Coordinated Batching and DVFS for
DNN Inference on GPU Accelerators

Seyed Morteza Nabavinejad, Sherief Reda, Senior Member, IEEE,
and Masoumeh Ebrahimi, Senior Member, IEEE

Abstract—Employing hardware accelerators to improve the performance and energy-efficiency of DNN applications is on the rise. One
challenge of using hardware accelerators, including the GPU-based ones, is that their performance is limited by internal and external
factors, such as power caps. A common approach to meet the power cap constraint is using the Dynamic Voltage Frequency Scaling
(DVFS) technique. However, the functionally of this technique is limited and platform-dependent. To tackle this challenge, we propose a
new control knob, which is the size of input batches fed to the GPU accelerator in DNN inference applications. We first evaluate the
impact of batch size on power consumption and performance of DNN inference. Then, we introduce the design and implementation of
a fast and lightweight runtime system, called BatchDVFS. Dynamic batching is implemented in BatchDVFS to adaptively change the
batch size, and hence, trade-off throughput with power consumption. It employs an approach based on binary search to find the proper
batch size within a short period of time. Combining dynamic batching with the DVFS technique, BatchDVFS can control the power
consumption in wider ranges, and hence, yield higher throughput in the presence of power caps. To find near-optimal solution for
long-running jobs that can afford a relatively significant profiling overhead, compared with BaichDVFS overhead, we also design an
approach, called BOBD, that employs Bayesian Optimization to wisely explore the vast state space resulted by combination of the
batch size and DVFS solutions.Conducting several experiments using a modern GPU and several DNN models and input datasets, we
show that our BatchDVFS can significantly surpass the techniques solely based on DVFS or batching, regarding throughput (up to
11.2x and 2.2x, respectively), while successfully meeting the power cap.

Index Terms—deep neural networks, GPU accelerator, power consumption, throughput, batch size, dynamic voltage frequency scaling
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1 INTRODUCTION

Nowadays, DNNs can achieve state-of-the-art results in
various applications such as speech recognition [1], com-
puter vision [2], and natural language processing [3]. Due
to high computational complexity and resource demand
of large and complex DNNSs, a large body of research has
focused on designing and implementing hardware accel-
erators for training and inference phases of such DNNs.
Different hardware platforms such as manycore systems [4],
[5], GPUs [6], [7], FPGAs [8], [9], and ASICs [10], [11] are
employed to design sophisticated accelerators. The GPU ac-
celerator is a popular option for improving the performance
of DNNSs due to its programmability and scalability features
and the proven promising results. While in theory, a GPU
accelerator can exploit its maximum power capacity when
executing applications, in a real-world setup, the available
power budget is capped by an external agent. The reason
is that different components of a computing platform such
as CPU, memory modules, storage, network interface, and
hardware accelerators (e.g., GPU accelerator), usually share
the power source. Since the maximum power delivered by
the power source is less than the sum of the power capacity
of all components in the platform, the real power share of
each component is less than its nominal power capacity [12].
Consuming more power by a component than its allocated
share means power shortage in other components. The
power cap can severely degrade the performance of DNNs
on GPU accelerators, and hence, one should employ proper
techniques and methods to address this challenge.

Employing dynamic voltage frequency scaling (DVFS)
it the common practice to manage the power usage within
the power cap in processors such as CPUs and GPUs. A
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large body of research has studied power management in
GPU accelerators and have proposed various approaches
based on DVFS [13], [14], [15]. While many GPU vendors
have developed user-friendly interfaces for DVFS manage-
ment (e.g., nvidia-smi by Nvidia [16]), the application of
those interfaces is restricted due to several obstacles. First,
the DVES levels accessible on different GPUs are limited
to the ones designed by the GPU vendor, and the end-
user cannot set the DVFS to a level beyond the available
ones. Consequently, the power consumption of the GPU
accelerator is also limited to a set of certain values. Sec-
ond, increasing the DVEFS level does not certainly lead to
performance improvement. An application (e.g., DNN) that
is running on GPU should also be able to fully utilize
the available resources such as streaming multiprocessors
(SMs); otherwise, DVFS increases the working frequency of
GPU streaming multiprocessors without any benefit in the
performance of the application.

To address the aforementioned shortages of the con-
ventional DVFS technique in GPU-based DNN inference
accelerators, we introduce a new control knob, which is the
batch size. Batching is a common approach for improving
the throughput of DNN inference and has been studied in
previous works [17], [18]. Batching helps improve resource
utilization, and hence, throughput by processing a batch
of inputs instead of an individual input. We show that
the larger batches can lead to higher throughput, but it
also leads to higher resource utilization, and consequently,
higher power consumption. Therefore, batch size (BS) can
be employed as a new control knob for managing the power
consumption of DNN inference, and to trade-off throughput
with power. Leveraging this control knob, we design and
implement a lightweight runtime system called BatchDVFS'.
It can determine the batch size for each time epoch consid-

1. source code available at:
https:/ /github.com/nabavinejad /BatchDVFS



ering the power cap of the GPU accelerator, such that the
throughput of the DNN inference is maximized. BatchDVFS
is based on binary search, and hence, can select the proper
batch size in a fraction of time. BatchDVFS can dynamically
change the batch size during the execution of applications,
with no interrupt. Furthermore, BatchDVFS leverages the
DVES technique to manage the power consumption in a
wider range and finer-grain, that is beyond the sole capa-
bilities of batching or DVFS techniques alone.

The BatchDVFS is designed for making immediate de-
cisions to avoid power cap violation at the beginning of
the job, or when the system has a dynamic power cap that
is changed time to time. Therefore, it puts less emphasize
on the optimality of the solutions and is more focused on
finding a valid solution as quick as possible. Hence, it can
render the performance of job low, especially when the
power cap is constant for a long period of time for long-
running jobs. To address this challenge, we design another
offline approach that uses Bayesian Optimization (BO) [19],
[20]. This approach, which we call Bayesian Optimization for
coordinating BS and DVFS (BOBD), can find the combination
of batch size and DVFS that leads to near-optimal solution,
but with a significant time overhead. Hence, it cannot be
used instead of BatchDVFS, but rather complements it.

