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Abstract- Using multiple SDRAMs in MPSoCs and NoCs to
increase memory parallelism is very common nowadays. In-order 
delivery, resource utilization, and latency are the most critical issues 
in such architectures. In this paper, we present a novel network 
interface architecture to cope with these issues efficiently. The 
proposed network interface exploits a resourceful reordering 
mechanism to handle the in-order delivery and to increase the 
resource utilization. A brilliant memory controller is efficiently 
integrated into this network interface to improve the memory 
utilization and reduce both memory and network latencies. In 
addition, to bring compatibility with existing IP cores the proposed 
network interface utilizes AXI transaction based protocol. 
Experimental results with synthetic test cases demonstrate that the 
proposed architecture gives significant improvements in average 
network latency (12%), average memory access latency (19%), and 
average memory utilization (22%). 

1. INTRODUCTION
Integrating a large number of functional and storage modules onto a

single die in the deep sub-micron regime and beyond is becoming a 
major performance issue in System-on-Chip (SoC) architectures 
 [1] [2] [3] [4]. Network-on-Chip (NoC) has emerged as a solution to
address the communication demands of many/multi core architectures
due to its reusability, scalability, and parallelism in communication
infrastructure  [3] [4]. The fundamental function of network interfaces
(NI) is to provide communication between Processing Elements (PE)
and the network infrastructure  [5] [6] [7]. That is, one of the practical
approaches of network interfaces is to translate the language between
the PE and router based on a standard communication protocol such as
AXI  [6] and OCP  [7]. On top of that, in-order delivery is another
practical approach of network interfaces  [8] [9] [10]. In-order delivery 
should be handled when exploiting an adaptive routing algorithm for
distributing packets through the network  [8], when obtaining memory
access parallelization by sending requests from a master IP core to
multiple slave memories  [9] [10], or when exploiting a modern memory
access scheduling in memory controller to reorder memory requests
 [11]. In this paper, we introduce an efficient network interface
architecture where the key ideas are threefold. The first idea is to deal
with out-of-order handling in such a way that when a master sends
requests to different memories, the responses might be required to
return in the same order in which the master issued the addresses, and
therefore a reordering mechanism in NoC should be provided by the
network interface. The second idea is to improve resource utilization
because in on-chip networks we have limitation of hardware resources
(e.g. buffers), power consumption, and network latency. According to
our observation, utilization of reorder buffers in network interfaces is
significantly inefficient, due to the fact that the traditional buffer
management is not efficient enough for network interfaces. Therefore,
an advantageous reordering mechanism via resourceful management of
buffers in the network interface is presented. The last idea is to present
a brilliant memory controller that is efficiently integrated into the
proposed network interface, which helps to improve memory utilization
and reduce both memory and network latencies. Also, the proposed
network interface architecture exploits the AMBA AXI protocol, to

allow backward compatibility with existing IP cores  [6]. We also 
present micro-architectures of the proposed ideas, particularly the 
memory access reordering mechanism. The paper is organized as 
follows. In Section 2, the preliminaries are discussed. In Section 3, a 
brief review of related works is presented while the proposed network 
interface architectures and the brilliant memory controller are presented 
in Section 4 and 5, respectively. The experimental results are discussed 
in Section 6 with the summary and conclusion given in the last section. 
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Fig. 1. Tile-based 2D-Mesh topology. 
2. PRELIMINARIES

