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Abstract—The cost of transferring data between the off-chip memory system and compute unit is the fundamental energy and
performance bottleneck in modern computing systems. Furthermore, with the advent of emerging data-intensive applications and
technology scaling, this bottleneck has continuously increased. To overcome these difficulties, Near Memory Processing (NMP) based
on 3D die stacking becomes a potential technology to transform the computation-centric system towards memory-centric system. In this
work, we explore the feasibility and efficacy of a NMP architecture based on an emerging Non-Volatile Memory technology (NVM) for
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effectiveness of our approach with experimental results.
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1 INTRODUCTION

3D-stacked memory technology is one of the most
promising solutions to address the memory wall problem
in modern computing systems [1] [2]. Micron’s Hybrid
Memory Cube (HMC) [3] [4] and JEDEC’s High Bandwidth
Memory (HBM) [5] are examples of this memory technology.
This technology enables stacking multiple high capacity
memory layers vertically on top of a logic tier using short
and fast Through-Silicon Vias (TSVs) bus within one pack-
age and provides a massive internal memory bandwidth
with lower power consumption and latency [21] [22] [6]. It
has been reported that an HMC package offers an internal
bandwidth of 160GB/s to 320GB/s while providing a high-
level vault (vertical partition composed of multiple memory
banks) parallelism [3].

In the era of big data and with the advent of emerging
data-intensive applications, researchers have witnessed the
inefficiency of conventional CPU-centric processing systems
when running large data sets. Data-intensive applications
increase power and bandwidth pressures to the memory
system. Tackling these challenges, researchers have pro-
posed Near Memory Processing (NMP) architecture based on
3D-stacked memory technology that integrates processing
units within memory package to offer higher memory band-
width to the processing units. NMP architecture exhibits a
significant potential for performance and energy efficiency,
since it reduces the aggregate need for transferring data
within large memory hierarchy.

The next promising innovation for the next generation
memory systems is the use of byte-addressable cutting edge
Non-Volatile Memories (NVMs). Phase Change Memory
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(PCM) [7], Spin-Torque Transfer Random Access Mem-
ory (STTRAM) [8], and Resistive Random Access Memory
(ReRAM) [9] are examples of emerging NVMs (with differ-
ent characteristics) explored by researchers and manufac-
tures for replacing DRAM at the main memory layer. The
expectation from NVM types is to provide larger capacity
per chip, memory access latency and energy consumption
(low-power) competitive to the DRAM technology, and bet-
ter technology scaling. Across emerging NVM technologies,
PCM is considered as the most mature one that can benefit
from more reduction in the switching power and can scale
better than DRAM technology [7] [10]. It has been reported
that the PCM is expected to scale to 9nm in the near future
which introduces memories with higher density that can
meet the capacity requirements of many-core computing
systems [11].

The goal of this paper is to motivate the efficiency
of NMP subsystems to process data-intensive applications
when 3D-NVM technology is employed. In this paper we
make the following contributions:

• We perform a detailed characterization (Roofline,
data locality, and memory access behavior analysis)
for various set of applications as a case study. The
analysis evaluates the potential benefits of NMP ar-
chitecture over conventional Host CPU processing to
accelerate processing data-intensive applications in
an efficient way.

• We explore two NMP architectures based on different
3D-stacked memory technologies (3D-DRAM and
3D-PCM) and analyze the impact of constructing
NMP architecture based on emerging non-volatile
memory technology (PCM).

• We show that executing certain data-intensive appli-
cations on NMP architecture based on 3D-NVM can
improve performance and reduce power consump-
tion versus executing on a conventional Host CPU
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and 3D-DRAM based NMP.

The rest of this paper is organized as follows: Section 2
provides a brief background related to the conventional
Host CPU and near memory processing, and then describes
different architectural techniques proposed to tackle perfor-
mance and energy problems in processing data-intensive
applications. Section 3 describes the methodology used for
application characterization and how to leverage the pro-
posed metrics. Section 4 explains the evaluation methodol-
ogy and the experimental platforms. Section 5 presents the
analysis and results. Finally, Section 6 concludes the paper.

