
A High-Performance Network Interface Architecture for NoCs
Using Reorder Buffer Sharing

Masoumeh Ebrahimi, Masoud Daneshtalab, Pasi Liljeberg, Juha Plosila, Hannu Tenhunen
Department of Information Technology, University of Turku, Turku, Finland

{masebr, masdan, paslil, juhplo, hanten}@utu.f

Abstract- Increasing memory parallelism in MPSoCs to provide
higher memory bandwidth is achieved by accessing multiple
memories simultaneously. Inasmuch as the response
transactions of concurrent memory accesses must be in-order,
a reordering mechanism is required. To our knowledge the
resource utilization of conventional reordering mechanisms is
low. In this paper, we present a novel network interface
architecture for on-chip networks to increase the resource
utilization and to improve overall performance. Also, based on
the proposed architecture, a hybrid network interface is
presented to integrate both memory and processor in a tile. The
proposed architecture exploits AXI transaction based protocol
to be compatible with existing IP cores. Experimental results
with synthetic test cases demonstrate that the proposed
architecture outperforms the conventional architecture in
terms of latency. Also, the cost of the presented architecture is
evaluated with UMC 0.09 m technology.

I. INTRODUCTION
Network-on-chip (NoC) is a feasible alternative for the

traditional bus-based communication in SoCs due to its
reusability, scalability, and parallelism in communication
infrastructure [1] [2]. NoCs are composed of routers connecting
Processing Elements (PE), to deliver the data (packets) from one
place to another [3], and Network Interfaces (NI) the
communication interface between each PE and router. The
fundamental function of network interfaces is to provide
communication between PEs and network infrastructure. That is,
the network interface translates the language between the PE and
router based on a standard communication protocol such as AXI
 [4] and OCP [5]. In-order delivery should be handled when
exploiting an adaptive routing algorithm for distributing the
packet through the network [6], or in obtaining memory access
parallelization by sending requests from a master IP core to
multiple slave memories [7] [8]. The former is dependent on the
routing protocols of the network, whilst the latter is dominated by
the distributed shared memory architecture for on-chip
multiprocessor which demands higher memory bandwidth. The
subtle point is that in distributed shared memory systems, the
responses might need to be completed in-order even if the on-chip
network exploits a deterministic routing algorithm. That is, when
a master sends requests to different memories, the responses
might be required to return in the same order in which the master
issued the addresses, and therefore a reordering mechanism in
NoC should be provided by the network interface. For
implementing an efficient network interface, the resource
utilization must be improved because in on-chip networks we
have limitation of hardware overhead, power consumption, and
network latency. According to our observation, the utilization of
reorder buffer in network interfaces is significantly low.
Therefore, the traditional buffer management is not efficient
enough for network interfaces. Hence, an advantageous
reordering mechanism and resourceful management of buffers in

the network interface are demanded to increase the utilization and
efficiency of the on-chip interconnection network.

In this work, we introduce a high performance network
interface architecture utilizing a novel dynamic buffer allocation
for improving the resource utilization and performance of the
network interface and on-chip network. The proposed network
interface architecture enables sharing slots of reorder buffer slots
via a dynamic buffer management [9] [10], thereby replacing the
conventional, static resource allocation. Also, based on the
proposed architecture, a hybrid network interface is presented to
integrate both memory and processor in a tile. Besides, the
proposed architecture exploits AMBA AXI protocol, to allow
backward compatibility with existing IP cores [4]. We also
present micro-architectures of the network interface, particularly
the reordering mechanism to realize the idea. To our knowledge
there are not any documented implementation details of the
reordering buffer yet. The paper is organized as follows. In
Section II, a brief review of the related works is presented. In
Section III, the proposed architecture is discussed while the
results are presented in Section IV, and the summary and
conclusion are given in the last section.

