
Integration, the VLSI Journal 67 (2019) 134–143

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

Testing aware dynamic mapping for path-centric network-on-chip test

Shuyan Jiang a, Qiong Wu a, Shuyu Chen a, Junkai Zhan a, Junshi Wang a,
Masoumeh Ebrahimi b, Letian Huang a,∗

a University of Electronic Science and Technology of China, Chengdu, China
b Royal Institute of Technology (KTH), Sweden

A R T I C L E I N F O

Keywords:
Network-on-Chip
Mapping algorithm
Intermittent fault
On-line testing

A B S T R A C T

With the aggressive scaling of submicron technology, intermittent faults are becoming one of the limiting factors
in achieving high reliability in Network-on-Chip (NoC). Increasing test frequency is necessary to detect inter-
mittent faults, which in turn interrupts the execution of applications. On the other hand, the primary goal of
traditional mapping algorithms is to allocate applications to the NoC platform, ignoring the test requirement. In
this paper, we propose a novel testing-aware mapping algorithm (TAMA) for NoC, targeting intermittent faults
on the paths between crossbars. In this approach, the idle paths are identified, and the components between two
crossbars are tested when the application is mapped to the platform. The components can be tested if there is
enough time from the time when the application leaves the platform to the time when a new application enters
it. The mapping algorithm is tuned to give a higher priority to the tested paths in the next application map-
ping, which leaves enough time to test the links and the belonging components that have not been tested in the
expected time. Experiment results show that the proposed testing-aware mapping algorithm leads to a significant
improvement over FF(Fiexitrst Free), NN(Nearest Neighbor), CoNA(Contiguous Neighborhood Allocation), and
WeNA(Weighted-based Neighborhood Allocation).

1. Introduction

With the development of fabrication process technology, the den-
sity of integrated circuits increases continuously. A single chip can inte-
grate more function units than ever before, and the era of many-core
has come. Many-core System-on-Chip (SoC) usually integrates differ-
ent function units (cores mostly) to provide strong function capacity
as well as Network-on-Chip (NoC) to provide high-bandwidth, low-
latency and flexibility communication [1]. According to the commu-
nication characteristics, many-core SoCs can be divided into Chip mul-
tiprocessors(CMP) and Multi-Processors System on Chip(MPSoC) [2].
The communication method of CMP and MPSoC is different. Com-
munication in CMP architecture is generated through data access and
cache coherency. Meanwhile, MPSoC needs peer-to-peer communica-
tion driven by the application. With the help of programming models
and frameworks, MPSoC is widely used in embedded systems [3].

To execute in parallel, the application is divided into several tasks
with data exchanges. The tasks should execute on different cores while
the data is exchanged through communication between cores. The
procedure to assign tasks to cores is called the task mapping [4]. For

∗ Corresponding author.
E-mail address: huanglt@uestc.edu.cn (L. Huang).

MPSoC, since the application initiates the communication, the inter-
task communication is determined before the task mapping, which is
usually presented by the communication graph. Thus, mapping does
not only assign the tasks but also assigns the communication traffic
between tasks to specified links.

A mapping algorithm is designed to guide task mapping [5]. The
primary goal of task mapping algorithms is to reduce the execution
time of application. The execution time of the application is severely
affected by the communication between tasks. The increase of com-
munication latency will extend the execution of application because
tasks have to wait for data for forwarding execution. Not only network
capacity but also the reliability is crucial for system performance [6].
To guarantee the right results, error data must be corrected through
fault-tolerant methods, like retransmission, which introduces signifi-
cant latency. Avoiding using fault links could avoid error communi-
cation.

Fig. 1 shows one example of the mapping algorithm. Task 1–3 is
mapped to a 4 × 4 mesh MPSoC according to CoNA mapping algorithm.
It is obvious that not all link is occupied after task mapping. These idle

https://doi.org/10.1016/j.vlsi.2018.11.009
Received 15 May 2018; Received in revised form 12 September 2018; Accepted 20 November 2018
Available online 11 December 2018
0167-9260/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.vlsi.2018.11.009
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/vlsi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2018.11.009&domain=pdf
mailto:huanglt@uestc.edu.cn
https://doi.org/10.1016/j.vlsi.2018.11.009

S. Jiang et al. Integration, the VLSI Journal 67 (2019) 134–143

Fig. 1. The Router utilization picture.

links can occur within the same application as well as between differ-
ent applications. Because the route is determined under deterministic
routing algorithms, packets deliver through one of the shortest paths,
so not all links within the application are occupied. Because there is
no data exchange between applications, links between application are
idle mostly. While the applications are executing, these idle links can
be used to optimize other features besides communication, such as reli-
ability.

As the integration process progresses, reliability becomes a critical
design challenge [7]. More physical failures generate high risks to com-
munication and execution. The reliability of NoCs directly influences
the reliability of SoCs and the execution time of applications. Broken
links can break up the connections between cores [8], and error pack-
ets have to be corrected at the cost of longer execution time [9].

Faults can be divided into transient faults, intermittent faults, and
permanent faults [10]. Transient faults occur randomly and recover
very quickly. Intermittent faults occur at same devices repeatedly. Per-
manent faults would not recover once occurred. Intermittent faults are
often caused by aging problems and can become permanent faults over
time.

Fault-tolerant approaches can detect intermittent faults. After
detecting faults, fault-tolerant methods can be triggered to protect com-
munication. It is proved that increasing the test frequency can improve
reliability by detecting intermittent faults earlier.

As shown in Fig. 2 from Ref. [11], there are two scenarios examined.
The fault rate is about 4.6% for FM1 and 2.2% for FM2 while with-
out any test. By including BIST, the fault rate reduces when shortening
the test period (increasing the test frequency). With the test period of
20 K cycles, the fault rates have been reduced by two orders of mag-
nitude, which are around 0.03% for both scenarios. Therefore, increas-
ing the test frequency helps in detecting faults faster and thus reduc-
ing the fault rate and increasing system reliability. Therefore, early
detection of intermittent faults can trigger fault-tolerant methods early,
reducing the impact on the system while extending age. By improving
the test frequency, the components are tested more times in a period,
once the intermittent fault generated, it can detect the fault in a short
time, and repair it immediately, make sure the system reliability not be
affected.

Increasing the test frequency is good for reliability, but it is not good
for performance. The test methods will interrupt the normal communi-
cation. The circuit under test must be isolated from the entire network.

