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a b s t r a c t

Network congestion has a negative impact on the performance of on-chip networks due to the increased
packet latency. Many congestion-aware routing algorithms have been developed to alleviate traffic
congestion over the network. In this paper, we propose a congestion-aware routing algorithm based
on the Q-learning approach for avoiding congested areas in the network. By using the learning method,
local and global congestion information of the network is provided for each switch. This information can
be dynamically updated, when a switch receives a packet. However, Q-learning approach suffers from
high area overhead in NoCs due to the need for a large routing table in each switch. In order to reduce
the area overhead, we also present a clustering approach that decreases the number of routing tables
by the factor of 4. Results show that the proposed approach achieves a significant performance improve-
ment over the traditional Q-learning, C-routing, DBAR and Dynamic XY algorithms.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

As the number of processing elements in a single chip increases,
a new communication infrastructure is needed in place of the tra-
ditional bus-based architectures in a multiprocessor system-on-
chip (MPSoC) design. Network-on-Chip (NoC) has been emerged
as a dominant communication infrastructure in MPSoC design to
meet better performance, flexibility, and scalability compared with
previous solutions for on-chip communication [1–3]. To date, most
NoCs have employed mesh topology because of its simple struc-
ture, ease of implementation, and support for reuse [4]. In a
mesh-based NoCs, each core is connected to a switch by a local net-
work interface. Each switch is connected to its neighbors through
bidirectional links [5,6]. Cores can communicate with each other
by propagating packets through switches in the network. For each
packet, there might be several possible paths from any source to
any destination. However, the underlying routing algorithm deter-
mines the selection between the possible paths and its required re-
sources. This clearly demonstrates the impact of routing
algorithms on performance. As the network size increases, conges-
tion becomes one of the most important parameters limiting NoC
performance. Adaptive routing algorithms partially address the
network congestion problem by considering paths with low laten-
cies [7]. These methods can alleviate congestion to improve the
reliability and communication efficiency in NoCs. Adaptive routing
algorithms, depending on the degree of adaptiveness can be
classified as partially adaptive or fully adaptive. Partially adaptive
routing algorithms use some of the shortest paths between the
sender and the receiver, but not all packets are allowed to use
every shortest path. For example the turn model routing is based
on prohibiting certain turns to prevent deadlock [8]. Fully adaptive
routing algorithms allow to route packets on any shortest path. To
make the routing algorithm fully adaptive, there is a need of virtual
channels in a wormhole switching network [9,10].

Reinforcement learning (RL) [11] is a machine learning para-
digm that has been applied in many different areas. It obtains an
optimal solution by trial-and-error interaction within a dynamic
environment. In RL, a decision-maker or agent percepts the envi-
ronment and chooses an action at each state. The agent receives
a reward after every action it executes. The final goal of the agent
is to learn a policy for selecting the best action among all possible
actions. In other words, RL refers to a learning method that allows
an agent to learn how to make a good decision from experiences
and then improve the performance based on them. Q-learning is
one of the most important breakthroughs in reinforcement learn-
ing while is developed by Watkins and Dayan [12]. In this free-
model learning algorithm an agent first learns a model of the
environment on-line and then utilizes this knowledge to find an
effective control policy for the given task. So Q-learning provides
a self-optimizing controller design without a model of the environ-
ment. The Q-learning algorithm was used to create an adaptive
routing algorithm named Q-routing [13]. In Q-routing, each switch
makes its routing decision based on the information on the neigh-
boring switches. A switch stores a table of Q-values that estimates
the quality of alternative paths. These values are updated each
time a switch sends a packet to one of its neighbors. This way, as
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the switch routes packets, Q-values gradually incorporate more
global information.

In this paper, we propose a fully adaptive Q-routing based rout-
ing algorithm, named Bi-directional low-weight clustering-based
Q-routing (Bi-LCQ). In this approach the network is split up into
several clusters each maintaining a Q-table. This leads to not only
reducing the area overhead considerably, but also providing a fas-
ter way of collection and utilization of local and global congestion
information. The results show a significant performance improve-
ment over traditional methods.

The reminder of this paper is organized as follows. Section 2
reviews the related work. Some background information on
Q-learning and Q-routing techniques is given in Section 3. Section 4
describes the adjusted Q-routing algorithm for NoCs. In Section 5,
the proposed adaptive routing algorithm is explained. The results
are reported in Section 6 while the conclusion is given in the last
section.
2. Related work

In recent years, a significant amount of research has been direc-
ted towards improving the routing efficiency of NoCs. The aim of
many existing adaptive routing techniques is to distribute traffic
over the whole network. Adaptive routing algorithms can be
decomposed into routing and selection functions. The routing
function supplies a set of output channels based on the current
and destination switches. The selection function selects an output
channel from the set of channels supplied by the routing function
[14]. The selection functions can be classified as either congestion-
oblivious or congestion-aware schemes [15]. In congestion-oblivi-
ous algorithms, routing decisions are independent of the
congestion condition of the network. For example, in the XY rout-
ing algorithm, packets first traverse along the X direction, then
along the Y direction. In contrast, congestion-aware routing algo-
rithms consider the congestion status of the network in their rout-
ing decisions. Several methods have been presented in order to
address the network congestion problem [16,17]. Congestion-
aware routing policies can be further classified based on whether
they rely on purely local congestion information or take into ac-
count the congestion status of other areas in the network. DyXY
[18] uses local information, i.e. the current queue length of the cor-
responding input port in the neighboring switches, to decide on the
next hop. DyXY may lead to forward packets through congested
area as the utilized local information is not sufficient. Most com-
mon implementations of routing algorithms, e.g. NoP [19], RCA
[15], and DBAR [20], have focused on collecting local or global con-
gestion information to get an estimation of the congested areas in
the network. An agent-based congestion-aware technique is pre-
sented in [21] to estimate congestion at some clusters and make
the routing decision based on this estimation.

