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Abstract- Increasing memory parallelism in MPSoCs to provide 
higher memory bandwidth is achieved by accessing multiple 
memories simultaneously. Inasmuch as the response 
transactions of concurrent memory accesses must be in-order, 
a reordering mechanism is required. To our knowledge the 
resource utilization of conventional reordering mechanisms is 
low. In this paper, we present a novel network interface 
architecture for on-chip networks to increase the resource 
utilization and to improve overall performance. Also, based on 
the proposed architecture, a hybrid network interface is 
presented to integrate both memory and processor in a tile. The 
proposed architecture exploits AXI transaction based protocol 
to be compatible with existing IP cores. Experimental results 
with synthetic test cases demonstrate that the proposed 
architecture outperforms the conventional architecture in 
terms of latency. Also, the cost of the presented architecture is 
evaluated with UMC 0.09 m technology. 

I. INTRODUCTION
Network-on-chip (NoC) is a feasible alternative for the 

traditional bus-based communication in SoCs due to its 
reusability, scalability, and parallelism in communication 
infrastructure  [1] [2]. NoCs are composed of routers connecting 
Processing Elements (PE), to deliver the data (packets) from one 
place to another  [3], and Network Interfaces (NI) the 
communication interface between each PE and router. The 
fundamental function of network interfaces is to provide 
communication between PEs and network infrastructure. That is, 
the network interface translates the language between the PE and 
router based on a standard communication protocol such as AXI 
 [4] and OCP  [5]. In-order delivery should be handled when
exploiting an adaptive routing algorithm for distributing the
packet through the network  [6], or in obtaining memory access
parallelization by sending requests from a master IP core to
multiple slave memories  [7] [8]. The former is dependent on the
routing protocols of the network, whilst the latter is dominated by
the distributed shared memory architecture for on-chip
multiprocessor which demands higher memory bandwidth. The
subtle point is that in distributed shared memory systems, the
responses might need to be completed in-order even if the on-chip
network exploits a deterministic routing algorithm. That is, when
a master sends requests to different memories, the responses
might be required to return in the same order in which the master
issued the addresses, and therefore a reordering mechanism in
NoC should be provided by the network interface. For
implementing an efficient network interface, the resource
utilization must be improved because in on-chip networks we
have limitation of hardware overhead, power consumption, and
network latency. According to our observation, the utilization of
reorder buffer in network interfaces is significantly low.
Therefore, the traditional buffer management is not efficient
enough for network interfaces. Hence, an advantageous
reordering mechanism and resourceful management of buffers in

the network interface are demanded to increase the utilization and 
efficiency of the on-chip interconnection network. 

In this work, we introduce a high performance network 
interface architecture utilizing a novel dynamic buffer allocation 
for improving the resource utilization and performance of the 
network interface and on-chip network. The proposed network 
interface architecture enables sharing slots of reorder buffer slots 
via a dynamic buffer management  [9] [10], thereby replacing the 
conventional, static resource allocation. Also, based on the 
proposed architecture, a hybrid network interface is presented to 
integrate both memory and processor in a tile. Besides, the 
proposed architecture exploits AMBA AXI protocol, to allow 
backward compatibility with existing IP cores  [4]. We also 
present micro-architectures of the network interface, particularly 
the reordering mechanism to realize the idea. To our knowledge 
there are not any documented implementation details of the 
reordering buffer yet. The paper is organized as follows. In 
Section II, a brief review of the related works is presented. In 
Section III, the proposed architecture is discussed while the 
results are presented in Section IV, and the summary and 
conclusion are given in the last section. 

II. RELATED WORK
Due to the fact that most of the recent published researches 

have focused on the design and description of NoC architectures, 
there has been relatively little attention to network interface 
designs particularly when supporting out-of-order mechanism. 
The authors in  [7] present ideas of transaction ID renaming and 
distributed soft arbitration in the context of distributed shared 
memories. In such a system, because of using a global 
synchronization in the on-chip network, the performance might be 
degraded and the cost of hardware overhead for the on-chip 
network is too high. In addition, the implementation of ID 
renaming and reorder buffer can suffer from low resource 
utilization. This has been improved in  [11] by moving reorder 
buffer resources from the network interface into network routers. 
In spite of increasing the resource utilization, the delay of release 
packets recalling data from distributed reordering buffer can 
significantly degrade the performance when the size of the 
network increases  [11]. Moreover, the proposed architecture is 
restricted to deterministic routing algorithms and, thus, it is not a 
suitable method for an adaptive routing. However, neither  [7] nor 
 [11] has presented a micro-architecture of the network interface.
An efficient on-chip network interface supporting shared memory
abstraction and flexible network configuration is presented by
Radulescu et al  [8]. The proposed architecture has the advantage
of improving reuse of IP cores, and offers ordering messages via
channel implementation. Nevertheless, the performance is
penalized because of increasing latency, and besides, the packets
are routed on the same path in NoC, which forces the routers to
use the deterministic routing. Yang et al proposed NISAR  [6], a
network interface architecture using AXI protocol capable of
packet reordering based on a look up table;



