
A Low-Latency and Memory-Efficient On-chip Network

Masoud Daneshtalab, Masoumeh Ebrahimi, Pasi Liljeberg, Juha Plosila, Hannu Tenhunen
Department of Information Technology, University of Turku, Finland

{ masdan, masebr, pakrli, juplos, hanten }@utu.fi

Abstract- Using multiple SDRAMs in MPSoCs and NoCs to
increase memory parallelism is very common nowadays. In-order
delivery, resource utilization, and latency are the most critical issues
in such architectures. In this paper, we present a novel network
interface architecture to cope with these issues efficiently. The
proposed network interface exploits a resourceful reordering
mechanism to handle the in-order delivery and to increase the
resource utilization. A brilliant memory controller is efficiently
integrated into this network interface to improve the memory
utilization and reduce both memory and network latencies. In
addition, to bring compatibility with existing IP cores the proposed
network interface utilizes AXI transaction based protocol.
Experimental results with synthetic test cases demonstrate that the
proposed architecture gives significant improvements in average
network latency (12%), average memory access latency (19%), and
average memory utilization (22%).

1. INTRODUCTION
Integrating a large number of functional and storage modules onto a

single die in the deep sub-micron regime and beyond is becoming a
major performance issue in System-on-Chip (SoC) architectures
 [1] [2] [3] [4]. Network-on-Chip (NoC) has emerged as a solution to
address the communication demands of many/multi core architectures
due to its reusability, scalability, and parallelism in communication
infrastructure [3] [4]. The fundamental function of network interfaces
(NI) is to provide communication between Processing Elements (PE)
and the network infrastructure [5] [6] [7]. That is, one of the practical
approaches of network interfaces is to translate the language between
the PE and router based on a standard communication protocol such as
AXI [6] and OCP [7]. On top of that, in-order delivery is another
practical approach of network interfaces [8] [9] [10]. In-order delivery
should be handled when exploiting an adaptive routing algorithm for
distributing packets through the network [8], when obtaining memory
access parallelization by sending requests from a master IP core to
multiple slave memories [9] [10], or when exploiting a modern memory
access scheduling in memory controller to reorder memory requests
 [11]. In this paper, we introduce an efficient network interface
architecture where the key ideas are threefold. The first idea is to deal
with out-of-order handling in such a way that when a master sends
requests to different memories, the responses might be required to
return in the same order in which the master issued the addresses, and
therefore a reordering mechanism in NoC should be provided by the
network interface. The second idea is to improve resource utilization
because in on-chip networks we have limitation of hardware resources
(e.g. buffers), power consumption, and network latency. According to
our observation, utilization of reorder buffers in network interfaces is
significantly inefficient, due to the fact that the traditional buffer
management is not efficient enough for network interfaces. Therefore,
an advantageous reordering mechanism via resourceful management of
buffers in the network interface is presented. The last idea is to present
a brilliant memory controller that is efficiently integrated into the
proposed network interface, which helps to improve memory utilization
and reduce both memory and network latencies. Also, the proposed
network interface architecture exploits the AMBA AXI protocol, to

allow backward compatibility with existing IP cores [6]. We also
present micro-architectures of the proposed ideas, particularly the
memory access reordering mechanism. The paper is organized as
follows. In Section 2, the preliminaries are discussed. In Section 3, a
brief review of related works is presented while the proposed network
interface architectures and the brilliant memory controller are presented
in Section 4 and 5, respectively. The experimental results are discussed
in Section 6 with the summary and conclusion given in the last section.

NI

PE

R
NI

PE

R
NI

PE

R

NI

PE

R
NI

PE

R
NI

PE

R

NI

PE

R
NI

PE

R
NI

PE

R

Arbiter

Crossbar

Router (R)

Input

Input

PE RU

Input

R
outer

Network Interface (NI)

Input
Input
Input
Input

Output
Output
Output
Output
Output

Routing Unit

PU

DU

Fig. 1. Tile-based 2D-Mesh topology.
2. PRELIMINARIES

2.1. NETWORK-ON-CHIP ARCHITECTURE
A 2D-mesh NoC based system is shown in Fig. 1. NoC consists of

Routers (R), Processing Elements (PE), and Network Interfaces (NI).
PEs may be intellectual property (IP) blocks or embedded memories.
Each core is connected to the corresponding router port using the
network interface. To be compatible with existing transaction-based IP-
cores, we use the AMBA AXI protocol. AMBA AXI is an interfacing
protocol, having advanced functions such as a multiple outstanding
address function and data interleaving function [6]. AXI, providing
such advanced functions, can be implemented on NoCs as an interface
protocol between each PE and router to avoid the structural limitations
in SoCs due to the bus architecture. The protocol can achieve very high
speed of data transmission between PEs [6]. In the AXI transaction-
based model [6] [9], IP cores can be classified as master (active) and
slave (passive) IP cores [10] [18]. Master IP cores initiate transactions
by issuing read and write requests and one or more slaves (memories)
receive and execute each request. Subsequently, a response issued by a
slave can be either an acknowledgment (corresponding to the write
request) or data (corresponding to the read request) [10]. The AXI
protocol provides a “transaction ID” field assigned to each transaction.
Transactions from the same master IP core, but with different IDs have
no ordering restriction while transactions with the same ID must be
completed in order. Thus, a reordering mechanism in the network
interface is needed to afford this ordering requirement [6][7] [14]. The
network interface lies between a PE and the corresponding attached
router. This unit forms the foundation of the generic nature of the
architecture as it prevents the PEs from directly interacting with the rest
of the network components in the NoC. A generic network interface
architecture is shown in Fig. 1.