The Q-routing allows a network to be constantly adapted to the
changing congestion condition and traffic flows. In this approach,
each switch makes its routing decision based on the latency infor-
mation, represented as a table of Q-values which estimate the
quality of alternative routes. These values are updated each time
a switch sends a packet to one of its neighbors. Depending on
traffic patterns and load levels, only few Q-values are updated reg-
ularly while most of the Q-values in the network remain un-up-
dated and thus unreliable. Some proposals have been presented
to address this issue such as CQ-routing [22], PQ-routing [23],
and DRQ-routing [24]. In CQ-routing, each Q-value is attached with
a confidence value (C-value) which determines how closely the
corresponding Q-value represents the current state of the network.
PQ-routing keeps track of the last update time and the best
Q-values seen so far. PQ-routing is able to explore paths that have
been inactive for a long time, and thereby is able to restore its pre-
vious policy. A similar idea is presented in DRQ-routing where the
speed of restoration is expected to be high. In the DRQ method,
learning is performed by carrying the latency information by data
packets to intermediate switches (backward exploration unique to
DRQ-routing) and also by receiving latency information from the
neighboring switch where a data packet is sent to (forward explo-
ration similar to Q-routing).

There are several works presented in NoCs using the Q-learning
method. DyNoC is proposed in [25] to handle communication
among modules which are dynamically placed on a reconfigurable
NoCs. In another work, fault-tolerant deflection routing algorithm
(FTDR) [26] is proposed inspired by Q-learning techniques for tol-
erating faults in NoCs. Q-routing is also used to provide different
levels of Quality-of-Service (QoS) such as Best Effort (BE) and Guar-
anteed Throughput (GT) for NoCs [27]. In this approach, a novel
scheme is presented which contrasts the performance of Q-routing
with the XY routing strategy in the context of QoS. A Q-learning
based Congestion-aware Algorithm (QCA) [28] is presented to alle-
viate congestion condition in NoCs. QCA estimates and predicts the
congestion condition of the network as close to the actual values as
possible. This estimation is used in the routing decision to choose a
less congested path. Moreover, Dual Q-routing Adaptive learning
Rate (DuQAR) [29] has enhanced Q-routing performance for Net-
works-on-Chip when the network becomes congested. For this to
happen, a congestion detection technique is introduced in this
method which updates information dynamically according to the
changing traffic condition. HARAQ [30] takes the best usage of
allowable turn in the network and finds all alternative paths to
route packets. Then it uses a learning approach to find an optimal
path between all options of minimal or non-minimal routes.
C-routing [31] is a Q-learning based method which takes advan-
tage of clustering approach to reduce the routing table size
compared with conventional Q-routing algorithms. Another work,
CQ-routing [32], utilized also clustering method to improve the
network performance and area reduction rather than C-routing.

In all of the aforementioned Q-routing methods, routing tables
are updated by sending a data packet to a downstream switch
and receiving an estimated latency value from the upstream
switch. Therefore, as the distance between a source and destina-
tion increases, it takes more hops to update the routing table
regarding each destination. In addition, Q-routing methods suffer
from large area overhead in NoCs due to using large table sizes in
each switch.

The goal of this work is to gain performance by applying the
learning methods while keeping the area overhead as minimal as
possible. In our proposed method, the network is divided into sev-
eral regions, each region maintaining a routing table instead of
each switch. This approach can reduce the table sizes by the factor
of 4. It might be thought that this improvement is at the cost of
degrading the performance. However, as shown in the result sec-
tion, for instance, the performance is improved up to 45% over
DyXY method in uniform traffic in 8 � 8 mesh network. The reason
is that in traditional methods updating the routing tables are lim-
ited to the traversing path by the packet toward the destination. In
Bi-LCQ, however, routing tables are updated by the congestion con-
dition of the traversing regions. This provides a wider view of the
hotspot areas. Moreover, in Bi-LCQ, routing tables are updated
more frequently than traditional methods due to fast propagation
of learning packets up to the factor of 3.
3. Background

In this section, we will give a brief introduction to the basic
concepts of Q-learning as one of the most popular algorithms that
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performs reinforcement learning. In addition, we describe the
Q-routing algorithm taking advantage of the reinforcement learn-
ing aspect.

3.1. Q-learning

Q-learning [12] is a model-free learning method in which an
agent can interact with the environment without prior knowl-
edge about the system status to achieve a given goal. Thus, it
is a highly adaptive and flexible algorithm. At each time, the
agent observes the environment and chooses an action (a) based
on the system state (s). By performing the action, the system
moves from the current state (s) to the next state (s’). Then
the agent receives a reward (a real number) or punishment
(a negative reward) in the new state which updates the Q-value.
Each Q-value is represented as Q(s, a), which includes the
expected long-term reward of taking action a in state s. Q-values
can be stored in a table called Q-table. The Q-table maintains
five fields named current state, next state, action, Q-value and
goal state. Current state refers to everything that the agent cur-
rently perceives, while next state is determined by the current
state and the actions selected by the agents. Action indicates
the action that the agent performs. Q-value keeps the reward
value that the agent receives in the current state when it
executes an action. Goal state indicates the learning goal by
trial-and-error.

The objective of Q-learning is to maximize the total future dis-
counted rewards by mapping states to actions. There are two
methods for selecting an action from the possible actions in every
state [11] as below:

- Exploration or random action selection: Optimal actions, which
are not chosen yet, are added to the table. Therefore, the agent
chooses an action randomly.

- Exploitation or Q-table based: Actions are selected according to
the learned Q-table.

It is clear that selecting an action is more exploration at the
beginning of learning, and is more exploitation towards the end
of learning.

