
Journal of Systems Architecture 59 (2013) 213–222
Contents lists available at SciVerse ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
A systematic reordering mechanism for on-chip networks using efficient
congestion-aware method

Masoud Daneshtalab ⇑, Masoumeh Ebrahimi, Pasi Liljeberg, Juha Plosila, Hannu Tenhunen
Department of Information Technology, University of Turku, Finland
a r t i c l e i n f o

Article history:
Available online 26 April 2012

Keywords:
Network-on-Chip
Congestion-aware scheduler
Adaptive arbitration
1383-7621/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.sysarc.2012.01.002

⇑ Corresponding author. Tel.: +358 23336941.
E-mail address: masdan@utu.fi (M. Daneshtalab).
a b s t r a c t

In-order delivery is a critical issue of memory parallelism in network-based MPSoCs where multiple
memories can be accessed simultaneously. In addition to the in-order delivery, network congestion is
another subtle point that required to be taken into account for such architectures. Therefore, a conges-
tion-aware method is necessitated to deal with the network congestion while coping with the ordering
of transactions. In this paper, we present a streamlined method, named Global Load Balancing (GLB), in
order to reduce the network congestion. The ideas behind the GLB method are twofold. The first idea is to
use the global congestion information as a metric for arbitration in routers to reduce the congestion level
of highly congested areas. The second idea is to use an adaptive scheduler in network interfaces based on
the global congestion information to avoid additional traffic to congested areas. Experimental results
with synthetic test cases demonstrate that the on-chip network utilizing the GLB method considerably
outperforms a conventional on-chip network.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Based on the Moore’s law, over a billion transistors can be inte-
grated on a single chip [1] so that hundreds of functional Intellec-
tual Property (IP) blocks and a large amount of embedded memory
modules could be placed together to form a MultiProcessor
System-on-Chip (MPSoC) [1,2]. By increasing the number of
processing elements in a single chip, the traditional bus-based
architectures in MPSoCs are not useful anymore and new commu-
nication infrastructure is needed. Network-on-Chip (NoC) has been
addressed as a solution for the communication requirement of
MPSoCs [2–4].

The NoC is a platform to connect IPs, to deliver data (packets)
from one place to another [5]. Network Interface (NI) acts as a com-
munication interface between each IP and router. The principle
function of network interfaces is to provide communication
between IPs and the network infrastructure using a standard com-
munication protocol like AXI [6].

In-order delivery should be utilized in MPSoCs when exploiting
an adaptive routing algorithm for distributing packets through the
network [7,8], or when using memory access parallelization by
sending requests from a master IP core to multiple slave memories
[9,10]. The former is dependent on the routing protocols of the net-
work, whilst the latter is dominated by distributed shared memory
architectures of on-chip multiprocessor which demands a higher
ll rights reserved.
memory bandwidth, particularly in 3D-stacked memory structures
[11,12]. The subtle point is that in distributed shared memory sys-
tems, the responses of the requests might need to be completed in-
order even if the on-chip network exploits a deterministic routing
algorithm. That is, when a master sends requests to different mem-
ories, the responses are required to be returned in the same order
in which the master issued the addresses, and therefore a reorder-
ing mechanism in the network-based multiprocessor platform
should be handled by network interfaces.

In network-based multiprocessor architectures, in addition to
the in-order delivery, network congestion affects the system per-
formance considerably [13–17]. Several adaptive routing algo-
rithms (output selection) [7,18–21] and arbitration techniques
(input selection) [5,22–24] have been presented to deal with the
network congestion problem. In adaptive routing algorithms, the
path between a source and a destination is determined node by
node depending on the network status as packets move toward
the destination; this can distribute traffic to different paths for
congestion avoidance. The input selection chooses one of input
channels to get access to the output channel, done by an arbitra-
tion process. The arbiter could follow either non-priority or priority
scheme. In the priority method when there are multiple input port
requests for the same available output port, the arbiter grants ac-
cess to the input port having the highest priority level. The priority
scheme can also flatten the network congestion by giving higher
priority level to traffic coming from congested areas [22,23].

In this paper, we propose an efficient congestion-aware method
for on-chip networks to reduce the congestion where the key ideas

http://dx.doi.org/10.1016/j.sysarc.2012.01.002
mailto:masdan@utu.fi
http://dx.doi.org/10.1016/j.sysarc.2012.01.002
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

214 M. Daneshtalab et al. / Journal of Systems Architecture 59 (2013) 213–222
are twofold. The first idea is to employ the global congestion
information in the router arbitration while the second idea is to
reorder the requests in network interfaces according to the global
congestion information. The proposed architecture exploits AMBA
AXI protocol to allow backward compatibility with existing IP
cores [6].

The paper is organized as follows. In Section 2, the background
and a brief review of related works are discussed. In Section 3, the
proposed GLB method is presented while the experimental results
are discussed in Section 4. Finally, the summary and conclusion are
given in the last section.
2. Background and related work

2.1. Network interface

Due to simple structure, ease of implementation, and support
for reuse, 2D-mesh topology is a popular architecture for NoC de-
sign [37]. In this structure each core is connected to the corre-
sponding router port using the network interface [27,28]. To be
compatible with existing transaction-based IP-cores, we use the
AMBA AXI protocol, having advanced functions such as a multiple
outstanding address function and data interleaving function [6]. In
the AXI transaction-based model [6,9], IP cores can be classified as
master and slave IP cores [10,30]. Master IP cores initiate transac-
tions by issuing read and write requests and one or more slaves
(memories) receive and execute each request. The AXI protocol
provides a ‘‘transaction ID’’ field assigned to each transaction.
Transactions from the same master IP core, but with different IDs
have no ordering restriction while transactions with the same ID
must be completed in order. Thus, a reordering mechanism is
needed to afford this ordering requirement in the network inter-
face [6,29]. The network interface lies between a PE and the corre-
sponding attached router, which prevents the PEs from directly
interacting with the rest of the network components in the NoC.