Memory Address

Fig. 2. High-level structure of an SDRAM.

The network interface consists of input buffers (forward and
reverse directions), a Packetizer Unit (PU), a Depacketizer Unit (DU),
and a Reorder Unit (RU). A data burst coming from a PE is latched into
the input buffer of the corresponding network interface. PU is
configured to packetize the burst data stored in the input buffer and
transfer the packet to the router. Similarly, data packets coming from
the router are latched into the input buffer located in the reverse path.
DU is configured to restore original data format, required for the PE,
from the packet provided by the router. The RU performs a packet
reordering to meet the in-order requirement of each PE.

2.2. SDRAM STRUCTURE
SDRAM is designed to provide high memory depth and bandwidth.

Fig. 2 shows a simplified three dimensional architecture of an SDRAM
memory chip with the dimensions of bank, row, and column
 [11] [19] [20]. An SDRAM chip is composed of multiple independent
memory banks such that memory requests to different banks can be
serviced in parallel. That is, a benefit of a multibank architecture is that
commands to different banks can be pipelined. Each bank is formed as
a two dimensional array of DRAM cells that are accessed an entire row
at a time. Thus, a location in the DRAM is identified by an address
consisting of bank, row, and column fields. A complete SDRAM access
may require three commands (transactions) in addition to the data
transfer: bank precharge, row activation, and column access
(read/write). A bank precharge charges and prepares the bank, while a
row-activation command (with the bank and row address) is used to
copy all data in the selected row into the row buffer, i.e. sense
amplifier. The row buffer serves as a cache to reduce the latency of
subsequent accesses to that row. Once a row is in the row buffer, then
column commands (read/write) can be issued to read/write data
from/into the memory addresses (columns) contained in the row. To
prepare the bank for a next row activation after completing the column
accesses, the cached row must be written back to the bank memory
array by the precharge command [11]. Also, the timing constraints
associated with bank precharge, row activation, and column access are
tRP, tRCD, and tCL respectively [11] [19] [21]. Since the latency of a
memory request depends on whether the requested row is in the row
buffer of the bank or not, a memory request could be a row hit, row
conflict or row empty with different latencies [22]. A row hit occurs
when a request is accessing the row currently in the row buffer and only
a read or a write command is needed. It has the lowest bank access
latency (tCL) as only a column access is required. A row conflict occurs
when the access is to a row different from the one currently in the row
buffer. The contents of the row buffer first need to be written back into
the memory array using the precharge command. Afterward, the

required row should to be opened and accessed using the activation and
read/write commands. The row conflict has the highest bank access
latency (tRP +tRCD +tCL). If the bank is closed (precharged) or there is no
row in the row buffer then a row empty occurs. An activation command
should be issued to open the row followed by read or write
command(s). The bank access latency of this case is tRCD +tCL.

2.2.1. MEMORY ACCESS SCHEDULING
The memory controller lies between processors and the SDRAM to

generate the required commands for each request and schedules them
on the SDRAM buses. The memory controller consists of a request
table, request buffers, and a memory access scheduler. A request table
is used to store the state of each memory request, e.g. valid, address,
read/write, header pointer to the data buffer and any additional state
necessary for memory scheduling. The data of outstanding requests are
stored in read and write buffers. The read and write buffers (request
buffers) are implemented as linked list [12] [13]. Each memory request
(read and write) allocates an entry in its respective buffer until the
request is completely serviced. Among all pending memory requests,
based on the state of the DRAM banks and the timing constraints of the
DRAM, the memory scheduler decides which DRAM command should
be issued. The average memory access latency and memory bandwidth
utilization can be reduced and improved, respectively if an efficient
memory scheduler is employed [11] [19] [20]. Fig. 3 reveals how the
memory access scheduling affects the performance. As shown in the
figure, the sequence of four memory requests is considered. Request 1
and 3 are row empties, and request 2 and 4 are row conflicts. Timing
constraints of a DDR2-512MB used as example throughout this paper
is 2-2-2 (tRP-tRCD-tCL) [21]. As depicted in Fig. 3(a), if the controller
schedules the memory requests in order, it will take 22 memory cycles
to complete them. In Fig. 3(b) the same four requests are scheduled out
of order. As can be seen, request 4 is scheduled before request 2 and 3
to turn request 4 from a row conflict to a row hit. In addition, request 3
is pipelined after request 1, called bank interleaving, since it has the
different bank address from the bank address of request 1. As a result,
only 14 memory cycles are needed to complete the four requests. In
sum, how the memory scheduler can improve the memory performance
has been shown by this example where the memory utilization of the in
order scheduler and the out of order are 4(data)/22(cycle) = 18% and
4/14= 29%, respectively. In this work, we presented a brilliant memory
controller that is efficiently integrated into the proposed network
interface to improve the memory utilization and reduce both memory
and network latencies. The idea and the implementation details of the
proposed architecture are described in Section 5.