Fig. 2. Flits fault rate under periodic BIST with different test periods [11].

The links under test cannot deliver any packets. Packets have to be
blocked in the routers until the test finishes. The application has to
wait for a longer time before got the necessary data and slows down.
As shown in Ref. [12], the execution time increases up to 4× when the
test frequency increases.

On the other side, idle links in the NoC can be used for testing with-
out interrupt normal traffic. Testing idle links does not introduce extra
latency. If the mapping algorithm can assign communications to the
tested link and leave the untested link free, All links can be tested in a
short period. Thus, the mapping algorithms can be an important role in
increasing testing frequency in NoC.

In order to improve the test frequency and reduce the impact
on the system, we propose a novel testing-aware mapping algorithm
(TAMA) to help test with idle links. The contribution of this work
includes:

1. The mapping algorithm considers the reliability of the link. While
mapping applications, it will try to use the links that have been
tested, at the same time, avoid using the link used by the previous
mapping. Because the link tested and the link used last time may not
have a high probability of having faults so that it can shorten the
test period of the link, detect intermittent faults early, and improve
reliability.

2. Each time after mapping the application, there will be some idle
links. This mapping algorithm provide a test strategy for the map-

135

S. Jiang et al. Integration, the VLSI Journal 67 (2019) 134–143

ping algorithm it will test the idle link; and interrupt the test when
the link is used, giving priority to the performance of the applica-
tion.

3. Finally, a path-based NoC test method matching the Mapping algo-
rithm is provided.

In this paper, the basement of our design is that the NoC must be
a regular network and a deterministic route. Since Build-in-Self-Test
(BIST) is wildly used in many testing fields, the BIST core is not in the
discussion of this paper.

The remainder of this paper is organized as follows: Section 2
presents the related work about the NoC test and mapping algorithms.
The mapping problems along with the concept of idle links in mapping
are formally modeled in Section 3. The testing method architecture is
given in Section 4. In Section 5, we propose an optimized testing-aware
mapping algorithm. Section 6 presents and discusses the simulation
results. Finally, the conclusion is given in the last section.

2. Related work

The essence of task mapping is to assign applications to different
cores to find the optimal solution while satisfying the constraints. A
good mapping algorithm can speed up task allocation and increase sys-
tem frequency, thereby increasing test frequency and improving system
reliability.

The mapping algorithm can be roughly divided into two categories:
dynamic mapping and static mapping. Static mapping is a design-time
optimization that is typically used to optimize a specific-purpose MPSoC
architecture for on-chip multi-core systems. Since the optimization of
the design stage can allow the optimization algorithm to run for a
long time without having to consider the complexity of the algorithm
itself, some optimization algorithms such as genetic algorithm and ant
colony algorithm are introduced into the static mapping algorithm. The
dynamic mapping algorithm is a run-time optimization, which is mainly
applied to the MPSoC architecture on-chip multi-core system for gen-
eral purpose use.

[13] started discussing dynamic mapping algorithms. Several
dynamic mapping algorithms proposed in the paper are often used as
the baseline for comparison with other mapping algorithms. Based on
several typical dynamic mapping algorithms proposed in Ref. [13], sev-
eral subsequent papers have continuously improved the dynamic map-
ping algorithm.

FF (first free) is one of the most fundamental algorithms proposed
in Ref. [13]. This algorithm maps tasks to the first idle PE searched by
the algorithm according to the normal order of the task graph. Search
row by row or column by column. The FF algorithm has almost no
optimization for the mapping process, so it can be compared as a “worst
mapping algorithm” to evaluate other algorithms.

NN (Nearest Neighbor) is another algorithm proposed in Ref. [13].
The most significant improvement of the NN algorithm compared with
the FF algorithm is that it searches for the next free PE and preferen-
tially searches for the few PEs that are currently closest to the mapped
task. Compared with FF, the NN algorithm considers the correlation
between tasks and maps tasks with communication requirements as
close as possible to the nearest location.

The CoNA(Contiguous Neighborhood Allocation) [14] algorithm
makes a relatively large improvement on the mapping algorithm based
on the principle of retaining the basic mapping of NN. The core idea of
the CoNA algorithm is to make the tasks in the application be mapped
in a region close to a rectangle as much as possible by determining the
reasonable mapping order and the initial mapping task, so as to make
the tasks with communication requirements as close as possible.

The WeNA(Weighted-based Neighborhood Allocation) [15] algo-
rithm considers the traffic size between different tasks as the sorting
weight in task sorting. It sorts the order of all tasks related to the cur-
rent tasks according to traffic size and records the number of all related

tasks. Ensures that tasks with large traffic with the current task can be
preferentially mapped.

Above mapping algorithms aim at reducing communication latency
and increasing system performance. WeNA has made significant
achievement on this goal. As the increase in the size of the NoC chip and
the increase in integration, the problem of failure has become more seri-
ous, and more and more studies have been made to consider the fault
tolerance and reliability of NoC in the mapping process. In Ref. [16],
the author proposes a software technology based on task migration to
detect faults in the system handling core unit fault during operation.
The technology also provides support for a number of load informa-
tion management strategies and migration activation policies, to avoid
task migration overhead too much, thus improve the reliability. The
technique presented in Ref. [17] analyzes all scenarios in which the
processor may generate fault during compilation and stores all proces-
sor unit fault information that occurs when task mapping is performed
during runtime. It proposes an efficient encoding scheme of the remap-
ping information with respect to the numbers of processors and tasks
and has an acceptable storage overhead even if multiple failures occur
[18]. analyzes three techniques in adapting intermittent faults, includ-
ing 1) using spare cores, 2) pausing execution on a temporarily faulty
core without notifying the OS, and 3) asking the OS to reconfigure itself
not to use the faulty core. In addition [18], proposes a fourth technique:
using a thin hardware/firmware virtualization layer to manage an over-
committed system - one where the OS is configured to use more virtual
processors than the number of currently available physical cores.