We conduct various experiments to evaluate the efficacy
of BatchDVFS. We employ a P40 GPU as the accelerator, sev-
eral well-studied image classification DNNs as workloads,
and two popular image datasets as the input of DNN in-
ference. The experimental results show that BatchDVFS can
maintain the power cap while improving the throughput by
up to 11.2x and 2.2x compared with two other approaches
that only use one of DVEFS or batching techniques, respec-
tively.

The main contributions of the paper are as follows:

o We study the impact of batching on throughput, re-
source utilization, and power consumption of DNN
inference on a GPU accelerator. We change the batch
size to understand how different batch sizes affects
the aforementioned parameters.

o We implement dynamic batch sizing for image clas-
sification DNNs that enables us to change the batch
size of DNN inference on the fly, with least possible
overhead and without any interrupt.

e We design and implement a lightweight runtime
system called BatchDVFS that can find the proper
batch size in a few steps using binary search. Lever-
aging the advantages of both adaptive batching and
DVES technique, BatchDVFS tries to keep the power
consumption lower than the power cap while maxi-
mizing the throughput as measured by the number
of inputs processed per second.

o To find near-optimal solution for long-running jobs
that can afford a relatively significant profiling over-
head, compared with BatchDVFS overhead, we de-
sign a BOBD approach that leverages Bayesian Op-
timization to wisely explore the vast state space
resulted by combination of batch size and DVEFS, in
pursue of finding a solution with higher throughput
than BatchDVFS solution.

The rest of the paper is organized as follows: we dis-
cuss the motivation behind our study in Section 2. Our
proposed approach is introduced in Section 3. We evaluate
our approach and present results of experiments in Section
4. Finally, we summarize the related works in Section 5 and
conclude the paper in Section 6.

2 MOTIVATION

Batching is a common approach widely studied and em-
ployed in previous works to improve the throughput of
DNN inference. In this approach, the input data is fed to
the DNN for inference in the form of batches, instead of
individually. This approach especially works for the GPU-
based DNN accelerators, since it can leverage the intrinsic
parallel architecture of GPU to significantly improve the
throughput. One parameter that can be tuned when using
this approach is batch size. In this section, we aim to show
the impact of the batch size on power and performance
of DNN inference. We employ three DNNs, namely Incep-
tion [21], ResNet [22], and MobileNet [23] and two image
datasets as input with 10,000 images, one from the ImageNet
dataset [24] and the other from the Caltech-256 dataset
[25]. We deploy the three DNNs on an Nvidia P40 GPU
in sequence, and repeat that several times to process the
two datasets. In each iteration, we double the batch size
and monitor the throughput (image per second), as well
as the power consumption and resource utilization of the
GPU (later in Section 4, we discuss the experimental setup
in more detail).

The throughput and maximum power consumption are
shown in Fig. 1, which reveals the strong relationship
between the batch size and power and throughput. With
increasing the batch size, both throughput and maximum
power consumption increase. From the results, we can con-
clude that larger batch size can yield higher throughput, and
hence, it is beneficial to use large batch sizes. However, since
the high batch size leads to high power consumption, we
need to control the power when a power cap is applied on
the system. In this work, we target the maximum through-
out while respecting the power cap. To reach the maximum
throughout, the batch size can be increased at the cost of
higher power consumption. However, it can be observed
that with a proper choice of the batch size and minimal loss
of throughout, more energy-efficiency can be achieved. This
investigation is part of our future work.

To go further into the details, in Fig. 2, we depict the
power consumption and Streaming Multiprocessors (SMs)
utilization over time for one of the DNNs (ResNet with the
ImageNet dataset) for BS = 256. We observe that the utiliza-
tion and power consumption of SMs are significantly fluc-
tuating. As presented in this figure, when the input batch
is being prepared for execution, the power consumption is
low and SMs utilization is zero because no computation is
happening. But when input execution starts, spikes happen
on the SMs utilization, and consequently, consumed power.
These spikes determine the maximum power consumption.

The conventional approach to manage the power con-
sumption is DVFS, which is designed and implemented
in almost all the processors, including the GPU we have
used. Our GPU supports a wide range of frequency levels,
from 544 MHz to 1531 MHz. To study the effectiveness of
the DVFS technique under different batch sizes, we apply
ten DVES levels (including the lowest and highest ones)
on various DNNs under different batch sizes for the Ima-
geNet dataset. The results depicted in Fig. 3 clearly indicate
that the dynamic range of power consumption covered by
DVFS is limited to batch size. For small batch sizes (e.g.,
MobileNet-batch size 1), setting the DVFS on the maximum
level can increase the power up to a certain limit. As the
batch size increases (e.g., MobileNet-batch size 256), the
DVEFS can reach higher power consumption, but the lower
bound of the power consumption cannot be reduced more
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Fig. 1. Impact of the batch size on throughput and power consumption of DNN inference on the P40 GPU.
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Fig. 3. Dynamic power range of DVFS under various batch sizes.

than a certain threshold, even when the lowest DVES level
is applied.

From the results, we can conclude that the combination
of DVFS and a constant batch size might significantly limit
the dynamic power range and throughput of DNN inference
on GPU accelerators. Having a small batch size and relaxed
power cap, DVES alone cannot fully utilize the available
power capacity, and consequently, the throughput would
be dramatically less than the achievable throughput by a
larger batch size. On the other hand if a large batch size
is selected to achieve high throughput, a tight power cap
cannot be met by DVFS, and it leads to serious power cap
violation. To address this challenge, we propose to use the
combination of dynamic batch size and DVFS to maximize
the throughput, while meeting the power cap.