2 BACKGROUND AND MOTIVATION

In this section, we provide an overview of conventional
Host CPU and NMP architecture. Then, we explain prior re-
search works relevant to architectural techniques proposed
to tackle performance and energy problems when dealing
with processing data-intensive applications.

2.1 Conventional Host CPU and NMP Subsystem
In conventional Host CPU processing (shown in Fig. 1.a),
data shuttles back and forth between the off-chip DRAM
and the processing unit. This data movement is a major per-
formance bottleneck when dealing with data-intensive ap-
plications such as media processing, data mining, computer
vision, machine learning, computational biology, and speech
recognition. In this section, as the background, we describe
different architectural techniques which are proposed to
tackle latency and energy problem when processing data-
intensive applications.

Fig. 1 depicts an abstract view of a system that is ca-
pable of processing close to memory in which the NMP
subsystem is connected to Host CPU through high-speed
links. Host CPU can offload kernel to the NMP subsys-
tem. NMP transfers data through high-bandwidth and low-
energy 3D interconnects between memory layers and cores
in the logic layer. The NMP subsystem (Fig. 1.b) consists
of a 3D processor-memory architecture, in which process-
ing cores are embedded in the logic layer and memory
layers are stacked vertically on top of it. Fig. 2 illustrates
a conceptual view of a NMP architecture. The logic layer
composed of multiple vault logics, connected to each other
through an interconnect network such as Network-on-Chip
(NoC). NoC is the dominant communication infrastructure
which provides a scalable efficiency in hardware area and
power [12] [13]. The memory is divided into multiple ver-
tical partitions called vaults in which each vault has its
own memory controller in the logic layer. Each memory
layer consists of multiple independent vaults. Each of these
vertical vaults can be accessed in parallel as they have
independent processing cores and memory controllers in the
logic layer.

In this work, the modeled NMP subsystems are based
on 3D-DRAM and 3D-PCM technologies. One of the main
potential applications of NMP architectures is deep learning
applications, where they involve a massive data movement
between the processors and off-chip DRAM. The NMP
architectures facilitate these data movement through short-
length and fast TSV connections between memory and logic
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Fig. 1: The overall architecture of a system with NMP
capability. An application can run on the Host CPU as in
the conventional manner, or it can be offloaded to the NMP
subsystem in which data can be accessed more efficiently.
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Fig. 2: Conceptual view of a NMP architecture. Each pro-
cessing unit in the logic layer can utilize high-bandwidth,
low-latency and low-power TSV connection to access data
in memory with higher internal bandwidth.

layers. This leads to significant power saving and latency
improvement.

2.2 Processing In Memory
The cost of moving data in an application continue to
increase significantly as applications process larger amount
of data. Processing In Memory (PIM) provides an opportunity
to eliminate unnecessary data movement by bringing part
of the computation into the memory. Two decades ago (late
1990s and early 2000s), several research studies investigated
the integration of processing logic, which ranges from sim-
ple cores to accelerators and FPGAs, and DRAM (or embed-
ded DRAM) modules on a single chip [14] [15] [16] [17] [18]
[19] [20]. In this architecture, a host processor was connected
to the PIM chip with a custom interconnect. Although it was
reported that there was potential for a significant speedup in
some classes of applications (e.g, image processing, machine
learning, and graph processing). There was a limited success
on the past PIM projects and the major reason comes from
additional cost (integrating logic and DRAM module) and
density shortcoming of 2D chips.

2.3 Near Memory Processing based on 3D Stacking
The most recent and promising innovation that can provide
continued scaling of performance is the ability to stack
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multiple memory layers on a multi-core processor die. In
3D-stacked memory (e.g., HMC and HBM), a logic layer and
multiple memory layers are stacked vertically on top of each
other using short and high bandwidth TSVs. TSV-based
interconnection provides a low latency and energy efficient
data transfer between logic layer and memory layers. Cur-
rently, this memory technology provides an opportunity to
architects to embed a wide range of computational logic in
the logic layer considering the area, energy, and thermal dis-
sipation constraints. These benefits can potentially improve
system performance and energy efficiency in a practical
manner, but only with careful design of NMP architectures.