Testing can be seen as a special kind of “fault”, and the tested path
cannot be used during testing. Therefore, these mapping algorithms for
improving reliability are useful for our research [19]. concluded the
methodologies take necessary measures to optimize reliability or cure
the faults after they have been detected in the system. In Ref. [20], the
authors present a technique that can preserve system reliability while
achieving significant energy savings in real-time multiprocessor sys-
tems. By giving managed tasks higher priorities, it will get higher per-
formance and lower energy consumption [21]. propose a fault-tolerant
application mapping methodology that optimizes system performance
and energy consumption while considering the occurrence of different
types of faults in the system. It also explored the spare core placement
problem for improving systems reliability [22,23]. target temperature
aware mapping that leads to increased performance and lifetime. The
[22] uses online learning and expert policy to make a balance between
performance and thermal profile. The [23] introduce a proactive tem-
perature management method for MPSoCs, it estimates the hot spots
and temperature variations in advance and modifies the job allocation
to minimize the adverse effects of temperature [24]. proposes a run-
time task mapping subsystem that mitigates faults using a wear-based
heuristic.

For different optimization purpose, the manager node needs to get
the status of tasks on cores as well as send the control information of
tasks to the cores. However, this kind of data exchange can be done
through the existed NoC. Control and status information can be deliv-
ered on the NoC. The amount of control and status information is very
small, and the timing requirement is also loose. Thus, the overhead of
control and status information is negligible.

Among different test strategies [25,26], periodic built-in self-test
(BIST) is usually applied to detect and diagnose the intermittent faults
[27]. However, traditional BIST methods significantly influence the
NoCs’ throughput because the circuit under test should be disabled for
testing and isolated from the rest of the circuit by wrappers. So that the
system application will be interrupted, leading to the increase of system
running time. TARRA [28] tries to reduce the negative impact of BIST
methods on performance by introducing a reconfigurable router archi-
tecture combined with a test strategy. However, TARRA does not take
into account the idle time during mapping.

The test infrastructure in this paper is derived from Ref. [29] that
presents the on-the-field test and configuration infrastructure for a 2D-

136

S. Jiang et al. Integration, the VLSI Journal 67 (2019) 134–143

mesh NoCs. Unlike the traditional BIST methods [30,31], a controlled
BIST strategy is used to diagnose and locate the faults in the components
of the path between two crossbars.

The goal of this paper is to integrate the test procedure in appli-
cation mapping. In this way, it is possible to ensure the reliability of
NoC without interrupting the running applications to perform the test.
However, if a link is highly utilized during the application mapping, it
should be tested with a higher frequency as it is under stress and thus
prone to faults. On the other hand, the under-utilized links should not
be tested too frequently in order to avoid wasting resources. Therefore,
a proper test scheduler and a reasonable mapping strategy should be
designed using the information of link utilization. We propose an effi-
cient method to identify the free links and test the path between two
crossbars during the task mapping and give priority to the tested links
when mapping the next application.

3. Problem definition

An application includes a set of communication tasks which can
form an application graph. The mapping algorithm is a process of map-
ping an application graph (Fig. 4(a)) to a topology graph (Fig. 4(b)) in
an optimal way [32]. In order to simplify the comparison and reduce
the problem size, we consider a uniform mesh-based NoC in our defini-
tions and experiment.

3.1. Router and link utilization

When performing multi-application on a NoC-based multi-core sys-
tem, each one of them is typically divided into multiple associated tasks.
Then, these associated tasks are assigned to a set of nodes in the NoC
according to certain rules, and this process is called mapping. Mapping
is a way of resource scheduling and allocation for multi-core systems.
After mapping, there will be lots of idle links and some idle routers.

As the example shown in Fig. 1, three applications with three, five
and six tasks respectively are mapped onto a 4 × 4 mesh NoC. As you
can see from the graph, only two routers in the network are idle (the
green real frame in Figure b), and the rest is in the working state (the
red real frame in Figure b). On the other hand, the communication
links between the routers occupied by different applications A, B and C
are completely in idle mode (the green real line in the virtual frame),
and some communication links between the routers occupied by the
same application are also in idle state (the green real line between the
virtual frames). The results fully illustrate that the router centric test
encapsulation method is not suitable for the operation of embedded
application systems, unless the test process takes up a working router,
but this will have a serious impact on the running application.

3.2. Optimize space

We analyze the link utilization under four mainstream mapping
algorithms as FF [13], NN [13], CoNA [14], and WeNA [15], shown
in Fig. 3. The analysis is performed under two situations where the
experiment environment of situation1 and situation2 are adapted from
Refs. [14,15], respectively. Link utilization stands for the number of
cycles that links are utilized over all simulation run. The link utiliza-
tion (Lutilization) can be modeled as:

Lutilization =
∑Ts

t=1 Nc(t)
Nl × Ts

(1)

where Nc stands for the number of utilized paths at each simulation
cycle; Nl represents the number of paths in the network; and Ts is the
total simulation cycles. For all four mapping algorithms, the link utiliza-
tion is less than 10%, verifying the fact that the paths are mostly in an
idle mode. Therefore, an opportunistic online test scheduling method
can take advantage of such situations to test the paths when free. A

Fig. 3. The link utilization for different mapping algorithms under two different
situations in 8 × 8 NoC.

Fig. 4. (a) An application with 8 tasks and 9 edges. (b) free (green) and occupied
(red) links. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)

reasonable mapping algorithm can provide a balance between test and
mapping. It not only improves the link utilization, avoiding the waste
of resources but also increases the test frequency.

The integrated system applies the working state of the router and the
communication link in the process of mapping. It shows that the com-
munication path and the communication port of its adjacent routers are
in a free state for a long time. If these free components are fully utilized,
the online barrier detection of these free components is stimulated, and
the test frequency is increased, and the test frequency is not interrupted.
The intermittent fault on-line detection is completed at the same time
of the running application. Based on the above reasons, this paper pro-
poses a new method of BIST test encapsulation. In this method, only a
path is adopted, including communication link and router, rather than
router or link as the basic unit of testing.

3.3. Testing the paths

The occupied cores with busy and free links can be easily found by
considering a uniform mesh-based NoC with the underlying XY routing
(as we assumed in this paper). Fig. 4(b) shows a case study that presents
the result of mapping an application (Fig. 4(a)) to the cores of NoC using
the CoNA mapping algorithm. As can be seen from this figure, the red
and green links stand for the occupied and free links, respectively. The
free links and the related components can be tested when the applica-
tion is running without interrupting it or increasing the execution run.
The occupied links will be tested as soon as the application exits the

137

S. Jiang et al. Integration, the VLSI Journal 67 (2019) 134–143

Fig. 5. The path test time under two conditions.

platform. The test lasts until either the test period ends or the paths are
needed by a new application. It should be emphasized that the test is
immediately stopped when the path is requested by a new application.
To reduce these conflicting situations, the ma pping strategy tries to
utilize the links that have been recently tested than those of under the
test or requiring a test.

