
J Supercomput (2014) 68:1214–1234
DOI 10.1007/s11227-014-1166-1

Adaptive load balancing in learning-based approaches
for many-core embedded systems

F. Farahnakian · M. Ebrahimi · M. Daneshtalab ·
P. Liljeberg · J. Plosila

Published online: 28 March 2014
© Springer Science+Business Media New York 2014

Abstract Adaptive routing algorithms improve network performance by distributing
traffic over the whole network. However, they require congestion information to facil-
itate load balancing. To provide local and global congestion information, we propose
a learning method based on dual reinforcement learning approach. This information
can be dynamically updated according to the changing traffic condition in the network
by propagating data and learning packets. We utilize a congestion detection method
which updates the learning rate according to the congestion level. This method calcu-
lates the average number of free buffer slots in each switch at specific time intervals
and compares it with maximum and minimum values. Based on the comparison result,
the learning rate sets to a value between 0 and 1. If a switch gets congested, the learning
rate is set to a high value, meaning that the global information is more important than
local. In contrast, local is more emphasized than global information in non-congested
switches. Results show that the proposed approach achieves a significant performance
improvement over the traditional Q-routing, DRQ-routing, DBAR and Dynamic XY
algorithms.

Keywords Congestion-aware routing algorithm · Adaptive routing algorithm ·
Q-learning and Q-routing approaches

1 Introduction

As the routing model impacts the performance and power consumption of the network
in Many-core Embedded Systems, a considerable amount of research has been done

F. Farahnakian (B) · M. Ebrahimi · M. Daneshtalab · P. Liljeberg · J. Plosila
University of Turku, Turku, Finland
e-mail: fahfar@utu.fi

123



Adaptive load balancing 1215

to improve the routing efficiency of the network. Routing algorithm determines the
output channels for forwarding a packet to the destination switch.

Generally, routing algorithms can be classified into deterministic and adaptive [1].
In deterministic routing algorithms, a transfer path is completely determined by the
source and destination addresses. These algorithms are unable to alleviate congestion
since the routing decision is independent of the network condition. For example, in
the XY routing algorithm, packets first transfer along the X direction, then along the
Y direction. Implementing deterministic routing is simple because it stays unchanged
during network’s operation. However, when the packet injection rate increases, deter-
ministic algorithms cannot balance the load across the links. In addition, congestion is
a major factor in limiting the performance of network and needs to be avoided [2]. In
adaptive routing algorithms [3], the transfer path of each packet is determined based
on the current network conditions. When network congestion happens, they choose
paths with low latencies to avoid congested links and switches.

Reinforcement Learning (RL) [4] is a machine learning paradigm that has been
widely applied in many different areas. In RL, an agent or decision maker learns a
model of the environment at run-time and then utilizes these experiences to find an
effective control policy for the given task. So, it provides a general framework for high-
performance, self-optimizing controller design without prior knowledge. One of the
most popular RL algorithms is Q-learning that has been applied in many different areas.
In Q-learning [5], the learning agent percepts the environment and chooses an action
at each state. The agent receives a reward after every action execution which indicates
the performance of action. The final goal of the agent is to learn a policy for selecting
the best action among all possible actions. The Q-learning algorithm was used to create
an adaptive routing algorithm in the network communication named Q-routing [6].
Each switch makes its routing decisions based on the information on their neighboring
switches in Q-routing. In other words, a switch stores a table of Q-values that estimate
the quality of the alternative paths. These values are updated each time the switch
sends a packet to one of its neighbors. Therefore, a few Q-values might be updated
depending on the traffic patterns and load levels in the network. Dual Reinforcement
Q-routing (DRQ-routing) [7] has been presented to address this problem. In DRQ-
routing, the Q-values are updated by carrying the latency information to neighboring
switches (backward exploration unique to DRQ-routing) and by receiving packets from
neighboring switches (forward exploration similar to Q-routing). The speed of learning
is expected to be higher in DRQ-routing than Q-routing because of the enhanced
exploration in DRQ-routing. Therefore, the routing policy learned by DRQ-routing
leads to a higher performance than Q-routing in terms of average packet delivery time
at high and medium injection loads.

In this paper, we present a routing algorithm named Congestion-aware routing
Algorithm using Dual Q-routing (CADuQ) with the following main contributions:

• A learning method based on DRQ-routing is utilized in CADuQ to alleviate con-
gestion in the network by providing local and global congestion information. This
congestion information is carried by packets throughout the network. Each switch
maintains a table to store the estimated latencies from the source to any possible
destination switches. The corresponding entry of the table is updated whenever

123



1216 F. Farahnakian et al.

the switch receives a packet. This method employs both backward and forward
explorations to update the estimated latency values in each switch. The estimated
latencies are used to select less congested paths for packets.

• The waiting time in the packet queue of a switch is a commonly used metric for
estimating latency in communication networks. Since the range of the waiting
time varies from zero to infinity, the size of the tables should be very large to
store the estimated waiting times. This is not a suitable approach due to its area
overhead. Although an upper bound value can be considered, but this cannot be
easily determined as it highly depends on the traffic condition in the network. In
this paper, we considered the average number of free slots in input ports as a metric
to reflect the congestion condition in each switch. In this way, not only the values
are limited to a bounded range but also as shown in the result section, they lead to
a better performance gain.

• In traditional methods, commonly, a static learning rate is used whatever the net-
work load is. Another contribution of this paper is to adjust the learning rate in
accordance with the changing traffic condition of the network. For this purpose,
we present a congestion detection method which calculates the average number
of free buffer slots for each switch at specific time intervals. According to the
obtained value, when the network is congested, the learning rate is set to a large
value to keep the values as updated as possible. In contrast, when the switch is not
congested the learning rate is set to a minimum value amplifying the impact of
local congestion values.

The reminder of this paper is organized as follows. In Sect. 2, the related work is
discussed. Some background information on Q-routing and DRQ-routing techniques
is given in Sect. 3. In Sect. 4, we discuss the congestion metrics that can be used
to estimate the congestion status in the network. The congestion detection method is
described in Sect. 5. The proposed adaptive routing algorithm is explained in Sect. 6.
The results are reported in Sect. 7, while the summary and conclusion are given in the
last section.