2.1. NETWORK-ON-CHIP ARCHITECTURE 
A 2D-mesh NoC based system is shown in Fig. 1. NoC consists of 

Routers (R), Processing Elements (PE), and Network Interfaces (NI). 
PEs may be intellectual property (IP) blocks or embedded memories. 
Each core is connected to the corresponding router port using the 
network interface. To be compatible with existing transaction-based IP-
cores, we use the AMBA AXI protocol. AMBA AXI is an interfacing 
protocol, having advanced functions such as a multiple outstanding 
address function and data interleaving function  [6]. AXI, providing 
such advanced functions, can be implemented on NoCs as an interface 
protocol between each PE and router to avoid the structural limitations 
in SoCs due to the bus architecture. The protocol can achieve very high 
speed of data transmission between PEs  [6]. In the AXI transaction-
based model  [6] [9], IP cores can be classified as master (active) and 
slave (passive) IP cores  [10] [18]. Master IP cores initiate transactions 
by issuing read and write requests and one or more slaves (memories) 
receive and execute each request. Subsequently, a response issued by a 
slave can be either an acknowledgment (corresponding to the write 
request) or data (corresponding to the read request)  [10]. The AXI 
protocol provides a “transaction ID” field assigned to each transaction. 
Transactions from the same master IP core, but with different IDs have 
no ordering restriction while transactions with the same ID must be 
completed in order. Thus, a reordering mechanism in the network 
interface is needed to afford this ordering requirement  [6][7] [14]. The 
network interface lies between a PE and the corresponding attached 
router. This unit forms the foundation of the generic nature of the 
architecture as it prevents the PEs from directly interacting with the rest 
of the network components in the NoC. A generic network interface 
architecture is shown in Fig. 1. 
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Fig. 2. High-level structure of an SDRAM. 

The network interface consists of input buffers (forward and 
reverse directions), a Packetizer Unit (PU), a Depacketizer Unit (DU), 
and a Reorder Unit (RU). A data burst coming from a PE is latched into 
the input buffer of the corresponding network interface. PU is 
configured to packetize the burst data stored in the input buffer and 
transfer the packet to the router. Similarly, data packets coming from 
the router are latched into the input buffer located in the reverse path. 
DU is configured to restore original data format, required for the PE, 
from the packet provided by the router. The RU performs a packet 
reordering to meet the in-order requirement of each PE.  

2.2. SDRAM STRUCTURE 
SDRAM is designed to provide high memory depth and bandwidth. 

Fig. 2 shows a simplified three dimensional architecture of an SDRAM 
memory chip with the dimensions of bank, row, and column 
 [11] [19] [20]. An SDRAM chip is composed of multiple independent
memory banks such that memory requests to different banks can be
serviced in parallel. That is, a benefit of a multibank architecture is that
commands to different banks can be pipelined. Each bank is formed as
a two dimensional array of DRAM cells that are accessed an entire row
at a time. Thus, a location in the DRAM is identified by an address
consisting of bank, row, and column fields. A complete SDRAM access
may require three commands (transactions) in addition to the data
transfer: bank precharge, row activation, and column access
(read/write). A bank precharge charges and prepares the bank, while a
row-activation command (with the bank and row address) is used to
copy all data in the selected row into the row buffer, i.e. sense
amplifier. The row buffer serves as a cache to reduce the latency of
subsequent accesses to that row. Once a row is in the row buffer, then
column commands (read/write) can be issued to read/write data
from/into the memory addresses (columns) contained in the row. To
prepare the bank for a next row activation after completing the column
accesses, the cached row must be written back to the bank memory
array by the precharge command  [11]. Also, the timing constraints
associated with bank precharge, row activation, and column access are
tRP, tRCD, and tCL respectively  [11] [19] [21]. Since the latency of a
memory request depends on whether the requested row is in the row
buffer of the bank or not, a memory request could be a row hit, row 
conflict or row empty with different latencies  [22]. A row hit occurs
when a request is accessing the row currently in the row buffer and only
a read or a write command is needed. It has the lowest bank access
latency (tCL) as only a column access is required. A row conflict occurs
when the access is to a row different from the one currently in the row
buffer. The contents of the row buffer first need to be written back into
the memory array using the precharge command. Afterward, the

required row should to be opened and accessed using the activation and 
read/write commands. The row conflict has the highest bank access 
latency (tRP +tRCD +tCL). If the bank is closed (precharged) or there is no 
row in the row buffer then a row empty occurs. An activation command 
should be issued to open the row followed by read or write 
command(s). The bank access latency of this case is tRCD +tCL.  