Fig. 1. Master-side network interface architecture. Fig. 2. Slave-side network interface architecture. 

but NISAR used a statically partitioned reorder buffer, thereby it 
had a simple control logic but suffered from low buffer utilization 
in different traffic patterns. In addition, NISAR does not support 
the burst transaction, whereas burst type should be handled by the 
network interface. The major contribution of this paper is to 
propose a novel dynamic buffer allocation architecture for the 
reorder buffer to increase the utilization. 

III. PROPOSED NETWORK INTERFACE
ARCHITECTURE 

In the AXI transaction-based model  [4] [7], IP cores can be 
classified as master (active) and slave (passive)  [8]. Masters 
initiate transactions by issuing read and write requests and one or 
more slaves (memories) receive and execute each request. 
Subsequently, a response issued by a slave can be either an 
acknowledgment (corresponding to the write request) or data 
(corresponding to the read request)  [8]. The AXI protocol 
provides a “transaction ID” field assigned to each transaction. 
Transactions from the same master IP core, but with different IDs 
have no ordering restriction while transactions with the same ID 
must be completed in order. Thus a reordering mechanism in the 
network interface is needed to afford this ordering requirement 
 [4] [7] [11]. Since IP cores are classified into masters and slaves,
the network interface is also divided into the master network
interface (Fig. 1) and slave network interface (Fig. 2). Both
network interfaces are partitioned into two paths: forward and
reverse. The forward path transmits the AXI transactions received
from an IP core to a router; and the reverse path receives the
packets from the router and converts them back to AXI
transactions. The proposed network interfaces for both master and
slave sides are described in detail as follows.

A. Master-side Network Interface:
As shown in the Fig. 1, the forward path of the master

network interface transferring requests to the network is 
composed of an AXI-Queue, a Packetizer unit, and a Reorder 
unit, while the reverse path, receiving the responses from the 
network, is composed by a Packet-Queue, a Depacketizer unit, 
and the Reorder unit. The Reorder unit is a shared module 
between the forward and reverse paths. 
AXI-Queue: the AXI master transmits write address, write data, 
or read address to the network interface through channels. The 
AXI-Queue unit performs the arbitration between write and read 
transaction channels and stores requests in either write or read 
request buffer. The request messages will be sent to the packetizer 

unit if admitted by the reorder unit, and on top of that a sequence 
number for each request should be prepared by the reorder unit 
after the admittance. 
Packetizer: it is configured to convert incoming messages from 
the AXI-Queue unit into header and data flits, and delivers the 
produced flits to the router. Since a message is composed of 
several parts, the data is stored in the data buffer and the rest of 
the message is loaded in corresponding registers of the header 
builder unit. After the mapping unit converts the AXI address into 
a network address by using an address decoder, based on the 
request information loaded on relative registers and the sequence 
number provided by the reorder buffer, the header of the packet 
can be assembled. Afterward, the flit controller wraps up the 
packet for convenient transmission. 
Packet-Queue: this unit receives packets from the router; and 
according to the decision of the reorder unit a packet is delivered 
to the depacketizer unit or reorder buffer. In fact, when a new 
packet arrives, the sequence number and transaction ID of the 
packet will be sent to the reorder unit. Based on the decision of 
the reorder unit, if the packet is out of order, it is transmitted to 
the reorder buffer, and otherwise it will be delivered to the 
depacketizer unit directly.  
Depacketizer: the main functionality of the Depacketizer unit is 
to restore packets coming from either the packet queue unit or 
reorder buffer into the original data format of the AXI master 
core. 