2 Related work

A significant amount of research has been directed towards developing adaptive rout-
ing protocols in network. Adaptive routing algorithms, depending on the degree of
adaptiveness can be classified as partially adaptive or fully adaptive [8]. Partially
adaptive routing algorithms use some of the shortest paths between the sender and
the receiver, but not all packets are allowed to use every shortest path. For exam-
ple, the turn model routing is based on prohibiting certain turns during the packet
routing to prevent deadlock [9,10]. Fully adaptive routing algorithms allow routing
packets on any shortest paths. To make the routing algorithm fully adaptive, there is
a need of virtual channels in a wormhole switching network [11]. Adaptive routing
algorithms can be distinguished whether they are minimal or non-minimal. Minimal
adaptive routing algorithms only route packets along shortest paths to their destina-
tions. Non-minimal routing algorithms do not necessarily use shortest paths. Adaptive
routing policies can be categorized into congestion-oblivious and congestion-aware

123



Adaptive load balancing 1217

schemes. In congestion-oblivious algorithms, routing decisions are independent of the
congestion condition of the network. Random [13] and Zigzag [12] are two examples
of congestion-oblivious methods. DyXY [14] and DyAD [15] are two approaches
of the congestion-aware routing algorithms. These routing algorithms consider the
congestion status of the network in the routing decision. The congestion level of a
switch can be measured based on the number of available virtual channels [16] or
queue length [17] at input port. The presented approach in [18] uses the amount of
free buffer space available in each virtual channel of adjacent switches as congestion
metric. Congestion-aware routing policies can be further classified based on whether
they rely on purely local congestion information or take into account the congestion
status at other points in the network. In DyXY, a packet is sent either to the X or Y
direction depending on the congestion condition. It uses local information which is
the current queue length of the corresponding input port in the neighboring switches
to decide on the next hop. Most common implementations of routing algorithms, e.g.,
NoP [19], RCA [20], DBAR [21], and CATRA [22], have focused on collecting local
or global congestion information to get an estimation of the congested areas in the
network.

The Q-routing allows a network to be constantly adapted to the changing traffic
condition. In this method, each switch makes its routing decision based on Q-values
which estimate the quality of alternative routes. However, Q-routing suffers from
the unreliability of the estimated Q-values. The reason is that depending on traffic
patterns and load levels, only few Q-values are updated regularly while most of the
Q-values in the network remain un-updated. Some proposals have been presented to
address this issue, such as PQ-routing [23], CQ-routing [24] and DRQ-routing [25].
PQ-routing keeps the best Q-values and reuses them by predicting the traffic trend.
This algorithm is able to explore paths that have been inactive for a long time, and
thereby is able to restore its previous policy. In CQ-routing, each Q-value is attached
with a confidence value (C-value) which determines how closely the corresponding
Q-value represents the current state of the network. A similar idea is presented in
DRQ-routing where the speed of restoration is expected to be high. In DRQ-routing,
learning is performed by the latency information appended to data packet to neigh-
boring switches (backward exploration) and also by receiving latency information
from the neighboring switch where a data packet is sent to (forward exploration).
This approach leads to increase the speed of learning by providing a bi-directional
exploration.

Reinforcement learning approaches have rarely been investigated in on-chip net-
works. A fault-tolerant deflection routing algorithm is presented in [26] which is
inspired by Q-learning techniques for tolerating faults. In another work, DyNoC [27]
is proposed to handle communication among modules which are dynamically placed
on a reconfigurable on-chip network. Q-routing is also used to provide different levels
of Quality-of-Service (QoS) such as Best Effort (BE) and Guaranteed Throughput
(GT) [28]. In this approach, a novel scheme is presented which contrasts the perfor-
mance of Q-routing with the XY routing strategy in the context of QoS. C-routing
[29] is a Q-learning-based method which takes advantage of clustering approach to
reduce the routing table size compared with conventional Q-routing algorithms. A
Q-learning-based Congestion-aware Algorithm (QCA) [30] is presented to alleviate

123



1218 F. Farahnakian et al.

congestion condition. QCA estimates and predicts the congestion condition of the
network as close to the actual values as possible. This estimation is used in the routing
decision to choose a less congested path. Moreover, Dual Q-routing Adaptive learn-
ing Rate [31] has enhanced Q-routing performance for Networks-on-Chip when the
network becomes congested. For this to happen, a congestion detection technique is
introduced in this method which updates information dynamically according to the
changing traffic condition. HARAQ [32] takes the best usage of allowable turn in
the network and finds all alternative paths to route packets. Then, it uses a learning
approach to find an optimal path between all options of minimal or non-minimal routes.
However, Q-learning approach suffers from high area overhead in NoCs due to the
need for a large routing table in each switch. To reduce the area overhead, we have
presented a clustering approach in previous works [33,34] that decreases the number
and size of routing tables.

3 Background

This section reviews the basic concepts of Q-learning which is one of the most
widely used reinforcement learning methods. Then, we describe Q-routing algorithm
by applying Q-learning to a communication network. Finally, we explain the DRQ-
routing approach taking advantage of the dual reinforcement learning aspect.

3.1 Q-learning

Q-learning [5] is a highly adaptive algorithm which enables an agent or decision
maker to interact with the environment without prior knowledge about the system
status to achieve a given goal. At each step of an episode, the agent first observes
the current system state (s) and chooses an action (a). By performing the action,
the system moves to the next state (s′) and the agent also receives a reward (a real
number) or punishment (a negative real number). The reward value updates the Q-
value, Q(s, a), which represents the expected long-term reward of taking action a in
state s. Q-values are stored into a Q-table that maintains four fields named Current
State, Next State, Action, and Q-value. Current State refers to a state of environment
can be observed by the agent, while Next State is determined by the Current State
and the actions selected by the agents. The Action indicates the action that the agent
performs. Q-value holds the reward value that the agent receives in the current state
when it executes an action.