II. RELATED WORK
Due to the fact that most of the recent published researches

have focused on the design and description of NoC architectures,
there has been relatively little attention to network interface
designs particularly when supporting out-of-order mechanism.
The authors in [7] present ideas of transaction ID renaming and
distributed soft arbitration in the context of distributed shared
memories. In such a system, because of using a global
synchronization in the on-chip network, the performance might be
degraded and the cost of hardware overhead for the on-chip
network is too high. In addition, the implementation of ID
renaming and reorder buffer can suffer from low resource
utilization. This has been improved in [11] by moving reorder
buffer resources from the network interface into network routers.
In spite of increasing the resource utilization, the delay of release
packets recalling data from distributed reordering buffer can
significantly degrade the performance when the size of the
network increases [11]. Moreover, the proposed architecture is
restricted to deterministic routing algorithms and, thus, it is not a
suitable method for an adaptive routing. However, neither [7] nor
 [11] has presented a micro-architecture of the network interface.
An efficient on-chip network interface supporting shared memory
abstraction and flexible network configuration is presented by
Radulescu et al [8]. The proposed architecture has the advantage
of improving reuse of IP cores, and offers ordering messages via
channel implementation. Nevertheless, the performance is
penalized because of increasing latency, and besides, the packets
are routed on the same path in NoC, which forces the routers to
use the deterministic routing. Yang et al proposed NISAR [6], a
network interface architecture using AXI protocol capable of
packet reordering based on a look up table;

Fig. 1. Master-side network interface architecture. Fig. 2. Slave-side network interface architecture.

but NISAR used a statically partitioned reorder buffer, thereby it
had a simple control logic but suffered from low buffer utilization
in different traffic patterns. In addition, NISAR does not support
the burst transaction, whereas burst type should be handled by the
network interface. The major contribution of this paper is to
propose a novel dynamic buffer allocation architecture for the
reorder buffer to increase the utilization.

III. PROPOSED NETWORK INTERFACE
ARCHITECTURE

In the AXI transaction-based model [4] [7], IP cores can be
classified as master (active) and slave (passive) [8]. Masters
initiate transactions by issuing read and write requests and one or
more slaves (memories) receive and execute each request.
Subsequently, a response issued by a slave can be either an
acknowledgment (corresponding to the write request) or data
(corresponding to the read request) [8]. The AXI protocol
provides a “transaction ID” field assigned to each transaction.
Transactions from the same master IP core, but with different IDs
have no ordering restriction while transactions with the same ID
must be completed in order. Thus a reordering mechanism in the
network interface is needed to afford this ordering requirement
 [4] [7] [11]. Since IP cores are classified into masters and slaves,
the network interface is also divided into the master network
interface (Fig. 1) and slave network interface (Fig. 2). Both
network interfaces are partitioned into two paths: forward and
reverse. The forward path transmits the AXI transactions received
from an IP core to a router; and the reverse path receives the
packets from the router and converts them back to AXI
transactions. The proposed network interfaces for both master and
slave sides are described in detail as follows.

A. Master-side Network Interface:
As shown in the Fig. 1, the forward path of the master

network interface transferring requests to the network is
composed of an AXI-Queue, a Packetizer unit, and a Reorder
unit, while the reverse path, receiving the responses from the
network, is composed by a Packet-Queue, a Depacketizer unit,
and the Reorder unit. The Reorder unit is a shared module
between the forward and reverse paths.
AXI-Queue: the AXI master transmits write address, write data,
or read address to the network interface through channels. The
AXI-Queue unit performs the arbitration between write and read
transaction channels and stores requests in either write or read
request buffer. The request messages will be sent to the packetizer