Fig. 3. Status-Register and StatusTable of Reorder Unit. 
Reorder Unit: it is the most influential part of the network 
interface including a Status-Register, a Status-Table, a Reorder 
Buffer, and a Reorder-Table. In the forward path, preparing the 
sequence number for corresponding transaction ID, and avoiding 
overflow of the reorder buffer by the admittance mechanism are 
provided by this unit. On the other side, in the reverse path, this 
unit determines where the outstanding packets from the packet 



queue should be transmitted (reorder buffer or depacketizer), and 
when the packets in the reorder buffer could be released to the 
depacketizer unit.  
Status-Register and Status-Table: Status-Register (S_Reg) is an 
n-bit register where each bit corresponds to one of the AXI
transaction IDs. As depicted in Fig. 3, this register records
whether there are one or more messages with the same transaction
ID being issued or not. To record the state of the outstanding
messages, Status-Table (S_Table) is adopted. Each entry of this
table is considered for messages with the same transaction ID,
and includes valid tag (v), Transaction ID (T-ID), Number of
outstanding Message (N-M) as well as the Expecting Sequence
number (E-S). The register and table might be updated in both
forward and reverse paths described as follows. In the forward
path, when the first message of each transaction ID requests for
an admittance from the reorder unit to enter the network, the
corresponding bit in the status register goes high (Procedure A,
line 1). The sequence number (Seq-Num) is produced by the
reorder unit, if the admittance is given. This value, indicating the
order of the messages within the transaction ID, is equal to zero
for the first message of each transaction ID (Procedure A, line 2).
“ReservedSize” keeps the required space of all outstanding
transactions in the network. Indeed, this register reserves the
number of buffer slots required by outstanding messages of
different transaction IDs. In order to prevent overflow of the
reorder buffer, the reorder unit compares the new message size
with the free space of reorder buffer. If the required space is
available, the message will be admitted and the required space in
the reorder buffer must be reserved (Procedure A, line 3). An
available (free) row in the status table will be initiated by
procedure B, when the second request of a transaction ID is
admitted. For the rest of the admitted requests of the transaction
ID, the procedure C should be executed as the sequence number is
obtained by adding N-M and E-S values. Also, the number of
outstanding message (N-M) is increased by +1, and the required
space in the reorder buffer must is reserved by procedure C. Note
that E-S indicates the next response sequence number of the
corresponding transaction ID that should be delivered to the
depacketizer unit.
Procedure A: 
1  S_Reg(T_ID) <= ‘1’; 
2  SeqNum <= (others =>’0’); 
3  ReservedSize <= ReservedSize + NewMsgSize; 
Procedure B: 
1  S_Table(FreeRow)(v) <= ’1’; 
2  S_Table(FreeRow)(T_ID) <= Tran_ID; 
3  S_Table(FreeRow)(N_M) <= “0010”; 
4  S_Table(FreeRow)(E_S) <= (others =>’0’); 
5  SeqNum <= “001”; 
6  ReservedSize <= ReservedSize + NewMsgSize; 
Procedure C: 
1  SeqNum <= S_Table(FindRow)(N_M) +  

     S_Table(FindRow)(E_S); 
2  S_Table(FindRow)(N_M) <= S_Table(FindRow)(N_M) + 1;  
3  ReservedSize <= ReservedSize + NewMsgSize; 

In the reverse path, the transaction ID and sequence number 
of the arriving response packet (message) are sent to the reorder 
unit to find the related row in the status table according to the 
transaction ID (T-ID). If the sequence number of incoming packet 
is equal to E-S value, the packet is an expected packet (in-order) 
and should be delivered to the depacketizer unit which releases 
the occupied buffer space; thereafter, E-S and N-T values will be 
increased by +1 and -1, respectively (Procedure D). 

If N-M value reaches zero, the transaction will be terminated 
by resetting the valid bit for both status register and status table. 
However, the packet is out-of-order and should be delivered to 
the reorder buffer, if the sequence number of the packet is not 
equal to E-S. Additionally, only one message with the given 
transaction ID should have been sent to the network, if the given 
transaction ID is not matched in the status table, thereby only the 
corresponding bit in the status register will be reset. 
Procedure D: 
1  S_Table(FindRow)(N_M) <= S_Table(FindRow)(N_M) - 1;  
2  S_Table(FindRow)(E_S) <= S_Table(FindRow)(E_S) + 1;  
3  ReservedSize <= ReservedSize - ReceivedMsgSize; 

Reorder-Table and Reorder-Buffer: As shown in Fig. 4, each 
row of the reorder table corresponds to an out-of-order packet 
stored in the reorder buffer.  