3.2 Q-routing

Q-routing [6] is an adaptive routing method based on the Q-learning model in a com-
munication network. Each switch includes a Q-table that estimates the quality of
alternative routes. Q-table is updated each time a switch sends a packet to one of its
neighbors. Assume that a packet destined for the switch d is forwarded from switch

123



Adaptive load balancing 1219

Fig. 1 An example of Q-routing
method s

x

i

y

j
dz

x to the neighboring switch y, (Fig. 1). The maximum time it will take for a packet to
reach its destination from the switch x is bounded by the sum of three quantities:

– The waiting time (qy) in the packet queue of the switch y.
– The transmission delay (δ) over the link from switch x to y.
– The time Qy(z, d) it would take for the switch y to send this packet via the

switch z to the destination switch (Fig. 1). Switch z has the minimum latency (Q-
value) between the neighbors of switch y. Qy(z, d) is obtained from the following
equation:

Qy(z, d) = min
n∈N (y)

Qy(n, d)

where N (y) is a set neighbors of switch y.

The switch y sends an estimated latency value to the switch x . This value contains
the best latency estimate from the switch y to the destination d(Qy(z, d)) and the
waiting time at the input buffer of switch y(qy) back to the switch x . Upon receiving
the estimated value, the switch x computes the new estimate for Qx (y, d) as follows:

Qx (y, d)est = Qy(z, d) + qy + δ

Qx (y, d)est is the switch x’s best estimated delay that it would take for a packet to
reach its destination switch d from the switch x when sent via its neighboring switch
y. This value updates the Qx (y, d) by the following in Q-table and the learning is
performed through updating Q-values.

Qx (y, d)new = Qx (y, d)old + γ (Qx (y, d)est − Qx (y, d)old) (1)

Learning rate (γ ) determines in which rate the new information overwrites the old
one. Learning rate can take a value between zero and one; the value of zero means that
no learning takes place by the algorithm, while the value of one indicates that only the
most recent information is used.

The Q-routing algorithm has two steps as follows:

– Step 1: The switch x sends a packet, destined for the switch d, to one of its
neighboring switches, y.

123



1220 F. Farahnakian et al.

– Step 2: When the switch x receives the forward estimation from its neighboring
switch y.

During the first times of the learning process, Q-routing learns a representation
of the network state in terms of Q-values. Then, it uses these values to make routing
decisions and find the least congested path among available paths from a source switch
to a destination switch.

3.3 DRQ-routing

The Q-routing method only updates the Q-values when a switch sends a packet to
neighboring switches. Therefore, this algorithm only uses forward exploration to
determine the latency of the remaining path from the current switch to the destination
switch. The DRQ-routing technique utilizes Q-routing for both backward and forward
exploration for updating Q-values more frequently. Backward exploration indicates
the latency of the traversed path from the current to the source switch. Therefore,
the corresponding entries of the Q-table are updated with both forward and backward
exploration rather than only forward exploration in Q-routing. As an example of the
backward exploration, consider a case where the switch x sends a packet to its des-
tination switch d via its neighboring switch y. When the data packet traverses from
the source to the destination, it carries some latency information between each two
neighboring switches. As the switch y receives this packet, it uses this information for
updating its own estimate of sending a packet to source s via switch x .

Suppose the packet is currently at switch x as in Fig. 2, it contains the minimum
latency value from the switch s to the switch x passing though the switch h. This value
can be defined as:

Qx (h, s) = min
n∈N (x)

Qx (n, s)

When the packet arrives at switch y, it can update the estimation of sending a packet
to the switch s via neighbor x . The new value includes Qx (h, s) and the waiting time

123



Adaptive load balancing 1221

Fig. 2 An example of
DRQ-routing method h

x

i

y

j
dz

s

at the input buffer of switch x(qx ):

Qy(x, s)new = Qy(x, s)old + γ ((Qx (h, s) + qx + δ) − Qy(x, s)old) (2)

In this way, each packet carries the routing information from a source to a destination.
These values are used to update the Q-values of intermediate switches. In other words,
the receiving switch uses the latency information of the traversed path to update the
Q-values.

4 Congestion detection metrics

The primary objective of the proposed algorithm is to improve the network perfor-
mance by routing the packets through the less congested paths. In Q-routing, Q-values
reflect the real congestion level in each switch. So the congestion can be alleviated in
the network by sending packets through paths with minimum Q-values. For calculating
the Q-values, we consider two metrics:

Waiting time (wTime): when a header flit enters a switch through one of the input
port, it is stored in an input buffer. The flit is kept in a switch until it proceeds to the
routing unit. If the switch is congested, the flit potentially waits on the input channel
for extended period of time. Therefore, the waiting time in the input channel can
determine the congestion status in a switch. wTime metric indicates the time from
when a header flit enters an upstream switch until it is processed by the routing unit.

Average free buffers (AvgBf): indicates the average number of free input buffer slots
at downstream switches. The count of free buffers was first proposed as an indicator
of congestion by Kim et al. [18]. Higher buffer capacity or a larger number of free
buffer slots in each virtual channel will reduce network contention, thereby reducing
latency.

Measuring Q-values based on these metrics can reflect the congestion level of
each switch. To validate the efficiency of congestion metrics, we set up experimental
environment using a wormhole-based simulator based on the OMNET framework
[35]. For all switches, the data width is set to 32 bits and the maximum bandwidth
at each link is 1 flit per cycle. We used two virtual channels that each input buffer
(FIFO) size of 8 flits. In each simulation time step (nanosecond), these packets are
stored in the queue of the source switches. The amount of injected packets depends
on the network offered load. The network offered load is calculated as follow:

Network offered load = flit-size/flit arrival delay

123



1222 F. Farahnakian et al.

(a) (b) (c)

40

60

80

100

120

0.08 0.2 0.3 0.5 1 1,3

La
te

nc
y(

nS
ec

)

Offered Load(GB/Sec)

wTime
AvgBf

40

60

80

100

120

0.08 0.2 0.3 0.5 1 1,3

La
te

nc
y(

nS
ec

)

Offered Load(GB/Sec)

wTime
AvgBf

40

60

80

100

120

0.08 0.2 0.3 0.5 1 1,3

La
te

nc
y(

nS
ec

)

Offered Load(GB/Sec)

wTime
AvgBf

Fig. 3 Performance evaluation under a uniform, b transpose and c hotspot traffic in the 8×8 mesh network

Fig. 4 The variation of Q-values based on the a AvgBf b wTime metric of a hotspot switch at (4, 4) in the
8 × 8 2D-mesh

where flit_size represents the size of the flit and flit-arrival-delay represents the delay
time between previous flit generation and next flit generation.