3.4. On-the-field test strategy

The test strategy aims at a specific test method to meet the maximum
test frequency. Intermittent faults may suffer from the detection delay
that is the difference between the time a fault is triggered and the time
it is detected. One solution to reduce this delay is to increase the test
frequency. On the other hand, the application execution time should
not be affected by the test procedure. So, the test scheduling algorithm
should be developed by taking into account the three issues:

1. The test start time: one of the test constraints is that it should not
affect the application mapping, so once a path is not occupied by any
application, the path test starts immediately, like path1 in Fig. 5.

2. Identifying and testing the free paths: we utilize the deterministic
routing algorithm XY that enables identifying the free paths as soon
as an application is mapped to the platform.

3. Handling the conflicting situation of test and mapping: when an
application is entering the platform, the requested paths should be
ready, and thus the test should be stopped immediately. In other
words, mapping has an absolute priority for the use of paths which
ensures that the test does not interrupt or delay the execution of an
application, like path2 in Fig. 5.

If a testing link is required by an application, the test procedure
is stopped immediately so that the application would not be stopped.
In all case, applications have higher priority than test procedures. Test
procedure will restart after the application finishes.

3.5. Reliability evaluation metrics

We define a reliability evaluation metric called average test time.
The test time refers to the time from when an application task enters
the system platform until to the path is tested. Fig. 5 shows the test
time of the path in both cases. In the figure, Path1 is occupied when
the application enters the system. When the path is idle, it is imme-
diately tested, and the test is completed. For path2, it is immediately
tested when it is idle, but in the process of testing, there are new appli-
cations entering the system platform. At this time, the test should be
immediately interrupted, and the application should be given a place
to map. When this path is idle again, the path will be tested again.
If there is enough time, this process will be repeated until the path
is completed. The maximum test time represents the maximum time
required for the path to be tested during the entire application run.

It can evaluate the balance of the online test mapping algorithm for
the overall scheduling of the online test process. The average test
time is the result of averaging the sum of all path times after apply-
ing the mapping. A lower average test time means a higher test fre-
quency. By increasing the test frequency, intermittent faults can be bet-
ter detected, and fault tolerance [28,33] can be properly adopted in a
timely manner. Therefore, if a fault can be detected early in the sys-
tem application run, it can be prevented or fault-tolerated in advance
so that the transmission of data packets will not be affected by the
fault.

The interrupted test rate (Tinterrupted) can be modeled as:

Tinterrupted =
Tc + Tic

Tc
(2)

where Tc stands for the total number of tested paths during the appli-
cation mapping overall simulation run. Tic represents the number of
tests that are interrupted due to the request on using the path. Since
the mapping algorithm proposed in this paper can detect whether the
path is tested and the use of the measured path is preferred, this paper
tests the interruption rate to evaluate the scheduling performance of
the mapping algorithm for the measured path. A lower test interruption
rate means that the on-chip system has a higher degree of coordination
in the online testing process.

4. Testing method

The data path of a specific port in a router is tightly coupled with
part of the control logic, such as the routing calculation unit (RC), vir-
tual channel allocator (VA) and switch allocator (SA), which only work
for that port as shown in Fig. 6. Also, the control logic will be sus-
pended while a test task is performing for the data path between two
adjacent routers. For more efficient testing, we combine the link and
its tightly coupled control logic into a transmission path and divide
it into two test groups according to different transmission directions.
Each test group contains an input control unit (ICU), an output con-
trol unit (OCU), the storage units and the link. The ICU is composed
of a finite state machine (FSM), RC, VA and a multiplexer for con-
trol signals. Also, the OCU is composed of SA and a multiplexer for
data. For decreasing area overhead, the ICU and OCU on the same
side share a BIST platform, and they are tested by pseudo-random
sequences generated by the BIST platform. For the storage units and
the link testing, a predefined test packet is sent from the output regis-
ter to the input first-input first-output (FIFO) buffer on the other side
for functional testing. The test packet is composed of an all-one flit,
an all-zero flit and 32 walking-one flits to cover stuck-at and bridging
faults.

A typical BIST platform with STUMPS (self-testing using MISR and
parallel SRSG) architecture is applied to the ICU and OCU testing as
shown in Fig. 7. It uses a linear feedback shift register (LFSR) to gen-
erate a number of pseudo-random test sequences using a preset seed.
In order to avoid the LFSR being too large, a phase shifter is used
to advance the pseudo-random sequence to generate more pseudo-
random test vectors. At the capture end of the BIST, the responses
including the primary outputs are captured with the at-speed func-
tional mode. Then an X-tolerant test response compactor is leveraged
to compress the captured results to reduce the amount of data with-
out severe loss of information. Finally, a distinct signature is gener-
ated by a multiple input signature register (MISR) and compared with
the desired response in the test response analyzer (TRA) to determine
whether there is a fault in the circuit under test. All of the test com-
ponents mentioned above are controlled by the BIST controller. The
BIST controller enables the scan chains and shifter in a given order
and controls the timing of the test. The external interface of the BIST
platform includes a start signal for triggering, a done signal to indi-
cate if the test is completed, and a pass_fail signal to indicate the test
result.

138

S. Jiang et al. Integration, the VLSI Journal 67 (2019) 134–143

Fig. 6. The path with BIST capacity can be divided into two test groups.

Fig. 7. The BIST platform based on the typical STUMPS architecture.

According to the test results, the physical fault can be located in the
control unit or data path of the test group. The location of the faults
could be reported to the mapping manager. Mapping manager avoids
allocating traffic on the faulty links in subsequence mappings.

5. Testing-aware mapping algorithm

We claim that there is a quest for a testing-aware mapping algo-
rithm which can achieve the goal of application mapping while detect-
ing intermittent faults in NoCs. It will not degrade the overall system
performance. In other words, the paths can be tested without interrupt-
ing the mapping procedure. To realize the testing-aware mapping tech-
nique, we optimize the mapping algorithm while satisfying the require-
ments of online testing.