Request 1
Request 2
Request 3
Request 4

R1 C1

R3 C3
R2 C2P2

R4 C4P4

D1 D2 D3 D4

R1 C1
R2 C2P2

C4

D1 D2D3D4

R3 C3

Data

2 cycles

Request 1
Request 2
Request 3
Request 4

Data

22 cycles

14 cycles

(a)

(b)

Request 1: Bank 0, Row 0
Request 2: Bank 0, Row 1
Request 3: Bank 1, Row 0
Request 4: Bank 0, Row 0

P Bank Precharge

R Row Activation

C Column Access

D Data

Fig. 3. Memory access scheduling of four memory requests with (a) in order and (b) with out of order access scheduling.

3. RELATED WORK
Due to the fact that most of the recent published researches have

focused on the design and description of NoC architectures, there has
been relatively little attention to network interface designs particularly
when supporting out-of-order mechanism. The authors in [9] present
ideas of transaction ID renaming and distributed soft arbitration in the
context of distributed shared memories. In such a system, because of
using a global synchronization in the on-chip network, the performance
might be degraded and the cost of hardware overhead for the on-chip
network is too high. In addition, the implementation of ID renaming
and reorder buffer can suffer from low resource utilization. This idea
has been improved in [14] by moving reorder buffer resources from the
network interface into network routers. In spite of increasing the
resource utilization, the delay of release packets recalling data from
distributed reordering buffer can significantly degrade the performance
when the size of the network increases [14]. Moreover, the proposed
architecture is restricted to deterministic routing algorithms and thus, it
is not a suitable method for an adaptive routing. However, neither [9]
nor [14] has presented a micro-architecture of the network interface. An
efficient on-chip network interface supporting shared memory
abstraction and flexible network configuration is presented by
Radulescu et al [10]. The proposed architecture has the advantage of
improving reuse of IP cores, and offers ordering messages via channel
implementation. Nevertheless, the performance is penalized because of
increasing latency, and besides, the packets are routed on the same path
in NoC, which forces the routers to use the deterministic routing. Yang
et al proposed NISAR [8], a network interface architecture using the
AXI protocol capable of packet reordering based on a look up table; but
NISAR uses a statically partitioned reorder buffer, thereby it has a
simple control logic but suffers from low buffer utilization in different
traffic patterns. In addition, NISAR does not support burst transactions,
whereas burst type should be handled by the network interface.

Regarding the memory scheduler, several memory scheduling
mechanisms were presented to improve the memory utilization and to
reduce the memory latency. The key idea of these mechanisms is on the
scheduler for reordering memory accesses. The memory access
scheduler proposed in [11] reorders memory accesses to achieve high
bandwidth and low average latency. In this scheme, called bank-first
scheduling, memory accesses to different banks are issued before those
to the same bank. Shao et al. [23] proposed the burst scheduling
mechanism based on the row-first scheduling scheme. In this scheme,
memory requests that might access the same row within a bank are

formed as a group to be issued sequentially, i.e. as a burst. Increasing
the row hit rate and maximizing the memory data bus utilization are the
major design goals of burst scheduling. The core-aware memory
scheduler revealed that it is reasonable to schedule the requests by
taking into consideration the source of the requests because the requests
from the same source exhibit better locality [20]. In [19] the authors
introduced an SDRAM-aware router to send one of the competing
packets toward an SDRAM using a priority-based arbitration. An
adaptive history-based memory scheduler which tracks the access
patterns of recently scheduled accesses and selects memory accesses
matching the pattern of requests is proposed in [24] and [25]. As
network-on-chips are strongly emerging as a communication platform
for chip-multiprocessors, the major limitation of presented memory
scheduling mechanisms is that none of them did take the order of the
memory requests into consideration. As discussed earlier, requests with
the same transaction ID from the same master must be completed (turn
back) in order. While the requests would be issued out-of-order in
memories (slave-sides), the average network latency might be increased
significantly due to the out-of-order mechanism in master sides.
Therefore, it is necessary to consider the order of memory requests for
making an optimal memory scheduling.