The simulations were conducted on the 2D-mesh which is the most typical topology.
The mesh size is selected to be 8 × 8 in our experimental results. The average latency
as a function of the offered load is plotted for uniform random, transpose and hotspot
traffic patterns. Experimental results (Fig. 3) show that Q-values based on the average
number of free buffers (AvgBf) are more efficient than wTime under various traffic
patterns. It can be obtained that AvgBf represent the real latency value.

To demonstrate how fast the AvgBf can detect the network congestion, Fig. 4 depicts
the learning process under the hotspot traffic with a single hotspot switch at (4, 4) in
the 8 × 8 2D-mesh. Figure 4a and b show the Q-values when using the AvgBf and
wTime metrics, respectively. The variation of Q-values is plotted on the vertical axis
and simulation time on the horizontal axis. The variations of Q-values in Fig. 4a are
much less than that of Q-values in Fig. 4b. Moreover, Fig. 4a shows that the Q-values
are converged faster and have a shorter learning process. Because the variation of Q-
values is almost stable and the network is fully trained after 30.000 nanosecond (ns)
in Fig. 4a. As shown in Fig. 4b, the variation of Q-values reaches to a stable phase
after 45.000 ns in 8 × 8 mesh. As can be obtained from these two figures, the AvgBf
can reflect the congestion status of the network efficiently. The red line in these plots
shows the standard deviation of the Q-values.

5 Congestion detection method

To distribute the traffic, we need to distinguish the current congestion level of the
network. Results in Sect. 4 show that using AvgBf for Q-values is more efficient than
wTime to represent the current congestion status of the network. Furthermore, it is nec-

123



Adaptive load balancing 1223

essary to update the Q-values dynamically based on the network congestion condition.
For this purpose, we present a congestion detection method which calculates the aver-
age number of free buffer slots of each switch at a predetermined time interval. After
that, the average number of free buffer slots is compared with the maximum (MaxVal)
and minimum (MinVal) values at each time interval. A massive experimental result was
done to estimate the MaxVal and MinVal values. Based on our analysis, in general, the
best results were obtained when MinVal and MaxVal set to 25 and 65 %, respectively,
of total buffer slots. Thereby, a switch is counted as congested one if ≤25 % of total
queue size is free (MinVal). On the other hand, a switch is counted as a less congested
one if more than or equal to 65 % of total buffer size in a switch is free (MaxVal). The
Eqs. (3) and (4) are used to set the MinVal and MaxVal values, respectively.

MinVal = 25 % × (TotalBufferSlots) (3)

MaxVal = 65 % × (TotalBufferSlots) (4)

If AvgBf in a switch is larger than MaxVal, it indicates that the switch is not con-
gested and it is unnecessary to update the Q-values regularly. Thus, the learning
rate is set to a minimum value amplifying the impact of local congestion statuses
(LearnRate = 0.1). Moreover, if AvgBf in a switch is smaller than MinVal, the
learning rate is set to a large value to keep the Q-values as updated as possible
(LearnRate = 0.9). Finally, if AvgBf is between MinVal and MaxVal, LearnRate
is set to 0.5. In this way, global congestion information gets more emphasis than
local values. The functionality of congestion detection method is given as follow:

Initially, AvgBf is set to zero. Then it is measured in 200 ns (100 cycles) time
interval (line 4–10) and then it compares with the MinVal and MaxVal values. Finally,
the learning rate is set to a new value which is used during the current time interval
(line 10–17).

Throughout our experiments, we have considered learning rate values. These values
are between 0 and 1 and control how much to change the Q-values. We could miss it
in Eqs. (1) and (2) by setting γ to 1. The switch takes longer to learn when this rate
set to a large value and Q-values update frequently. We, therefore, use three values
learning rate depending upon the congestion level in a switch.

123



1224 F. Farahnakian et al.

In general, if the network gets congested, the Q-values are frequently updated and
global congestion values from distant switches become reliable. In contrast, a switch
may receive few packets in a time interval, so that the values from distant switches are
not accurate and the local values should be more emphasized than the global ones.

6 Congestion-aware routing algorithm using DRQ-routing

In this section, we describe the routing algorithm based on the adaptive learning
rate. We explain the format of Q-tables according to the 2D-mesh network features
along with the format of packets that propagate in the network. Two types of packets
can travel within the network, data packets and learning packets. Data packets carry
both data and congestion information (used in backward exploration) while learning
packets carry only the congestion information (used in forward exploration). Since
the learning packets can increase the latency of data packets, we consider the separate
Virtual Channels (VC) for transmitting the learning packets.

6.1 Routing algorithm

Routing algorithm selects an output channel for forwarding a packet to a destination
switch. CADuQ method can efficiently estimate the latency of a packet to reach dif-
ferent destinations through each of the possible output channels. CADuQ diagnoses
the congested path in the network and routes packets through the less congested ones.
CADuQ has three main characteristics: (1) local and global congestion information
is provided based on dual reinforcement learning by propagating data and learning
packets. (2) Local congestion information used in forward exploration is measured
according to the free input buffer slots of the input buffer. This information is carried
by learning packets. However, local congestion information used in backward explo-
ration is calculated based on the free buffer slots of the input buffer located in the
output direction. The reason is that, this information is used when a packet traverses in
the reverse direction (i.e., from the current node to the source node). This information
is carried by data packets. (3) Since the reliability of latency values depend on the
speed of learning, we utilized a congestion detection method for updating the learning
rate that was described in Sect. 5. In addition, forward and backward explorations in
the CADuQ can reflect the current congestion condition in the network. The CADuQ
algorithm can be summarized in three steps as follows:

– Step 1: When a data packet is delivered from switch x to switch y.

123



Adaptive load balancing 1225

– Step 2: When switch y receives a data packet from switch x .

– Step 3: When a learning packet is transferred from switch y to switch x .

6.2 Routing tables

In Q-routing, each switch has a Q-table similar to Fig. 5a that maintains the routing
latency from itself to the possible destination switches. The Q-table contains n entries,
where n is the number of switches in the network. In this table, each row corresponds
to a destination; each column relates to an output port; the contents of the table are
the estimated latencies. Therefore, routing unit selects an output port from the Q-table
which has minimum latency value for a corresponding destination. Notice that, in con-
ventional Q-routing models, the waiting time at input buffers is a measure of latency,
however, we use the number of free buffer slots at input buffers as a metric of latency.