3.2. Q-routing

Q-routing [13] is a network routing method based on the
Q-learning method. It is able to find the least congested path
among available paths from a source switch to a destination
switch. Q-routing first learns a representation of the network state
in terms of Q-values and then uses these values to make routing
decisions. Each switch stores a Q-table that estimate the quality
of alternative routes. Q-table is updated each time a switch sends
a packet to one of its neighbors. Assume that the switch x sends
a packet to one of its neighboring switches y, destined for the
switch d (Fig. 1).
s
x

i

y

j
dz

Fig. 1. An example of Q-routing method.
The maximum time it will take for a packet to reach its destina-
tion from the switch x is bounded by the sum of three quantities:
(1) the waiting time (qy) in the packet queue of the switch y (2) the
transmission delay (d) over the link from switch x to y, and (3) the
time Qy(z, d) it would take for the switch y to send this packet to its
destination via any of the switch y’s neighbors (z). Qy(z, d) is ob-
tained from the following equation:

Qyðz; dÞ ¼ min
n2NðyÞ

Q yðn;dÞ

where N(y) is a set of the y’s neighboring switches.
The switch y sends an estimated latency value to the switch x.

This value contains the best latency estimate from the switch y
to the destination d (Qy(z, d)) and the waiting time at the input buf-
fer of switch y (qy). Upon receiving the estimated value, the switch
x computes the new estimate for Qx(y, d) as follows:

Qxðy;dÞest ¼ Q yðz; dÞ þ qy þ d

Qx(y, d)est is the switch x’s best estimated delay that it would
take for a packet to reach its destination switch d from the switch
x when sent via its neighboring switch y. The new Q-value in the Q-
table is obtained by the following equation after receiving the Qx(y,
d)est value:

Qxðy;dÞnew ¼ Q xðy;dÞold þ cðQ xðy;dÞest � Q xðy; dÞoldÞ ð1Þ

Learning is performed by updating Q-values. Learning rate (c)
determines at which rate the new information overrides the old
one. Learning rate can take a value between zero and one; the va-
lue of zero means that no learning is made by the algorithm; while
the value of one indicates that only the most recent information is
used.

The Q-routing algorithm has two steps as follows:

- Step 1: the switch x sends a packet, destined for the switch d, to
one of its neighboring switches y.
1. Select a packet from the queue.
2. Find the minimum Q-value from the switch x to the destina-

tion switch d, through one of the neighboring switches,
assumed y.
Q xðy;dÞ ¼ min
m2NðxÞ

Q xðm;dÞ
N(x) is a set of the x’s neighboring switches.
3. Forward the packet to neighboring switch y.
4. As switch y receives a packet from switch x, find the minimum

Q-value from the switch y to the destination switch d through
one of the neighboring switches, assumed z.
Q yðz;dÞ ¼ min
n2NðyÞ

Q yðn;dÞ
5. Send y’s estimate back to switch x which includes Qy(z, d) and
qy.

6. Get ready for receiving the next packet (goto 1).
- Step 2: when the switch x receives Q-values’ estimate from its
neighboring switch y.
1. Switch x receives an estimated value from neighbor y contain-
ing Qy(z, d) and qy.

2. Update the Q-value (Qx(y, d)) as given in formula (1).
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4. Adjusted Q-routing algorithm for NoCs
Direction
New Estimated 

Congestion
Destiantion
Cluster-ID

6 bits4 bits1 bit

Fig. 4. Learning packet format.

Source
Node ID

6 bits

Destination
Node ID EOM

6 bits

BOM

1 bit 1 bit

Fig. 3. Header of the data packet format.
In this section, we discuss about applying the traditional Q-
routing algorithm to NoCs. At first, we adapt the Q-tables according
to the mesh network features. Then we explain the format of data
packet (propagating data information) and learning packet (for car-
rying the Q-routing information). Finally, we describe our pro-
posed Q-routing algorithm for NoCs.

4.1. Adapted Q-table

Conventional Q-tables should be redefined in order to be used
in NoCs. This modification is done as follows: Current state and
next state represent the current and next switches in NoCs. Action
refers to the output port which can be within one of the following
cases: north, south, west, and east directions. Q-value is
represented by the estimated congestion value to deliver a packet
from the current to the destination switch via the next switch.
Finally, goal state can be considered as the destination switch.
In sum, current state, next state, action, Q-value, and goal state in
conventional Q-tables are mapped into current switch, next switch,
output port, estimated latency, and destination switch in NoCs,
respectively.

Each switch in the network maintains a Q-table similar to
Fig. 2(a). For example, this figure shows a Q-table of switch 1 in
8 � 8 mesh network. In this table, each row corresponds to a des-
tination; each column relates to an output port; the contents of the
table are the estimated latencies; and the next switch is the neigh-
boring switch having the minimum latency value for a correspond-
ing destination. Since a separate row should be dedicated to each
destination in the network, the area overhead of Q-tables becomes
problematic in NoCs.

Notice that, in conventional Q-routing models, the waiting
time at input buffers is a measure of latency, however, we use
the number of occupied buffer slots at input buffers as a metric
of latency. C-routing algorithm [31] is a Q-routing based
approach proposed in NoCs. It defines a new Q-table structure
(CRouting-tables) in order to reduce the Q-table sizes. In the
C-routing approach, the number of columns is m � 1, where m
is the number of dimensions. By using a clustering approach (it
will be explained in details in Section 5), the number of rows
can be decreased to (n/C) + C, where n is the number of switches
in the network and C is the number of clusters. In sum, each
switch in the C-routing algorithm maintains a CRouting-table
(Fig. 2(b)) with the size of ((n/C) + C) � (m � 1). As an example,
in 8 � 8 mesh network, the table size is reduced by 75% compared
with conventional Q-tables. Our basic structure of the adapted
Q-table (AQ-table shown in (Fig. 2(c)) reduces the number of
columns to two. The reason is that in a minimal routing, packets
can be delivered into at most two directions at a switch.
Fig. 2. Formats of different Q-tables in 8 � 8 mesh network (a) Q-table at switch 1, (b)
Therefore, there is no need to maintain four columns as two col-
umns are always empty.