3 METHODOLOGY
3.1

The problem that we aim to address in this work is as
follows: Given a deployed inference application on the GPU
and an external power cap (Peqp), we identify the batch size
(BS) and DVFS levels to maximize throughput, as measured
by the number of inputs processed per second, subject to
the power cap. Both throughput and power consumption of
DNN inference application are a function of the batch size
and DVFS, in addition to other parameters such as input
dataset, temperature of GPU, etc. The objective function is to
maximize the throughput over the course of time (T) while
meeting the power cap.
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3.2 BatchDVFS

A key prerequisite to have a runtime system that can
effectively decide on the batch size during the execution
of DNNs is implementing dynamic batch sizing in the
applications. By default, the batch size can be determined
only when the application is submitted to the GPU accel-
erator. Once the application is deployed and started the
execution, the batch size cannot be changed any longer.
The conventional approach to change the batch size is to
terminate the running instance and launch a new one with
a different batch size, which imposes significant delay or
reduces the average throughput. To mitigate this challenge,
we implement dynamic batch sizing by modifying a few
lines of code. The changes are straightforward and do not
degrade the programmability of the DNNSs. Besides, it im-
poses almost no notable overhead on latency or throughput.
Dynamic batch sizing enables us to change the batch size
on the fly without any interruption to the flow of DNN
inference. The summary of changes applied on the code
used for inference can be found on the code repository
of the paper. These changes are implemented in the code
that is used in the inference phase to load the DNN model
and prepare and send the images to the inference graph of
the model. When preparing the images, we can determine
the batch size and change it if required as well, and then
send the images and batch size to the graph. Note that our
approach requires no modification to TensorFlow library.
Having dynamic batch sizing implemented, we can proceed
to the design and implementation of our runtime system,
BatchDVFS.
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The design objective of BatchDVFS is to maximize the
average throughput while considering the power cap. To
achieve this objective, BatchDVFS dynamically changes the
batch size over the course of time. In the design of BatchD-
VFS we take into account the observations presented in
Section 2. The first key observation is that both maximum
power consumption and throughput increase with the batch
size. Therefore we can assume that those parameters are
sorted in ascending order with respect to the batch size.
Having them sorted, BatchDVFS can employ during runtime
a pseudo binary search approach to efficiently search the
state space in a few steps and find the most suitable batch
size. Since the time complexity of the binary search is O (log
n), the time overhead of BatchDVFS is negligible.

The second observation is the spiking nature of the
power consumption (see Fig. 2), which is used in the design
of BatchDVFS. Considering maximum power consumption,
which occurs during the utilization spikes, it is essential
to make sure the power consumption does not surpass the
power cap during those spikes. Thereby, after changing the
batch size, BatchDVFS waits for a few batches to be pro-
cessed to profile the power consumption of a few number
of utilization spikes, and then decide based on that. The last
observation used in the design of BatchDVFS is the impact
of DVFES on the power consumption. From Fig. 3, we see
that while the DVFS alone cannot cover a wide range of
power consumption, combining it with different batch sizes
can effectively handle the power consumption.

Given the aforementioned observations, the overall flow
of BatchDVFS can be described as follow, also presented in
Algorithm 1 and Fig. 4. BatchDVFS starts with a default
batch size (1 in our experiments). After processing a few
batches (for three seconds in our experiments) and profiling
the power consumption (line 1), it compares the profiled
power data with the power cap. If the maximum power
consumption is equal or less than power cap and greater
than or equal to a coefficient of it (o X P.qp), then the
current batch size is proper enough to maintain the power
cap and maximize the throughput, and no further action is
needed (lines 5-6). We have set o = 0.8 in the experiments.
Considering a period for power consumption, instead of an
absolute equality (e.g., max(PowerReading) == F,,;,) helps
system to achieve an stable state. If we consider an absolute
equality, then the system should constantly change the batch
size because even batches with the same size yield various
maximum power consumption that might be less or more
than power cap. Finally, these excessive batch size changes
can lead to enormous instances of power cap violation.

If the maximum power consumption is less than a x
Peyp, it means there is room to improve throughput by
increasing the batch size. Therefore, BatchDVFS sets the
batch size equal to the batch size in the middle of the current
batch size and the largest possible batch size. If the current
batch size is the largest one, BatchDVFS starts increasing the
DVES to further improve the throughput. If DVES is set to
its highest level, then no further throughput improvement is
possible through combination of batching and DVEFS (lines
7-12). If the maximum power consumption is greater than
the power cap, BatchDVFS sets the batch size as the one
in the middle of the lowest possible batch size and the
current batch size. If the current batch size is the smallest
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Fig. 4. Overall flow of BatchDVFS

Algorithm 1 BatchDVFS

1: Input: P.,),, SB(1:N):Set of available batch sizes in ascending order

2: minBS, initialBS, currentBS = 1, maxBS = N, BS = SB(initialBS), PowerRead-
ing =]

3: while True do

4 PowerReadng.append(monitorPower(inference(BS)))

5: if & X P.qp < max(PowerReading) < P.,, then

6: Continue with BS

7 if max(PowerReading) < o X Pcqp then

8 minBS = currentBS

9: currentBS = cejl(inBStmazBS

10: BS = SB(currentBS)

11: if BS == MAXBS then # MAXBS = 256 in our work
12: Start increasing the DVFS

13: if max(PowerReading) > P.,, then

14: if currentBS == minBS then

15: maxBS= currentBS, minBS =1,

16: currentBS = ﬂoor(%,zm‘”BS)

17: BS = SB(currentBS)

18: else

19: maxBS = currentBS

20: currentBS = ﬂoor(w)

21: BS = SB(currentBS)

22: if BS == MINBS then # MINBS = 1 in our work
23: Start reducing the DVFS

one, no further batch size reduction is possible. At this time,
BatchDVFS starts reducing the DVEFS to further decrease the
power and meet the power cap. If the DVFS has reached
its lowest level, the power cap cannot be met in the current
state (lines 13-23). We give priority to batch size because
of the finer granularity it provides to control the power
consumption over DVFS. When we change the DVFS level,
we observe a significant change in power consumption,
which is due to limited levels of DVFS. However, a wider
range of values can be employed for batch size that helps to
manage the power in smaller steps.

Since BatchDVFS continues processing the input data
even when it is searching for proper batch size, it does
not impose any time or resource overhead on the system.
However, the throughput may slightly degrade when the
BatchDVFS is searching, or the power cap might be violated
for a short period of time. The other design feature of
BatchDVFS is the continuous batch size adjustment. Upon
finding a suitable batch size it does not stop the procedure,
but continues monitoring the power consumption. It restarts
batch size adjustment again if it detects power cap violation
or throughput improvement opportunities that might hap-
pen due to changes in the power cap or power consumption
of the DNN. The power cap might be changed by an external
power controller, and the power consumption of DNN can
be affected by parameters such as variation in input data.