Since CADuQ is a minimal routing approach, packets can be delivered into at most
two directions at a switch. Our basic structure of the adjusted Q-table is shown in
Fig. 5b in which the number of columns is reduced to two. Therefore, the table size is
decreased by 50 % compared with conventional Q-tables.

6.3 Packets format

The header flit of data packet contains routing information such as destination and
source addresses. In CADuQ, the data packet format is modified by adding five bits
into the header flit (Fig. 6). These additional fields can be described as follows:

X-Dir Y-Dir

0
1

8

.

.

.

East West North South

0

8

.

.

.

(a)

1

Output Ports

Estimated
Latencies

(b)

Destination
Switches

Estimated
Latencies

Fig. 5 a Conventional Q-table, b adjusted Q-table of switch 1 in 3 × 3 mesh network

123



1226 F. Farahnakian et al.

Source
Switch ID

Destination
Switch ID

...Direction
Backward
Latency

6 bits 1 bits 4 bits6 bits

Fig. 6 Header of the data packet format

Fig. 7 Learning packet format

Direction Forward
Latency

Destination
Switch ID

1 bits 4 bits 6 bits

• Direction: determines the direction in which the data packet is delivered from the
current switch. The value of 0 and 1 are corresponding to the X-direction and Y-
direction, respectively. Since the packet is sent either to the X or Y dimension, one
bit is enough to encode the direction of neighboring switch.

• Backward Latency: determines the expected total latency to forward a packet from
the current switch to the source switch. In Eq. (2), the terms Qx (h, s) and qx indicate
the global and local information of the backward latency. Total latency values are
determined with four bits.

The format of the learning packet is illustrated in Fig. 7, which consists of three
fields as follows:

• Direction: It is a one bit value determining the direction of receiver switch of the
data packet or direction of sender switch of the learning packet.

• Forward Latency: It is obtained by summing up the forward local and global latency
values. Local latency is measured by the average free buffer slots in downstream
switch. In Eq. (1), the values of Qy(z, d) and qy indicate the forward local latency.
The term Qy(z, d) in Eq. (1) indicates the global and local information in forward
latency. This latency value determines the expected latency of a packet from the
next switch to the destination. We have assigned four bits to represent the forward
latency.

• Destination switch ID: It determines the destination switch of a data packet. Six
bits are considered for this purpose which is sufficient for 8 × 8 mesh network. For
a bigger size network, more bits should be allocated to the destination field.

Since learning packets only traverse between neighboring routers, they do not
require any routing process. In addition, the size of learning packets is smaller than
data packets which results in wasting resources if sharing resources with data packets.

Now, we present an example for the CADuQ routing process in a 3 × 3 mesh
network. The number of VCs is two and each VC has a buffer where buffer size is set
to 8 flits. The MinVal and MaxVal value can be computed using Eqs. (3) and (4):

MinVal = 25 % × 16 = 4

MaxVal = 65 % × 16 = 10.4

In Fig. 8, suppose a packet is generated at the source switch 0 for the destination switch
8. Two output channels (East and North) can be selected at switch 0 for forwarding

123



Adaptive load balancing 1227

the data packet to the destination. As illustrated in Fig. 8a, the east direction has the
lowest latency to reach the destination switch, so it is chosen as the next switch. Before
forwarding the packet to switch 1, the sum of backward local and global latencies is
added to the header flit of the data packet. The backward local latency (7) is obtained
from the Q-table, indicating the average number of free buffer slots at the output port
of switch 0. The global latency is equal to zero because the switch 0 is the source
switch. When the intermediate switch 1 receives the data packet from the switch 0,
backward exploration information is extracted from the data packet (Fig. 8b). Based
on this information, the first row and X-Dir column of the routing table in switch 1
are updated. Suppose the average free buffer slot of switch 1 is greater than MaxVal.
So, the congestion condition of switch 1 is low and the learning rate is set to 0.1. This
learning rate is used to update the Q-values. Therefore, according to Eq. (2), the new
Q-value is:

Q1(0, 0)new = Q1(0, 0)old+0.1((0+q0+δ)− Q1(0, 0)old)

= 2+0.1((0+7+0)−2)=2.5

We suppose that the link delay, δ, is a constant value. In this work, we set it to 0.
Using Q-table information at switch 1, among north and east directions, the north

direction has the lowest estimated latency. Hence, switch 4 is selected for forwarding
the packet to switch 8. At this time, the learning packet is generated to return the
forward local and global latencies back to switch 0. Local information is the average
number of free buffer slots at input port of switch 1. This value is assumed to be 6 in
our example. The minimum estimated latency of routing the packet from switch 1 to
switch 8 via the north port is considered as the global latency. This value is extracted
from the Q-table in switch 1 (i.e., global = 3). The sum of the local and global values
is the new latency estimation from switch 1 to the switch 0 which will be stored in
the learning packet. Finally, the table in the switch 0 is updated whenever the learning
packet is received. Assume the average number of free buffer slots in the switch 0 is 7.
Since this value is between MaxVal and MinVal in the last time interval, the learning
rate γ is set to 0.5.

Q0(1, 8)new = Q0(1, 8)old+0.5((Q1(4, 8)+q1)−Q0(1, 8)old)

= 2+0.5((3+6)−2)=5.5

As shown in Fig. 8a, the corresponding entry of the Q-table at switch 0 is updated
taking the new estimated value and an existing estimation using Eq. (1). As can be
seen from Fig. 8b, switch 4 is selected for forwarding the packet to the destination
switch and a similar process is done until the packet reaches switch 8.

7 Results

To evaluate the performance of our proposed routing algorithm, we compare it with
conventional on-chip network (DBAR and Dynamic XY) algorithms and Q-learning
schemes (Q-routing and DRQ-routing). The performance of the routing scheme is

123



1228 F. Farahnakian et al.

6

2

3

1

7

0

6

2

7

3

8

1

(a) (b)

5

8

5

0

4 4

X-Dir Y-Dir

Data packet from switch 0 to switch 1

0

8

.