4.2. Data and learning packets formats

Two types of packets traverse in the network, data packets and
learning packets. They use separate virtual channels to propagate
information. The header flit format of a typical data packet is
shown in Fig. 3. Each flit is n-bit wide including 6-bit source ad-
dress, 6-bit destination address, 1-bit EOM (End of Packet), and
1-bit BOM (Begin of Packet) sign. The content of the packet is lo-
cated in the rest of the flits (body).

The learning packet is a 1-flit packet that is generated for per
data packet. As shown in Fig. 4, it is a 1-flit packet consisted of four
main fields described as follows:
� Direction: It is a 1-bit value determining the direction from

which a learning packet is forwarded. The value of 0 and 1
are corresponding to the X-direction and Y-direction,
respectively.
� NewEstimatedCongestion: It is obtained by adding the local and

global latencies. Local latency determines the occupied buffer
slots in all virtual channels of the input buffer. In Eq. (1) the
term qy is referred to local latency. Global latency determines
the estimated latency from the next switch to the destination
switch. In Eq. (1), the term Qy(z, d) indicates the global
latency. We considered 4 bits to encode the total estimated
latency.
� Destination Switch ID: It determines the destination switch of a

data packet. 6 bits are considered for this purpose which is
CRotuing table at switch 1, (c) AQ-table at switch 1, and (d) CQ-table at cluster 1.
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sufficient for 8 � 8 mesh network. For a bigger size network,
more bits should be allocated to the destination ID field.

4.3. Q-routing policy

Routing units decide from which output channel a packet
should be delivered. The decision is made based on the latency val-
ues stored in Q-tables. So, it is required to select between Q-values
and also keep Q-tables updated. Minimum selection function and
update Q-table function are responsible for these tasks. By receiving
a data packet, the minimum selection function selects an output
channel with the lowest latency value toward the destination.
Upon receiving the learning packet, the update Q-table function
updates the corresponding entry in Q-table with a new value. In
the following pseudo code, the usages of both functions are illus-
trated when a data packet is delivered from switch x to switch y
and a learning packet is transferred from switch y to switch x.
1. At switch y, the minimum selection function returns one of
the neighbors of switch y with the smallest Q-value.

2. The packet is sent from the current switch y to the down-
stream switch; concurrently a learning packet is delivered
to switch x.

3. Switch x receives the learning packet and updates Q-value in
the corresponding row of Q-table, calling the update Q-table
function.
In minimum selection function, when the switch x receives a

packet destined for the switch d, it checks the vector
Qx(�; d) of Q-values to select a neighboring switch y in which
Qx(y; d) is minimum (note that � determines all neighboring
switches of switch x in minimal directions). It is important to note
that these Q-values are not exact. They estimate the packet latency
from the current to the destination switch and thus the routing
decision based on these estimates are close to optimal solution
but does not necessarily give the best solution.
X-Dir Y-Dir

0

Learning Packet from switch 2

New
EstimatedLaDirection

(a)

.

.

.
8

0 7+2

3 8

Data Packet
Learning Packet

Q-table of switch 0

Fig. 5. An example of adjusted
1. Dest_id  Get_Destination_Switch();
2. if destination is the local switch then
3. consume the packet
4. end if;
5. if (number of neighboring switches=1) then
6. the packet is sent through the only possible direction
7. end if;
8. if (number of neighboring switches=2) then
9. if (Q-table(Dest_id)(X-dir) < Q-table(Dest_id) (Y-dir))

10. SelectedNeighbor  NeighboringSwitch _Xdir;
11. else
12. SelectedNeighbor  NeighboringSwitch_Ydir;
13. end if;
14. end if;
When a learning packet arrives to a switch (e.g. switch x), Q-ta-

ble is updated in order to be adapted to the changing state of the
network.
By receiving the learning packet, extract the header

1. Dir  get_direction()
2. Q_value_new  get_NewEstimated_latency()
3. Dest_id  get_Destination_Switch_id()

- - - - - - - - - - - - - - - - - -

4. Q_value_old  Q_table(dest_id)(Dir)
5. Q-table(dest_id)(Dir)  Q_value_old + 0.5(Q_value_new -

Q_value_old)
As already discussed, Eq. (1) is used to calculate the new esti-
mated latency. Without loss of generality, in this work, we assume
that the link delay, d, is a constant value of zero in Eq. (1).
Moreover, a simple weighting assignment of 50–50 is used for
old and new information. Therefore, Eq. (1) is rewritten as:
 to switch 1

tency

(b)

Destination
Node ID

8

X-Dir Y-Dir

.

.

.
12 7

Q-table of switch 1

Q-routing for NoCs.
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Fig. 6. Header of the data packet format.

Direction
New Estimated 

Congestion
Destination
Cluster-ID

4 bits4 bits2 bits

Fig. 7. Learning packet format.
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Q xðy; dÞnew ¼ Qxðy;dÞold þ 0:5ðQ yðz; dÞ þ qy � Q xðy; dÞoldÞ

Fig. 5(a) illustrates an example where a data packet is going
to be sent from switch 0 to the destination switch 8. The pack-
et can be delivered through either switch 1 or switch 3 which
are located on X and Y directions, respectively. As shown in the
Q-table of switch 0, the latency value in the X-direction is
smaller than the Y-direction, so the packet is forwarded to
switch 1.

Whenever, the data arrives at the intermediate switch 1
(Fig. 5(b)), the routing unit decides whether to send a packet to
switch 2 or switch 4. Suppose that the routing unit selects the
neighboring switch in the Y-direction (i.e. switch 4) as the next
hop which has a lower latency value. At this time, a learning packet
is generated and delivered back to switch 0. This learning packet
should aggregate the local and global congestion information be-
fore sending to switch 4. To obtain the local congestion informa-
tion, the number of occupied buffer slots at the input buffer of
switch 1 is used. For the global information, the latency value is ex-
tracted from the corresponding row of the Q-table at switch 1. This
value is the minimum estimated latency required to send a packet
from switch 1 to the destination switch 8 through switch 4 (i.e.
along the Y-direction).