It is reported that the 3D-stacked package can commu-
nicate with a maximum bandwidth up to 320GB/s with
internal memory layers through TSVs and external units
through high bandwidth links [3]. Unfortunately, today’s
processors are not capable of taking full advantage of
the improvements offered by the 3D memory technology.
NMP systems enabled by 3D-stacking can address one of
the major reasons for the limited success of previous PIM
projects. This technique avoids additional cost of integrating
processing cores with DRAM on the same chip.

NMP systems are the biggest opportunity for emerging
data-intensive applications. Such applications scan through
massive datasets with a very low temporal locality. As a
result, they cannot benefit from large and multi-level cache
hierarchies and thus waste memory bandwidth and energy.

There are several research work on integration of the
computation unit to the logic layer of 3D-stacked DRAM.
Zhang et al. [23] proposed to integrate programmable GPUs
to the logic die of 3D-DRAM to offer high throughput.
Pugslet et al. [24] created a near data computing architecture
for MapReduce workloads. In this work, a host processor
is connected to many daisy-chained 3D-stacked DRAM
devices with energy-efficient processor cores in their logic
layer. Gao et al. [25] proposed a practical near-data process-
ing architecture for in-memory analytics frameworks where
a high-end host processor with out-of-order cores is attached
to multiple 3D-stacked memory devices (e.g., HMC). In this
work, near-data processing cores are responsible for execut-
ing the portions of applications with a very low temporal
locality, and host processor is responsible for executing the
portions of applications with a significant temporal locality.
However, to the best of the our knowledge, this work is the
first to study a 3D-stacked NMP architecture based on an
emerging non-volatile memory technology (PCM).

3 CHARACTERIZATION METHODOLOGY

Several data-intensive applications are selected to evalu-
ate performance and power consumption of the proposed
NMP architectures (discussed in Section 4). We choose sev-
eral multi-threaded applications from different benchmark
suites to cover a wide range of computation and memory
patterns [26] [27] [28] [29]. Table 1 summarises all the evalu-
ated applications and their description. We used full system
gem5-NVMain hybrid simulator [33] to evaluate Host CPU
performance. Key parameters of the Host CPU system are
shown in Table 3.

In this section, we describe the general behaviour of
the studied applications and their performance bottleneck.

TABLE 1: Evaluated applications and their description.

Application Name Description
Back Propagation BP Pattern Recognition
Breadth-First Search BFS Graph Analysis
HotSpot 3D HS-3D Physics Simulation
Sparse Matrix Vector
Multiplication

SpMV Graph Analysis
Machine Learning

HeartWall HW Medical Imaging
Stream Cluster SC Data Mining
Kmeans Clustering Kmeans Artificial Intelligence
Ray Tracing C-ray Computer Graphics
Image Rotation Rotate Image Processing
Stencil Stencil Physics Simulation

Machine Learning
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Fig. 3: Constructed Roofline model for our 8-core ALPHA
processor with 2 GHz frequency, peak floating point per-
formance of 240 GFlops/sec and peak memory bandwidth
of 85.3 GB/s (theoretical). For each application, Roofline
data point is shown on the graph based on its operational
intensity and attainable performance. The minimum opera-
tional intensity to get the maximum performance is π/β =
2.81 Flops/Byte.

As a case study, we conduct a thorough characterization
(Roofline analysis, temporal and spatial data locality anal-
ysis, and memory access behavior) to illustrate the unique
behaviour (memory requirement and access behaviour) of
the studied applications and to justify the use of NMP
architecture.