2.2.1. MEMORY ACCESS SCHEDULING 
The memory controller lies between processors and the SDRAM to 

generate the required commands for each request and schedules them 
on the SDRAM buses. The memory controller consists of a request 
table, request buffers, and a memory access scheduler. A request table 
is used to store the state of each memory request, e.g. valid, address, 
read/write, header pointer to the data buffer and any additional state 
necessary for memory scheduling. The data of outstanding requests are 
stored in read and write buffers. The read and write buffers (request 
buffers) are implemented as linked list  [12] [13]. Each memory request 
(read and write) allocates an entry in its respective buffer until the 
request is completely serviced. Among all pending memory requests, 
based on the state of the DRAM banks and the timing constraints of the 
DRAM, the memory scheduler decides which DRAM command should 
be issued. The average memory access latency and memory bandwidth 
utilization can be reduced and improved, respectively if an efficient 
memory scheduler is employed  [11] [19] [20]. Fig. 3 reveals how the 
memory access scheduling affects the performance. As shown in the 
figure, the sequence of four memory requests is considered. Request 1 
and 3 are row empties, and request 2 and 4 are row conflicts. Timing 
constraints of a DDR2-512MB used as example throughout this paper 
is 2-2-2 (tRP-tRCD-tCL)  [21]. As depicted in Fig. 3(a), if the controller 
schedules the memory requests in order, it will take 22 memory cycles 
to complete them. In Fig. 3(b) the same four requests are scheduled out 
of order. As can be seen, request 4 is scheduled before request 2 and 3 
to turn request 4 from a row conflict to a row hit. In addition, request 3 
is pipelined after request 1, called bank interleaving, since it has the 
different bank address from the bank address of request 1. As a result, 
only 14 memory cycles are needed to complete the four requests. In 
sum, how the memory scheduler can improve the memory performance 
has been shown by this example where the memory utilization of the in 
order scheduler and the out of order are 4(data)/22(cycle) = 18% and 
4/14= 29%, respectively. In this work, we presented a brilliant memory 
controller that is efficiently integrated into the proposed network 
interface to improve the memory utilization and reduce both memory 
and network latencies. The idea and the implementation details of the 
proposed architecture are described in Section 5. 
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3. RELATED WORK
Due to the fact that most of the recent published researches have

focused on the design and description of NoC architectures, there has 
been relatively little attention to network interface designs particularly 
when supporting out-of-order mechanism. The authors in  [9] present 
ideas of transaction ID renaming and distributed soft arbitration in the 
context of distributed shared memories. In such a system, because of 
using a global synchronization in the on-chip network, the performance 
might be degraded and the cost of hardware overhead for the on-chip 
network is too high. In addition, the implementation of ID renaming 
and reorder buffer can suffer from low resource utilization. This idea 
has been improved in  [14] by moving reorder buffer resources from the 
network interface into network routers. In spite of increasing the 
resource utilization, the delay of release packets recalling data from 
distributed reordering buffer can significantly degrade the performance 
when the size of the network increases  [14]. Moreover, the proposed 
architecture is restricted to deterministic routing algorithms and thus, it 
is not a suitable method for an adaptive routing. However, neither  [9] 
nor  [14] has presented a micro-architecture of the network interface. An 
efficient on-chip network interface supporting shared memory 
abstraction and flexible network configuration is presented by 
Radulescu et al  [10]. The proposed architecture has the advantage of 
improving reuse of IP cores, and offers ordering messages via channel 
implementation. Nevertheless, the performance is penalized because of 
increasing latency, and besides, the packets are routed on the same path 
in NoC, which forces the routers to use the deterministic routing. Yang 
et al proposed NISAR  [8], a network interface architecture using the 
AXI protocol capable of packet reordering based on a look up table; but 
NISAR uses a statically partitioned reorder buffer, thereby it has a 
simple control logic but suffers from low buffer utilization in different 
traffic patterns. In addition, NISAR does not support burst transactions, 
whereas burst type should be handled by the network interface.  

Regarding the memory scheduler, several memory scheduling 
mechanisms were presented to improve the memory utilization and to 
reduce the memory latency. The key idea of these mechanisms is on the 
scheduler for reordering memory accesses. The memory access 
scheduler proposed in  [11] reorders memory accesses to achieve high 
bandwidth and low average latency. In this scheme, called bank-first 
scheduling, memory accesses to different banks are issued before those 
to the same bank. Shao et al.  [23] proposed the burst scheduling 
mechanism based on the row-first scheduling scheme. In this scheme, 
memory requests that might access the same row within a bank are 