In our example, the local and global congestion information is
assumed to be 2 and 7, respectively. After summing up the local
and global congestion information, the obtained value is deliv-
ered back to switch 0 via a learning packet. Upon receiving
the learning packet, switch 0 updates its Q-table by using the
old and new estimated values. In this example, this modification
affects the row number 8 and the X-Dir column at the Q-table of
switch 0.

Although Q-routing is able to alleviate congestion by choosing a
low congested path among alternative paths, it suffers from high
area overhead. Each switch requires a Q-table with the size of
(n2 � 4) in a n � n mesh network. Therefore, in the whole network,
the area overhead of using Q-tables is equal to n2 � (n2 � 4). This
unacceptable area overhead motivates us to present a low-weight
Q-routing approach. This method is not only able to reduce the
area overhead significantly, but also improve the performance.

5. Low-weight clustering-based Q-routing

As already mentioned, the original Q-routing is not suitable
for NoCs, as it needs a large area for storing Q-tables. In this sec-
tion, to tackle with the problem of area overhead, we present a
novel low-weight clustering-based Q-routing approach, called
LCQ. The Q-tables in this approach are called Cluster Q-tables
(CQ-tables). In the proposed clustering approach, the size of
the traditional Q-table is decreased such that it can be employed
in NoCs.

An idea is to consider the network as different regions (clusters)
each containing a single CQ-table for all the switches within the
cluster instead of maintaining a CQ-table for each switch. CQ-ta-
bles maintain the information about the routing cost of sending a
packet from the source cluster to the possible destination clusters.
Therefore, the CQ-table contains C � 1 rows and 2 columns as
shown in Fig. 2(d), where C is the number of clusters in the net-
work. The Q-values in each row indicates the congestion values
from the current cluster to reach the destination cluster through
each of the neighboring clusters in X or Y direction.

5.1. Data and learning packets’ format

In LCQ, the data packet format is modified by adding 6 bits into
the header flit (Fig. 6). These additional fields can be described as
follows:
� Direction: determines the direction in which the data packet is
forwarded from the sender cluster into the receiver cluster.
Since each cluster is connected to at most four neighboring clus-
ters, two bits are enough to encode the direction of neighboring
cluster IDs.
� BufferSizes: determines the average number of occupied buffer

slots of the input buffers inside a cluster from where the packet
enters the cluster until it leaves the cluster. We have assigned
four bits for this field.

The learning packet consists of three fields as shown in Fig. 7.
These fields are described as follows:

� Direction: determines the direction of receiver cluster ID of the
data packet or direction of sender cluster ID of the learning
packet. Two bits are enough for this field.
� NewEstimatedCongestion: It is obtained by summing up the local

and global congestion values. Local congestion is measured by
dividing the sum of the occupied buffer slots into the number
of hops taken by a packet within a cluster. The congestion value
is determined with four bits.
� DestinationCluster-ID: determines the destination cluster ID. 4

bits are considered for this field.

The receiver cluster of the learning packet uses the NewEstimat-
edCongestion value to update the CQ-table. The DestinationCluster-
ID determines the row and by using Direction the column is
determined.
5.2. Routing algorithm

In this section, we describe the functionality of the routing
algorithm, and how a packet is routed from a source switch to
a destination switch. A clustered network in an 8 � 8 mesh net-
work is illustrated in Fig. 8 in which the network is divided into
16 clusters. The number of switches within each cluster is consid-
ered to be four as the traffic condition within each cluster is
roughly similar.

Clusters can be also formed dynamically at run time, so that
based on the traffic condition, the numbers of switches within each
cluster changes dynamically. This claims that all Q-tables be reset
and reformed according to the new cluster’s configuration even if
only one switch leaves its cluster and gets involved to another
one. Thereby, another learning phase is needed to fill out the Q-ta-
bles. Moreover, the number of rows in Q-tables should be set with
the maximum number of clusters in the network. There are many
other challenges behind dynamic clustering such as: defining the
maximum number of switches that can be included in a cluster
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Fig. 8. Clustering approach in an 8 � 8 mesh.
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and the metrics for dividing switches into different clusters. We
consider the dynamic clustering approach as our future work.

In LCQ, every switch first determines the destination switch of the
received packet. If the destination switch is located in the same cluster
as the current switch, it uses the XY routing algorithm because the
destination switch is close to the current switch and it does not need
a more complex routing algorithm to cope with. Otherwise, if the des-
tination switch is located in another cluster than the current switch,
LCQ chooses a neighboring cluster which has a lowest latency value.

Suppose that a packet is generated at C0 toward the destination
C15. This packet has just passed through cluster C5 and it is already
at cluster C6. The packet can be either sent through cluster C7 or C10.
The decision is made based on the latency values stored in the CQ-ta-
ble of cluster C6. Let us assume that cluster C7 has lower latency va-
lue. The packet is needed to passing though cluster C6 to reach
cluster C7. By routing a packet inside cluster C6, the number of occu-
pied buffer slots of the input buffers (that are located in the path) is
stored in the header flit and carried by the packet. Upon forwarding
the packet to the neighboring cluster C7, a learning packet is gener-
ated at cluster C6 and delivered back to the cluster C5. The learning
packet includes the local and global latencies which can be seen as a
new estimated latency of sending a packet from cluster C5 to the
destination switch via cluster C6. By receiving the learning packet
at cluster C5, the old latency estimation is combined with the new
value and the CQ-table is updated. Therefore, Eq. (1) would be:

Q C5ðC6;CdÞnew¼Q C5ðC6;CdÞoldþ0:5ðQC6ðC7;CdÞþqC6�Q C5ðC6;CdÞoldÞ
ð2Þ

The difference between Eqs. (1) and (2) is that, Eq. (1) is defined
at the switch level while Eq. (2) is defined at the cluster level. For
example, the local latency in Eq. (1) determines the occupied buffer
slots at the input buffer of a neighboring switch, while in Eq. (2) it
is a sum of occupied buffer slots of the input buffers along the path
in the neighboring cluster (qC6). In Eq. (2), the global latency
(QC6(C7, Cd)) indicates the minimum estimated latency to reach
from cluster C6 to the destination switch via one of the neighbor-
ing clusters (C7). In general, each cluster is aware of the traffic load
in neighboring clusters and selects the least congested cluster for
avoiding overloaded links. Similar to Q-routing, the proposed algo-
rithm can be summarized in two steps: when a switch receives a
data packet and when it receives a learning packet.