The major contribution of this paper is to propose a novel network
interface architecture within a dynamic buffer allocation mechanism for
the reorder buffer to increase the utilization and overall performance.
That is, using the dynamic buffer allocation to get more free slots in the
reorder buffer may lead more messages to be entered to the network.
On top of that, an efficient memory scheduler mechanism based on the
order of requests is introduced and integrated in our network interface
to diminish both the memory and network latencies.

4. PROPOSED NETWORK INTERFACE ARCHITECTURE
Since IP cores are classified into masters and slaves, the network

interface is also divided into the master network interface (Fig. 4) and
slave network interface (Fig. 5). Both network interfaces are partitioned
into two paths: forward and reverse. The forward path transmits the
AXI transactions received from an IP core to a router; and the reverse
path receives the packets from the router and converts them back to
AXI transactions. The proposed network interfaces for both master and
slave sides are described in detail as follows.

4.1. MASTER-SIDE NETWORK INTERFACE
As shown in Fig. 4, the forward path of the master network

interface transferring requests to the network is composed of an AXI-

Fig. 4. Master-side network interface architecture. Fig. 5. Slave-side network interface architecture.

Queue, a Packetizer unit, and a Reorder unit, while the reverse path,
receiving the responses from the network, is composed by a Packet-
Queue, a Depacketizer unit, and the Reorder unit. The Reorder unit is a
shared module between the forward and reverse paths.
AXI-Queue: the AXI master transmits write address, write data, or read
address to the network interface through channels. The AXI-Queue unit
performs the arbitration between write and read transaction channels
and stores requests in either write or read request buffer. The request
messages will be sent to the packetizer unit if admitted by the reorder
unit, and on top of that a sequence number for each request should be
prepared by the reorder unit after the admittance.
Packetizer: it is configured to convert incoming messages from the
AXI-Queue unit into header and data flits, and delivers the produced
flits to the router. Since a message is composed of several parts, the
data is stored in the data buffer and the rest of the message is loaded in
corresponding registers of the header builder unit. After the mapping
unit converts the AXI address into a network address by using an
address decoder, based on the request information loaded on relative
registers and the sequence number provided by the reorder buffer, the
header of the packet can be assembled. Afterward, the flit controller
wraps up the packet for convenient transmission.
Packet-Queue: this unit receives packets from the router; and
according to the decision of the reorder unit a packet is delivered to the
depacketizer unit or reorder buffer. In fact, when a new packet arrives,
the sequence number and transaction ID of the packet will be sent to the
reorder unit. Based on the decision of the reorder unit, if the packet is
out of order, it is transmitted to the reorder buffer, and otherwise it will
be delivered to the depacketizer unit directly.
Depacketizer: the main functionality of the Depacketizer unit is to
restore packets coming from either the packet queue unit or reorder
buffer into the original data format of the AXI master core.
Reorder Unit: it is the most influential part of the network interface
including a Status-Register, a Status-Table, a Reorder Buffer, and a
Reorder-Table. In the forward path, preparing the sequence number for
corresponding transaction ID, and avoiding overflow of the reorder
buffer by the admittance mechanism are provided by this unit. On the
other side, in the reverse path, this unit determines where the
outstanding packets from the packet queue should be transmitted
(reorder buffer or depacketizer), and when the packets in the reorder
buffer could be released to the depacketizer unit.
Status-Register and Status-Table: Status-Register (S_Reg) is an n-bit
register where each bit corresponds to one of the AXI transaction IDs.
As depicted in Fig. 6, this register records whether there are one or
more messages with the same transaction ID being issued or not. To
record the state of the outstanding messages, Status-Table (S_Table) is
adopted. Each entry of this table is considered for messages with the

same transaction ID, and includes valid tag (v), Transaction ID (T-ID),
Number of outstanding Message (N-M) as well as the Expecting
Sequence number (E-S). The register and table might be updated in
both forward and reverse paths described as follows. In the forward
path, when the first message of each transaction ID requests for an
admittance from the reorder unit to enter the network, the
corresponding bit in the status register goes high (Procedure A: line 1,
Fig. 6(a)). The sequence number (Seq-Num) is produced by the reorder
unit, if the admittance is given. This value, indicating the order of the
messages within the transaction ID, is equal to zero for the first
message of each transaction ID (Procedure A: line 2). “ReservedSize”
keeps the required space of all outstanding transactions in the network.
Indeed, this register reserves the number of buffer slots required by
outstanding messages of different transaction IDs. In order to prevent
overflow of the reorder buffer, the reorder unit compares the new
message size with the free space of the reorder buffer. If the required
space is available, the message will be admitted and the required space
in the reorder buffer must be reserved (Procedure A, line 3). An
available (free) row in the status table will be initiated by procedure B,
when the second request of a transaction ID is admitted. For the rest of
the admitted requests of the transaction ID, the procedure C should be
executed as the sequence number is obtained by adding N-M and E-S
values. Also, the number of outstanding message (N-M) is increased by
+1, and the required space in the reorder buffer must is reserved by
procedure C. Note that E-S indicates the next response sequence
number of the corresponding transaction ID that should be delivered to
the depacketizer unit.