The authors in [9] present ideas of transaction ID renaming and
distributed soft arbitration in the context of distributed shared
memories. In such a system, because of using global synchroniza-
tion in the on-chip network, the performance might be degraded
and the cost of hardware overhead for the on-chip network is too
high. In addition, the implementation of ID renaming and reorder
buffer can suffer from low resource utilization. This has been im-
proved in [29] by moving reorder buffer resources from the net-
work interface into network routers. In spite of increasing the
resource utilization, the delay of release packets recalling data
from distributed reordering buffer can significantly degrade the
performance when the size of the network increases [29]. More-
over, the proposed architecture is restricted to deterministic rout-
ing algorithms and, thus, it is not a suitable method for an adaptive
routing. A generic plug and play network interface architecture
allowing any IP-core to be attached to the NoC by using a specific
wrapper has been investigated in [30] without considering the
reordering mechanism.

An efficient on-chip network interface supporting shared mem-
ory abstraction and flexible network configuration is presented by
Radulescu et al. [10]. The proposed architecture has the advantage
of improving reuse of IP cores, and offers ordering messages via
channel implementation. Nevertheless, the performance is penal-
ized because of the increasing latency, and besides, the packets
are routed on the same path in the NoC, which forces routers to
use the deterministic routing. Yang et al proposed NISAR [8], a net-
work interface architecture using the AXI protocol capable of pack-
et reordering based on a look up table; NISAR uses a statically
partitioned reorder buffer and thereby it has a simple control logic
but suffers from low buffer utilization in different traffic patterns.
In addition, NISAR does not support burst transactions which can
be considered a shortcoming. The drawbacks of NISAR have been
addressed in [31] where separate master and slave network inter-
faces equipped with an efficient buffer management structure.
However, none of the aforementioned interfaces have considered
the network congestion as a metric in order to balance the network
traffic.

The model presented in [31] can be summarized as follow.
Based on the AXI model, network interfaces are also classified into
the master network interface (Fig. 1) and slave network interface
(Fig. 2). In the master interface (Fig. 1), the forward path is com-
posed of an AXI-Queue, and a Packetizer unit, while the reverse
path, receiving the responses from the network, is composed by
a Packet-Queue, and a Depacketizer unit; the Reorder unit shared
between the forward and reverse paths. Reorder Unit is the most
influential part of the network interface. In the forward path, pre-
paring the sequence number for corresponding transaction ID, and
avoiding overflow of the reorder buffer by the admittance mecha-
nism are provided by this unit. On the other side, in the reverse
path, this unit determines where the outstanding packets from
the packet queue should be transmitted (reorder buffer or
depacketizer), and when the packets in the reorder buffer could
be released to the Depacketizer unit.

As illustrated in Fig. 2, to avoid losing the order of header infor-
mation (transaction ID, sequence number, and etc.) carried by
arriving requests, a FIFO has been considered in the slave network
interface. After processing a request in the slave core, the response
packet should be created by the packetizer. As can be seen from
Fig. 2, to generate the response packet, after the header content
of the corresponding request is invoked from the FIFO, and some
parameters of the header (destination address, and packet size,
and etc.) are modified by the adapter, the response packet will
be formed. Indeed, the components of slave-side interface in both
forward and reverse paths are almost similar to the master-side
interface components, except the Reorder unit.

2.2. Traffic Load Balancing

Adaptive routing algorithms can be decomposed into routing
and selection functions. The routing function supplies a set of out-
put channels based on the current and destination nodes. The
selection function selects an output channel from the set of chan-
nels supplied by the routing function [13]. The selection function
can be classified as either congestion-oblivious or congestion-
aware scheme [14]. In congestion-oblivious algorithms, such as
Zigzag [32] and random [33], routing decisions are independent
of the congestion condition of the network. This policy may disrupt
the load balance since the network status is not considered. Unlike
congestion-oblivious methods, in congestion-aware algorithms,
such as DyXY [7], GOAL [15], and GAL [17], the selection is usually
performed using the congestion status of the network [13]. Most of
congestion-aware algorithms consider local traffic condition in
which each router analyses the congestion condition of itself and
adjacent routers to choose the output channel. Routing decisions
based on local congestion information may lead to an unbalanced
distribution of traffic load. Therefore, they are efficient when the
traffic is mostly local, i.e. cores communicate with other ones close
to them [34], but they are unable to solve the global load balance
problem via making local decisions [14].

In [36] the locality decision is based on two-hop neighbors. So,
the routing decision is performed based on the congestion infor-
mation of the current node and the nodes within one-hop and
two-hop of the current node. A method named Regional Conges-
tion Awareness (RCA) is proposed in [14] to utilize non-local con-
gestion information in routing decision. In the RCA method, in
order to prepare global congestion value in routers, the locally

AXI Queue Tran. ID Packetizer

Ctrl

Data Buffer

Header Builder

Ctrl Bits

Addr Bits
NoC Addr

Tran. ID
Seq. #

Mapping

Seq . #

Flit Ctrl

Reorder Unit (RU)
Reorder Buffer

(RB)
Reorder Table

(RT)

Packet Queue

Ctrl

Depacketizer

Ctrl

Read Data

Write Resp
Packet Buffer

AX
IM

as
te

r

AXI Write Addr

AXI Read Addr

AXI Write Data

AXI Read Data

AXI Write Resp

Write Requests Buffer

Read Requests Buffer

Ctrl

Status Table
(ST)

O
n-

Ch
ip

R
ou

te
r

REQ

RESP

Fig. 1. Master-side network interface architecture.

AXI Queue
Ctrl

Packetizer

Packet Queue

Ctrl

Depacketizer

Ctrl

Ctrl Bits

Packet Buffer

A
XI

Sl
av

e

Write Resp Buffer

Read Resp Buffer

O
n-

C
hi

p
Ro

ut
er

AXI Read Data

Ctrl
Header FIFO

Read Addr
Write Addr
Write Data

Data/Resp Register

Header Register

Flit CtrlAdapterCtrl

AXI Write Addr

AXI Read Addr

AXI Write Date

AXI Write Resp

RESP

REQ

Fig. 2. Slave-side network interface architecture.