3.1 Roofline Analysis
By applying the Roofline model which is a throughput ori-
ented performance model, we can find if an application lies
in the memory-bandwidth bound region or performance bound
region of the underlying hardware [30]. A Roofline model
is constructed which describes the theoretical limits of the
modeled Host CPU system described in Section 4.1. Fig. 3
presents the constructed Roofline model along with the
Roofline data points for the evaluated applications. These
data points represent the operational intensity (Flops per
Byte ratio) of each application. In this model, Host CPU sys-
tem has the theoretical performance limit of 240 GFlops/sec
and peak memory bandwidth of 85.3 GB/s (21.3 GB/s per
channel).
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Fig. 4: Temporal data locality sweeping LLC capacity 8-
64MB with fixed cache-line size of 64B across all compute-
bound applications.
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Fig. 5: Spatial data locality sweeping cache-line (LLC)
size 32-256B with fixed cache capacity of 16MB across all
compute-bound applications with poor/no temporal data
locality.

Our Roofline analysis (see Fig. 3) shows that: 1) the attainable
performance of Rotate, HW, Stencil, Kmeans, C-ray, and SC
applications is approaching the theoretical performance bound of
the Host CPU which categories them into applications with high
compute bound. These applications have a high computation to
communication ratio, 2) BFS, HS-3D, BP, and SpMV applications
have a very low compute bound. These applications are bounded
by memory bandwidth and they cannot fully utilize the Host CPU
processing power.

3.2 Temporal and Spatial Data Locality Analysis

In order to confirm the results obtained by Roofline analysis,
we estimate the amount of data locality in compute-bound
applications (Rotate, HW, Stencil, Kmeans, C-ray, and SC).
Applications with high Flops/Byte and high data locality
can exploit benefits offered by Host processing power and
large cache hierarchies.

Temporal data locality is the measure of how likely a data
is to appear again in a sequence of requests after being
requested within a time span. One way to estimate the
temporal data locality of an application is to analyze how
the cache hit rate of a processor changes as we increase
the last-level cache (LLC) capacity with a fixed cache-line
size. Fig. 4 shows temporal data locality sweeping cache
size from 8MB to 64MB with fixed cache-line size of 64B
for applications with high compute bound (see Fig. 3). We
observe that HW, Stencil, and C-ray have enough temporal data
locality to leverage from cache hierarchies in Host CPU system.
Kmeans and Rotate exhibit a very small improvement in their
cache hit rate which implies a very poor temporal locality. SC
application with no improvement in the cache hit rate shows no
temporal locality.

TABLE 2: List of all evaluated applications and their mem-
ory access behavior. The reported numbers are measured
from Host CPU execution. In this table, ”Mid” stands for
Middle. Applications with ”High” and ”Mid” memory in-
tensity are classified into memory-intensive (highlighted in
gray in the table) and other applications are labeled as
memory-non-intensive.

Memory Access Behavior
Application Memory intensity RBL R-to-W ratio

BP 21.5 (High) 24.51% (Low) 1.63
BFS 2.4 (Mid) 76.5% (High) 3.93

HS-3D 2.3 (Mid) 75.61% (High) 4.26
SpMV 2.1 (Mid) 16.24% (Low) 4.48
Rotate 0.4 (Low) 28.80% 1.72

HW 0.13 (Low) 5.94% 1.08
Kmeans 0.085 (Low) 75.53% 2.17

C-ray 0.07 (Low) 21.10% 1.41
Stencil 0.03 (Low) 58.91% 1.63

SC 0.006 (Low) 58.47% 3.47

Spatial data locality is the phenomenon that if a program
references a particular data, then it is extremely likely that
the program will also reference other data that are nearby to
the referenced data. This data locality determines sensitivity
to the cache-line size and can be estimated by sweeping
the cache-line size with a fixed cache capacity [31]. Fig. 5
illustrates spatial data locality for three compute-bound
applications with poor/no temporal locality (see Fig. 4) by
sweeping cache-line size from 32B to 256B with a fixed cache
size of 16MB. We conclude that all of three compute bound
applications with poor/no temporal locality (SC, Kmeans, and
Rotate) have enough spatial locality. These applications can utilize
the benefits of large cache hierarchies provided by the Host CPU
system.

3.3 Memory Access Behavior

Memory intensity, row buffer locality (RBL), and read-to-write ra-
tio (R-to-W) are three components which we use to estimate
the memory access behavior of each application. Table 2 lists
all applications used in our study (both memory-intensive
and compute-intensive) and their memory characteristics.
The focus of this section is on applications with high and
middle memory intensity (memory intensity > 2).