Fig. 4. Dynamic buffer allocation 

This table includes the valid tag (v), the transaction ID (T-ID), the 
sequence number (S-N) as well as the head pointer (P). In the 
reorder buffer, the flits of each packet are maintained by a linked 
list structure providing high resource efficiency with little 
hardware overhead. On top of that, the goal of using the shared 
reorder buffer is to support variable packet size and improve the 
buffer utilization which can also increase the performance by 
feeding more packets into the network. Fig. 4 exhibits a pointer 
field adopted to indicate the next flit position in the reorder 
buffer. Using the proposed structure in Fig. 4, each out-of-order 
packet updates the reorder table and reorder buffer according to 
the procedure E, and F. The first three operations in the procedure 
E, stores the transaction ID and sequence number from the header 
flit of the out-of-order packet to the available slot indicated by 
FreeRow in the reorder table; and the last operation in E updates 
the pointer to point to the available slot in the reorder buffer. 
Procedure E:  
ReorderTable [FreeRow][V]  <= ‘1’; 
ReorderTable [FreeRow][T-ID] <= HeaderFlit[TranID]; 
ReorderTable [FreeRow][S-N] <= HeaderFlit[SeqNum]; 
ReorderTable [FreeRow][P]  <= Current_Free_Slot; 
Procedure F: 
ReorderBuf[Current_Free_Slot][V]  <= ‘1’; 
ReorderBuf[Current_Free_Slot][Data]   <= flit; 
ReorderBuf[Current_Free_Slot][P]  <= Next_Free_Slot; 
Current_Free_Slot   <= Next_Free_Slot; 
The procedure F is intended to store the incoming flits into the 
reorder buffer. While Current_Free_Slot shows the current free 
location in the reorder buffer in order to store the current flit, 
Next_Free_Slot returns an available slot for the next flit. By 
repeating the operations in the procedure F, whole of the payload 
flits will be stored in the reorder buffer. 



Fig. 5. Hybrid network interface architecture.

Whenever an in-order packet delivered to the depacketizer 
unit, the depacketizer controller checks the reorder table for the 
validity of any stored packet with the same transaction ID and 
next sequence number. If so, the stored packet will be released 
from the reorder unit to the depacketizer unit. 

B. Slave-side Network Interface:
A slave IP core cannot operate independently. It receives

requests from master cores and responds to them. Hence, using 
reordering mechanism in the slave network interface is 
completely meaningless. But to avoid losing the order of header 
information (transaction ID, sequence number, and etc) carried by 
arriving requests, a FIFO has been considered. After processing a 
request in the slave core, the response packet should be created by 
the packetizer. As can be seen from Fig. 2, to generate the 
response packet, after the header content of the corresponding 
request is invoked from the FIFO, and some parameters of the 
header (destination address, and packet size, and etc) are modified 
by the adapter, the response packet will be formed. However, the 
components of slave-side interface in both forward and reverse 
paths are almost similar to the master-side interface components, 
except the reorder unit. 

C. Hybrid Network Interface
The hybrid model is formed by combining the master-side

and slave-side network interfaces. As illustrated in Fig. 5, based 
on the type of incoming packet (Req/Resp) the detector unit 
determines the target unit (Slave-side Queue/Master-side Queue). 
Regarding the MPSoC’s configuration, if each node is supposed 
to integrate a dedicated processor and memory, instead of using 
two network interfaces (master and slave), the hybrid model is 
more beneficial, particularly in terms of area and power costs.    

IV. EXPERIMENTAL RESULTS
A cycle-accurate 2D NoC simulator is implemented to assess 

the efficiency of the proposed method. The simulator models all 
major components of the NoC such as network interface, routers, 
and wires. We use a 25-node (5 5) 2D mesh on-chip network 
within two different configurations for the entire architecture. In 
the first configuration (A), out of 25 nodes, ten nodes are assumed 
to be processor (master cores-with master network interface) and 