unit if admitted by the reorder unit, and on top of that a sequence
number for each request should be prepared by the reorder unit
after the admittance.
Packetizer: it is configured to convert incoming messages from
the AXI-Queue unit into header and data flits, and delivers the
produced flits to the router. Since a message is composed of
several parts, the data is stored in the data buffer and the rest of
the message is loaded in corresponding registers of the header
builder unit. After the mapping unit converts the AXI address into
a network address by using an address decoder, based on the
request information loaded on relative registers and the sequence
number provided by the reorder buffer, the header of the packet
can be assembled. Afterward, the flit controller wraps up the
packet for convenient transmission.
Packet-Queue: this unit receives packets from the router; and
according to the decision of the reorder unit a packet is delivered
to the depacketizer unit or reorder buffer. In fact, when a new
packet arrives, the sequence number and transaction ID of the
packet will be sent to the reorder unit. Based on the decision of
the reorder unit, if the packet is out of order, it is transmitted to
the reorder buffer, and otherwise it will be delivered to the
depacketizer unit directly.
Depacketizer: the main functionality of the Depacketizer unit is
to restore packets coming from either the packet queue unit or
reorder buffer into the original data format of the AXI master
core.

Fig. 3. Status-Register and StatusTable of Reorder Unit.
Reorder Unit: it is the most influential part of the network
interface including a Status-Register, a Status-Table, a Reorder
Buffer, and a Reorder-Table. In the forward path, preparing the
sequence number for corresponding transaction ID, and avoiding
overflow of the reorder buffer by the admittance mechanism are
provided by this unit. On the other side, in the reverse path, this
unit determines where the outstanding packets from the packet

queue should be transmitted (reorder buffer or depacketizer), and
when the packets in the reorder buffer could be released to the
depacketizer unit.
Status-Register and Status-Table: Status-Register (S_Reg) is an
n-bit register where each bit corresponds to one of the AXI
transaction IDs. As depicted in Fig. 3, this register records
whether there are one or more messages with the same transaction
ID being issued or not. To record the state of the outstanding
messages, Status-Table (S_Table) is adopted. Each entry of this
table is considered for messages with the same transaction ID,
and includes valid tag (v), Transaction ID (T-ID), Number of
outstanding Message (N-M) as well as the Expecting Sequence
number (E-S). The register and table might be updated in both
forward and reverse paths described as follows. In the forward
path, when the first message of each transaction ID requests for
an admittance from the reorder unit to enter the network, the
corresponding bit in the status register goes high (Procedure A,
line 1). The sequence number (Seq-Num) is produced by the
reorder unit, if the admittance is given. This value, indicating the
order of the messages within the transaction ID, is equal to zero
for the first message of each transaction ID (Procedure A, line 2).
“ReservedSize” keeps the required space of all outstanding
transactions in the network. Indeed, this register reserves the
number of buffer slots required by outstanding messages of
different transaction IDs. In order to prevent overflow of the
reorder buffer, the reorder unit compares the new message size
with the free space of reorder buffer. If the required space is
available, the message will be admitted and the required space in
the reorder buffer must be reserved (Procedure A, line 3). An
available (free) row in the status table will be initiated by
procedure B, when the second request of a transaction ID is
admitted. For the rest of the admitted requests of the transaction
ID, the procedure C should be executed as the sequence number is
obtained by adding N-M and E-S values. Also, the number of
outstanding message (N-M) is increased by +1, and the required
space in the reorder buffer must is reserved by procedure C. Note
that E-S indicates the next response sequence number of the
corresponding transaction ID that should be delivered to the
depacketizer unit.
Procedure A:
1 S_Reg(T_ID) <= ‘1’;
2 SeqNum <= (others =>’0’);
3 ReservedSize <= ReservedSize + NewMsgSize;
Procedure B:
1 S_Table(FreeRow)(v) <= ’1’;
2 S_Table(FreeRow)(T_ID) <= Tran_ID;
3 S_Table(FreeRow)(N_M) <= “0010”;
4 S_Table(FreeRow)(E_S) <= (others =>’0’);
5 SeqNum <= “001”;
6 ReservedSize <= ReservedSize + NewMsgSize;
Procedure C:
1 SeqNum <= S_Table(FindRow)(N_M) +

 S_Table(FindRow)(E_S);
2 S_Table(FindRow)(N_M) <= S_Table(FindRow)(N_M) + 1;
3 ReservedSize <= ReservedSize + NewMsgSize;

In the reverse path, the transaction ID and sequence number
of the arriving response packet (message) are sent to the reorder
unit to find the related row in the status table according to the
transaction ID (T-ID). If the sequence number of incoming packet
is equal to E-S value, the packet is an expected packet (in-order)
and should be delivered to the depacketizer unit which releases
the occupied buffer space; thereafter, E-S and N-T values will be
increased by +1 and -1, respectively (Procedure D).