3.3 Bayesian Optimization for Near-Optimal Solution

The BatchDVFS approach introduced in section 3.2 is a
lightweight runtime system that can adjust the batch size
and DVFS in an online manner, and hence, is appropriate for
making immediate decisions to avoid power cap violation
when the job starts execution, or when the power cap is
changed during execution of the job. However, this ap-
proach, as expected, cannot guarantee finding the optimal or
near-optimal solution with regard to the throughput while
meeting the power cap. It can render the performance of the
job low, especially when the power cap is constant for an
extended period of time, and the job is long-running.

To address this challenge, we design and implement
an offline approach leveraging Bayesian Optimization (BO)
that has been employed in other works as well [19], [20],
[26], [27]. This approach, which we call Bayesian Optimization



for coordinating BS and DVFS (BOBD), can find the combi-
nation of batch size and DVFS that leads to an optimal or
near-optimal solution, but with a significant time overhead.
Hence, it cannot be accounted as a runtime approach as of
BatchDVFS, but rather, it complements it.

The BatchDVFS is designed to act as a runtime approach
for making decisions as quickly as possible without inter-
rupting jobs to avoid power cap violation when a job starts
execution or when the system has a dynamic power cap that
fluctuates frequently. Therefore, it puts less emphasize on
the optimality of the configurations it selects. This can lead
to degraded performance, in particular when the power cap
is constant for a long period of time for long-running jobs.
BOBD can address this shortage of BatchDVFS by finding
the optimal or near-optimal solution, and hence improving
the performance, albeit with higher overhead. When the
system is stable and it is expected to be at the same state
for a long time, the BOBD can start searching for a solution
that is better than that of BatchDVFS. Upon finding such a
solution, the batch size and DVFS found by BatchDVFS can
be replaced by the outcome of BOBD.

While overhead of BOBD approach is significant com-
pared to BatchDVFS, it still imposes much lower overhead
compared to an exhaustive approach that aims to find the
optimal solution by testing all the possible combinations of
batch size and DVFS. In the following, we first briefly intro-
duce BO, and then explain the design and implementation
of our BOBD approach.

3.3.1 Bayesian Optimization Essentials

The objective function (Throughput) and the constraint
function (Power) in (1) and (2) cannot be easily modelled
with respect to BS and DVFS, and thus their changes cannot
be predicted as BS and DVFS change. However, we can
observe them at sample points through test runs. To solve
this optimization problem, we can use Bayesian Optimiza-
tion (BO). The illustrative example in Fig. 5 shows how BO
works. BO models the unknown functions, e.g., Throughput
(BS, DVFS) and Power (BS, DVES), with a Prior function
that is a stochastic process by using the samples taken from
those functions. The estimated function is updated after
taking each sample, in addition to the confidence interval
that shows the difference between the estimation and the
real function. The sample points are selected sequentially
by employing a pre-defined function called acquisition func-
tion. It identifies the sample point that can better improve
the estimated function, compared with other sample points.

3.3.2 Bayesian Optimization Framework Settings

For the Prior function, the stochastic process used to esti-
mate the unknown functions, we employ Gaussian process,
a common option for BO [29]. Selecting this Prior function
implies that the unknown functions we desire to estimate
are a sample from Gaussian process. The true function f is
estimated with a surrogate model f’. In f’, the output of the
function is a random variable, instead of a real value, that
estimates the possible output of the function f for a certain
input pair (BS and DVFS). For the first few samples, the
Prior function faces a high level of uncertainty regarding
the estimate of the function f. As more samples are taken,
the level of uncertainty decreases, that translates to more
accurate estimation. Flexibility of Gaussian process allows
to end up having an accurate estimation of the function f
by taking enough samples. The number of samples needed
to approach to the true function depends on the similarity
of that function with Gaussian process. We can employ
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Fig. 5. lllustrative example to show how BO works (adapted with mod-
ification from [28]). Acquisition function finds the configuration corre-
sponding as global extremum (minimum in this example) and deter-
mines it as the next sample point.

other Prior functions than Gaussian process for a specific
DNN, but that decreases the level of the generality of the
Prior function for a broader range of DNNs [26]. Moreover,
Gaussian process is the only option with affordable compu-
tational demand for large scale problems.

For the acquisition function, we have three options [29]:
1) Probability of Improvement (PI) that selects the sam-
ple point that can most likely maximize the improvement
likelihood over the current best result, 2) Gaussian Process
Upper Confidence Bound (GP-UCB) that selects the sam-
ple point with narrowest uncertainty region for function
minimization, and 3) Expected Improvement (EI) which
selects the sample point that can maximize the expected
improvement over the current best result. The EI method is
the most popular option over the other possible options and
does not require self-tuning [29]. The EI takes into account
the estimated function (f") resulted by the Prior function
up to current selected sample points. It also considers the
best (highest in our work) value obtained for the objective
function from samples tested until current sample points.
Then, it examines the remaining input pairs by the estimated
function f” to find the objective value for each of them. The
one that can maximize the objective function improvement
over the best value found until now is selected as the next
input pair test sample and is evaluated to find the real value
of objective function for it. Then, this new sample point and
its objective value is fed to Gaussian process, along with
the previous sample points and their values, to update the
estimated function f”. This loop is repeated until BO reaches
the maximum number of sample points.

3.3.3 BOBD Architecture

The overall architecture of BOBD is depicted in Fig. 6.

Sampler and Profiler. This module interacts with DNN
application, GPU accelerator, and BO Engine, and is respon-
sible for their coordination. It receives the sample point from
the BO engine, and set the BS of DNN and the DVFS of
GPU accordingly. During the execution of DNN application
on GPU, this module gathers the info on maximum power
consumption and throughput of the DNN and sends them
back to the BO engine when the execution is finished, as
the objective and constraint, based on the specifications that
user has provided. For adjusting the DVFS of the GPU,
nvidia-smi tool is used [16].