formed as a group to be issued sequentially, i.e. as a burst. Increasing 
the row hit rate and maximizing the memory data bus utilization are the 
major design goals of burst scheduling. The core-aware memory 
scheduler revealed that it is reasonable to schedule the requests by 
taking into consideration the source of the requests because the requests 
from the same source exhibit better locality  [20]. In  [19] the authors 
introduced an SDRAM-aware router to send one of the competing 
packets toward an SDRAM using a priority-based arbitration. An 
adaptive history-based memory scheduler which tracks the access 
patterns of recently scheduled accesses and selects memory accesses 
matching the pattern of requests is proposed in  [24] and  [25]. As 
network-on-chips are strongly emerging as a communication platform 
for chip-multiprocessors, the major limitation of presented memory 
scheduling mechanisms is that none of them did take the order of the 
memory requests into consideration. As discussed earlier, requests with 
the same transaction ID from the same master must be completed (turn 
back) in order. While the requests would be issued out-of-order in 
memories (slave-sides), the average network latency might be increased 
significantly due to the out-of-order mechanism in master sides. 
Therefore, it is necessary to consider the order of memory requests for 
making an optimal memory scheduling.  

The major contribution of this paper is to propose a novel network 
interface architecture within a dynamic buffer allocation mechanism for 
the reorder buffer to increase the utilization and overall performance. 
That is, using the dynamic buffer allocation to get more free slots in the 
reorder buffer may lead more messages to be entered to the network. 
On top of that, an efficient memory scheduler mechanism based on the 
order of requests is introduced and integrated in our network interface 
to diminish both the memory and network latencies.  

4. PROPOSED NETWORK INTERFACE ARCHITECTURE
Since IP cores are classified into masters and slaves, the network

interface is also divided into the master network interface (Fig. 4) and 
slave network interface (Fig. 5). Both network interfaces are partitioned 
into two paths: forward and reverse. The forward path transmits the 
AXI transactions received from an IP core to a router; and the reverse 
path receives the packets from the router and converts them back to 
AXI transactions. The proposed network interfaces for both master and 
slave sides are described in detail as follows. 

4.1. MASTER-SIDE NETWORK INTERFACE 
As shown in Fig. 4, the forward path of the master network 

interface transferring requests to the network is composed of an AXI-



Fig. 4. Master-side network interface architecture. Fig. 5. Slave-side network interface architecture.

Queue, a Packetizer unit, and a Reorder unit, while the reverse path, 
receiving the responses from the network, is composed by a Packet-
Queue, a Depacketizer unit, and the Reorder unit. The Reorder unit is a 
shared module between the forward and reverse paths. 
AXI-Queue: the AXI master transmits write address, write data, or read 
address to the network interface through channels. The AXI-Queue unit 
performs the arbitration between write and read transaction channels 
and stores requests in either write or read request buffer. The request 
messages will be sent to the packetizer unit if admitted by the reorder 
unit, and on top of that a sequence number for each request should be 
prepared by the reorder unit after the admittance. 
Packetizer: it is configured to convert incoming messages from the 
AXI-Queue unit into header and data flits, and delivers the produced 
flits to the router. Since a message is composed of several parts, the 
data is stored in the data buffer and the rest of the message is loaded in 
corresponding registers of the header builder unit. After the mapping 
unit converts the AXI address into a network address by using an 
address decoder, based on the request information loaded on relative 
registers and the sequence number provided by the reorder buffer, the 
header of the packet can be assembled. Afterward, the flit controller 
wraps up the packet for convenient transmission. 
Packet-Queue: this unit receives packets from the router; and 
according to the decision of the reorder unit a packet is delivered to the 
depacketizer unit or reorder buffer. In fact, when a new packet arrives, 
the sequence number and transaction ID of the packet will be sent to the 
reorder unit. Based on the decision of the reorder unit, if the packet is 
out of order, it is transmitted to the reorder buffer, and otherwise it will 
be delivered to the depacketizer unit directly.  
Depacketizer: the main functionality of the Depacketizer unit is to 
restore packets coming from either the packet queue unit or reorder 
buffer into the original data format of the AXI master core. 
Reorder Unit: it is the most influential part of the network interface 
including a Status-Register, a Status-Table, a Reorder Buffer, and a 
Reorder-Table. In the forward path, preparing the sequence number for 
corresponding transaction ID, and avoiding overflow of the reorder 
buffer by the admittance mechanism are provided by this unit. On the 
other side, in the reverse path, this unit determines where the 
outstanding packets from the packet queue should be transmitted 
(reorder buffer or depacketizer), and when the packets in the reorder 
buffer could be released to the depacketizer unit.  
Status-Register and Status-Table: Status-Register (S_Reg) is an n-bit 
register where each bit corresponds to one of the AXI transaction IDs. 
As depicted in Fig. 6, this register records whether there are one or 
more messages with the same transaction ID being issued or not. To 
record the state of the outstanding messages, Status-Table (S_Table) is 
adopted. Each entry of this table is considered for messages with the 