If N-M value reaches zero, the transaction will be terminated
by resetting the valid bit for both status register and status table.
However, the packet is out-of-order and should be delivered to
the reorder buffer, if the sequence number of the packet is not
equal to E-S. Additionally, only one message with the given
transaction ID should have been sent to the network, if the given
transaction ID is not matched in the status table, thereby only the
corresponding bit in the status register will be reset.
Procedure D:
1 S_Table(FindRow)(N_M) <= S_Table(FindRow)(N_M) - 1;
2 S_Table(FindRow)(E_S) <= S_Table(FindRow)(E_S) + 1;
3 ReservedSize <= ReservedSize - ReceivedMsgSize;

Reorder-Table and Reorder-Buffer: As shown in Fig. 4, each
row of the reorder table corresponds to an out-of-order packet
stored in the reorder buffer.

Fig. 4. Dynamic buffer allocation

This table includes the valid tag (v), the transaction ID (T-ID), the
sequence number (S-N) as well as the head pointer (P). In the
reorder buffer, the flits of each packet are maintained by a linked
list structure providing high resource efficiency with little
hardware overhead. On top of that, the goal of using the shared
reorder buffer is to support variable packet size and improve the
buffer utilization which can also increase the performance by
feeding more packets into the network. Fig. 4 exhibits a pointer
field adopted to indicate the next flit position in the reorder
buffer. Using the proposed structure in Fig. 4, each out-of-order
packet updates the reorder table and reorder buffer according to
the procedure E, and F. The first three operations in the procedure
E, stores the transaction ID and sequence number from the header
flit of the out-of-order packet to the available slot indicated by
FreeRow in the reorder table; and the last operation in E updates
the pointer to point to the available slot in the reorder buffer.
Procedure E:
ReorderTable [FreeRow][V] <= ‘1’;
ReorderTable [FreeRow][T-ID] <= HeaderFlit[TranID];
ReorderTable [FreeRow][S-N] <= HeaderFlit[SeqNum];
ReorderTable [FreeRow][P] <= Current_Free_Slot;
Procedure F:
ReorderBuf[Current_Free_Slot][V] <= ‘1’;
ReorderBuf[Current_Free_Slot][Data] <= flit;
ReorderBuf[Current_Free_Slot][P] <= Next_Free_Slot;
Current_Free_Slot <= Next_Free_Slot;
The procedure F is intended to store the incoming flits into the
reorder buffer. While Current_Free_Slot shows the current free
location in the reorder buffer in order to store the current flit,
Next_Free_Slot returns an available slot for the next flit. By
repeating the operations in the procedure F, whole of the payload
flits will be stored in the reorder buffer.

Fig. 5. Hybrid network interface architecture.

Whenever an in-order packet delivered to the depacketizer
unit, the depacketizer controller checks the reorder table for the
validity of any stored packet with the same transaction ID and
next sequence number. If so, the stored packet will be released
from the reorder unit to the depacketizer unit.

B. Slave-side Network Interface:
A slave IP core cannot operate independently. It receives

requests from master cores and responds to them. Hence, using
reordering mechanism in the slave network interface is
completely meaningless. But to avoid losing the order of header
information (transaction ID, sequence number, and etc) carried by
arriving requests, a FIFO has been considered. After processing a
request in the slave core, the response packet should be created by
the packetizer. As can be seen from Fig. 2, to generate the
response packet, after the header content of the corresponding
request is invoked from the FIFO, and some parameters of the
header (destination address, and packet size, and etc) are modified
by the adapter, the response packet will be formed. However, the
components of slave-side interface in both forward and reverse
paths are almost similar to the master-side interface components,
except the reorder unit.