M. Daneshtalab et al. / Journal of Systems Architecture 59 (2013) 213–222 215
computed congestion value of a router is combined with those glo-
bal signals propagated from downstream routers and the newly-
aggregated value is transmitted to the upstream routers and so
on. In this method, non-local congestion information is used to
determine the direction which shows smaller global congestion va-
lue in a router. RCA requires 16 bits per link to propagate the con-
gestion information through the network. Even though RCA
collects global information, in fact router’s decision is mainly made
0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

S

D

0 1

4 5

8 9

12 13

S

(a) (b
Fig. 3. An example of the RCA method (a) congestion information collected in Y dimen
information marked by darker color.
based on local congestion. Fig. 3 shows an example of the RCA
method where node 0 wants to communicate with node 15. Firstly,
packets should be sent to either node 1 or node 4 depending on
global congestion information received from X and Y dimensions.
According to the RCA method, the congestion value in the Y dimen-
sion is calculated by weighting sum of the congestion values of the
corresponding buffers of the nodes located above the first row as
shown in Fig. 3a. Similarly, in the X dimension, the congestion va-
2 3

6 7

10 11

14 15
D

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

S

D

) (c)
sion (b) congestion information collected in X dimension (c) common congestion

4 5 6 7

8 9 10 11

12 13 14 15

4 5 6 7

8 9 10 11

12 13 14 15

(a) (b)
0 1 2 3 0 1 2 3

Fig. 4. Traffic distribution (a) without (b) with applying the idea of GLB.

216 M. Daneshtalab et al. / Journal of Systems Architecture 59 (2013) 213–222
lue is determined by aggregating the congestion values of the input
buffers of all nodes except those located in the first column as illus-
trated in Fig. 3b. As can be seen in Fig. 3c both calculated conges-
tion values in X and Y dimensions contain the congestion
information of several common input buffers with nearly similar
congestion condition. In as much as the comparison is made be-
tween the values in the X and Y dimensions, the differences be-
tween the obtained values of central nodes is not considerable
and the congestion values related to the first row and column
can affect the router decision. Therefore, RCA cannot effectively
use the global congestion information it has collected.

HARAQ [16] performs better in collecting and utilizing the con-
gestion information but the hardware overhead of this method is
large which may not be an appropriate approach in NoCs. HARAQ
is an adaptive minimal and non-minimal routing algorithm which
can route packets around congested regions. It utilizes a Q-learning
method for the output selection which is based on both local and
non-local congestion information and can estimate the latency
from each output channel to the destination region. For the Q-
learning model, each node contains a table to store the congestion
information from different regions of the network. This congestion
information is collected via a distributed approach requiring 4 bits
per link to propagate non-local information. As already mentioned,
this scheme suffers from a high hardware overhead due to main-
taining tables in each router. M. Ebrahimi et al. introduce CATRA
[35] where the non-local congestion information are gathered from
the nodes that more likely are used as intermediate nodes while
ignoring the congestion conditions of far distant nodes. It propa-
gates non-local congestion information using local and distributed
system without incorporating long global wires. However, because
of using diagonal links, the wiring overhead of this method is rel-
atively high when the network size is small. Moreover, its non-
locality view is limited to trapezoid positions while the extension
of this method is not straight forward.

The idea behind all of these methods relies on looking at the
congestion of the region that a packet is going to be forwarded.
In other words, all congestion-aware methods aim to solve global
load balancing problem by improving routing decisions utilizing
local or non-local congestion information. They mainly focus on
routing packets through less congested paths and avoiding addi-
tional traffic to the congested area and thus balancing the distribu-
tion of traffic load among the network nodes. However, they
cannot utilize the congestion information in the scheduling process
of routers. Thus, using the global congestion information in the
arbitration process of routers, traffic can be smoothed with helping
packets to leave congested area so that the traffic is distributed
over the less-congested nodes. To the best of our knowledge, this
is the first work dealing with this problem. This perspective can
be used along with previously proposed methods to diminish the
congestion condition in the network significantly. Furthermore,
for simplicity we have used an odd-even turn model [18] for mak-
ing the routing decision.
3. Global Load Balancing (GLB) method

The main ideas of GLB method are twofold. The first is to utilize
global congestion information in the router arbitration process and
the second idea is to avoid sending packets to the congested area
by monitoring congestion information in slave network interfaces.
3.1. Using congestion information in intermediate routers

All existing congestion-aware routing methods target to bal-
ance the traffic load by routing packets around the congested areas
using either local or non-local congestion information while they
do not consider the impact of the router arbitration in distributing
the traffic. Therefore, these methods cannot efficiently distribute
the traffic over the network, e.g. when some nodes are highly con-
gested and the others are not, the earlier presented methods can-
not alleviate congestion on the congested area. The first idea
behind the GLB method is to allow congested nodes to forward
their buffered packets rapidly which greatly diminish the overall
blocking probability. Consider the example in Fig. 4a where a
4 � 4 mesh network with three congested nodes 5, 6 and 10 is
illustrated. If a fair arbitration mechanism is used at the router 9,
arriving packets from the congested routers 5 and 10 will have
the same chance to win the arbitration compared with the packets
from the routers 8 and 13. Accordingly, the router 9 can be a bot-
tleneck for the packets coming from the congested area. This bot-
tleneck problem can be resolved by giving higher priority to
packets coming from the routers 5 and 10 to access the output port
at the router 9, alleviating the traffic load in the congested area. In
contrast, packets arriving from the routers 8 and 13 should wait in
the input buffers of the router 9 before accessing the output chan-
nel which increases the congestion at the router 9 slightly. In the
other words, the traffic of highly-congested areas is distributed
over less-congested nodes. Fig. 4b depicts the spread of traffic con-
gestion over the network where packets arriving from congested
nodes (i.e. nodes 5, 6 and 10) get more chance to win the arbitra-
tion among the neighboring nodes (i.e. nodes 1, 2, 7, 11, 14, 9 and
4), and similarly, the priority-based arbitration is performed in the
rest of the routers. If we assume that the congestion value of a rou-
ter is determined by the congestion condition of the router as well
as its neighbors, and this information is carried by packets, then
packets are able to collect the congestion information of routers
and their neighbors on the path from the source to destination.
Since this value contains a global view of the routing path, it can
be used as the priority parameter in routers to recognize the con-
gested areas in the network. Thus, the router arbitration is per-
formed based on the global congestion information carried by
packets.
3.2. Using congestion information in slave network interfaces

Packets collect the congestion information along paths and car-
ry it from masters to slave network interfaces. This global conges-
tion information can be used in slave network interfaces to manage
the network congestion for sending requests and responses to the
network.