same transaction ID, and includes valid tag (v), Transaction ID (T-ID), 
Number of outstanding Message (N-M) as well as the Expecting 
Sequence number (E-S). The register and table might be updated in 
both forward and reverse paths described as follows. In the forward 
path, when the first message of each transaction ID requests for an 
admittance from the reorder unit to enter the network, the 
corresponding bit in the status register goes high (Procedure A: line 1, 
Fig. 6(a)). The sequence number (Seq-Num) is produced by the reorder 
unit, if the admittance is given. This value, indicating the order of the 
messages within the transaction ID, is equal to zero for the first 
message of each transaction ID (Procedure A: line 2). “ReservedSize” 
keeps the required space of all outstanding transactions in the network. 
Indeed, this register reserves the number of buffer slots required by 
outstanding messages of different transaction IDs. In order to prevent 
overflow of the reorder buffer, the reorder unit compares the new 
message size with the free space of the reorder buffer. If the required 
space is available, the message will be admitted and the required space 
in the reorder buffer must be reserved (Procedure A, line 3). An 
available (free) row in the status table will be initiated by procedure B, 
when the second request of a transaction ID is admitted. For the rest of 
the admitted requests of the transaction ID, the procedure C should be 
executed as the sequence number is obtained by adding N-M and E-S 
values. Also, the number of outstanding message (N-M) is increased by 
+1, and the required space in the reorder buffer must is reserved by
procedure C. Note that E-S indicates the next response sequence
number of the corresponding transaction ID that should be delivered to
the depacketizer unit.

Procedure A: 
1  S_Reg(T_ID) <= ‘1’; 
2  SeqNum <= (others =>’0’); 
3  ReservedSize <= ReservedSize + NewMsgSize; 

Procedure B: 
1  S_Table(FreeRow)(v)   <= ’1’; 
2  S_Table(FreeRow)(T_ID) <= Tran_ID; 
3  S_Table(FreeRow)(N_M)  <= “0010”; 
4  S_Table(FreeRow)(E_S)  <= (others =>’0’); 
5  SeqNum   <= “001”; 
6  ReservedSize <= ReservedSize + 

 NewMsgSize; 

Procedure C: 
1  SeqNum <= S_Table(FindRow)(N_M) + 

   S_Table(FindRow)(E_S); 
2  S_Table(FindRow)(N_M) <= S_Table(FindRow)(N_M) + 1; 
3  ReservedSize  <= ReservedSize + NewMsgSize; 



Fig. 6. Status-Register and StatusTable of Reorder Unit. Fig. 7. Dynamic buffer allocation

In the reverse path, the transaction ID and sequence number of the 
arriving response packet (message) are sent to the reorder unit to find 
the related row in the status table according to the transaction ID (T-
ID). Ifthe sequence number of incoming packet is equal to E-S value, 
the packet is an expected packet (in-order) and should be delivered to 
the depacketizer unit which releases the occupied buffer space; 
thereafter, E-S and N-T values will be increased by +1 and -1, 
respectively (Procedure D). If N-M value reaches zero, the transaction 
will be terminated by resetting the valid bit for both status register and 
status table. However, the packet is out-of-order and should be 
delivered to the reorder buffer, if the sequence number of the packet is 
not equal to E-S. Additionally, only one message with the given 
transaction ID should have been sent to the network, if the given 
transaction ID is not matched in the status table, thereby only the 
corresponding bit in the status register will be reset. 
Procedure D: 
1 S_Table(FindRow)(N_M) <= S_Table(FindRow)(N_M)-1; 
2 S_Table(FindRow)(E_S) <= S_Table(FindRow)(E_S)+1; 
3 ReservedSize    <= ReservedSize– 

ReceivedMsgSize; 