BO Engine. For Bayesian Optimization engine, we use
the Spearmint [30] framework. Spearmint supports our
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Fig. 6. Overall architecture of BOBD.

choices for the Prior function (Gaussian process) and acqui-
sition function (EI). BO engine submits the sample points
(i.e., pairs of BS and DVEFS) to the Sampler and Profiler
module one by one. It starts with a base pair of BS and
DVEFS as the first sample point (BS= 1 and DVFS = 544
MHz). After the test sample is launched, completed, and
profiled by the Sampler and Profiler module, BO engine
receives the resulted power and throughput. Then, it up-
dates the estimation for unknown functions using the results
of sample points by Gaussian process, and determines the
next sample point using the EI function. It continues until
reaching the maximum number of samples, or until no
further improvement is possible, which one is sooner.

4 EVALUATION
4.1 Evaluation Setup

Hardware Platform. We employ a dual-socket Xeon server
equipped with two E5-2680 v4 Xeon chips each with 28
cores running at 2.4 GHz and 128 GB of DDR4 memory.
Ubuntu 16.04 with kernel 4.4 is installed on the server
with CUDA 10.0 and TensorFlow 1.15. A Tesla P40 GPU
Accelerator is installed in the server that is based on Nvidia
Pascal architecture and has 3840 CUDA cores and 24 GB
GDDR5 memory, and its maximum power limit is 250 W.
We employ 10 DVES levels for GPU in our experiments:
544 MHz, 632 MHz, 734 MHz, 835 MHz, 949 MHz, 1063
MHz, 1189 MHz, 1303 MHz, 1430 MHz, and 1531 MHz.
Please note we can only control the frequency of GPU. The
GPU driver automatically adjusts the voltage according to
the selected frequency. To understand the overhead of DVFS
management, we have changed the DVFES level for 100 times
and measured its average time, which is 100 ms for the GPU
used in the experiments. The overhead of managing DVFS
is included in the overall overhead of the system. Since the
DVES level is not changed as frequent as the batch size
in our BatchDVFS approach, its overhead has a negligible
impact on total overhead.

DNN Models and Datasets. We choose sixteen DNNs
with different characteristics such as size and computational
complexity to show the applicability of BatchDVFS on a
wide variety of DNNs [31]. The specifications of the DNNs
are presented in Table 1. We have two image datasets, one
from ImageNet [24] which is a popular dataset that is widely
used in other works, and the other one is Caltech-256 [25]
which is collected by researchers from the California Insti-
tute of Technology. The workload used in the experiments
consists of thirty jobs shown in Table 2. The power cap for
each job is a number between 50 W (the minimum power
when loading a model on GPU) and 250 W (the maximum
power capacity of GPU).

TABLE 1
Lists of DNNs Used in the Experiments

Computational

DNN (Abbreviation) Reference  # Parameters Complexity
(Mega FLOPs)

Inception-V1 (IncV1) [2] 6.6 M 13.22
Inception-V2 (IncV2) [32] 112M 22.33
Inception-V3 (IncV3) [21] 23.8 M 54.25
Inception-V4 (IncV4) [33] 427M 91.94
Mobilenet-V1-1 (MobV1-1) [23] 42M 8.42
Mobilenet-V1-05 (MobV1-05) [23] 1.3 M 2.64
Mobilenet-V1-025 (MobV1-025) [23] 05M 0.92
Mobilenet-V2-1 (MobV2-1) [34] 34M 6.94
Mobilenet-V2-14 (MobV2-14) [34] 6.9M 12.12
NASNET-Large (NAS-L) [35] 889 M 177.11
NASNET-Mobile (NAS-M) [35] 53M 10.50
PNASNET-Large (PNAS-L) [36] 86.1 M 171.76
PNASNET-Mobile (PNAS-M) [36] 51M 10.06
ResNet-V2-50 (ResV2-50) [22] 256 M 51.00
ResNet-V2-101 (ResV2-101) [22] 445M 88.88
ResNet-V2-152 (ResV2-152) [22] 60.2 M 120.08

TABLE 2
Specification of Jobs Used in the Experiments

DNN Dataset Pov\z‘e/\l})C ap DNN Dataset POV\E&)C ap
1 IncVl ImagNet 131 16 IncV1 CalTech 125
2 IncV2 ImagNet 123 17 IncV2 CalTech 192
3 IncV3 ImagNet 228 18 IncV3 CalTech 80
4 IncV4 ImagNet 84 19 IncV4 CalTech 245
5 MobV1l-1 ImagNet 145 20 MobV1-1  CalTech 98
6 MobV1-05 ImagNet 89 21 MobV1-05 CalTech 120
7 MobV1-025 ImagNet 112 22 MobV1-025 CalTech 92
8 MobV2-1 ImagNet 89 23 MobV2-1  CalTech 208
9 MobV2-14 ImagNet 164 24 MobV2-14 CalTech 152
10 NAS-L ImagNet 83 25 NAS-M CalTech 135
11 NAS-M ImagNet 159 26 PNAS-L  CalTech 86
12 PNAS-M  ImagNet 246 27 PNAS-M  CalTech 136
13 ResV2-50 ImagNet 143 28 ResV2-50  CalTech 198
14 ResV2-101 ImagNet 167 29 ResV2-101 CalTech 236
15 ResV2-152 ImagNet 237 30 ResV2-152 CalTech 79

Batch Size Range. The range of batch sizes that BatchDVFS
and Clipper can select is from 1 to 256 (range: 1 to 256).
While we have used this range in the experiments, any other
set with an arbitrary size can also be used. Since the time
complexity of BatchDVFS is O (log n), it can handle large
sets and find a suitable batch size with the least number of
tries and within a reasonable time. The upper bound of the
batch size set (i.e., 256 in this work) depends on the memory
capacity of the GPU accelerator. Very big batch sizes lead to
out of memory (OOM) error. Therefore we used a very fast
offline profiling that needs to be executed only once for a
new DNN to find the upper bound of the batch size. During
the offline profiling, we start from a small batch size (e.g.,
16), and each time we add a constant amount to this value
(e.g., 16). We only need to execute one batch with a batch
size to see if the OOM error happens or not. Hence, it would
be very fast. We continue until OOM error happens, and the
last successful batch size is the biggest one we can have.
Systems Compared. We compare our approach against two
other methods: PIT [13] which employs DVFS to manage
the power consumption, and Clipper [37] which leverages
the Batching;:

1) PIT [13] considers changing the DVES starting from the
least amount and increasing it step by step until reaching
the power cap. Since we a have limited set of DVES levels
in our setup (ten levels), we believe that the same routine
can efficiently handle the DVFS management. Hence, for the
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sake of comparison, we implement a DVFS-based approach
that uses the same routine. We implement two versions
of this approach, each with a different batch size: DVFS-
1 and DVFS-256. The batch sizes are selected as follows:
the smallest possible batch size (one) to have control over
the power consumption, and the largest batch size (256)
to achieve high throughput. Similar to BatchDVFS, both of
these approaches start their work with frequency set at the
middle of the DVFS levels (1063 MHz). We do not call this
approach PIT because the PIT leverages quantized version
of the DNNs as well, while we do not use quantization in
DVFS-1 and DVFS-256 approaches.

