
reliability of the system over time. The specific temporal
pattern of fðtÞ depends on the individual TSV reliability
model RTSVðtÞ. While there are many choices for this, we
choose the Weibull distribution due to its versatility [39] in
modeling component failure. The 3-parameter Weibull dis-
tribution is:

p
Weibull

ðt;b; g; hÞ ¼ b

h

t� g

h

� �b�1
e�

t�g
hð Þb : (9)

Here, we consider ðt� gÞ=h as ‘normalized’ time, and focus
on the single parameter Weibull distribution:

p
Weibull

ðt;bÞ ¼ c1t
b�1e�t

b
; (10)

where c1 is a normalization factor such that
R1
�1 p2

Weibull
ðtÞdt

¼ 1. It is a well-known fact [39] that with b ¼ 1, the Weibull
distribution reduces to exponential distribution and can be
used to model component life during its ‘working life’.
Moreover, 0 < b < 1 and b > 1 can model component life
during the ‘infant mortality’ and ‘wear out’ phases of the
component’s life. The reliability function corresponding to
the Weibull distribution is given by:

R
Weibull

ðtÞ ¼ e�t
b
: (11)

Once plugged into fðtÞ:

fðtÞ ¼
XjTj
n¼0
ð1� e�t

bÞne�tbðjTj�nÞ jTj
n

� �
�f‘n;� : (12)

Fig. 21 shows fðtÞ for different choices of b. The figure illus-
trates the superior resilience of ETW-DEA compared to the
Elevator-first algorithm for all phases of the component’s
life. For instance, by comparing the blue dashed and solid
line, it is clear that the fraction of working pairs falls much
more rapidly in time when Elevator-first is used. The same
observation holds for the working life and wear-out phases
of TSVs.

In practice, the life distribution of a component
should be calculated by taking the transition between
life phases (infancy, working, and wear out) into
account. Unfortunately, equating RTSVðtÞ to a single Wei-
bull distribution does not accomplish this goal. To model
the transition, we start with the traditional belief that the
failure rate �ðtÞ of a component with the three life
phases follows a bath-tub curve over time. Specifically,
assume that the infancy and working life of a component
are of duration DTi and DTw respectively, and that the
failure rate during the working life is �. Also, take the
two functions �1ðtÞ and �2ðtÞ to be monotonically
decreasing and increasing with time, and with
�1ðDTiÞ ¼ �2ð0Þ ¼ �. Then, the failure rate of the compo-
nent is given by:

�ðtÞ ¼
�1ðtÞ 0 � t < DTi

� DTi � t < DTi þ DTw

�2ðt� DTi � DTwÞ t � DTi þ DTw

:

8<
:

Next, RðtÞ can be calculated from �ðtÞ by solving the follow-
ing differential equation:

� dRðtÞ
dt

RðtÞ ¼ �ðtÞ; t > 0 subject to Rð0Þ ¼ 1 (13)

and plugged into fðtÞ. Interestingly, if R1ðtÞ and R2ðtÞ corre-
sponding to �1ðtÞ and �2ðtÞ are known, RðtÞ can be calcu-
lated readily as follows. Clearly, solving the differential
equation in ½0 DTi
 results in RðtÞ ¼ R1ðtÞ. The differential
equation in ½DTi DTi þ DTw
 is now:

Fig. 20. Average fraction of working pairs versus number of failed TSVs.

Fig. 21. Temporal trend of fraction of working pairs for different Weibull
parameters.



� dRðtÞ
dt

RðtÞ ¼ �

; t 2 ½DTi DTi þ DTw
 subject to RðDTiÞ ¼ R1ðDTiÞ
(14)

which means:

RðtÞ ¼ R1ðDTiÞe��ðt�DTiÞ; t 2 ½DTi DTi þ DTw
: (15)

Similarly, for t > DTi DTi þ DTw:

RðtÞ ¼ R1ðDTiÞe��DTwR2ðt� DTi � DTwÞ; t > DTi þ DTw:

(16)

In a nutshell:

RðtÞ ¼R1ðtÞ; t < DTi

RðtÞ ¼R1ðDTiÞe��ðt�DTiÞ; DTi � t < DTi þ Dtw

RðtÞ ¼R1ðDTiÞe��DTwR2ðt� DTi � DTwÞ
; t > DTi þ DTw:

(17)

Fig. 22 shows an example of �ðtÞ and RðtÞ where �1ðtÞ is
Weibull failure rate with parameters g1 ¼ �:25; h1 ¼ 1, and
b1 ¼ :5. Also, DTi ¼ 1 and DTw ¼ 5. �2ðtÞ is Weibull failure
rate with parameters g2 ¼ DTi þ DTw; h2 ¼ 1, and b2 ¼ 2:5.
Using RðtÞ, fðtÞ is calculated for both Elevator-first and the
proposed algorithm. Fig. 23 compares fðtÞ for the two algo-
rithms for the entire life of the system, including infancy,
working life, and wear out. As can be seen from Fig. 23,
there is a large gap between the two algorithms in terms of

fraction of healthy connections especially during the work-
ing life of the system.

7.4 Power and Area Analysis

In this section power results extracted from AccessNoxim
are reported. Table 4 compares power consumption of the
Elevator-first routing algorithm with the ETW algorithm
under SEA and DEA. The power results are extracted for
the architecture with 8 TSVs. Two elevator assignment
mechanisms have been used for Elevator-first. According to
Table 4, the power consumption of Elevator-first with near-
est elevator assignment and ETW-DEA is nearly the same
under random and shuffle traffic while Elevator-first with
random elevator assignment and ETW-SEA consume more
power since the traversed paths are longer. The tables
report the average power and average power per router.

Regarding the area, the routing unit is a light-weight unit
and the area consumption of Elevator-first and ETW are
nearly the same. Buffers are the most area-hungry part of a
router design. In this respect, Elevator-first uses one more
virtual channel than ETW, occupying a relatively larger area.

8 CONCLUSION

A partially connected 3D-NoC achieves a compromise
between the scalability of NoC and the considerable foot-
print of fully connected 3D-NoC. An adaptive routing
algorithm for this architecture has been proposed. The rout-
ing algorithm tolerates faults on the vertical links by ena-
bling the intermediate routers to opt for other TSVs
whenever the vertical link at the router’s location is faulty.
Our simulations show that the proposed algorithm is
slightly inferior to the non-adaptive fault-intolerant Eleva-
tor-first algorithm in terms of latency. However, our algo-
rithm has the advantage of using fewer virtual channels as
compared to Elevator-first. Moreover, our analytical results
show that the proposed algorithm is significantly more
resilient to permanent TSV faults.

Fig. 22. Variation of failure rate and reliability.

Fig. 23. Life-time variation of fraction of working pairs.

TABLE 4
Power Consumption Evaluation

Random 8 TSV Shuffle 8 TSV

Routing algorithm Average power
ðmW Þ

Average power per router
ðnWÞ

Average power
ðmWÞ

Average power per router
ðnWÞ

Elevator-first(SMD) 4:29 67 3:54 55:3
Elevator-first(random) 4:63 72:3 3:91 61:1
ETW-SEA 4:64 72:5 3:96 61:9
ETW-DEA 4:30 67:2 3:55 55:5
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