Procedure A:
1 S_Reg(T_ID) <= ‘1’;
2 SeqNum <= (others =>’0’);
3 ReservedSize <= ReservedSize + NewMsgSize;

Procedure B:
1 S_Table(FreeRow)(v) <= ’1’;
2 S_Table(FreeRow)(T_ID) <= Tran_ID;
3 S_Table(FreeRow)(N_M) <= “0010”;
4 S_Table(FreeRow)(E_S) <= (others =>’0’);
5 SeqNum <= “001”;
6 ReservedSize <= ReservedSize +

 NewMsgSize;

Procedure C:
1 SeqNum <= S_Table(FindRow)(N_M) +

 S_Table(FindRow)(E_S);
2 S_Table(FindRow)(N_M) <= S_Table(FindRow)(N_M) + 1;
3 ReservedSize <= ReservedSize + NewMsgSize;

Fig. 6. Status-Register and StatusTable of Reorder Unit. Fig. 7. Dynamic buffer allocation

In the reverse path, the transaction ID and sequence number of the
arriving response packet (message) are sent to the reorder unit to find
the related row in the status table according to the transaction ID (T-
ID). Ifthe sequence number of incoming packet is equal to E-S value,
the packet is an expected packet (in-order) and should be delivered to
the depacketizer unit which releases the occupied buffer space;
thereafter, E-S and N-T values will be increased by +1 and -1,
respectively (Procedure D). If N-M value reaches zero, the transaction
will be terminated by resetting the valid bit for both status register and
status table. However, the packet is out-of-order and should be
delivered to the reorder buffer, if the sequence number of the packet is
not equal to E-S. Additionally, only one message with the given
transaction ID should have been sent to the network, if the given
transaction ID is not matched in the status table, thereby only the
corresponding bit in the status register will be reset.
Procedure D:
1 S_Table(FindRow)(N_M) <= S_Table(FindRow)(N_M)-1;
2 S_Table(FindRow)(E_S) <= S_Table(FindRow)(E_S)+1;
3 ReservedSize <= ReservedSize–

ReceivedMsgSize;

The N-M value can be used as a ranking metric of packets. It
represents the number of packets with the same transaction ID as the
current packet which traveling inside the network once the packet is
injected. In fact, the N-M value indicates the order of packet to return
back. Therefore, a packet with a greater N-M value has lower priority to
be sent back to the corresponding master core and vice versa.
Reorder-Table and Reorder-Buffer: As shown in Fig. 7, each row of
the reorder table corresponds to an out-of-order packet stored in the
reorder buffer. This table includes the valid tag (v), the transaction ID
(T-ID), the sequence number (S-N) as well as the head pointer (P). In
the reorder buffer, the flits of each packet are maintained by a linked
list structure providing high resource efficiency with little hardware
overhead. On top of that, the goal of using the shared reorder buffer is
to support variable packet size and improve the buffer utilization which
can also increase the performance by feeding more packets into the
network. Fig. 7 exhibits a pointer field adopted to indicate the next flit
position in the reorder buffer. Using the proposed structure in Fig. 7,
each out-of-order packet updates the reorder table and reorder buffer
according to the procedure E, and F. The first three operations in the
procedure E, stores the transaction ID and sequence number from the
header flit of the out-of-order packet to the available slot indicated by

FreeRow in the reorder table; and the last operation in E updates the
pointer to point to the available slot in the reorder buffer.

Procedure E:
ReorderTable(FreeRow)(V) <= ‘1’;
ReorderTable(FreeRow)(T-ID) <= HeaderFlit(TranID);
ReorderTable(FreeRow)(S-N) <= HeaderFlit(SeqNum);
ReorderTable(FreeRow)(P) <= Current_Free_Slot;

Procedure F:
ReorderBuf(Current_Free_Slot)(V) <= ‘1’;
ReorderBuf(Current_Free_Slot)(Data) <= flit;
ReorderBuf(Current_Free_Slot)(P) <= Next_Free_Slot;
Current_Free_Slot <= Next_Free_Slot;

The procedure F is intended to store the incoming flits into the
reorder buffer. While Current_Free_Slot shows the current free location
in the reorder buffer in order to store the current flit, Next_Free_Slot
returns an available slot for the next flit. By repeating the operations in
the procedure F, whole of the payload flits will be stored in the reorder
buffer. The tail flit can be determined by extracting header flit
information. Whenever an in-order packet delivered to the depacketizer
unit, the depacketizer controller checks the reorder table for the validity
of any stored packet with the same transaction ID and next sequence
number. If so, the stored packet will be released from the reorder unit to
the depacketizer unit.