.

.

42

Source
Switch ID

Destination
Switch ID

...

Direction
Backward
Latency

0 8 0 7+0

Learning packet from switch 1 to switch 0

X-Dir Y-Dir

0

8

.

.

.

37

Q-table of switch 1

0 3+6 8

Direction
Forward
Latency

Destination
Switch ID

2.5

5.5

2 5

Learning Packet

Data Packet

2 5

Fig. 8 An example of CADuQ for a 3 × 3 mesh

evaluated through latency curves. The simulations were conducted on the 8 × 8 and
14×14 2D-mesh under various traffic patterns. It is assumed that latency is the duration
from the time when the first flit is created at the source core, to the time when the
last flit is delivered to the destination core. To propagate data packets, two VCs are
used along the X and Y dimensions, while for learning packets, one virtual channel is
utilized. The buffer size per VC is set to eight flits. The simulator is warmed up with
3,000 packets and then the average performance is measured over 10,000 data packets.
Three synthetic traffic profiles including uniform random, transpose and hotspot, along
with SPLASH-2 [36] application traces are used.

7.1 Uniform random traffic profile

In uniform random traffic, each core sends a packet to another core with a random
probability. The destination of different packets in each switch is determined randomly
using a uniform distribution. In Fig. 9, the average latency as a function of the offered
load is plotted. As observed from the results, the proposed routing scheme achieves
better performance compared with the other schemes. As load increases, DBAR is
unable to tolerate the high load condition, while Q-routing schemes learn an efficient
routing policy. CADuQ can alleviate the congested areas and perform considerably
better than other schemes.

7.2 Transpose traffic profile

Transpose traffic means that a switch with the coordinates (i, j) sends packets to switch
with the coordinates (n − j , n − i) in an n ×n mesh. Figure 10 shows CADuQ behaves

123



Adaptive load balancing 1229

(a) (b)

40

60

80

100

120

0.08 0.2 0.3 0.5 1 1,3

L
at

en
cy

(n
Se

c)

Offered Load(GB/Sec)

DyXY
DBAR
Q-routing
DRQ-routing
CADuQ

40

60

80

100

120

0.08 0.2 0.3 0.5 1 1,3

L
at

en
cy

(n
Se

c)

Offered Load(GB/Sec)

DyXY
DBAR
Q-routing
DRQ-routing
CADuQ

Fig. 9 Performance under different traffic models in a 8 × 8 2D-mesh and b 14 × 14 2D-mesh under the
uniform traffic model

(a) (b)

40

60

80

100

120

0.08 0.2 0.3 0.5 1 1,3

L
at

en
cy

(n
Se

c)

Offered Load(GB/Sec)

DyXY
DBAR
Q-routing
DRQ-routing
CADuQ

40

60

80

100

120

0.08 0.2 0.3 0.5 1 1,3

L
at

en
cy

(n
Se

c)

Offered Load(GB/Sec)

DyXY
DBAR
Q-routing
DRQ-routing
CADuQ

Fig. 10 Performance under different traffic models in a 8 × 8 2D-mesh and b 14 × 14 2D-mesh under the
transpose traffic model

(a) (b)

40

60

80

100

120

0.08 0.2 0.3 0.5 1 1,3

L
at

en
cy

(n
Se

c)

Offered Load(GB/Sec)

DyXY
DBAR
Q-routing
DRQ-routing
CADuQ

40

60

80

100

120

0.08 0.2 0.3 0.5 1 1,3

L
at

en
cy

(n
Se

c)

Offered Load(GB/Sec)

DyXY
DBAR
Q-routing
DRQ-routing
CADuQ

Fig. 11 Performance under different traffic models in a 8 × 8 2D-mesh and b 14 × 14 2D-mesh under the
hotspot traffic model

as efficiently as other routing algorithms. CADuQ leads to the lowest latency due to
the fact that it can increase the exploration (twofold) by dual reinforcement learning.
In turn, increased exploration leads to increased speed of learning. Moreover, the
proposed method improves the quality of learning by adapting learning rate based on
the congestion condition.

7.3 Hotspot traffic profile

Under the hotspot traffic pattern, one or more switches are chosen as hotspots receiving
an extra portion of the traffic in addition to the regular uniform traffic. This traffic
represents a more realistic traffic pattern. In simulations, given a hotspot percentage

123



1230 F. Farahnakian et al.

Table 1 Performance gain of the CADuQ method over others methods for three traffic patterns in a 8 × 8
2D-mesh

Traffic pattern Q-routing (%) DRQ-routing (%) DBAR (%) DyXY (%)

Uniform 17.7 12.9 24.1 30.6

Transpose 12.2 7 19.2 28

Hotspot 14.2 8 23.8 35

Table 2 Performance gain of the CADuQ method over others methods for three traffic patterns in a 14×14
2D-mesh

Traffic pattern Q-routing (%) DRQ-routing (%) DBAR (%) DyXY (%)

Uniform 15.4 8.6 22.8 30

Transpose 9.6 7.2 12.7 20.1

Hotspot 11.6 9.4 18.3 26.7

of H, a newly generated packet is directed to each hotspot switch with an additional
H percent probability. We simulate the hotspot traffic with a single hotspot switch
at (4, 4) and (7, 7) in the 8 × 8 and 14 × 14 2D-meshes, respectively. The average
latency of each network with H = 10 % are illustrated in Fig. 11. As observed from the
figure, the Q-learning schemes behave as efficiently as DBAR and DyXY especially
in medium and high loads. Figure 11 illustrates the performance gain of our proposed
method over Q-routing, DRQ-routing and conventional on-chip network (DBAR and
Dynamic XY) algorithms near the saturation point (0.5) for a 14×14 2D-mesh. Using
minimal routes along with the intelligent selection policy reduces the average network
latency of CQ-routing for both mesh sizes.

Table 1 illustrates the performance gain of the proposed approach over Q-routing,
DRQ-routing, DBAR and Dynamic XY algorithms near the saturation point (0.5) for
a 8 × 8 2D-mesh. Experimental results under different traffic patterns demonstrate
that the on-chip network utilizing the CADuQ routing method clearly outperforms the
conventional approach considerably.