Considering the example shown in Fig. 5 where master nodes 0,
4, 20 and 24 send requests A, B, C and D, respectively, to the slave
(memory) 12. We assume that the congestion level of routers is or-
ganized in four priority levels which are represented by colored
nodes in Fig. 5 (i.e. the darker color of the node is, the higher con-
gestion level is). We also assume that the network can be divided
into four quadrants according to the relative coordinates of master

1 2 3

5 6 7 8

10 11 12 13

15 16 17 18

4

9

14

19

20 21 22 23 24

0SW SE

NW NE

SW

SE

NW

NE 1

2

3

4

Q
ua

dr
an

ts

C
on

ge
st

io
n

A B

C D

Fig. 5. Different congestion levels in routers and quadrants.

Table 1
Mapping congestion values of local and neighboring input ports into two bits.

x CC y CC

0 < x 6 1/4 00 0 < y 6 1/4 00
1/4 < x 6 1/2 01 1/4 < y 6 1/2 01
1/2 < x 6 3/4 10 1/2 < y 6 3/4 10
3/4 < x 6 1 11 3/4 < y 6 1 11

M. Daneshtalab et al. / Journal of Systems Architecture 59 (2013) 213–222 217
and slave nodes (e.g. quadrants SW, SE, NW and NE in Fig. 5). By
using the congestion information carried by requests from master
network interfaces to the slave network interface 12, the conges-
tion status of each quadrant can be estimated at the slave network
interface 12. Thus, as revealed in Fig. 5, the congestion level re-
ceived by requests from quadrants SW, SE, NW and NE are 4, 2, 3
and 1, respectively. Since the quadrant SW is highly congested,
delivering the response message A (or other messages) to the mas-
ter node 0 not only exacerbates the congestion in the congested
area but also increases the total latency of the network. This prob-
lem can be mitigated by prioritizing requests based on the conges-
tion level of quadrants such that requests from less-congested
quadrants prioritize over the other requests. This approach has
two main advantages. First, it reduces the waiting time of requests
arriving from less-congested quadrants to receive service in the
slave node (memory). Second, it temporarily decreases the injec-
tion of traffic to congested area(s). Based on this scheduler mech-
anism, in the example of Fig. 5, the request D is served earlier
than the other requests, and subsequently the requests B, C and
A, respectively.

3.3. Implementation of GLB

3.3.1. Adaptive output selection
As the routing function returns a set of admissible channels to

send a packet, the selection function chooses one of them based
on the local or non-local congestion information. In this paper,
we employ the odd-even [18] routing algorithm which is an adap-
tive routing model without requiring virtual channels. In this
method, the selection is made locally according to the congestion
condition of the neighboring nodes. The number of occupied buffer
cells at the corresponding input buffers of the neighboring nodes is
considered as the congestion metric. Therefore, if the occupied
space of input buffer is larger than a threshold value, then the con-
gestion flag of the input port becomes ‘1’, otherwise ‘0’. Note that
for simplicity, we do not consider the non-local congestion infor-
mation in routing decisions.

3.3.2. Adaptive input selection
We reserve a 4-bit field, named Congestion Status (CS), in the

header of each packet to store the congestion information of the
path being traversed by the packet. Therefore, in each intermediate
router in the path, the CS value of packets is updated such that it is
combined with the congestion information of the current router.
The congestion information of a router is based on the Congestion
Conditions (CCs) of the immediate neighbors and the router itself.
CCs of a router and its neighbors are obtained according to Table 1
where x is the fraction of the number of congested input ports to
the number of router’s input ports while y is the fraction of the
number of congested neighboring input ports (i.e. neighboring in-
put ports connected to the router output ports) to the number of
neighbors. As mentioned earlier, congested input port implies that
the number of occupied cells of the buffer is larger than a threshold
value. Each router generates 4-bit congestion information via con-
catenating the router’s CC with its neighbors’ CC. The average value
of the router’s congestion information and the CS value in the
packet’s header is stored in the packet’s header as the new CS.

Using this mechanism, packets can carry the congestion infor-
mation of the routers as well as their neighboring routers along
the path. Since this value contains a global view of the path, it
can be used as an efficient metric for the arbitration process of
intermediate routers to recognize the congested areas in the net-
work. The input selection function examines the priority value of
all input packets and gives a grant to a packet with the highest con-
gestion level. In order to prevent starvation, each time after finding
the highest value, the priorities of defeated packets are incre-
mented. Fig. 6 shows the pseudo code of input selection function.

3.3.3. Adaptive request scheduler
As already described, packets can carry the congestion informa-

tion of routers and their neighbors along their paths. Consequently,
this information contains a global view of the quadrant from where
the packet is routed. As indicated in Fig. 7, in slave network inter-
faces the congestion information of quadrants carried by packets is
kept in a table named Quadrants Information Table (QIT). Once a
packet enters a slave network interface, the congestion informa-
tion, i.e. CS, is extracted from the packet’s header to update the
QIT. For this purpose, the average value of the corresponding quad-
rant in the table and CS is replaced with the prior value of QIT. The
CS value of packets received from the routers in X or Y coordinate
(i.e. East, West, South and North directions), updates the conges-
tion value of two related quadrants in QIT (e.g. packet from routers
in East direction updates both SouthEast and NorthEast congestion
values in QIT). The scheduler, integrated in the Packet Queue unit
(Fig. 7), selects a request coming from less congested quadrant. If
a request belongs to a router in X or Y coordinate, the congestion
values of both relative quadrants are considered by the scheduler.
To prevent starvation, the priority values of waiting packets are
incremented after each scheduling process. Fig. 8 shows the pseu-
do code of request scheduling mechanism in slave network
interfaces.