C. Hybrid Network Interface
The hybrid model is formed by combining the master-side

and slave-side network interfaces. As illustrated in Fig. 5, based
on the type of incoming packet (Req/Resp) the detector unit
determines the target unit (Slave-side Queue/Master-side Queue).
Regarding the MPSoC’s configuration, if each node is supposed
to integrate a dedicated processor and memory, instead of using
two network interfaces (master and slave), the hybrid model is
more beneficial, particularly in terms of area and power costs.

IV. EXPERIMENTAL RESULTS
A cycle-accurate 2D NoC simulator is implemented to assess

the efficiency of the proposed method. The simulator models all
major components of the NoC such as network interface, routers,
and wires. We use a 25-node (5 5) 2D mesh on-chip network
within two different configurations for the entire architecture. In
the first configuration (A), out of 25 nodes, ten nodes are assumed
to be processor (master cores-with master network interface) and

other fifteen nodes are memories (slave cores-with slave network
interface). For the second configuration (B), each node is
considered to have a processor and a memory (master and slave
cores-with hybrid network interface). The router has a typical
state-of-the-art structure including input buffers, a VC (Virtual
Channel) allocator, a routing unit, a switch allocator and a
crossbar. Each router has 5 input/output ports, and each input port
of the router has 2 VCs. Packets of different message types (read
and write) are assigned to corresponding VCs to avoid message
deadlock [12]. The arbitration scheme of the switch allocator is
round-robin. The array size, router algorithm, link width, number
of VCs, buffer depth of each VC, and traffic type are the other
parameters which must be specified for the simulator. The routers
adopt XY routing and wormhole switching. For all routers, the
data width (flit) was set to 32 bits, and the buffer depth of each
VC is 5 flits. The baseline architecture (with fixed packet length)
uses 1 flit for messages related to read requests and write
responses, and 5 flits for data messages, representative of read
responses and write requests; the size of read request messages
typically depends on the network size and memory capacity of the
system. As discussed in the previous section, the message size of
the proposed mechanism is variable and depends on the
request/response length produced by the master/slave core. As the
performance metric, we use latency defined as the number of
cycles between the initiation of a request operation issued by the
master and the time when the response is completely delivered to
the master from the memory. The request rate is defined as the
ratio of the successful read/write request injections into the
network interface over the total number of injection attempts. All
the cores and routers are assumed to operate at 2GHz. For fair
comparison, we keep the bisection bandwidth constant in all
configurations. We also set the size of the reorder buffer to 48
words, able to embed 6 outstanding requests with the burst size of
8. All memories (slave cores) can be accessed simultaneously by
each master core continuously generating memory requests.

A. Performance evaluation
To evaluate the performance of the proposed schemes, the

uniform synthetic traffic pattern has been considered separately
for both configurations (A and B). The random traffic represents
the most generic case, where each processor sends in-order
read/write requests to memories with uniform probability.

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Request Rate (fraction of capacity)

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Baseline - config A

Proposed - config A

Baseline - config B

Proposed - config B

Hence, the memories and request type (read or write) are selected
randomly. Eight burst sizes, among 1 to 8, are stochastically
chosen regarding the data length of the request. Fig. 6 reveals that
compared with the baseline architecture [6] [7] the proposed
architecture reduces the average latency when the request rate
increases in both configurations A and B under uniform traffic.
One of the foremost reasons of such an improvement is that
because the size of packets is not fixed and depends on the
request and response lengths, the resource utilization is high and
thus, the latency is reduced. Another subtle reason for improving
the performance is that getting more free slots in the reorder
buffer allows more messages to enter the network.

Fig. 6. Performance evaluation of both configurations.