The proposed mapping algorithm, named testing-aware mapping
algorithm (TAMA) takes the status of online testing to exploit an effi-
cient mechanism for mapping. Based on this method, the tasks are first
ordered and then mapped to the platform.

5.1. Sorting tasks

Tasks should be ordered before mapping to the platform. The order-
ing method of TAMA is similar to WeNA [15]. First, the tasks with the
largest number of edges are selected as candidates. For example on the
task graph of Fig. 8(a), four tasks have three edges (i.e. t2, t3, t4, and
t5). Then, the one with the largest number of communication volume is
chosen as the first task to map (i.e., t3).

To sort the remaining tasks, we follow the breadth-first traversal
technique similar to [15]. In the example of Fig. 8(b), the breadth-first
traversal technique starts from the first task (t3) and explores the first-
level neighbor tasks (t1, t2, and t5), and sorts them based on their com-
munication volume (t5 (18), t1 (16), and t2 (4)) from the father task,
t3. In the next step, the neighbor tasks of t5 are explored and sorted
(t4(11) and t7(7)), as shown in Fig. 8(c). The procedure is repeated for
t1 (Fig. 8(d)) and t2, and finally the neighbor task of t4 (i.e. t6) is exam-
ined in the last level (Fig. 8(e)). As a result, the tasks’ order will be t3,
t5, t1, t2, t4, t7, t0, and t6.

139

S. Jiang et al. Integration, the VLSI Journal 67 (2019) 134–143

Fig. 8. An example of TAMA mapping algorithm.

5.2. Mapping tasks to nodes

For mapping tasks to the platform, The CoNA and WeNA algorithms
start with selecting the first node by taking the situation of the neigh-
boring nodes into account. This prevents the area fragmentation to a
large extent while decreasing the congestion probability [14,15]. For
the remaining tasks, CoNA randomly maps them to one of the closest
neighbors [14]. WeNA, on the hand, takes the communication volume
into account [15] in the mapping decision. Similar to other mapping
algorithms, TAMA starts by selecting the first node to map and then
continue with the rest. The first node selection of TAMA is based on
three consecutive steps, given in Algorithm 1:

Step1: the nodes with the maximum number of free neighbors are selected
as candidates. This selection prevents area fragmentation and decreases
the congestion probability. Fig. 8(f) shows an example of the TAMA
mapping algorithm where an application with 8 tasks and 9 edges is
going to be mapped to a 3 × 4 mesh NoC with the node ñ0,0 as the
manager. There are two reasons for placing the manager code on the
corner. The first is that the contiguity of the mapped region has a sig-
nificant impact on the performance of the system after mapping. The
corner is a good place to keep the contiguity of mapped region. We
should not make an obstacle by ourselves. The second is that the traf-
fic between the manager node and task node is not too much so that
the communication latency between the manager node and task nodes
will not impact the overall system performance. So it is a good choice
to place manager node on the node ñ0,0. We can also see the manager
node location in the paper [13–15]we can see that the FF, CoNA and
WeNA algorithms all placed manager node on the margin. So it is a
good choice to place manager node on the corner. The recently-tested
nodes are identified by highlighted arrows. By following Step 1, the
maximum number of available neighbors belongs to the nodes ñ1,1 and
ñ2,1, and thus selected as candidates.

Step2: from the candidates, the ones with the maximum number of tested
links are chosen as new candidates. This avoids selecting the non-tested
links as much as possible to give them free time to test in the next round.
It can also balance the link utilization and improve the reliability by
choosing the links that are recently tested. In the given example, since
both nodes have four tested links, both of them are chosen again.

Step3: from the new candidates, the node that is closer to the manager
(ñ0,0) is selected as the first node. This is to reduce the system latency by
reducing the network latency of data package. If there is more than one
candidate, a node is chosen randomly. Since the node ñ1,1 is closer to
the manager, and it is selected as the first node to map. Thereby, the

first task, t3, is mapped to the node ñ1,1.

Algorithm 1 Selecting the first node to map.
Input: Ap: The given application task graph;
Output: FN: The selected first node;
1: N ← all nodes in NoC except the manager;
2: for node i in N do
3: S1 ← select the nodes with the maximum number of free

neighbors;
4: end for
5: for node i in S1 do
6: S2 ← select the nodes with the largest number of tested

links;
7: end for
8: for node i in S2 do
9: FN ← select the node with the smallest Manhattan distance

to node n(0,0);
10: end for

The nodes for mapping the remaining tasks are chosen based on the
following three steps, given in Algorithm 2:

Step1: the nodes that are closest to the father task node are selected. As
shown in Fig. 8(f), there are four available nodes to map t5 (ñ0,1, ñ1,0,
ñ2,1, and ñ1,2).

Step2: the nodes with the maximum number of tested links are chosen
with regard to the location of the father node and the data flow direction.
Considering the fact that the flow of data is from t3 to t5, then both
ñ1,0, ñ2,1 are considered as the nodes with 1 tested link and thus suit-
able to map the task. In this example, we map t5 to the node ñ2,1, which
is chosen randomly. t1 and t2 are also mapped to ñ1,0 and ñ0,1, respec-
tively, as shown in Fig. 8(g). If the father node is located some hops
away from the candidate nodes, then the XY routing is considered to
find the number of tested links on the path.

Step3: the nodes with the maximum number of tested links are chosen
considering the location of other mapped tasks and the data flow direction.
For mapping t4 in Fig. 8(g), there are three available nodes close to t5
(ñ2,0, ñ3,1, and ñ2,2); two of which with one tested link. On the other
hand, as can be seen from the task graph, t4 has data communication
with t2 as well which is already mapped to the platform. So, in this
step, the number of tested links on the path from t2 to t4 is counted to
decide for a better node to map. The path can be found by considering
a static routing like XY. From two possible options (ñ3,1 and ñ2,2), the
node with the maximum number of tested links (i.e. ñ2,2) is selected to

140

S. Jiang et al. Integration, the VLSI Journal 67 (2019) 134–143

map t4 (Fig. 8(h)). Following Step1 to Step3, t7, t0, and t6 are mapped
to the platform, shown in Fig. 8(h)–(j).