4. Experimental results

To evaluate the GLB method along with the proposed slave net-
work interface a NoC simulator is implemented with VHDL. The
simulator models all major components of the NoC such as net-
work interfaces, routers, and wires. The on-chip network com-
posed of the presented GLB method is compared with the
baseline architecture in terms of average network latency under
different traffic patterns. The baseline architecture comprises typ-
ical master slave network interfaces without using the GLB
method.

Fig. 6. The pseudo code of the input selection function.

AXI Queue Packetizer

Packet Queue

Ctrl

Depacketizer

Ctrl

Ctrl Bits

A
XI

 S
la

ve

Write Resp Buffer

Read Resp Buffer

O
n-

C
hi

pR
ou

te
r

AXI Read Data

Ctrl

Header FIFO

Read Addr
Write Addr
Write Data

Data/Resp Register

Header Register

Flit CtrlAdapterCtrl

AXI Write Addr

AXI Read Addr

AXI Write Data

AXI Write Resp

scheduler

Packet Buffer

QIT
SW
SE
NW
NE co

ng
es

tio
n

Ctrl

REQ

RESP

Fig. 7. Adaptive scheduler with QIT in the slave-side network interface.

218 M. Daneshtalab et al. / Journal of Systems Architecture 59 (2013) 213–222
4.1. System configuration

In this paper, we use a 30-node (6 � 5) 2D mesh on-chip net-
work for the entire architecture. As illustrated in Fig. 9, out of 30
nodes, 12 nodes are assumed to be processor (master cores, con-
nected by master network interfaces) and other 18 nodes are
memories (slave cores, connected by slave network interfaces).
The processors are 32b-AXI and the memories are DRAM (tRP–
tRCD–tCL = 2–2–2, 32b). We adopt a commercial memory controller
with memory interface, DDR2SPA module from Gaisler ip-cores
[40] where it is placed between the memory and the slave network
interface. In addition, each router structure includes input buffers,
a VC (Virtual Channel) allocator, a routing unit, a switch allocator
and a crossbar. Each router has 5 input/output ports, and each in-
put port of the router has 2 VCs [38,39]. Packets of different mes-
sage types (request and response) are assigned to corresponding
VCs to avoid message dependency deadlock [41]. The arbitration
policy of routers can be either the round-robin scheme or the pre-
sented adaptive scheme. The routing algorithm, link width, num-
ber of VCs, buffer depth of each VC, and traffic type are the other
parameters which are specified for the simulator. The routers
adopt the Odd-even [18] routing and utilize wormhole switching.
For all routers, the data width (flit size) was set to 32 bits, and
the buffer depth of each VC to 5 flits. For the request, the command
and all its control bits (flags) are included in the first flit of the
packet, the memory address is set in the second flit, and the write
data (in the case of a write command) are appended at the end. For
the response message, the control bits are included in the first flit
while the read data are appended at the end if the response relates
to a read request. Hence, the packet length for write responses and
read requests is 1 flit and 2 flits, respectively, while the packet
length for data messages, representative of read responses and
write requests, is variable and depends on the write request/read
response length (burst size) produced by a master/slave core. As
a performance metric, we use latency defined as the number of
cycles between the initiation of a request operation issued by a
master (processor) and the time when the response is completely
delivered to the master from the slave (memory). The request rate
is defined as the ratio of the successful read/write request
injections into the network interface over the total number of
injection attempts. All the cores and routers are assumed to oper-
ate at 1 GHz; and for fair comparison, we keep the bisection band-
width constant in all configurations. All memories (slave cores) can
be accessed simultaneously by each master core continuously

Fig. 8. The pseudo code of the request scheduling mechanism in slave network interfaces.

NI

Proc

R
NI

Proc

R
NI

Proc

R

NI

Mem

R
NI

Mem

R
NI

Mem

R

NI

Mem

R
NI

Mem

R
NI

Mem

R

NI

Proc

R
NI

Proc

R
NI

Proc

R

NI

Mem

R
NI

Mem

R
NI

Mem

R

NI

Mem

R
NI

Mem

R
NI

Mem

R

NI

Mem

R
NI

Mem

R
NI

Mem

R

NI

Proc

R
NI

Proc

R
NI

Proc

R

NI

Mem

R
NI

Mem

R
NI

Mem

R

NI

Proc

R
NI

Proc

R
NI

Proc

R

Fig. 9. 6 � 5 NoC layout.

M. Daneshtalab et al. / Journal of Systems Architecture 59 (2013) 213–222 219
generating memory requests. Furthermore, the size of each queue
(and FIFO) in the network is set to 8 � 32 bits and the size of the
reorder buffer is set to 48 words. If the maximum burst size is
set to 8, the conventional network interface can support at most
6 outstanding read requests in a 48-word reorder buffer (regard-
less of the exact size of the requests), while the proposed approach
is able to embed as many requests as can be reserved in the reorder
buffer, i.e. at most 48 and at least 6 outstanding read requests.
4.2. Performance evaluation

To evaluate the performance of the proposed schemes, uniform
and non-uniform/localized synthetic traffic patterns are consid-
ered. These workloads provide insight into the strengths and weak-
nesses of the GLB method in the congestion-aware on-chip
networks, and we expect applications stand between these two
synthetic traffic patterns [42,43]. The random traffic represents
the most generic case, where each processor sends in-order read/
write requests to memories with a uniform probability. Hence,
the target memory and request type (read or write) are selected
randomly. Eight burst sizes, from 1 to 8, are stochastically chosen
according to the data length of the request. In the non-uniform

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Request Rate (fraction of capacity)
(a)

Baseline
MS-GLB

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Request Rate (fraction of capacity)
(b)

Baseline
MS-GLB

Fig. 10. Performance evaluation under (a) the uniform and (b) non-uniform traffic models.