B. Hardware Overhead
For appraising the area overhead of the proposed

architectures, the network interfaces were synthesized by
Synopsys D.C. using the UMC 0.09 m technology. In addition to
the aforementioned configuration of the network interface, the
tran_id and seq_id were set to 4-bit and 3-bit respectively. The
layout areas and power consumptions of the master-side, slave-
side, and hybrid interfaces are listed in Table 1. As can be seen
from the table, using the hybrid architecture with the later
configuration (B) is more beneficial than using the master-side
and slave-side models when each node is composed of a
dedicated processor and memory. That is, using a hybrid network
interface model reduces 14.3% and 13.7% in hardware area and
power dissipation respectively. On the other hand, the master-side
and slave-side network interfaces architectures are more cost
efficient if each node consists of a dedicated processor or memory
as in the former configuration (A). Also, comparing the area cost
of the baseline model for each proposed network interface
indicates that the hardware overheads of implementing the
proposed schemes are less than 0.5%.

V. SUMMARY AND CONCLUSION
Accessing several memories in parallel to augment the

memory bandwidth, may lead to the deadlock caused by the in-
order requirement [7]. The deadlock can be solved if a reordering
mechanism is exploited by the network interface. The resource
utilization of the conventional reordering methods is not efficient
enough; thus, in this work, we presented a high performance
network interface with a novel dynamic buffer allocation which
improves the resource utilization, and overall on-chip network
performance. Also, the micro-architectures of the proposed
master-side and slave-side network interfaces which are

compatible with AMBA AXI protocol have been introduced. A
cycle-accurate simulator was used to evaluate the efficiency of the
proposed architecture. Under both uniform and non-uniform
traffic models, in high traffic load, the proposed architecture had
lower average communication delay in comparison with the
baseline architecture.

Table 1. Hardware implementation details.

NI Area (μm2) Power (μW)
Slave-side 42848 2.74

Master-side 75559 4.41

Hybrid 101492 6.12

ACKNOWLEDGMENT
The authors wish to acknowledge Nokia Foundation for the
partial financial support during the course of this research.

REFERENCES
[1] B.Towles and W.Dally, “Route packets, not wires: on-chip

interconnection networks”, Proc. DAC 2001.
[2] L.Benini and G.De Micheli, “Networks on chips: a new

SoC paradigm”, IEEE Computer, January 2002.
[3] C. A. Zeferino, M. E. Kreutz, and A. A. Susin, “RASoC: A

Router Soft-Core for Networks-on-Chip”, Proceedings of
DATE’04, pp. 1530-1591, 2004.

[4] ARM, AMBA AXI Protocol Specification, Mar. 2004.
[5] OCP International Partnership, Open Core Protocol

Specification. 2.0 Release Candidate, 2003.
[6] X. Yang, Z. Qing-li, F. Fang-fa, Y. Ming-yan, L.

Cheng, “NISAR: An AXI compliant on-chip NI architecture
offering transaction reordering processing”, in Proc.
ASICON, pp. 890-893, 2007, Greece.

[7] W. Kwon, et al., “A Practical Approach of Memory
Access Parallelization to Exploit Multiple Off-chip DDR
Memories”, Proc. DAC, 2008.

[8] A. Radulescu, and et al., “An Efficient On-Chip NI Offering
Guaranteed Services, Shared-Memory Abstraction, and
Flexible Network Configuration”, in Proc IEEE TCAD,
24(1), January 2005.

[9] M. H. Neishaburi, Z. Zilic, “Reliability aware NoC router
architecture using input channel buffer sharing”, in Proc.
GLSVLSI, pp. 511-516, 2009.

[10] M. Lai, Z. Wang, L. Gao, H. Lu, K. Dai, "A Dynamically-
Allocated Virtual Channel Architecture with Congestion
Awareness for On-Chip Routers," in Proceedings of the
46th Design Automation Conference (DAC), pp. 630-633,
2008.

[11] W. Kwon, S. Yoo, J. Um, and S. Jeong, “In-network reorder
buffer to improve overall NoC performance while resolving
the in-order requirement problem”, In proc. DATE’09, pp.
1058 – 1063, France, 2009.

[12] S. Murali, and et al. “Designing message-dependent
deadlock free networks on chips for application-specific
systems on chips,” In Proc. VLSI-SoC, pages 158-163,
2006.