Step 1: the functionality of LCQ algorithm is described in the fol-
lowing pseudo code when a switch has just received a packet in
current cluster Cc. This packet is going to be sent to a switch in
the destination cluster Cd. After receiving a data packet by a switch
in cluster Cc, the switch compares the current and destination clus-
ter IDs. If cluster IDs are the same, XY routing is employed, other-
wise learning method is utilized (lines 1–7).
1. Determine the current cluster(Cc);
2. Determine the destination cluster(Cd);
3. if Cc = Cd then
4. Use xy_routing_algorithm;
5. else
6. Use Q_learning_routing_algorithm;
7. end if;

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

8. function Q_learning_routing_algorithm
9. –Extracting information from data packet header

10. Cu  UpstreamCluster_ID;
11. BufferSizes  BufferSizes;
12. –Determining the neighboring cluster (Cn) with minimum

traffic load
13. Cn ¼minCm2NeigborsðCcÞQðCm;CdÞ
14. –Measuring total occupied buffer slots in input buffers

when the packet traveling inside cluster Cc
15. Do
16. BufferSizes  OccupiedBufferSlotsinInputBuffer +

BufferSizes;
17. Forward packet to the neighboring switch;
18. Until (packet is going to leave the cluster Cc);
19. –Upon leaving the packet, generate learning packet and

send it back to upstream cluster Cu
20. LocalLatency  BufferSizes /NumberOfHops;
21. GlobalLatency  QCc(Cn,Cd);
22. NewEstimatedLatency  LocalLatency + GlobalLatency;
23. RecivingCluster_ID  Cu;
24. DestinationCluster_ID  Cd;
25. –Updating the data packet header before delivering packet

into cluster Cn
26. UpstreamCluster_ID Cc;
27. BufferSizes  0;
28. End function
If the routing algorithm is Q-learning, UpstreamCluster_ID and
BufferSizes fields are extracted from the data packet header (lines
8–11). Meanwhile, a neighboring cluster with a minimum esti-
mated latency is selected from the CQ-table (lines 12–13). By tra-
versing the packet within a same cluster, the occupied buffer slots
(BufferSizes) in the input buffers are summed together and carried
by the header flit (lines 14–18). Upon leaving the current cluster,
the learning packet is generated and delivered to the upstream
cluster Cu. The learning packet should carry the new estimated la-
tency which consists of the local and global latencies. The local la-
tency is obtained by dividing the sum of occupied buffer slots to
the number of hops taken by a packet inside cluster Cc. The global
latency is extracted from the CQ-table of the current cluster Cc.
This value shows the estimated latency of the packet in the
remaining path from the next cluster Cn to the destination cluster
Cd. These values are used to update the corresponding entry of the
CQ-table in the upstream cluster Cu. The row of the table is deter-
mined by a destination cluster ID while the column is a direction in
which the data packet has been already delivered from (lines 19–
24). Before sending the data packet to the next cluster, some
modifications should be made in the header flit such as setting
the upstream cluster and resetting the occupied buffer slots value
(lines 25–28).
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Fig. 9. An example of Bi-LCQ.
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Step 2: The functionality of LCQ algorithm is described in the
following pseudo code when a switch in the cluster receives the
learning packet. As shown in this algorithm, the switch extracts
the new estimated latency, column and row information from
the learning packet (lines 1–9) and then updates the CQ-table
using the old and new estimation values (lines 10–13). We use
the round-robin arbiter to allow access to a CQ-table when there
are multiple requests for updating a CQ-table in the related cluster.
1. –Extracting information from learning packet
2. column  direction(ReceivingCluster_ID);
3. row  DestinationCluster_ID;
4. if (xReceivingCluster-xCurrentCluster != 0)
5. column  xDir;
6. else
7. column  yDir;
8. end if;
9. Qest  NewEstimatedLatency;

10. –Update the corresponding entry of the CQ-table using Eq.
(2) as follow:

11. Qold  CQ_table(row,column);
12. Qnew  Qold + 0.5 (Qest + Qold);
13. CQ_table(row,column)  Qnew;
In LCQ, each cluster makes its routing decisions based on Q-val-

ues that estimate the quality of alternative routes. These values are
updated each time the cluster sends a packet to one of its neigh-
boring clusters. If a Q-value is not updated for a long time, it does
not reflect the real congestion status of the network and the rout-
ing decision based on unreliable Q-values cannot be accurate. To
address this issue, we use a new method for updating Q-values
more frequently. We called it Bi-directional LCQ (Bi-LCQ) because
each cluster updates Q-values by the means of not only learning
packets but also data packets. In other words, similar to a learning
packet, a data packet collects the congestion information along its
path within a cluster. Then, this information is used to update a Q-
value in the next cluster. In Bi-LCQ, data packets are also employed
to update Q-values as they move from the source to destination
cluster. Unlike learning packets that collect the number of occu-
pied buffer slots from the input buffer of input port, data packets
collect the information from the input buffer of output port.
Fig. 9(a) shows an example where a data packet is sent from cluster
C5 to cluster C6 while in Fig. 9(b), a learning packet is delivered
from the cluster C6 to cluster C5. The source and destination clus-
ters are Cs and Cd, respectively. Due to simplicity, the boxes are
represented as the total number of occupied buffer slots of the
input buffers on input ports and output ports within a cluster. As
shown in Fig. 9(a), the data packet collects the congestion values
on the input buffers related to the output ports. The reason is that
this information is useful in future for the packets traversing in the
reverse path (i.e. from cluster Cd to cluster Cs or close by). By using
this information in cluster C6, the row Cs of the CQ-table is up-
dated. When the data packet arrives to cluster C6, a learning packet
is delivered back to cluster C5. The learning packet, however, car-
ries the congestion information of the input buffers of the input
ports. This information is used to update the row Cd of the CQ-table
in cluster C5.
6. Result and discussions