Baseline MS-GLB

220 M. Daneshtalab et al. / Journal of Systems Architecture 59 (2013) 213–222
mode, 70% of the traffic is local requests, where the destination
memory is one hop away from the master core, and the rest 30%
of the traffic is uniformly distributed to the non-local memory
modules.

Fig. 10a and b shows the simulation results under the uniform
and non-uniform traffic models, respectively. In the presented con-
figuration, the on-chip network utilizing the GLB method, denoted
by MS-GLB, is compared with the network without utilizing the
GLB method. As demonstrated in both figures, compared with
the baseline architecture, the NoC using the proposed GLB method
reduces the average latency when the request rate increases under
the uniform and non-uniform traffic models. The performance gain
near the saturation point (0.6) under the uniform and non-uniform
traffic models is about 27% and 23%, respectively. The reason for
such an improvement is due to the following reasons. Using the
presented adaptive arbitration and scheduler mechanisms, the
GLB method can diminish the congested areas so that the average
network latency decreases. This may also allow more messages to
enter the network, i.e. this leads more requests to be released from
the injection queue.

Each adaptive scheme of GLB including output selection (rout-
ing), input selection (router arbitration), and scheduler can be uti-
lized independently of each other. The effect of each scheme is
obtained after each of them is employed separately. Fig. 11 shows
the performance gain of each scheme independently under both
traffic models. The figure reveals that under the uniform traffic
profile, the adaptive input selection scheme (router arbitration)
alone improves the system performance up to 22% while the per-
formance gain of the output selection scheme (routing) and the re-
quest scheduler is up to 12% and 14%, respectively. On the other
hand, inasmuch as most of the traffic is local under the non-uni-
form model, the output selection scheme outperforms the sched-
0%

5%

10%

15%

20%

25%

Uniform Non-uniform

Pe
rf

or
m

an
ce

 G
ai

n
(%

)

Routing

Arbitration

Scheduler

Fig. 11. Performance gain of each GLB scheme.
uler scheme. It is because the routing decision is based on the
local congestion information.

We also vary the packet buffer size of slave network interfaces
to show how relative packet buffer size affects the performance.
Fig. 12 illustrates the average network latency near the saturation
point (0.6) under the uniform traffic profile. The results reveal that
as the packet buffer size increases, the average network latency re-
duces. As mentioned earlier, with the same packet buffer size, the
proposed GLB method achieves better performance gain. The pro-
posed GLB method not only achieves significant performance gain
but also enables reducing the area overhead of packet buffer by
more than 60%. For instance, the proposed architecture with a
packet buffer size of 32 offers a better performance than a packet
buffer size of 80 in the baseline method.
4.3. Hardware cost analysis

In this section, the hardware cost of the proposed network
interface and the GLB schemes is evaluated. Since all queues
(and FIFOs) are equal in the size, it would not affect the compar-
ison. The network interfaces are synthesized with Synopsys De-
sign Compiler using the UMC 90 nm technology with a timing
constraint of 1 GHz for the system clock and supply voltage 1 V.
The synthesized netlist is then again verified through post syn-
thesis simulations. Finally, we perform place-and-route, using Ca-
dence SoC Encounter, to have precise power and area estimation
in wire-dominated structures. The layout areas and power con-
sumptions of presented schemes are listed in Table 2. As can be
0

50

100

150

200

250

0 16 32 48 64 80 96

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
)

Packet Buffer Size (word)

Fig. 12. Effect of packet buffer size on the performance under the uniform traffic
model.

Table 2
Hardware implementation details.

Components Area
(mm2)

Power
(mW)

Slave-side network interface 0.0428 17
Master-side network interface 0.0755 28
Slave-side network interface including adaptive

scheduler
0.0471 21

Typical router 0.1853 65
Router including adaptive input selection 0.1913 71
Router including adaptive output selection 0.1887 66

M. Daneshtalab et al. / Journal of Systems Architecture 59 (2013) 213–222 221
seen from the table, the adaptive scheduler scheme in the slave
network interface imposes 9% hardware overhead while offering
14% performance gain. The router including the adaptive input
selection scheme is also synthesized and compared with the typ-
ical router. As the results, reported after place-and-route, the
overhead of the adaptive input selection based router is less than
3% (almost negligible) while the performance gain of using this
scheme is more than 20%. Similarly, the hardware overhead of
the router employing adaptive output selection scheme is smaller
than 2%, whereas the performance gain of this scheme is more
than 12%.

5. Summary and conclusion

A reordering mechanism is necessitated to handle concurrent
accesses to different memory modules in network-based multipro-
cessor architectures. In addition, network congestion is a critical is-
sue in such architectures where processors communicate with
memory modules through the on-chip network. To manage the
network congestion, an efficient method based on the global con-
gestion information is presented. The micro-architecture along
with the implementation of the proposed method is presented. A
cycle-accurate simulator is used to evaluate the efficiency of the
proposed congestion management method along with employing
the presented network interface.

References

[1] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, S. Borkar, A 5-GHz mesh interconnect
for a teraflops processor, IEEE Micro. 27 (2007) 51–61.

[2] B. Towles and W. Dally, Route packets, not wires: on-chip interconnection
networks, in: Proc. DAC, 2001.

[3] L. Benini, G. De Micheli, Networks on chips: a new SoC paradigm, IEEE Comput.
(2002).

[4] D. Bertozzi, L. Benini, Xpipes: a Network-on-Chip architecture for gigascale
systems-on-chip, IEEE Circ. Syst. Mag. 2 (2004) 18–31.

[5] C.A. Zeferino, M.E. Kreutz, A.A. Susin, RASoC: a router soft-core for networks-
on-chip, in: Proceedings of DATE’04, 2004, pp. 1530–1591.

[6] ARM, AMBA AXI Protocol Specification, March 2004.
[7] M. Li, Q. Zeng, W. Jone, DyXY – a proximity congestion-aware deadlock-free

dynamic routing method for network on chip, in: Proc. DAC, 2006, pp. 849–
852.