2) Clipper [37]: this approach originally uses the batch size
to manage the latency, but we modify it such that it con-
siders the power cap instead of latency. Clipper employs an
additive-increase-multiplicative-decrease (AIMD) scheme to
find the optimal batch size that maximizes the throughput,
while meeting the latency SLO. We tune Clipper such that
it starts from batch size one and additively increases the
batch size by a fixed amount (steps of four in this work)
until the power consumption exceeds the power cap. At this
point, Clipper performs a small multiplicative back-off and
reduces the batch size by 10%. Clipper does not employ
DVFS and it is controlled by internal DVFS controller of the
GPU. Similar to BatchDVFS, Clipper starts with batch size
of one.

For the sake of fairness, in the implementation of both
DVES and Clipper, the @ = 0.8 coefficient is considered
for comparing the power consumption and the power cap,
similar to the BatchDVFS. Moreover, when the batch size
is changed by Clipper or the frequency level is changed by
DVEFS-based approaches, waiting for three seconds to see the
power spikes is considered similar to the BatchDVFS design.

4.2 Experimental Results

First, we present the throughput results in Fig. 7. BatchD-
VFS can improve the throughput in all the jobs compared
with Clipper and DVFS-1, while having close (and in some

oo
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Job
for all the jobs used in the experiments.

cases lower) throughput results compared with DVFS-256.
It improves the throughput by up to 2.2x and 11.2x (which
is 35% and 5.3x, on average) compared with Clipper and
DVFS-1, respectively. To understand the reason behind these
improvements, we show the average batch size and DVFS
selected by all the approaches for each job in Fig. 8 and
Fig. 9, respectively. DVFS-1 has the fixed batch size of one,
while the AIMD mechanism of Clipper needs some time to
adjust the batch size, and consequently, none of them can
efficiently leverage the throughput improvement obtained
by large batch sizes. On the other hand, they try to increase
the throughput by hiring higher DVFES levels, and hence,
both of them have higher average frequency compared with
BatchDVFS. But the higher DVEFS level cannot compensate
the absence of large batches, and consequently, they end up
having lower throughput than BatchDVFS.

Comparing the BatchDVFS with DVFS-256, we see that
either the throughput improvement is not that significant, or
even it is significantly lower than DVFS-256 in jobs such as 4
and 10. The results shown in Fig. 8 shows that for these jobs
the average batch size of BatchDVFS is significantly smaller
than the DVFS-256 (which is 256). Therefore, it is expected
to see higher throughput for DVFS-256. To understand the
root of this difference between throughput of DVFS-256 and
BatchDVFS, we present the detailed results of power, batch
size, and frequency for a few jobs in Fig. 10, Fig. 11, and Fig.
12, respectively. Since the batch size of DVFS-1 and DVFS-
256 is constant, we have not plotted their lines in Fig. 11.

Fig. 10 indicates that for the jobs in which DVFS-256
obtains higher throughput than BatchDVFS (i.e., Fig. 10(a):
job 4, Fig. 10(d): job 26), it also completely violates the power
cap (the same is true for jobs 10, 18, and 30, but we have not
plotted the results for them due to lack of space). We see
that while BatchDVES only violates the power cap at the
beginning of some jobs when it is adjusting the batch size,
DVFS-256 completely fails to maintain the power cap and
violates it during the entire execution time. For example,
in Fig. 10(a), DVFS-256 detects the power cap violation,
and since its batch size is constant, it tries to reduce the
power consumption by adjusting DVFES to its lowest possi-
ble level, see Fig. 12 (a). However, even the lowest DVFS
level cannot reduce the power consumption below power
cap, and consequently, DVFS-256 suffers from serious power
cap violation. On the other hand, BatchDVFS immediately
detects the power cap violation after, and hence, reduces
it to maintain the power consumption (see Fig. 11(a)). In
addition to batch size, it adjusts the DVFS and decreases it
by one level (unlike DVFS-256 that reduces it to the lowest
level) and successfully manages the power consumption
with the combination of batch size and DVFS.

Observing the behavior of BatchDVFS and Clipper re-
garding batch size reveals the impact of different batch size
adjustment mechanisms on their performance. For example
in Fig. 11(b), BatchDVFES increases the batch size faster than
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Clipper, and hence, can better exploit the opportunity for
increasing the throughput. When the power cap is tight,
e.g., job 26 - Fig. 10(d), both BatchDVFS and Clipper employ
the lowest batch size to manage the power consumption
(see Fig. 11(d)). But unlike BatchDVFES, Clipper cannot suc-
cessfully meet the power cap. The root of this failure lies
in the DVFS management mechanism of these approaches.
BatchDVFS has an adaptive DVFS controller, and therefore
for job 26, Fig. 12(d), the controller decides to keep the
frequency at a low level to maintain the power consumption
below the power cap. However, the default controller of
GPU that is used by Clipper, tends to employ high DVFS
levels to increase the throughput. Therefore we see that
even with batch size of one, Clipper is not able to meet

the power cap and violates it frequently. Finally, we see in
DVEFS-1 that the low batch size helps to successfully meet
the power cap. However, its extremely conservative batch
size (one) severely restricts its performance, and hence, it
always has very low throughput compared with all the
other approaches.