Algorithm 2 Selecting other nodes to map.
Input: Ap: The given application task graph;

TQ: The ordered task queue;
P: The given platform for mapping;
t and n: The task to map and the selected node;

Output: MAP: T → P: Mapping tasks to the platform;
1: N ← all nodes in NoC except the manager;
2: map nalg1 ← t1;//map t1 to the node selected by Alg. 1
3: for i = 2 → |TQ| do
4: for node j in N do
5: S1 ← select nodes that are closest to father node;
6: end for
7: for node j in S1 do
8: S2 ← select the nodes with the largest number of tested

links to/from the father node;
9: end for
10: for node j in S2 do
11: S3 ← select node with the largest number of tested

links on the path to/from the other nodes;
12: end for
13: map ns3 ← ti
14: end for

5.3. Algorithm complexity analysis

Mapping algorithms can be divided into dynamic mapping algo-
rithms and static mapping algorithms. Because static mapping algo-
rithms can run offline, there is no timing limitation. Complex heuris-
tic algorithms can be implemented even though these algorithms need
unstable execution time. On the other side, dynamic mapping algo-
rithms run online, which means algorithms must give out the assign-
ment of one task within a time limitation. The calculation time of
dynamic mapping algorithms for one task should be stable.

The basic operation in our algorithm is to choose nodes satisfying
condition from a bigger set and put them to a smaller set (so-called
choose-operation in following), as shown Algs. 1 and 2. At last, our
algorithm chooses one node from the nodes meeting all conditions.
Thus, there must be a result after Algs. 1 and 2. If the execution time of
Algs. 1 and 2 is stable, the proposed algorithm can run online.

Algorithm 1 contains three choose-operations. The worst case is that
all nodes meet all conditions and we have to loop them in the last
step. In the worse case, all N nodes must be looped in each operation.
The total iteration time should be not higher than 3N. Algorithm 2

Table 1
The setup parameters.

Parameters Values

Network size 8 × 8
Number of tasks 4–20
Max communication volume 10–30
Application injection rate 10
Simulation length 10,000,000
Number of applications 2000
Test time 1000

contains three choose-operations for each task. Thus, the total iteration
time should be not greater than 3|TQ|N. For each task, the maximum
iteration time is also 3N.

To sum up, the iteration time to give out the assignment of one task
is not higher than 3N, in which N is the number of nodes in SoC. N is
a predetermined design attribute. The execution time does not show a
relationship with any convergence procedure. Therefore, the proposed
algorithm can finish one task within a time limitation. The proposed
algorithm can be used as a dynamic mapping algorithm.

6. Results and discussion

6.1. Test time and fault coverage

In order to evaluate the feasibility and effectiveness of the proposed
test method, we used Verilog HDL to implement a path with BIST capac-
ity. Synopsys Design Compiler and DFT compiler are used for design for
test (DFT) and synthesis with TSMC 45 nm technology. Furthermore,
we perform simulation on the synthesized design by Synopsys VCS.
Then we dumped out the VCDE file from the simulation and imported
it into TetraMAX to evaluate the fault coverage for the stuck-at fault.

Fig. 9. depicts the fault coverages of ICU and OCU with various test
time ranged from 8 to 16384 clock cycles. It can be observed that the
fault coverage increases rapidly in the left half of the graph. In the range
that the test time is greater than 512 clock cycles, the fault coverages of
ICU and OCU both reach more than 95% and tends to increase slowly
after that.

6.2. Experiment setup

We compare TAMA with four different mapping algorithms as
First Free (FF), Nearest Neighbor (NN) [13], Contiguous Neighborhood
Allocation (CoNA) [14] and Weighted-based Neighborhood Allocation
(WeNA) [15]. The algorithms are implemented in the ESY-net simulator
[34]. Several sets of applications are generated using TGFF [35] with

Fig. 9. Stuck-at fault coverage of ICU and OCU for different test time.

141

S. Jiang et al. Integration, the VLSI Journal 67 (2019) 134–143

Fig. 10. (a) Max test time (b) Average test time (c) Interrupted test rate.

the parameters listed in Table 1. As for traffic pattern, because we are
researching mapping problem, it is more reasonable for us determining
traffic by task models. Apart from the parameters listed in this table,
we set the system usage rates to 1, 0.8, 0.6, and 0.4. The system usage
rate is defined as the percent of cores being occupied by running tasks.
By the way, VI.A shows that the test coverage has reached a sufficiently
high level for 512 cycles after using BIST. So, in the experiment, the test
time is set to be 1000 cycles if considering the time for test preparation,
start-up, and exit.

In order to evaluate the algorithm, the examed parameters include
maximum test time, average test time, interrupt test rate, average
weight Manhattan distance(AWMD), and average latency. Maximum
test time, average test time and interrupted test rate are used to eval-
uate the test frequency and the system reliability. The test time refers
to the time from when an application task enters the system platform
until to the path is tested. The interrupted rate represents the propor-
tion of times all path tests are interrupted due to mapping requirements
throughout the simulation. AWMD and average latency are used to eval-
uate network communication performance. The average latency repre-
sents the average of the sum of the delays of sending packets from the
source node to the destination node. (The definition of test timing may
not right).

6.3. Maximum test time

Fig. 10(a) shows the maximum test time under different system
usage rates for five mapping algorithms. The maximum test time shows
the test time in the least ideal case, which can influence the test fre-
quency, thus can increase the system reliability. As can be seen from
this figure, TAMA decreases the maximum test time than the WeNA
algorithm by more than 28.98%, 34.6%, 39%, 43.8% under system
usage rate of 1, 0.8, 0.6 and 0.4, respectively. The benefit of TAMA
is more significant in lower usage rates that is because of testing paths
at idle times and thus shortening the test time.

6.4. Average test time

From the average test time, we can evaluate the overall performance
in increasing system reliability of the algorithm. The average test time is
evaluated and compared in Fig. 10(b). As can be seen from this figure,
TAMA leads to the lowest average test time which enables a higher
test frequency and thus better reliability against intermittent faults. If
a faulty path is detected, methods can be applied to either tolerate or
fix it, which is out of the scope of this paper. Similar to the analysis of
the maximum test time, TAMA is more advantages in lower usage rates
with the maximum increase of 38.1% against WeNA when the system
usage rate is 0.4.

6.5. Interrupted test rate

The interrupted test rate also shows the performance of the algo-
rithm, lower the interrupted test rate is, less test time it will cost. So

that the maximum test time and average test time will decrease more.
Fig. 10(c) illustrates the interrupted test rate on all paths during the
whole execution time.