In addition, the impact of using dual reinforcement learning policy and congestion
detection method near the saturation point (0.5) over the DyXY routing, DBAR and
the other Q-routing techniques is summarized in Table 2 for a 14 × 14 2D-mesh. The
results reveal that the proposed approach can distribute the traffic efficiently.

7.4 Application traffic profile

Application traces are obtained from the GEMS simulator [37] using some application
benchmark suites selected from SPLASH-2. We use a 64-switch network configura-
tion: 20 processors and 44 L2-cache memory modules. For the CPU, we assume a core
similar to Sun Niagara and use SPARC ISA. Each L2 cache core is 512 kB, and thus,
the total shared L2 cache is 22 MB. The memory hierarchy implemented is governed
by a two-level directory cache coherence protocol. Each processor has a private write-

123



Adaptive load balancing 1231

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

FFT LU Radix Ocean Water-Nsq

N
or

m
al

iz
ed

 a
ve

ra
ge

la
te

nc
y

DyXY DBAR Q-routing DRQ-routing CADuQ

Fig. 12 Performance across SPLASH-2 benchmarks

Table 3 Hardware cost
Routing method Network area (mm2)

DyXY 0.1503

Q-routing 0.1683

DRQ-routing 0.1689

CADuQ 0.1705

back L1 cache (split L1 I and D cache, 64 kB, 2-way, 3-cycle access). The L2 cache
is shared among all processors and split into banks (44 banks, 512 kB each for a total
of 22 MB, 6-cycle bank access), connected via on-chip routers. The L1/L2 block size
is 64 B. Our coherence model includes a MESI-based protocol with distributed direc-
tories, with each L2 bank maintaining its own local directory. The simulated memory
hierarchy mimics SNUCA while the off-chip memory is a 4 GB DRAM with a 220-
cycle access time. Figure 12 shows the average packet latency across five benchmark
traces, normalized to DyXY. CADuQ provides lower latency than other schemes and
it shows the greatest performance gain on Ocean with 50 % reduction in latency.

7.5 Area overhead

To estimate the hardware cost of our proposed method along with other routing
schemes, the on-chip router of each scheme is implemented with VHDL and synthe-
sized with Synopsys Design Compiler using the 65 nm standard CMOS technology
with a timing constraint of 1 GHz for the system clock and supply voltage of 1 V.

The synthesized netlist is verified through post-synthesis simulations. The layout
areas of the four schemes are listed in Table 3 and the area overhead of CADuQ is
verified with the other learning methods. However, the result shows that the proposed
approach increases the area overhead, but it can be decreased by applying clustering
approach in [33,34].

8 Conclusion

In this paper, we propose a congestion-aware routing algorithm based on dual rein-
forcement learning for multi-processor platform. Commonly, in learning approaches,

123



1232 F. Farahnakian et al.

each switch maintains a routing table which is updated at run-time by local and global
latency information (Q-values). The latency values are obtained when transferring data
and learning packets between adjacent switches. Depending on the network load and
traffic patterns, some of the Q-values may not be updated for a long time. On the other
hand, the routing decision based on unreliable Q-values cannot be accurate and does
not necessarily reflect the current congestion state of the network. For addressing this
issue, we proposed a technique to adjust the learning rate with the network condition.
A congestion detection technique is utilized to compute the current congestion level
of a switch. If a switch is congested, the learning rate is set to a large value to keep
the global latency values as updated as possible. Otherwise, when the switch is not
congested, a small value is assigned to the learning rate, meaning that the local infor-
mation prioritize over global information. The experiments show that the CADuQ
routing method is able to route packets more efficiently than traditional methods. For
instance, the performance is improved up to 35 % compared with the DyXY method
under hotspot traffic in 8 × 8 mesh network.

References

1. Ni LM, McKinley PK (1993) A survey of wormhole routing techniques in direct networks. Computer
26(2):62–76

2. Ebrahimi M, Daneshtalab M, Liljeberg P, Plosila J, Tenhunen H (2011) Agent-based on-chip network
using efficient selection method. In: Proceedings of 19th IFIP/IEEE International Conference on very
large scale integration (VLSI-SoC), pp 284–289.

3. Dehyadegari M et al. (2011) An adaptive fuzzy logic-based routing algorithm for networks-on-chip.
In: Proceedings of 13th IEEE/NASA-ESA International Conference on adaptive hardware and systems
(AHS), pp 208–214.

4. Sutton RS, Barto AG (2000) Reinforcement learning. MIT Press, Cambridge, An introduction
5. Watkins CJCH, Dayan P (1992) Q-Learning. In: Proceedings on machine learning, pp 279–292.
6. Boyan JA, Littman ML (1994) Packet routing in dynamically changing networks: a reinforcement

learning approach. Adv Neural Inf Process Syst 6:671–678
7. Kumar S, Miikkulainen R (1997) Dual reinforcement Q-routing: an on-line adaptive routing algorithm.

In: Proceedings of the artificial neural networks in engineering Conference, pp 231–238.
8. Schonwald T, Zimmermann J, Bringmann O (2007) Fully adaptive fault-tolerant routing algorithm

for network-on-chip architectures. In Euromicro Conference on digital system design architectures,
methods and tools (DSD), Lübeck, pp 527–534.

9. Chiu G-M (2000) The odd-even turn model for adaptive routing. IEEE Trans Parallel Distrib Syst
11(7):729–738

10. Ebrahimi M et al. (2012) MAFA: adaptive fault-tolerant routing algorithm for networks-on-chip. In:
Proceedings of 15th IEEE Euromicro Conference on Digital System Design (DSD), pp 201–206.

11. Boura YM, Das CR (1994) Efficient fully adaptive wormhole routing in n-dimensional meshes. In:
Proceedings of the 14th international conference on distributed computing systems (ICDCS). Pozman,
pp 589–596.

12. Feng W, Shin KG (1997) Impact of selection functions on routing algorithm performance in multi-
computer networks. In: International Conference on Supercomputing, pp 132–139.

13. Badr HG, Podar S (1989) An optimal shortest-path routing policy for network computers with regular
mesh-connected topologies. IEEE Trans Parallel Distrib Syst 38(10):1362–1371

14. Li M, Zeng Q, Jone W (2006) DyXY–a proximity congestion-aware deadlock-free dynamic routing
method for network on chip. In: Processing of design automation conference (DAC). San Francisco,
pp 849–852.