[8] X. Yang, Z. Qing-li, F. Fang-fa, Y. Ming-yan, L. Cheng, NISAR: an AXI compliant
on-chip NI architecture offering transaction reordering processing, in: Proc.
ASICON, Greece, 2007, pp. 890–893.

[9] W. Kwon, S. Yoo, S. Hong, B. Min, K. Choi, S. Eo, A practical approach of memory
access parallelization to exploit multiple off-chip DDR memories, in: Proc.
DAC, 2008, pp. 447–452.

[10] A. Radulescu, J. Dielissen, S. G. Pestana, O. P. Gangwal, P. Wielage, K. Goossens,
An efficient on-chip NI offering guaranteed services, shared-memory
abstraction, and flexible network configuration, in: Proc IEEE TCAD, vol.
24(1), January 2005.

[11] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, M. Kandemir, Design
and management of 3D chip multiprocessors using network-in-memory, in:
Proc. ISCA, 2006, pp. 130–141.

[12] G.H. Loh, 3D-stacked memory architectures for multi-core processors, in: Proc.
ISCA, 2008, pp. 453–464.
[13] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks: An Engineering
Approach, Morgan Kaufmann, 2002.

[14] P. Gratz, B. Grot, S.W. Keckler, Regional congestion awareness for load balance
in networks-on-chip, in: Proc. HPCA, 2008, pp. 203–214.

[15] A. Singh, W.J. Dally, A.K. Gupta, B. Towles, GOAL: a load-balanced adaptive
routing algorithm for torus networks, in: International Symposium on
Computer Architecture, 2003, pp. 194–205.

[16] M. Ebrahimi, M. Daneshtalab, F. Farahnakian, P. Liljeberg, J. Plosila, M. Palesi, H.
Tenhunen, HARAQ: congestion-aware learning model for highly adaptive
routing algorithm in on-chip networks, in: Proceedings of 6th ACM/IEEE
International Symposium on Networks-on-Chip (NOCS), 2012.

[17] A. Singh, W.J. Dally, B. Towles, A.K. Gupta, Globally adaptive load-balanced
routing on tori, IEEE Comput. Architec. Lett. 3 (I.1) (2004) 2–6.

[18] G. Chiu, The Odd-Even Turn Model for Adaptive Routing, IEEE Trans. Parallel
Distrib. Syst. (2000) 729–738.

[19] P. Lotfi-Kamran, M. Daneshtalab, C. Lucas, Z. Navabi, BARP-a dynamic routing
protocol for balanced distribution of traffic in NoCs, in: DATE conference, 2008,
pp. 1408–1413.

[20] M. Daneshtalab, M. Kamali, M. Ebrahimi, S. Mohammadi, A. Afzali-Kusha, J.
Plosila, Adaptive input-output selection based on-chip router architecture, J.
Low Power Electron. 8 (1) (2012) 11–29.

[21] M. Daneshtalab, M. Ebrahimi, T.C. Xu, P. Liljeberg, H. Tenhunen, A generic
adaptive path-based routing method for MPSoCs, J. Syst. Architec. (JSA-
elsevier) 57 (1) (2011) 109–120.

[22] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, H. Tenhunen, Input-output
selection based router for networks-on-chip, in: Proceedings of 9th
International Symposium on VLSI (ISVLSI), IEEE Press, Greece, July 2010, pp.
92–97.

[23] D. Wu, B.M. Al-Hashimi, M. T. Schmitz, Improving routing efficiency for
Network-on-Chip through contention-aware input selection, in: Proc. of 11th
ASP-DAC, 2006, pp. 36–41.

[24] M.H. Neishaburi, Z. Zilic, Reliability aware NoC router architecture using input
channel buffer sharing, in: Proc. GLSVLSI, 2009, pp. 511–516.

[27] G. Buzzard, D. Jacobson, S. Marovich, J. Wilkes, Hamlyn: A high-performance
network interface with sender-based memory management, in: Proc. Hot
Interconnects, 1995.

[28] T. Callahan, S.C. Goldstein, NIFDY: a low overhead, high throughput network
interface, in: Proc. ISCA, 1995.

[29] W. Kwon, S. Yoo, J. Um, S. Jeong, In-network reorder buffer to improve overall
NoC performance while resolving the in-order requirement problem, in: Proc.
DATE’09, France, 2009, pp. 1058–1063.

[30] S.E. Lee, J.H. Bahn, Y.S. Yang, N. Bagherzadeh, A Generic Network Interface
Architecture for a Networked Processor Array (NePA), in: proc. ARCS’08, 2008,
pp. 247–260.

[31] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, H. Tenhunen, Memory-
efficient on-chip network with adaptive interfaces, IEEE Trans. Computer-
Aided Des. Integ. Circ. Syst. 31 (1) (2012) 146–159.

[32] H.G. Badr, S. Podar, An optimal shortest-path routing policy for network
computers with regular mesh-connected topologies 38(I.10) (1989) 1362–
1371.

[33] W. Feng, K.G. Shin, Impact of selection functions on routing algorithm
performance in multicomputer networks, in: International Conference on
Supercomputing, 1997, pp. 132–139.

[34] L.P. Tedesco, T. Rosa, F. Clermidy, et al. Implementation and evaluation of a
congestion aware routing algorithm for networks-on-chip, 2010.

[35] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, H. Tenhunen, CATRA-
congestion aware trapezoid-based routing algorithm for on-chip networks, in:
Proceedings of 15th ACM/IEEE Design, Automation, and Test in Europe (DATE),
Germany, March 2012, pp. 320–325.

[36] G. Ascia, V. Catania, M. Palesi, Implementation and analysis of a new selection
strategy for adaptive routing in networks-on-chip, IEEE Trans. Comput. 57 (I.6)
(2008) 809–820.

[37] J. Liang, S. Swaminathan, R. Tessier, aSOC: a scalable, single-chip
communication architectures, in: IEEE Int. Conf. on PACT, October 2000, pp.
37–46.