From the results, we can conclude that hiring either one
of the two control knobs i.e., batch size or DVFS, limits
the achievable dynamic power range, and consequently,
might lead to either low throughput or power cap violation.
Hence, it is essential to combine them together to have a
flexible and efficient online power management system.
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4.2.1 Sensitivity Analysis

The power cap applied to a system is usually subject to
change over the course of time. As we mentioned in Section
3.2, BatchDVES can adapt itself to changes in power cap
and start adjusting the batch size again in the presence
of such changes. To study this feature of BatchDVFS, we
conduct a separate set of experiments where the power
cap is dynamic. In the experiments, we have two jobs
that start execution with a certain power cap, and the
applied power cap changes two times during execution:
1) ResNetV2-152 (Fig. 13(a)): the power cap is initialized
with 150 W, but is decreased by steps of 40 W (150 W,
110 W, 70 W). 4) MobilenetV1-1 (Fig. 13(b)): the power cap
starts from 75 W, and increases by steps of 50 W up to
175 W (75 W, 125 W, 175 W). The results clearly indicate
the success of BatchDVFS in adapting itself with the power
cap. As the power cap changes, BatchDVFES employs smaller
or larger batch sizes to manage the power consumption.
When the batch size reaches its minimum or maximum
value, BatchDVFS leverages DVFS to further increase the
performance (MobilenetV1-1) or decreases the power con-
sumption (ResNetV2-152).

4.3 Comparing BatchDVFS and BOBD

We use BOBD to find the solution for all the 30 jobs listed in
Table 2. Note that since BOBD does not guarantee optimality
of the output, we cannot claim that the solutions are optimal.
In Fig. 14, we compare the throughput of BatchDVFS against
BOBD for all the jobs. On average, BOBD improves the
throughput by 15% compared with BatchDVFS, and the
maximum improvement happens in job 4 by 55%. These
results imply that if enough time is available for profiling
the job and taking some samples from it, using Bayesian Op-
timization can lead to better solutions. But, for an decision
online, we need a runtime system similar to BatchDVFES, and
BOBD can not be employed in such cases. We can conclude
that these approaches can complement each other and be
used together to achieve highest possible throughput, while
avoiding power cap violation.

Finally, to better understand how BOBD works, in Fig.
15 we depict the power and throughput of 20 sample points
selected by BOBD for job 4. The horizontal dashed red line
shows the power cap of this job. By testing the first sample
point, BOBD can find a valid solution that meets the power
cap. After that, it aims to find better valid solutions that
can yield higher throughput. While evaluating the sample
points, BOBD tries to explore the edges of state space (pairs
of BS and DVFS) to understand the impact of each BS
and DVES on objective (throughput) and constraint (power
cap), which leads to some invalid solutions (e.g., 2, 5, 6).
Eventually, it tends to select sample points that yield power
consumption close to power cap and tries to find a valid
solution there that obtains high throughput.
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4.4 BatchDVFS and Co-location

In the design and implementation of BatchDVFS, we con-
sidered the case when only one job is running on the
GPU and all the resources belong to it. Since co-location
is a common practice to improve the resource utilization
and energy-efficiency of GPU accelerators, we conduct pre-
liminary experiments to understand the performance of
BatchDVFS when several jobs are co-running together. We
use four DNNs (InceptionV3, InceptionV4, ResNetV2-101,
and ResNetV2-152) and a constant power cap, 120 W. First,
we deploy the DNNs one by one (single execution) and
apply the BatchDVFS to observe their throughput. Then,
we deploy all of them on the GPU together and apply the
BatchDVFS to observe their throughput again, but this time
when they are co-located. The throughput result is shown
in Fig. 16.

Since BatchDVEFS is not designed for the co-location case,
no mechanism is embedded in it to orchestrate the co-
located jobs with each other. It only coordinates the BS and
DVES of each job individually without having any feedback
or info from other jobs. The only thing considered is the
power cap of the GPU. Consequently, we see that while
the overall throughput of co-location (13.2 + 10.3 + 59.2 +
11.1 = 93.8) is higher than each single execution throughput,
the amount of throughput reduction of each individual
job, compared with its single execution throughput, is not
uniform. One of the jobs (ResNetV2-101) employs large BS



(BS = 64) to increase its throughput to the level of single
execution, which consumes high power. Consequently, the
other ones can only use small BS (BS = 1) as there is no
room for more power consumption due to power cap. So,
they suffer from serious throughput reduction compared
with single execution. Note that the job that employs large
BS is determined randomly during the execution (e.g.,
based on which one starts execution sooner or decides to
employ larger BS sooner), as it changes when we repeat
the experiment. We can clearly see that BatchDVFS fails to
fairly determine the BS of each co-located job, such that
their throughput reduction would be proportional to their
single execution throughput. Furthermore, while in our
experiment the DVFS was not changed by any of the jobs,
each of them is able to set it independently in its own favor.

We conclude that BatchDVFS needs to be extended to be
able to manage the co-located jobs, efficiently. A central unit
should monitor the throughput of each individual job and
the impact of BS on it, as well as the overall GPU power
consumption. Then, it should determine the BS of each
job accordingly to maximize the overall throughput, while
meeting the fairness. One possible design of the central unit
can be as follows: At first, the BS of all the jobs should be in-
creased by the same step all together (if it is determined that
there is room for higher power consumption with respect to
power cap). Then, the throughput of each individual job
should be compared with its previous throughput. At the
next step, if we decide to increase the BS (due to more room
for increasing the power consumption) or decrease it (to
avoid power cap violation), we can change the BS of each job
proportionally with respect to its throughput sensitivity to
the BS, instead of changing it for all the jobs uniformly. If the
BS is decided to be increased, the job that can most benefit
from larger BS regarding throughput should experience a
higher BS increase than others. On the other hand, if the
BS should be decreased, the BS of that job should be less
decreased than others. In other words, the BS of all the jobs
will be changed, and one cannot consume all the power
capacity solely; however, the amount of BS change varies
from job to job. In this way, while we try to maximize the
overall throughput, we manage to change the BS of all the
jobs, and hence, meet some degrees of fairness.

Moreover, this unit should determine the DVFS of the
GPU, as it affects all the SMs, and hence, performance of
all the jobs. Therefore, each job should not be able to set
the DVES level of the GPU, independently. The central unit
can change the DVFS after the BS of all the jobs is set to
the maximum or minimum value, and there is no room for
managing the power consumption through changing the BS.