To evaluate the efficiency of the proposed routing scheme, we
selected three algorithms DBAR [20], DyXY [18] and C-routing
[31] schemes which are explained in the related work. A worm-
hole-based NoC simulator based on the OMNET framework [33]
is used to model all major components of the on-chip network
and simulations are carried out to determine the latency character-
istics of each network [34]. The simulator inputs include the net-
work size, packet size, the number of virtual channels, the
network offered load, and the traffic type. In each simulation time
step (nanosecond), packets are stored in the FIFO buffer of the
source switches. The amount of injected packets depends on the
network offered load. Below is the equation for calculating the net-
work offered load:

Networkofferedload ¼ flit size=flit-arrival-delay

flit_size represents the size of the flit. It is assumed that the data
packets have a fixed length of 8 flits with the flit width of 32 bits.
Flit-arrival-delay represents the delay time between previous flit
generation and next flit generation.

The simulations were conducted on 8 � 8 and 14 � 14 meshes
under various traffic patterns. For each simulation, only data pack-
et latencies are averaged over 16,000 packets. Since learning pack-
ets exists only for one hop between the neighboring switches, their
latencies are very small compared with data packets traversing
many hops. For this reason, in the results, latencies are calculated
for data packets and averaged over the number of them. To prop-
agate data packets, two virtual channels are used along both
dimensions, while a separate virtual channel is allocated to learn-
ing packets. Three synthetic traffic profiles including uniform ran-
dom, one-switch and multi-switch hotspot, along with SPLASH-2
[35] application traces are used.
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6.1. Learning process

Learning process can be divided into two phases:
� Training phase: training phase is an essential important step to

model a learning system in an unknown environment. The
learning system obtains a good knowledge about the given task
in this phase. This knowledge is utilized in testing phase which
results in improved performance.

Since the proposed learning method makes decisions based on
the Q-values, the values should be kept up-to-date. We plotted
the variation of Q-values under the hotspot traffic with a single
hotspot at switch (4, 4) and (7, 7) in the 8 � 8 and 14 � 14 mesh.
The variation of Q-values is plotted on the vertical axis and sim-
ulation time on the horizontal axis. As observed from Figs. 10 and
11, Q-values change abruptly at the beginning of the training
phase. In Fig. 10 after 30,000 ns, the variation of Q-values is al-
most stable and the network is fully trained. Therefore,
30,000 ns can be considered as the training time in an 8 � 8
mesh. As shown in Fig. 11, the variation of Q-values reaches to
a stable phase after 45,000 ns in 14 � 14 mesh. It means that
more training time is needed as the network size enlarges, about
Fig. 10. The variation of Q-values a hotspot switch at (4, 4) in the 8 � 8 mesh.

Fig. 11. The variation of Q-values of a hotspot switch at (7, 7) in the 14 � 14 mesh.

Fig. 12. Performance under uniform traffic mod
3000, 4500 packets are generated in the 8 � 8 and 14 � 14
mesh, respectively. In sum, the simulations are ‘‘warmed up’’ by
3000 and 4500 packets, which is enough to reach the reliable
Q-values.

� Testing phase: In this phase, the decision is made based on the
knowledge that is collected in training phase. Learning is also
made in this phase as the network condition changes dynami-
cally. This phase continues until the end of simulation time. In
general, setting the sufficient time for these phases depends
on the problem and it cannot be easily predicted.

6.2. Uniform random traffic profile

In the uniform traffic profile, a switch sends a packet to other
switches with a uniform distribution. In Fig. 12, the average latency
as a function of the offered load is plotted for both mesh sizes. As
observed from the results, the Q-routing schemes (LCQ, Bi-LCQ and
C-routing) behave as efficiently as DBAR and DyXY especially in
medium and high loads. As load increases, DBAR is unable to toler-
ate the high load condition, while the Q-routing schemes learn an
efficient routing policy. Bi-LCQ leads to the lowest latency due to
the fact that it can distribute traffic more efficiently than the other
Q-routing schemes. In fact, in DBAR, C-routing (CR) and Q-routing
(QR), packets use minimal paths based on only local congestion
information in adjacent switches. But in LCQ and Bi-LCQ methods,
routing decision depends on congestion information in adjacent
area (clusters).
6.3. Hotspot traffic profile

Under the hotspot traffic profile, one or more switches are cho-
sen as hotspots receiving an extra portion of the traffic in addition
to the regular uniform traffic. This traffic represents a more realis-
tic traffic pattern. In simulations, given a hotspot percentage of H, a
newly generated packet is directed to each hotspot switch with an
additional H percent probability. We simulate the hotspot traffic
with a single hotspot switch at (4, 4) and (7, 7) in the 8 � 8 and
14 � 14 meshes, respectively. The average latency of each network
with H = 20% are illustrated in Fig. 13.

As observed from the figure, the proposed routing scheme
achieves better performance compared with the other schemes.
The Bi-LCQ method can alleviates the congested areas and per-
forms considerably better than other schemes. Using minimal
routes along with the intelligent routing policy reduces the average
network latency of Bi-LCQ.

Also, we evaluate the multi-switch hotspot in the center of
network at (4, 4), (3, 4), (3, 3) and (4, 3) for 8 � 8 mesh and at
el in (a) 8 � 8 mesh and (b) 14 � 14 mesh.