As can be seen from this figure, the interrupted test rate is lowest in
TAMA as compared to other methods under all configurations. This is
due to the fact that TAMA identifies the idle paths based on the under-
lying XY routing algorithm and the location of the mapped application.
Thereby the idle paths are tested meanwhile the application runs in the
platform. The remaining paths are tested when the application leaves
the platform, and thus the interrupted test rate decreases. It should be
mentioned that the mapping strategy selects the tested paths with a
higher probability than untested ones. This may leave the busy paths
unallocated this time and thus allowing them to be tested during the
execution of a new application.

6.6. AWMD metric

Fig. 11(a) shows the results of Average Weighted Manhattan Dis-
tance (AWMD) metric under different system usage rates. The AWMD
of WeNA is the lowest under four different system usage rate. As for
TAMA, the AWMD is a little higher than WeNA, and it is lower than

Fig. 11. (a) AWMD metric (b) Average latency evaluation.

142

S. Jiang et al. Integration, the VLSI Journal 67 (2019) 134–143

other examined methods under system usage rate of 1, 0.8, 0.6 and 0.4.
When the system usage rate is 1, and the AWMD of WeNA is by 0.00085
lower than TAMA, nearly the same. Though the AWMD of TAMA is not
the lowest, this is to get the advantage in reliability, and the price must
be paid.

6.7. Average latency evaluation

The average latency follows the same trend as AWMD. As shown in
Fig. 11(b), the average latency of TAMA, CoNA, and WeNA are nearly
the same while it is significantly lower than FF and NN under differ-
ent system usage rates. In sum, TAMA can reduce the maximum test
time, average test time, and interrupt rate at no compromise of AWMD
and average latency. Which means it can increase the system reliability
without sacrificing the Communication performance.

7. Conclusion

In this paper, we proposed a combined approach of mapping algo-
rithm and on-line testing, called testing aware mapping algorithm
(TAMA). TAMA targets at increasing test frequency by taking advantage
of free time slots during the application execution for testing. First, On-
the-field test infrastructure and strategy are proposed, which guarantee
the test program cannot affect the process of application mapping by
making use of free paths in mapping. Second, tasks are ordered, and a
network node which has a maximum number of available neighbors and
the largest number of tested paths is selected as the first node to map
the first task. It can significantly improve the reliability of the system,
decrease the congestion probability and prevent area fragmentation. As
the third part, TAMA maps the remaining tasks according to the num-
ber of tested paths and nearest neighborhood, trying to form the most
tested and contiguous region. Experiment results showed that TAMA
leads to significant improvement in test frequency and reliability over
traditional mapping algorithms. Although our work is currently focused
on regular NoC and deterministic routing, in the future, we will work
on irregular NoC or non-deterministic routing with this method.

Acknowledgment

This paper was supported by the National Natural Science Foun-
dation of China under grant (NSFC) No. 61534002, No. 61471407,
No.61701095, the Fundamental Research Funds for the Central Uni-
versities ZYGX2016J042.

References

[1] L. Benini, G. De Micheli, Networks on chip: a new paradigm for systems on chip
design, in: Design, Automation and Test in Europe Conference and Exhibition,
2002. Proceedings, IEEE, 2002, pp. 418–419.

[2] W.H. Wolf, A.A. Jerraya, G. Martin, Multiprocessor system-on-chip (mpsoc)
technology, IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 27 (10) (2008)
1701–1713.

[3] W.H. Wolf, Multiprocessor system-on-chip technology, IEEE Signal Process. Mag.
26 (6) (2009) 50–54.

[4] F. Wang, Y. Chen, C. Nicopoulos, X. Wu, Y. Xie, N. Vijaykrishnan, Variation-aware
task and communication mapping for mpsoc architecture, IEEE Trans. Comput.
Aided Des. Integrated Circ. Syst. 30 (2) (2011) 295–307.

[5] E. Carvalho, N.L.V. Calazans, F.G. Moraes, Dynamic task mapping for mpsocs,
IEEE Des. Test Comput. 27 (5) (2010) 26–35.

[6] J.D. Owens, W.J. Dally, R. Ho, D.N. Jayasimha, S.W. Keckler, L. Peh, Research
challenges for on-chip interconnection networks, Int. Symp. Microarchitect. 27 (5)
(2007) 96–108.

[7] V. Huard, F. Cacho, X. Federspiel, W. Arfaoui, M. Saliva, D. Angot, Technology
Scaling and Reliability: Challenges and Opportunities, 2015.

[8] A.S. Hartman, D.E. Thomas, Lifetime Improvement through Runtime Wear-based
Task Mapping, 2012, pp. 13–22.

[9] S. Murali, T. Theocharides, N. Vijaykrishnan, M.J. Irwin, L. Benini, G. De Micheli,
Analysis of error recovery schemes for networks on chips, IEEE Des. Test Comput.
22 (5) (2005) 434–442.

[10] C. Constantinescu, Trends and challenges in vlsi circuit reliability, Int. Symp.
Microarchitect. 23 (4) (2003) 14–19.

[11] J. Wang, M. Ebrahimi, L. Huang, X. Xie, Q. Li, G. Li, A. Jantsch, Efficient
design-for-test approach for networks-on-chip, IEEE Trans. Comput. (2018) 1.

[12] M.R. Kakoee, V. Bertacco, L. Benini, At-speed distributed functional testing to
detect logic and delay faults in nocs, IEEE Trans. Comput. 63 (3) (2014) 703–717.

[13] E. Carvalho, N. Calazans, F. Moraes, Heuristics for dynamic task mapping in
noc-based heterogeneous mpsocs, in: Rapid System Prototyping, 2007. RSP 2007.
18th IEEE/IFIP International Workshop on, IEEE, 2007, pp. 34–40.

[14] M. Fattah, M. Ramirez, M. Daneshtalab, P. Liljeberg, J. Plosila, Cona: dynamic
application mapping for congestion reduction in many-core systems, in: Computer
Design (ICCD), 2012 IEEE 30th International Conference on, IEEE, 2012, pp.
364–370.

[15] L.-T. Huang, H. Dong, J.-S. Wang, M. Daneshtalab, G.-J. Li, Wena: deterministic
run-time task mapping for performance improvement in many-core embedded
systems, IEEE Embed. Syst. Lett. 7 (4) (2015) 93–96.