15. Hu J, Marculescu R (2004) DyAD–Smart routing for network-on-chip. In: Processing of design automa-
tion conference (DAC). San Diego, pp 260–263.

123



Adaptive load balancing 1233

16. Dally WJ, Aoki H (1993) Deadlock-free adaptive routing in multicomputer networks using virtual
channels. IEEE Trans Parallel Distrib Syst 4(4):466–475

17. Singh A, Dally WJ, Gupta AK, Towles B (2003) GOAL: A load-balanced adaptive routing algorithm
for torus networks. In: International Symposium on Computer, Architecture, pp 194–205.

18. Kim J, Park D, Theocharides T, Vijaykrishnan N, Das CR (2005) A low latency router supporting
adaptivity for on-chip interconnects. Proceedings of the 42nd annual design automation conference
(DAC). ACM, New York, pp 559–564

19. Ascia G (2008), Implementation and analysis of a new selection strategy for adaptive routing in
networks-on-chip. IEEE Trans Comput 57(I.6):809–820.

20. Gratz P, Grot B, Keckler SW (2008) Regional congestion awareness for load balance in networks-on-
chip. In: Proceeding of the 14th international symposium on high-performance computer architecture.
Salt Lake, City, pp 203–214.

21. Ma S et al. (2011) DBAR: an efficient routing algorithm to support multiple concurrent applications
in networks-on-chip. In: Proceeding of 38th annual international symposium on computer architecture
(ISCA). San Jose, pp 413–424.

22. Ebrahimi M et al. (2012) CATRA—congestion aware trapezoid-based routing algorithm for on-chip
networks. In: Proceeding of design, automation & test in Europe conference & exhibition (DATE).
Dresden, pp 320–325.

23. Choi SP, Yeung D-Y (1996) Predictive Q-routing: a memory-based reinforcement learning approach
to adaptive traffic control. Adv Neural Inf Process Syst 8(NIPS8):945–951

24. Kumar S, Miikkulainen R (1998) Confidence-based Q-routing: an on-line adaptive network routing
algorithm. Smart engineering systems: neural networks, fuzzy logic, data mining, and evolutionary
programming 8:147–152

25. Kumar S, Miikkulainen R (1997), Dual reinforcement Q-routing: an on-line adaptive routing algo-
rithm.In: Proceedings of the Artificial Neural Networks in, Engineering Conference, pp 231–238.

26. Feng C, Lu Z, Jantsch A, Li J, Zhang M (2010) A reconfigurable fault-tolerant deflection routing
algorithm based on reinforcement learning for network-on-chip. In: Proceedings of NoCArc, pp 11–
16.

27. Majer M et al. (2005) Packet routing in dynamically changing networks on chip.In: Proceedings of the
19th International Parallel and Distributed Processing Symposium (IPDPS). Denver, USA.

28. Paliwal KK, George JS, Rameshan N, Laxmi V, Gaur MS, Janyani V, Narasimhan R (2009) Implemen-
tation of QoS aware Q-routing algorithm for network-on-chip. In: Contemporary computing. Springer,
Berlin, Heidelberg, pp 370–380

29. Puthal MK, Singh V, Gaur MS, Laxmi V (2011) C-routing: an adaptive hierarchical NoC routing
methodology. In: IEEE/IFIP 19th international conference on VLSI and system-on-chip (VLSI-SoC).
Hong Kong, pp 392–397.

30. Farahnakian F, Ebrahimi M, Daneshtalab M, Liljeberg P, Plosila J (2011) Q-learning based congestion-
aware routing algorithm for on-chip network. In: Proceedings of 2nd IEEE international conference
on networked embedded systems for enterprise applications (NESEA). Fremantle, pp 1–7.

31. Farahnakian F, Ebrahimi M, Daneshtalab M, Plosila J, Liljeberg P (2012) Adaptive reinforcement
learning method for networks-on-chip. In: Proceedings of 12th IEEE international conference on
embedded computer systems: architectures, modeling, and simulation (SAMOS XII). Samos, pp 236–
243.

32. Ebrahimi M, Daneshtalab M, Farahnakian F, Liljeberg P, Plosila J, Palesi M, Tenhunen H (2012)
HARAQ: congestion-aware learning model for highly adaptive routing algorithm in on-chip networks.
In: Proceedings of 6th ACM/IEEE International Symposium on Networks-on-Chip (NOCS), pp 19–26.

33. Farahnakian F, Ebrahimi M, Daneshtalab M, Liljeberg P, Plosila J (2014) Bi-LCQ: a low-weight
clustering-based Q-learning approach for NoCs. Elsevier J Microprocess Microsyst (MICPRO) 38:64–
75

34. Farahnakian F, Ebrahimi M, Daneshtalab M, Liljeberg P, Plosila J (2012) Optimized Q-learning model
for distributing traffic in on-chip networks. In: International Conference on Networked Embedded
Systems for Enterprise Applications (NESEA), UK, pp 1–8.

35. Varga A et al. (2001) The OMNeT++ discrete event simulation system. In: Proceedings of the European
Simulation Multiconference (ESM’2001), pp 319–324.

36. Woo SC et al. (1995) The splash-2 programs: characterization and methodological considerations. In:
Proceedings of Computer Architecture (ISCA), pp 24–36.

123



1234 F. Farahnakian et al.

37. Martin MK, Sorin DJ, Beckmann BM et al (2005) Multifacet’s general execution driven multiprocessor
simulator (GEMS) toolset. SIGARCH Comput Archit News 33(4):92–99

123


	Adaptive load balancing in learning-based approaches for many-core embedded systems
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Q-learning
	3.2 Q-routing
	3.3 DRQ-routing

	4 Congestion detection metrics
	5 Congestion detection method
	6 Congestion-aware routing algorithm using DRQ-routing
	6.1 Routing algorithm
	6.2 Routing tables
	6.3 Packets format

	7 Results
	7.1 Uniform random traffic profile
	7.2 Transpose traffic profile
	7.3 Hotspot traffic profile
	7.4 Application traffic profile
	7.5 Area overhead

	8 Conclusion
	References