4.2. SLAVE-SIDE NETWORK INTERFACE
A slave IP core cannot operate independently. It receives requests

from master cores and responds to them. Hence, using reordering
mechanism in the slave network interface is completely meaningless.
But to avoid losing the order of header information (transaction ID,
sequence number, and etc) carried by arriving requests, a FIFO has
been considered. After processing a request in a slave core, the response
packet should be created by the packetizer. As can be seen from Fig. 5,
to generate the response packet, after the header content of the
corresponding request is invoked from the FIFO, and some parameters
of the header (destination address, and packet size, and etc) are
modified by the adapter, the response packet will be formed. However,
the components of the slave-side interface in both forward and reverse
paths are almost similar to the master-side interface components, except
the reorder unit.

Fig. 8. The proposed memory controller integrated in the slave-side network interface.

Fig. 9. Pseudo VHDL code of the arbiter in the memory controller.

5. ORDER SENSITIVE MEMORY SCHEDULER
The architecture of the proposed memory controller, dubbed OS

from Order Sensitive, is depicted in Fig. 8. As illustrated in the figure,
the proposed memory controller is efficiently integrated in the slave-

side network interface. Requests after arriving to the network interface
on the edge of the network are stored in the respective queues based on
their target banks. The data associated with write requests are stored in
the write queue. The queues are implemented as the linked list structure
which has been described in subsection 4.1. Depending on the sequence
number, new received requests in each bank queue obtain a priority
value to access the memory. Once a new request enters a queue, the
process input_queue, shown in Fig. 9, updates the priority value of each
request in the queue. The packet’s sequence number of received request
is assigned as a priority value for this request. In addition, to prevent
starvation, the priority values of existing requests in the queue at every
input_queue event will be increased. As mentioned earlier, each bank
arbiter selects a request from the queue with the highest priority value
based on the bank timing constraints as the first level of scheduling
procedure. Since the row-first policy has better memory utilization in
comparison with the other bank arbitration policies, the bank arbiters of
the presented memory controller also takes advantage of the row-first
policy. The bank arbitration policy in our memory controller is shown
in Fig. 9. Whenever the arbiter process is activated, it tries to find a
request which is a row hit and has a higher priority value. If there are
not any row hits, the bank arbiter selects the highest priority request
which is a row conflict from the queue and issues the SDRAM
commands to service the selected request. In the second level of the
scheduling procedure, at each memory cycle the memory scheduler
decides which request from all bank arbiters should be issued. To
simplify the hardware implementation and provide the bank
interleaving, round robin mechanism is utilized by the memory
scheduler.

6. EXPERIMENTAL RESULTS
In this section, we compare the proposed network interface

architecture with the baseline architecture by measuring the average
network latency under different traffic patterns. Hence, a 2D NoC
simulator is implemented with VHDL to assess the efficiency of the
proposed method. The simulator models all major components of the
NoC such as network interface, routers, and wires.

6.1. SYSTEM CONFIGURATION
In this work, we use a 25-node (5×5) 2D mesh on-chip network

configuration for the entire architecture. In this configuration,
illustrated in Fig. 10, out of 25 nodes, ten nodes are assumed to be
processors (master cores, connected by master NIs) and other fifteen

P(i) : priority of the i(th) request in the queue.
SN : sequence number of a new request.
RA(i): row address of i(th) request.
CRA : current row address issued prior.

Process(input_queue)
Begin
For ‘i:1 to number of requests in input queue’ loop

 If Req is a new packet then
 P(i) <= SN;

 Else
 P(i) <= P(i)+1;

 End if;
 End loop;
End process;

Process(arbiter)
Begin
 MaxValue1 <=0; select1 <=0;
 MaxValue2 <=0; select2 <=0;

For ‘i:1 to all requests in input queue’ loop
 If RA(i)= CRA then
 If p(i)>= MaxValue1 then

 select1 <= i;
 MaxValue1 <= p(i);

 End if;
 Else
 If p(i)>= MaxValue2 then

 select2 <= i;
 MaxValue2 <= p(i);

 End if;
 End if;

 End loop;
If select1 /= 0 then
 select <= select1;

 Else
 select <= select2;

End process;

nodes are memories (slave cores, connected by slave NIs). For
convenience, we used MS (Master/Slave NI) and MS-OS (Master/Slave
NI where slave NIs uses Order Sensitive structure) to represent the
proposed architectures. The processors are 32b AXI and the memories,
specified in subsection 2.2.1, are DDR2-512MB (tRP-tRCD-tCL=2-2-2,
32b, 4 banks) [21]. We adopt a commercial memory controller and
memory physical interface, DDR2SPA module from gaisler ip-cores
 [26]. In addition, the on-chip network considered for experiment is
formed by a typical state-of-the-art router structure including input
buffers, a VC (Virtual Channel) allocator, a routing unit, a switch
allocator and a crossbar. Each router has 5 input/output ports, and each
input port of the router has 2 VCs. Packets of different message types
(request and response) are assigned to corresponding VCs to avoid
message dependency deadlock [15]. The arbitration scheme of the
switch allocator in the typical router structure is round-robin.