other fifteen nodes are memories (slave cores-with slave network 
interface). For the second configuration (B), each node is 
considered to have a processor and a memory (master and slave 
cores-with hybrid network interface). The router has a typical 
state-of-the-art structure including input buffers, a VC (Virtual 
Channel) allocator, a routing unit, a switch allocator and a 
crossbar. Each router has 5 input/output ports, and each input port 
of the router has 2 VCs. Packets of different message types (read 
and write) are assigned to corresponding VCs to avoid message 
deadlock  [12]. The arbitration scheme of the switch allocator is 
round-robin. The array size, router algorithm, link width, number 
of VCs, buffer depth of each VC, and traffic type are the other 
parameters which must be specified for the simulator. The routers 
adopt XY routing and wormhole switching. For all routers, the 
data width (flit) was set to 32 bits, and the buffer depth of each 
VC is 5 flits. The baseline architecture (with fixed packet length) 
uses 1 flit for messages related to read requests and write 
responses, and 5 flits for data messages, representative of read 
responses and write requests; the size of read request messages 
typically depends on the network size and memory capacity of the 
system. As discussed in the previous section, the message size of 
the proposed mechanism is variable and depends on the 
request/response length produced by the master/slave core. As the 
performance metric, we use latency defined as the number of 
cycles between the initiation of a request operation issued by the 
master and the time when the response is completely delivered to 
the master from the memory. The request rate is defined as the 
ratio of the successful read/write request injections into the 
network interface over the total number of injection attempts. All 
the cores and routers are assumed to operate at 2GHz. For fair 
comparison, we keep the bisection bandwidth constant in all 
configurations. We also set the size of the reorder buffer to 48 
words, able to embed 6 outstanding requests with the burst size of 
8. All memories (slave cores) can be accessed simultaneously by
each master core continuously generating memory requests.

A. Performance evaluation
To evaluate the performance of the proposed schemes, the

uniform synthetic traffic pattern has been considered separately 
for both configurations (A and B). The random traffic represents 
the most generic case, where each processor sends in-order 
read/write requests to memories with uniform probability. 
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Hence, the memories and request type (read or write) are selected 
randomly. Eight burst sizes, among 1 to 8, are stochastically 
chosen regarding the data length of the request. Fig. 6 reveals that 
compared with the baseline architecture  [6] [7] the proposed 
architecture reduces the average latency when the request rate 
increases in both configurations A and B under uniform traffic. 
One of the foremost reasons of such an improvement is that 
because the size of packets is not fixed and depends on the 
request and response lengths, the resource utilization is high and 
thus, the latency is reduced. Another subtle reason for improving 
the performance is that getting more free slots in the reorder 
buffer allows more messages to enter the network. 

Fig. 6. Performance evaluation of both configurations. 

B. Hardware Overhead
For appraising the area overhead of the proposed

architectures, the network interfaces were synthesized by 
Synopsys D.C. using the UMC 0.09 m technology. In addition to 
the aforementioned configuration of the network interface, the 
tran_id and seq_id were set to 4-bit and 3-bit respectively. The 
layout areas and power consumptions of the master-side, slave-
side, and hybrid interfaces are listed in Table 1. As can be seen 
from the table, using the hybrid architecture with the later 
configuration (B) is more beneficial than using the master-side 
and slave-side models when each node is composed of a 
dedicated processor and memory. That is, using a hybrid network 
interface model reduces 14.3% and 13.7% in hardware area and 
power dissipation respectively. On the other hand, the master-side 
and slave-side network interfaces architectures are more cost 
efficient if each node consists of a dedicated processor or memory 
as in the former configuration (A). Also, comparing the area cost 
of the baseline model for each proposed network interface 
indicates that the hardware overheads of implementing the 
proposed schemes are less than 0.5%.  

V. SUMMARY AND CONCLUSION
Accessing several memories in parallel to augment the 

memory bandwidth, may lead to the deadlock caused by the in-
order requirement  [7]. The deadlock can be solved if a reordering 
mechanism is exploited by the network interface. The resource 
utilization of the conventional reordering methods is not efficient 
enough; thus, in this work, we presented a high performance 
network interface with a novel dynamic buffer allocation which 
improves the resource utilization, and overall on-chip network 
performance. Also, the micro-architectures of the proposed 
master-side and slave-side network interfaces which are 

compatible with AMBA AXI protocol have been introduced. A 
cycle-accurate simulator was used to evaluate the efficiency of the 
proposed architecture. Under both uniform and non-uniform 
traffic models, in high traffic load, the proposed architecture had 
lower average communication delay in comparison with the 
baseline architecture. 

Table 1. Hardware implementation details. 

NI Area (μm2) Power (μW) 
Slave-side 42848 2.74

Master-side 75559 4.41

Hybrid 101492 6.12
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