[16] S. Bertozzi, A. Acquaviva, D. Bertozzi, A. Poggiali, Supporting task migration in
multi-processor systems-on-chip: a feasibility study, in: Proceedings of the Design
Automation Test in Europe Conference, vol. 1, March 2006, pp. 1–6.

[17] C. Lee, H. Kim, H. Park, S. Kim, H. Oh, S. Ha, A task remapping technique for
reliable multi-core embedded systems, in: 2010 IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Oct 2010, pp. 307–316.

[18] P.M. Wells, K. Chakraborty, G.S. Sohi, Adapting to intermittent faults in future
multicore systems, in: 16th International Conference on Parallel Architecture and
Compilation Techniques (PACT 2007), Sept 2007, p. 431.

[19] A.K. Singh, M. Shafique, A. Kumar, J. Henkel, Mapping on Multi/many-core
Systems: Survey of Current and Emerging Trends, 2013, pp. 1–10.

[20] X. Qi, D. Zhu, H. Aydin, Global reliability-aware power management for
multiprocessor real-time systems, in: 2010 IEEE 16th International Conference on
Embedded and Real-time Computing Systems and Applications, Aug 2010, pp.
183–192.

[21] C. Chou, R. Marculescu, Farm: fault-aware resource management in noc-based
multiprocessor platforms, in: 2011 Design, Automation Test in Europe, March
2011, pp. 1–6.

[22] A.K. Coskun, T.S. Rosing, K.C. Gross, Temperature management in multiprocessor
socs using online learning, in: 2008 45th ACM/IEEE Design Automation
Conference, June 2008, pp. 890–893.

[23] A.K. Coskun, T.S. Rosing, K.C. Gross, Utilizing predictors for efficient thermal
management in multiprocessor socs, IEEE Trans. Comput. Aided Des. Integrated
Circ. Syst. 28 (10) (Oct 2009) 1503–1516.

[24] A.S. Hartman, D.E. Thomas, Lifetime improvement through runtime wear-based
task mapping, in: Proceedings of the Eighth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, Ser.
CODES+ISSS ’12, ACM, New York, NY, USA, 2012, pp. 13–22 [Online].
Available:, http://doi.acm.org/10.1145/2380445.2380455.

[25] X. Chen, Z. Lu, Y. Lei, Y. Wang, S. Chen, Multi-bit transient fault control for noc
links using 2d fault coding method, in: 2016 Tenth IEEE/ACM International
Symposium on Networks-on-chip (NOCS), Aug 2016, pp. 1–8.

[26] Q. Yu, P. Ampadu, A dual-layer method for transient and permanent error
co-management in noc links, IEEE Trans. Circ. Syst. Expr. Brief. 58 (1) (2011)
36–40.

[27] H. Al-Asaad, B.T. Murray, J.P. Hayes, Online bist for embedded systems, IEEE Des.
Test Comput. 15 (4) (Oct 1998) 17–24.

[28] L. Huang, J. Wang, M. Ebrahimi, M. Daneshtalab, X. Zhang, G. Li, A. Jantsch,
Non-blocking testing for network-on-chip, IEEE Trans. Comput. 65 (3) (2016)
679–692.

[29] Z. Zhang, D. Refauvelet, A. Greiner, M. Benabdenbi, F. Pecheux, On-the-field test
and configuration infrastructure for 2-d-mesh nocs in shared-memory many-core
architectures, IEEE Trans. Very Large Scale Integr. Syst. 22 (6) (2014) 1364–1376.

[30] S.-Y. Lin, W.-C. Shen, C.-C. Hsu, C.-H. Chao, A.-Y. Wu, Fault-tolerant router with
built-in self-test/self-diagnosis and fault-isolation circuits for 2d-mesh based chip
multiprocessor systems, in: VLSI Design, Automation and Test, 2009. VLSI-DAT’09.
International Symposium on, IEEE, 2009, pp. 72–75.

[31] C. Grecu, P. Pande, A. Ivanov, R. Saleh, Bist for network-on-chip interconnect
infrastructures, in: VLSI Test Symposium, 2006. Proceedings. 24th IEEE, IEEE,
2006, p. 6.

[32] P.K. Sahu, S. Chattopadhyay, A survey on application mapping strategies for
network-on-chip design, J. Syst. Architect. 59 (1) (2013) 60–76.

[33] M.R. Kakoee, V. Bertacco, L. Benini, At-speed distributed functional testing to
detect logic and delay faults in nocs, IEEE Trans. Comput. 63 (3) (2014) 703–717.

[34] J. Wang, Y. Huang, M. Ebrahimi, L. Huang, Q. Li, A. Jantsch, G. Li, Visualnoc: a
visualization and evaluation environment for simulation and mapping, in:
Proceedings of the Third ACM International Workshop on Many-core Embedded
Systems, ACM, 2016, pp. 18–25.

[35] R.P. Dick, D.L. Rhodes, W. Wolf, Tgff: task graphs for free, in: Proceedings of the
6th International Workshop on Hardware/software Codesign, IEEE Computer
Society, 1998, pp. 97–101.

143

http://refhub.elsevier.com/S0167-9260(18)30259-1/sref1
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref2
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref3
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref4
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref5
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref6
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref7
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref8
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref9
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref10
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref11
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref12
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref13
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref14
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref15
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref16
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref17
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref18
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref19
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref20
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref21
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref22
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref23
http://doi.acm.org/10.1145/2380445.2380455
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref25
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref26
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref27
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref28
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref29
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref30
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref31
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref32
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref33
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref34
http://refhub.elsevier.com/S0167-9260(18)30259-1/sref35

	Testing aware dynamic mapping for path-centric network-on-chip test
	1. Introduction
	2. Related work
	3. Problem definition
	3.1. Router and link utilization
	3.2. Optimize space
	3.3. Testing the paths
	3.4. On-the-field test strategy
	3.5. Reliability evaluation metrics

	4. Testing method
	5. Testing-aware mapping algorithm
	5.1. Sorting tasks
	5.2. Mapping tasks to nodes
	5.3. Algorithm complexity analysis

	6. Results and discussion
	6.1. Test time and fault coverage
	6.2. Experiment setup
	6.3. Maximum test time
	6.4. Average test time
	6.5. Interrupted test rate
	6.6. AWMD metric
	6.7. Average latency evaluation

	7. Conclusion
	Acknowledgment
	References