[38] J.D. Owens, W.J. Dally, R. Ho, D.N. Jayasimha, S.W. Keckler, L. Peh, Research
challenges for on-chip interconnection networks, IEEE Micro. 27 (5) (2007)
96–108.

[39] N. Agarwal, T. Krishna, L. Peh, N.K. Jha, GARNET: A detailed on-chip network
model inside a full-system simulator, in: Proc. of IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
Boston, Massachusetts, April 2009, pp. 33–42.

[40] Gaisler IP Cores, <http://www.gaisler.com/products/grlib/>, 2009.
[41] S. Murali, P. Meloniz, F. Angioliniy, D. Atienza, S. Cartax, L. Beniniy, L. Raffoz,

G.D. Micheli, Designing message-dependent deadlock free networks on chips
for application-specific systems on chips, in: Proc. VLSI-SoC, 2006, pp. 158–
163.

[42] R. Das, S. Eachampati, A.K. Mishra, N. Vijaykrishnan, C.R Das, Design and
evaluation of a hierarchical on-chip interconnect for next-generation CMPs, in:
Proc. of 15th International Symposium on High-Performance Computer
Architecture (HPCA), 2009, pp. 175–186.

[43] P.P. Pande, C. Grecu, M. Jones, A. Ivanov, R. Saleh, Performance evaluation and
design trade-offs for network on chip interconnect architectures, IEEE Trans.
Comput. 54 (8) (2005) 1025–1040.

http://www.gaisler.com/products/grlib/

222 M. Daneshtalab et al. / Journal of Systems Architecture 59 (2013) 213–222
Masoud Daneshtalab received his Master degree in
computer architecture from University of Tehran in
2006, and the PhD degree in information and commu-
nication technology from University of Turku in 2011.
His current research interests include on/off-chip
interconnection networks for multiprocessor architec-
tures, dynamic task allocation, 3D stacked architectures,
and low-power digital design. Masoud is a member of
IEEE and has published more than 60 refereed interna-
tional journals and conference papers. He has served as
a program committee member in different conferences,
including DSD, PDP, and ICESS.
Masoumeh Ebrahimi received her B.S. degree in com-
puter engineering from School of Electrical and Com-
puter Engineering, University of Tehran in 2005, and M.
S. degree in computer architecture from Azad Univer-
sity, Science and research branch, in 2009. Since spring
2009 she has been working in the Embedded Computer
Systems laboratory, University of Tutku. She has
expertise in interconnection networks, networks-on-
chip, 3D integrated systems, and systems-on-chip. Her
PhD thesis is focused on routing protocols in 2-D and 3-
D NoCs. Masoumeh is a member of IEEE and has pub-
lished more than 30 international refereed journals and

conference papers.
Pasi Liljeberg received his Ph.D. degree in Electronics
and Information Technology from the University of
Turku in 2005. Since January 2010 he has been working
in the Computer Systems laboratory, University of
Turku as a senior lecturer. During the period 2007-2009
he has worked as an Academy of Finland postdoctoral
researcher. He has more than 55 international refereed
journals and conference papers. He has supervised one
Ph.D. thesis, one Lic.Tech. thesis and 8 M.Sc theses, and
is currently supervising 6 PhD students. His current
research interests include network-on-chip intelligent
communication architectures, on-chip fault tolerant

design aspects, 3D multiprocessor system architectures, self-timed design and
formal approaches in embedded system development.
Juha Plosila is an Adjunct Professor in Digital Systems
Design at the University of Turku, Department of
Information Technology. He received a PhD degree in
Electronics and Information Technology from the Uni-
versity of Turku in 1999. He has more than 90 inter-
national (refereed) and 35 national publications. He has
supervised 5 PhD theses and 20 MSc theses, and is
currently supervising 6 PhD students. Plosila is an
Associate Editor of International Journal of Embedded
and Real-Time Communication Systems published by
IGI Global. His current research interests include SoC/
NoC design issues primarily focusing on on-chip com-

munication architectures, development of formal design and verification methods
for digital and embedded systems, development of a multitasking virtual machine
architecture based on an in-house Java processor, fault-tolerance methods, and

dynamically reconfigurable service based system architectures.

Hannu Tenhunen received his PhD from Cornell Uni-
versity, Ithaca, USA in 1985 and since that he has held
professor, invited professor, or honorary professor
positions in Tampere, Stockholm, Ithaca, Grenoble,
Shanghai, Beijing and Hong Kong. He is honorary doc-
torate (Dr.h.c.) from Tallinn Technical University. Dur-
ing the recent years he has been director of Turku
Centre of Computer Science and invited professor at
University of Turku where he has established Computer
Systems Laboratory, the leading computer architecture
and systems research centre in Finland. Prof. Tenhun-
en’s research interest is in new computational archi-

tectures, dependability issues, on-chip and off-chip communication and mixed
signal and interference issues in complex electronic systems including 3-dimen-
sional integration. He has initiated interconnect centric design paradigm and wee

one of the originators of the Network-on-Chip concepts. He has served as confer-
ence chair, vice-chair, or TPC chair of the major conferences and workshops such as
MPSOC and ESSCIRC and has contributed in steering committee member to strat-
egies and focus of many conferences in his area. He has done over 600 publications
or invited key note talks internationally. He has also been active in establishing
triple helix, integration of research-innovation-education both in Sweden and
Finland and most recently at EU level through the successful EIT ICTlabs initiative
for the European Institute of Innovation and Technology.

	A systematic reordering mechanism for on-chip networks using efficient congestion-aware method
	1 Introduction
	2 Background and related work
	2.1 Network interface
	2.2 Traffic Load Balancing

	3 Global Load Balancing (GLB) method
	3.1 Using congestion information in intermediate routers
	3.2 Using congestion information in slave network interfaces
	3.3 Implementation of GLB
	3.3.1 Adaptive output selection
	3.3.2 Adaptive input selection
	3.3.3 Adaptive request scheduler

	4 Experimental results
	4.1 System configuration
	4.2 Performance evaluation
	4.3 Hardware cost analysis

	5 Summary and conclusion
	References