Fig. 10. 5x5 NoC layout.

The array size, routing algorithm, link width, number of VCs,
buffer depth of each VC, and traffic type are the other parameters
which must be specified for the simulator. The routers adopt the XY
 [16] [17] routing and utilize wormhole switching. For all routers, the
data width (flit) was set to 32 bits, and the buffer depth of each VC is 5
flits. The baseline architecture [8] [9] (with fixed packet length) uses 1
flit for messages related to read requests and write responses, and 5 flits
for data messages, representative of read responses and write requests;
the size of read request messages typically depends on the network size
and memory capacity of the configured system. As discussed in the
Section 4, the message size of the proposed mechanism is variable and
depends on the request/response length produced by a master/slave
core. As the performance metric, we use latency defined as the number
of cycles between the initiation of a request operation issued by a
master (processor) and the time when the response is completely
delivered to the master from a slave (memory). The request rate is
defined as the ratio of the successful read/write request injections into
the network interface over the total number of injection attempts. All
the cores and routers are assumed to operate at 2GHz. For fair
comparison, we keep the bisection bandwidth constant in all
configurations. We also set the size of the reorder buffer to 48 words,
able to embed 6 outstanding requests with burst size of 8. All memories
(slave cores) can be accessed simultaneously by each master core with
continuously generating memory requests. Furthermore, the size of
each queue (and FIFO) is set to 8×32 bits.

6.2. PERFORMANCE EVALUATION
To evaluate the performance of the proposed schemes, the uniform

and non-uniform synthetic traffic patterns have been considered
separately for the specified configuration. These workloads provide
insight into the strengths and weakness of the different buffer
management mechanisms in the interconnection networks, and we
expect applications stand between these two synthetic traffic patterns.
The random traffic represents the most generic case, where each
processor sends in-order read/write requests to memories with the
uniform probability. Hence, the memories and request type (read or
write) are selected randomly. Eight burst sizes, among 1 to 8, are
stochastically chosen regarding the data length of the request. In the
non-uniform mode, the traffic consists of 70% local requests, where the
destination memory is one hop away from the master core, and the rest
30% traffic is uniformly distributed to the non-local memories. Fig. 11
and Fig. 12 show the simulation results under uniform and non-uniform
traffic models, respectively. The proposed network interface
architecture has been compared with the baseline. As demonstrated in
both figures, compared with the baseline architecture the presented
architecture reduces the average latency when the request rate increases
under uniform and non-uniform traffic models. One of the foremost
reasons of such an improvement is that because the size of packets is
not fixed and depends on the request and response lengths, the resource
utilization is high and thus, the latency is reduced. Another subtle
reason for improving the performance is that getting more free slots in
the reorder buffer allows more messages to enter the network.

Fig. 11. Performance evaluation of both configurations under uniform
traffic model.

Fig. 12. Performance evaluation of both configurations under non-
uniform traffic model.

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Request Rate (fraction of capacity)

Baseline
MS
MS - OS

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Request Rate (fraction of capacity)

Baseline
MS
MS - OS

The average utilization of memories and average latency of the
network and memories have been computed near saturation point (0.6)
under the uniform traffic profile. As a result of using OS technique,
compared with the baseline architecture, the average utilization of
memories is improved by 22%. The average memory latency and
average network latency are reduced by 19%, and 12%, respectively.

6.3. HARDWARE OVERHEAD
The network interfaces were synthesized by Synopsys Design

Compiler using the UMC 0.09μm technology. In addition to the
aforementioned configuration of the network interface, the tran_id and
seq_id were set to 4-bit and 3-bit respectively. The layout areas and
power consumptions of the master-side, slave-side, and OS interfaces
are listed in Table 1. Since all queues (and FIFOs) are equal in the size,
it will not affect the comparison. Also, comparing the area cost of the
baseline model for each proposed network interface indicates that the
hardware overheads of implementing the proposed schemes are less
than 0.5%. Furthermore, for the slave-side interface within memory
controller, since each of the memories utilized in this work, has 4
banks, four bank queues have been implemented in the memory
controller.

Table 1. Hardware implementation details.

NI
Area

Power (mW)
Gates (#) (µm2)

Slave-side 18218 42848 0.274

Master-side 32125 75559 0.441

Slave-side with OS 33218 80848 0.486

7. SUMMARY AND CONCLUSION
To increase the memory bandwidth, accessing multiple memories

simultaneously is necessitated, but it requires a reordering mechanism
to cope with the deadline. In this work, we presented a high
performance dynamic reordering mechanism integrated in the network
interface to improve the resource utilization, and overall on-chip
network performance. In addition to the resource utilization of the
network interface and on-chip network, the utilization of memories
considerably affects the network latency. Therefore, we have developed
a novel scheduling method for the modern SDRAM memories and
integrated in the network interface such that the network and memory
latencies reduced effectively in comparison with the baseline
architecture. The micro-architectures of the proposed network
interfaces which are compatible with the AMBA AXI protocol have
been presented. A cycle-accurate simulator was used to evaluate the
efficiency of the proposed architecture. Under both uniform and non-
uniform traffic models, in high traffic load, the proposed architecture
had lower average communication delay in comparison with the
baseline architecture.