The N-M value can be used as a ranking metric of packets. It 
represents the number of packets with the same transaction ID as the 
current packet which traveling inside the network once the packet is 
injected. In fact, the N-M value indicates the order of packet to return 
back. Therefore, a packet with a greater N-M value has lower priority to 
be sent back to the corresponding master core and vice versa. 
Reorder-Table and Reorder-Buffer: As shown in Fig. 7, each row of 
the reorder table corresponds to an out-of-order packet stored in the 
reorder buffer. This table includes the valid tag (v), the transaction ID 
(T-ID), the sequence number (S-N) as well as the head pointer (P). In 
the reorder buffer, the flits of each packet are maintained by a linked 
list structure providing high resource efficiency with little hardware 
overhead. On top of that, the goal of using the shared reorder buffer is 
to support variable packet size and improve the buffer utilization which 
can also increase the performance by feeding more packets into the 
network. Fig. 7 exhibits a pointer field adopted to indicate the next flit 
position in the reorder buffer. Using the proposed structure in Fig. 7, 
each out-of-order packet updates the reorder table and reorder buffer 
according to the procedure E, and F. The first three operations in the 
procedure E, stores the transaction ID and sequence number from the 
header flit of the out-of-order packet to the available slot indicated by 

FreeRow in the reorder table; and the last operation in E updates the 
pointer to point to the available slot in the reorder buffer. 

Procedure E:  
ReorderTable(FreeRow)(V)   <= ‘1’; 
ReorderTable(FreeRow)(T-ID) <= HeaderFlit(TranID); 
ReorderTable(FreeRow)(S-N) <= HeaderFlit(SeqNum); 
ReorderTable(FreeRow)(P)   <= Current_Free_Slot; 

Procedure F: 
ReorderBuf(Current_Free_Slot)(V)    <= ‘1’; 
ReorderBuf(Current_Free_Slot)(Data)  <= flit; 
ReorderBuf(Current_Free_Slot)(P)   <= Next_Free_Slot; 
Current_Free_Slot    <= Next_Free_Slot; 

The procedure F is intended to store the incoming flits into the 
reorder buffer. While Current_Free_Slot shows the current free location 
in the reorder buffer in order to store the current flit, Next_Free_Slot 
returns an available slot for the next flit. By repeating the operations in 
the procedure F, whole of the payload flits will be stored in the reorder 
buffer. The tail flit can be determined by extracting header flit 
information. Whenever an in-order packet delivered to the depacketizer 
unit, the depacketizer controller checks the reorder table for the validity 
of any stored packet with the same transaction ID and next sequence 
number. If so, the stored packet will be released from the reorder unit to 
the depacketizer unit. 

4.2. SLAVE-SIDE NETWORK INTERFACE 
A slave IP core cannot operate independently. It receives requests 

from master cores and responds to them. Hence, using reordering 
mechanism in the slave network interface is completely meaningless. 
But to avoid losing the order of header information (transaction ID, 
sequence number, and etc) carried by arriving requests, a FIFO has 
been considered. After processing a request in a slave core, the response 
packet should be created by the packetizer. As can be seen from Fig. 5, 
to generate the response packet, after the header content of the 
corresponding request is invoked from the FIFO, and some parameters 
of the header (destination address, and packet size, and etc) are 
modified by the adapter, the response packet will be formed. However, 
the components of the slave-side interface in both forward and reverse 
paths are almost similar to the master-side interface components, except 
the reorder unit. 



Fig. 8. The proposed memory controller integrated in the slave-side network interface. 

Fig. 9. Pseudo VHDL code of the arbiter in the memory controller. 

5. ORDER SENSITIVE MEMORY SCHEDULER
The architecture of the proposed memory controller, dubbed OS

from Order Sensitive, is depicted in Fig. 8. As illustrated in the figure, 
the proposed memory controller is efficiently integrated in the slave-

side network interface. Requests after arriving to the network interface 
on the edge of the network are stored in the respective queues based on 
their target banks. The data associated with write requests are stored in 
the write queue. The queues are implemented as the linked list structure 
which has been described in subsection 4.1. Depending on the sequence 
number, new received requests in each bank queue obtain a priority 
value to access the memory. Once a new request enters a queue, the 
process input_queue, shown in Fig. 9, updates the priority value of each 
request in the queue. The packet’s sequence number of received request 
is assigned as a priority value for this request. In addition, to prevent 
starvation, the priority values of existing requests in the queue at every 
input_queue event will be increased. As mentioned earlier, each bank 
arbiter selects a request from the queue with the highest priority value 
based on the bank timing constraints as the first level of scheduling 
procedure. Since the row-first policy has better memory utilization in 
comparison with the other bank arbitration policies, the bank arbiters of 
the presented memory controller also takes advantage of the row-first 
policy. The bank arbitration policy in our memory controller is shown 
in Fig. 9. Whenever the arbiter process is activated, it tries to find a 
request which is a row hit and has a higher priority value. If there are 
not any row hits, the bank arbiter selects the highest priority request 
which is a row conflict from the queue and issues the SDRAM 
commands to service the selected request. In the second level of the 
scheduling procedure, at each memory cycle the memory scheduler 
decides which request from all bank arbiters should be issued. To 
simplify the hardware implementation and provide the bank 
interleaving, round robin mechanism is utilized by the memory 
scheduler.   