Fig. 13. Performance under one-switch hotspot traffic model in (a) 8 � 8 mesh and (b) 14 � 14 mesh.

Fig. 14. Performance under multi-switch hotspot traffic model in (a) 8 � 8 mesh and (b) 14 � 14 mesh.
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(7, 7), (6, 7), (6, 6) and (7, 6) for 14 � 14 mesh. Fig. 14 shows that
Bi-LCQ achieves better performance compared with the DyXY rout-
ing, DBAR and the other Q-routing techniques at high traffic load.
This is because the Q-values are frequently updated and thus
reflecting the real status of the network when the network gets
congested.

Table 1 illustrates the performance gain of the proposed ap-
proach over Q-routing based routing algorithms and conventional
on-chip network (DBAR and Dynamic XY) algorithms near the sat-
uration point (0.5) for an 8 � 8 mesh. Experimental results under
different traffic patterns demonstrate that the on-chip network uti-
lizing the Bi-LCQ routing method clearly outperforms the conven-
tional approach considerably.

In addition, the impact of using Q-Learning policy and cluster-
ing approach near the saturation point (0.5) over Q-routing, C-
routing, DBAR and Dynamic XY-routing algorithms is summarized
in Table 2 for an 14 � 14 mesh. The results reveal that usage the
proposed approach distributes the traffic efficiently.
Table 1
Performance gain of the Bi-LCQ method over others methods for three traffic patterns in

Traffic pattern Low-weight cluster-based Q-routing (LCQ) (%)

Uniform 14
Hotspot (one switch) 11
Hotspot (multi-switch) 9

Table 2
Performance gain of the Bi-LCQ method over others methods for three traffic patterns in

Traffic pattern Low-weight cluster-based Q-routing (LCQ) (%)

Uniform 10
Hotspot (one switch) 9
Hotspot (multi-switch) 7
6.4. Application traffic profile

Application traces are obtained from the GEMS simulator [36]
using some application benchmark suites selected from SPLASH-
2. We use a 64-node network configuration: 20 processors and
44 L2-cache memory modules. For the CPU, we assume a core sim-
ilar to Sun Niagara and use SPARC ISA. Each L2 cache core is 512 KB,
and thus, the total shared L2 cache is 22 MB. The memory hierar-
chy implemented is governed by a two-level directory cache coher-
ence protocol. Each processor has a private write-back L1 cache
(split L1 I and D cache, 64 KB, 2-way, 3-cycle access). The L2 cache
is shared among all processors and split into banks (44 banks,
512 KB each for a total of 22 MB, 6-cycle bank access), connected
via on-chip routers. The L1/L2 block size is 64B. Our coherence
model includes a MESI-based protocol with distributed directories,
with each L2 bank maintaining its own local directory. The
simulated memory hierarchy mimics SNUCA while the off-chip
memory is a 4 GB DRAM with a 220-cycle access time.
an 8 � 8 mesh.

Q-routing (QR) (%) C-routing (CR) (%) DBAR (%) DyXY (%)

23 27 32 45
19 22 27 38
17 19 24 36

an 14 � 14 mesh.

Q-routing (QR) (%) C-routing (CR) (%) DBAR (%) DyXY (%)

12 19 26 34
10 16 21 30
13 18 24 28
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Fig. 15. Performance across SPLASH-2 benchmarks.
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Fig. 15 shows the average packet latency across five benchmark
traces, normalized to DyXY. Bi-LCQ provides lower latency than
other schemes and it shows the greatest performance gain on
Water-Nsq with 49% reduction in latency.

6.5. Area overhead

As already discussed, the size of the Q-table can be reduced by
using the C-routing table. The size of the CQ-table can be signifi-
cantly decreased over Q-table and C-routing tables by the LCQ ap-
proach. The occupied area by the Q-tables in n � n mesh network
for Q-routing, C-routing and LCQ can be calculated with the follow-
ing equations:

TQ-routing ¼ n� ðn�mÞ

TC-routing ¼ n� ððDþ CÞ � ðm� 1ÞÞ

TCQ-routing ¼
n
D
� ððC � 1Þ � 2ÞÞ

In these equations, m is the number of directions, C is the num-
ber of clusters, and D indicates the number of switches within each
cluster. The required area of each method in 8 � 8 mesh is given in
Table 3. As can be observed from the table; the size of Q-tables has
been considerably reduced by our approach.

To estimate the hardware cost of our proposed method along
with other routing schemes, the on-chip router of each scheme is
implemented with VHDL and synthesized with Synopsys Design
Compiler using the 65 nm standard CMOS technology with a
timing constraint of 1 GHz for the system clock and supply voltage
of 1 V. The synthesized netlist is verified through post synthesis
simulations. The layout areas of the four schemes are listed in
Table 4. The area overhead of Bi-LCQ is smaller than Q-routing
and C-routing methods.
Table 4
Hardware cost.

Routing method Network area (mm2)

Q-routing 3.913
C-routing 3.187
LCQ 3.025
Bi-LCQ 3.095

Table 3
The area overhead in an 8 � 8 mesh.

Routing
method

No. of
clusters

No. of
tables

Occupied area in network

Q-routing 0 64 64 � 64 � 4 = 16,384bits
C-routing 4 64 64 � (16 + 4) � 3 = 3840bits
LCQ 16 16 16 � (15 � 2) = 480bits
7. Conclusion

In this paper, we proposed a novel congestion-aware routing
algorithm based on Q-learning. The presented routing algorithm
split up the network into several clusters each maintaining a CQ-
table. This table stores local and global congestion information
about alternative routes for forwarding a packet to the destination
cluster. Each cluster can select the less congested output channel
based on CQ-table information. Moreover, in order to update CQ-
tables more frequently, both learning and data packets take part
in propagating the congestion information. By our proposed
approach, not only the area overhead but also latency is reduced
significantly. The results show a significant performance improve-
ment over traditional methods.
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