REFERENCES
[1] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A 5-

GHz mesh interconnect for a teraflops processor. IEEE Micro,
27:51–61, September-October 2007.

[2] A. Jantsch and H. Tenhunen, “Networks on Chip,” Kluwer
Academic, 2003.

[3] B. Towles and W. Dally, “Route packets, not wires: on-chip
interconnection networks”, Proc. DAC 2001.

[4] L.Benini and G.De Micheli, “Networks on chips: a new SoC
paradigm”, IEEE Computer, January 2002.

[5] C. A. Zeferino, M. E. Kreutz, and A. A. Susin, “RASoC: A
Router Soft-Core for Networks-on-Chip”, Proceedings of
DATE’04, pp. 1530-1591, 2004.

[6] ARM, AMBA AXI Protocol Specification, Mar. 2004.
[7] OCP International Partnership, Open Core Protocol Specification.

2.0 Release Candidate, 2003.
[8] X. Yang, Z. Qing-li, F. Fang-fa, Y. Ming-yan, L.

Cheng, “NISAR: An AXI compliant on-chip NI architecture
offering transaction reordering processing”, in Proc. ASICON,
pp. 890-893, 2007, Greece.

[9] W. Kwon, et al., “A Practical Approach of Memory Access
Parallelization to Exploit Multiple Off-chip DDR Memories”,
Proc. DAC, 2008.

[10] A. Radulescu, and et al., “An Efficient On-Chip NI Offering
Guaranteed Services, Shared-Memory Abstraction, and Flexible
Network Configuration”, in Proc IEEE TCAD, 24(1), January
2005.

[11] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” In Proc. of ISCA’00, pp. 128-138,
US, 2000.

[12] M. Lai, Z. Wang, L. Gao, H. Lu, K. Dai, "A Dynamically-
Allocated Virtual Channel Architecture with Congestion
Awareness for On-Chip Routers," in Proceedings of the 46th
Design Automation Conference (DAC), pp. 630-633, 2008.

[13] G. L. Frazier and Y. Tamir, “The Design and Implementation of a
Multi-Queue Buffer for VLSI Communication Switches,” In
Proceedings of the IEEE Conference on Computer Design
(ICCD), pp. 466-471, 1989.

[14] W. Kwon, S. Yoo, J. Um, and S. Jeong, “In-network reorder
buffer to improve overall NoC performance while resolving the
in-order requirement problem”, In proc. DATE’09, pp. 1058 –
1063, France, 2009.

[15] S. Murali, and et al. “Designing message-dependent deadlock free
networks on chips for application-specific systems on chips,” In
Proc. VLSI-SoC, pages 158-163, 2006.

[16] G. Chiu, “The Odd-Even Turn Model for Adaptive Routing,”
IEEE Tran. On Parallel and Distributed System, pp 729-738, July
2000.

[17] J. Duato, S. Yalamanchili, and L. Ni, “Interconnection Networks:
An Engineering Approach.” Morgan Kaufmann, 2002.

[18] S. E. Lee, J. H. Bahn, Y. S. Yang, and N. Bagherzadeh, “A
Generic Network Interface Architecture for a Networked
Processor Array (NePA)”, In proc. ARCS’08, pp. 247-260, 2008.

[19] W. Jang and D. Z. Pan, “An SDRAM-Aware Router for
Networks-on-Chip,” in proc. of DAC’09, pp. 800-805, US, 2009.

[20] Z. Fang, X. H. Sun, Y. Chen, S. Byna, “Core-aware memory
access scheduling schemes,” In Proc. of IEEE International
Symposium on Parallel & Distributed Processing (IPDPS’09), pp.
1-12, Italy, 2009.

[21] Micron Technology, Inc. Micron 512Mb: x4, x8, x16 DDR2
SDRAM Datasheet, 2006.

[22] H. G. Rotithor, R. B. Osborne, and N. Aboulenein, “Method and
Apparatus for Out of Order Memory Scheduling,” United States
Patent 7127574, Intel Corporation, October 2006.

[23] Jun Shao and Brian T. Davis, “A Burst Scheduling Access
Reordering Mechanism”, Proceedings of the 13th International
Symposium on High-Performance Computer Architecture, 2007.

[24] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta, Parallel
Computer Architecture: A Hardware/Software Approach, Morgan
Kaufmann Press, 1998.

[25] I. Hur and C. Lin, “Memory scheduling for modern
microprocessors,” ACM Trans. on Computer Systems, vol. 25,
no. 4, Dec. 2007.

[26] Gaisler IP Cores, http://www.gaisler.com/products/grlib/, 2009.