4.5 Discussion

An obstacle we have faced during conducting the experi-
ments in the real-world setup is the profiling interval of sen-
sor powers embedded in the GPU. The power consumption
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of GPU is sampled every one second, and hence, it is the
narrowest interval we can have for monitoring the power
consumption of the GPU when running the DNNs. This
one-second sampling interval sometimes leads to missing
the power consumption spikes. Therefore BatchDVFS (and
other approaches as well) might not be able to see the impact
of a change it has made in the batch size or frequency. For
example, after changing the batch size from 10 to 20, it might
not be able to measure how much the maximum power
consumption has been increased because the power sensors
where not able to catch that maximum power consumption.
Consequently, BatchDVFS might decide to further increase
the batch size, while the current value is proper and larger
batch sizes can lead to power cap violation. We believe that
having the sensors with higher sampling frequency can help
our approach to yield even better results.

Batching can be applied in inference or training phase
to achieve varying goals, such as accelerating the training
process or reducing the inference time. The batch size that
we consider in this work is employed in the inference phase
of DNNs, and thus it has no effect on the accuracy of
the results. This contrasts with the batching techniques
employed in the training phase e.g., by mini-batch gradient
descent approach, which may affect the accuracy of the
trained model.

5 RELATED WORK

Dynamic Voltage Frequency Scaling (DVFS) is a common
technique for managing power and performance of pro-
cessors such as GPUs and has been explored in a large
body of research [13], [14], [15], [38], [39]. Komoda et al.
[40] have focused on CPU-GPU systems and designed a
power capping mechanism that leverages DVFS and task
mapping simultaneously. Their approach seeks to adjust the
frequency of CPU and GPU with respect to the task mapped
to each of them. To achieve this goal, they modeled the
power and performance of the system considering the task
mapping and DVEFS level to prevent power cap violation
or load imbalance. Jiao et al. [14] employ the ability of
modern GPUs to host several concurrent kernels to improve
the power and performance. They designed and imple-
mented several power-performance models to determine
the suitable combination of kernels to be deployed on the
GPU. Moreover, they adjust the frequency of cores and the
memory system to improve the performance per watt of the
GPU. Guerreiro et al. [15] employ a classification approach
to categorize the GPU applications based on the impact
of DVFS on their performance and obtain representative
models. Leveraging the obtained models, they estimated the
impact of various DVFS settings on the performance and
power of new applications and tune the DVFS accordingly.

GreenMM [38] targeted the energy consumption of ma-
trix multiplication, a prevailing operation of DNNs. They
employed GPU undervolting without reducing the fre-
quency to decrease the power consumption. To mitigate the
impact of aggressive undervolting on fault rate, GreenMM
introduced Algorithm-Based Fault Tolerance (ABFT). Tang
et al. [39] conducted an extensive set of experiments to
understand the impact of DVFS on performance and en-
ergy consumption of several DNNs. To this end, they ex-
ecuted four DNNs on three GPU accelerators. PIT [13] is
another approach that employed DVFS along with reduced-
precision instructions supported by new GPUs to manage
the power consumption of DNN inference on GPU acceler-
ators. It first deploys the reduced-precision model of DNN
on the GPU, and if needed, it adjusts the GPU frequency



with its dedicated procedure. That procedure starts from
the lowest DVFS level and increases it as much as possible
to improve the performance, while meeting the power cap.
None of these approaches employ an adaptive batching
mechanism to leverage its benefits for power management
and throughput maximization.

Studying the impact of batching on DNN inference and
employing it to increase the throughput has attracted re-
searchers from both academia and industry [17], [18], [41],
[42], [43], [44], [45]. Some studies indicate the benefits of
batching for throughput and energy consumption of DNN
inference on GPUs [41], [46], but it also elongates the latency
of DNN as well. Pervasive CNN (P-CNN) [44] leveraged
large batch sizes for throughput-oriented tasks to maximize
their throughput while reach energy-efficiency for GPU. To
select the proper batch size for such tasks, P-CNN takes into
account the GPU memory and makes sure that the batch
size is not excessively large to encounter an out-of-memory
error. On the other hand, P-CNN selects small batch sizes
for latency-critical tasks to avoid elongated response time.
Clipper, a system for online ML services, [37] formed
batches from concurrent streams of prediction inputs for
processing to take advantage of the benefits of batching.
Its additive-increase-multiplicative-decrease (AIMD) mech-
anism sets the batch size adaptively to find the proper size
that maximizes the throughput, while assuring the latency
constraint is met. These approaches have mostly focused
on inference latency and usually do not consider the power
cap of the hardware platform, and consequently, they do
not employ the DVFS technique. BatchDVFS addresses the
aforementioned shortcomings of these approaches.

Employing pruning and quantization to improve the
power/performance of DNNs on hardware accelerators is
widely studied in previous works. Various weight pruning
[47], [48], [49], node pruning [50], [51], and filter pruning
[52], [53] approaches are among the ones proposed to reduce
the redundant connections in a DNN, and consequently,
reduce the computation demand. Another widely explored
research direction for improving the power and perfor-
mance of DNN inference is quantizing the DNN parameters
to lower numerical precision (e.g., 16-bit floating point or
8-bit integer), and thus leveraging the reduced-precision
instructions supported by hardware accelerators. [13], [54],
[55], [56], [57]. The pruned and quantized DNNSs still can
benefit from our approach to further improve the perfor-
mance of DNN inference on hardware accelerators.

6 CONCLUSION

In this work, we explored the possibility of using batch size
as a new control knob for managing the power consumption
of GPU-based DNN accelerators. The batch size can control
the resource utilization of GPU, and consequently, its power
consumption. Combining this new control knob and DVFS
technique, we designed a runtime system called BatchDVFS
that aims to maximize the throughput while meeting the
power cap. The results show that it can outperform the Clip-
per approach that solely relies on batch size, and DVFS-1
and DVFS-256 approaches that employ a constant batch size
and manage the power by adjusting the GPU’s frequency.
We also designed another approach called BOBD that aims
to find better solutions than BatchDVFS, but with significant
time overhead. The batch size is orthogonal to previous
power management and performance improvement tech-
niques for DNNs such as quantization and pruning, and
hence, can be used in conjunction with them to yield more
promising results.
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