6. EXPERIMENTAL RESULTS
In this section, we compare the proposed network interface

architecture with the baseline architecture by measuring the average 
network latency under different traffic patterns. Hence, a 2D NoC 
simulator is implemented with VHDL to assess the efficiency of the 
proposed method. The simulator models all major components of the 
NoC such as network interface, routers, and wires. 

6.1. SYSTEM CONFIGURATION 
In this work, we use a 25-node (5×5) 2D mesh on-chip network 

configuration for the entire architecture. In this configuration, 
illustrated in Fig. 10, out of 25 nodes, ten nodes are assumed to be 
processors (master cores, connected by master NIs) and other fifteen 

P(i) : priority of the i(th) request in the queue. 
SN   : sequence number of a new request. 
RA(i): row address of i(th) request. 
CRA  : current row address issued prior. 
---------------- 
Process(input_queue) 
Begin 
For ‘i:1 to number of requests in input queue’ loop 

 If Req is a new packet then 
    P(i) <= SN; 

  Else 
    P(i) <= P(i)+1; 

  End if; 
 End loop; 
End process; 
---------------- 
Process(arbiter) 
Begin 
 MaxValue1 <=0; select1 <=0;  
 MaxValue2 <=0; select2 <=0; 

For ‘i:1 to all requests in input queue’ loop   
  If RA(i)= CRA then 
    If p(i)>= MaxValue1 then 

 select1   <= i; 
 MaxValue1  <= p(i); 

    End if; 
  Else 
    If p(i)>= MaxValue2 then 

 select2   <= i; 
 MaxValue2  <= p(i); 

    End if; 
  End if; 

 End loop; 
If select1 /= 0 then 
    select <= select1; 

 Else 
    select <= select2; 

End process; 



nodes are memories (slave cores, connected by slave NIs). For 
convenience, we used MS (Master/Slave NI) and MS-OS (Master/Slave 
NI where slave NIs uses Order Sensitive structure) to represent the 
proposed architectures. The processors are 32b AXI and the memories, 
specified in subsection 2.2.1, are DDR2-512MB (tRP-tRCD-tCL=2-2-2, 
32b, 4 banks)  [21].  We adopt a commercial memory controller and 
memory physical interface, DDR2SPA module from gaisler ip-cores 
 [26]. In addition, the on-chip network considered for experiment is 
formed by a typical state-of-the-art router structure including input 
buffers, a VC (Virtual Channel) allocator, a routing unit, a switch 
allocator and a crossbar. Each router has 5 input/output ports, and each 
input port of the router has 2 VCs. Packets of different message types 
(request and response) are assigned to corresponding VCs to avoid 
message dependency deadlock  [15]. The arbitration scheme of the 
switch allocator in the typical router structure is round-robin. 

Fig. 10. 5x5 NoC layout. 

The array size, routing algorithm, link width, number of VCs, 
buffer depth of each VC, and traffic type are the other parameters 
which must be specified for the simulator. The routers adopt the XY 
 [16] [17] routing and utilize wormhole switching. For all routers, the
data width (flit) was set to 32 bits, and the buffer depth of each VC is 5
flits. The baseline architecture  [8] [9] (with fixed packet length) uses 1
flit for messages related to read requests and write responses, and 5 flits
for data messages, representative of read responses and write requests;
the size of read request messages typically depends on the network size
and memory capacity of the configured system. As discussed in the
Section 4, the message size of the proposed mechanism is variable and
depends on the request/response length produced by a master/slave
core. As the performance metric, we use latency defined as the number
of cycles between the initiation of a request operation issued by a
master (processor) and the time when the response is completely
delivered to the master from a slave (memory). The request rate is
defined as the ratio of the successful read/write request injections into
the network interface over the total number of injection attempts. All
the cores and routers are assumed to operate at 2GHz. For fair
comparison, we keep the bisection bandwidth constant in all
configurations. We also set the size of the reorder buffer to 48 words,
able to embed 6 outstanding requests with burst size of 8. All memories
(slave cores) can be accessed simultaneously by each master core with
continuously generating memory requests. Furthermore, the size of
each queue (and FIFO) is set to 8×32 bits.

6.2. PERFORMANCE EVALUATION 
To evaluate the performance of the proposed schemes, the uniform 

and non-uniform synthetic traffic patterns have been considered 
separately for the specified configuration. These workloads provide 
insight into the strengths and weakness of the different buffer 
management mechanisms in the interconnection networks, and we 
expect applications stand between these two synthetic traffic patterns. 
The random traffic represents the most generic case, where each 
processor sends in-order read/write requests to memories with the 
uniform probability. Hence, the memories and request type (read or 
write) are selected randomly. Eight burst sizes, among 1 to 8, are 
stochastically chosen regarding the data length of the request. In the 
non-uniform mode, the traffic consists of 70% local requests, where the 
destination memory is one hop away from the master core, and the rest 
30% traffic is uniformly distributed to the non-local memories. Fig. 11 
and Fig. 12 show the simulation results under uniform and non-uniform 
traffic models, respectively. The proposed network interface 
architecture has been compared with the baseline. As demonstrated in 
both figures, compared with the baseline architecture the presented 
architecture reduces the average latency when the request rate increases 
under uniform and non-uniform traffic models. One of the foremost 
reasons of such an improvement is that because the size of packets is 
not fixed and depends on the request and response lengths, the resource 
utilization is high and thus, the latency is reduced. Another subtle 
reason for improving the performance is that getting more free slots in 
the reorder buffer allows more messages to enter the network. 

Fig. 11. Performance evaluation of both configurations under uniform 
traffic model.

Fig. 12. Performance evaluation of both configurations under non-
uniform traffic model. 
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The average utilization of memories and average latency of the 
network and memories have been computed near saturation point (0.6) 
under the uniform traffic profile. As a result of using OS technique, 
compared with the baseline architecture, the average utilization of 
memories is improved by 22%. The average memory latency and 
average network latency are reduced by 19%, and 12%, respectively. 

6.3. HARDWARE OVERHEAD 
The network interfaces were synthesized by Synopsys Design 

Compiler using the UMC 0.09μm technology. In addition to the 
aforementioned configuration of the network interface, the tran_id and 
seq_id were set to 4-bit and 3-bit respectively. The layout areas and 
power consumptions of the master-side, slave-side, and OS interfaces 
are listed in Table 1. Since all queues (and FIFOs) are equal in the size, 
it will not affect the comparison. Also, comparing the area cost of the 
baseline model for each proposed network interface indicates that the 
hardware overheads of implementing the proposed schemes are less 
than 0.5%. Furthermore, for the slave-side interface within memory 
controller, since each of the memories utilized in this work, has 4 
banks, four bank queues have been implemented in the memory 
controller. 

Table 1. Hardware implementation details. 

NI 
Area  

Power (mW) 
Gates (#) (µm2) 

Slave-side 18218 42848 0.274 

Master-side 32125 75559 0.441 

Slave-side with OS 33218 80848 0.486 

7. SUMMARY AND CONCLUSION
To increase the memory bandwidth, accessing multiple memories

simultaneously is necessitated, but it requires a reordering mechanism 
to cope with the deadline. In this work, we presented a high 
performance dynamic reordering mechanism integrated in the network 
interface to improve the resource utilization, and overall on-chip 
network performance. In addition to the resource utilization of the 
network interface and on-chip network, the utilization of memories 
considerably affects the network latency. Therefore, we have developed 
a novel scheduling method for the modern SDRAM memories and 
integrated in the network interface such that the network and memory 
latencies reduced effectively in comparison with the baseline 
architecture. The micro-architectures of the proposed network 
interfaces which are compatible with the AMBA AXI protocol have 
been presented. A cycle-accurate simulator was used to evaluate the 
efficiency of the proposed architecture. Under both uniform and non-
uniform traffic models, in high traffic load, the proposed architecture 
had lower average communication delay in comparison with the 
baseline architecture. 
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