Memory intensity is the frequency at which a request
misses in the last-level cache which is determined in the unit
of misses per kilo instructions (MPKI) of LLC. Applications
with memory intensity greater than two (LLC MPKI > 2)
are classified into memory-intensive and other applications
(which have LLC MPKI < 2) are labeled as non-memory
intensive (compute-intensive). Data shown in Table 2 confirms
the results obtained by Roofline analysis and data locality analysis.
Rotate, HW, Kmeans, C-ray, Stencil, and SC have a very low
memory intensity which lies them in the non-memory-intensive
category. BP, BFS, HS-3D, and SpMV applications (highlighted
in gray in Table 2) have memory intensity greater than two which
categorize them into memory-intensive class.

Memory device organization includes a peripheral stor-
age known as row buffer (RB) which acts as a cache for
memory array rows and is independent from the memory
technology. This memory component is present in both
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TABLE 3: The key parameters of the simulated systems

Host CPU System
Processor 8 cores @ 2 GHz
Caches per-core L1 (I): 32 KB, 2-way

per-core L1 (D): 32 KB, 2-way
per-core L2: 256 KB, 4-way
shared L3: 16 MB, 8-way
cache-line size: 64 B
DRAM Memory

DDR4-2666 MHz 16 GB: 16 Gb ×8
4 channels × 4 ranks × 4 banks
Row buffer size: 8 KB
Bandwidth: 21.3 GB/s per channel
(theoretical)
15 GB/s per channel (empirical)

Timing
Parameters

tck = 1.25ns
tRAS = 42, tRCD = 19, tCAS = 10
tCCD = 4, tRP = 19, tWR = 210

NMP System
Cores 8 cores @ 1.8 GHz
Caches per-core L1 (I): 32 KB, 4-way

per-core L1 (D): 32 KB, 4-way
cache-line size: 64 B

3D-stacked Memory
3D-DRAM
(HMC)

16 GB: 2 layers × 4 vaults × 4 rank
4 ranks/vault
2 cores per vault logic
Row buffer size: 256 B

3D-PCM 16 GB: 2 layers × 4 vaults × 4 rank
4 ranks/vault
2 cores per vault logic
Row buffer size: 256 B

DRAM and PCM. When content of a memory array’s row
is placed in the row buffer, successive memory requests to
the same row are served immediately from the row buffer.
These memory accesses are called row buffer hits. If a
memory request refers to a row which is different from the
latched one in the row buffer, then this request causes row
buffer miss. Examining this metric, a same style buffering
and size is assumed for row buffer in both DRAM and PCM
technologies. The RBL of an application is the average hit rate of
the row buffer across all memory channels. Based on Table 2, BFS
and HS-3D have high RBL (RB hit rate > 75%). BP and SpMV
with RB hit rate less than 25% are considered as applications with
low RBL.

Based on different characteristics of DRAM and PCM
such as read energy, write energy, and power consumption,
R-to-W ratio metric is used to provide a detailed information
of each application. Since PCM suffers from a high write
energy/power, this metric is used to find the dominant
operation (read or write) in memory-intensive applications.

4 EVALUATION METHODOLOGY

In this section, we discuss the evaluation methodology
and simulation configurations for three different processing
units (conventional Host CPU, 3D-DRAM based NMP, and
3D-PCM based NMP).

Our study of identifying the potential of NMP system
to boost the performance and power consumption of the
memory-intensive applications (discussed in Section 3) is
based on matching the characteristics of these applications

to NMP systems (3D-DRAM NMP and 3D-PCM NMP). We
simulated ten real-world applications presented in Section 3
for our evaluation. The application characterization (Sec-
tion 3) is performed on conventional Host CPU (see Table 3
for Host CPU configuration) to define the unique behavior
of each application. Roofline analysis along with data local-
ity (temporal and spatial locality) analysis helped us to clas-
sify applications into compute-bound and memory-bound.
Then by defining memory access behavior of memory-
intensive applications (applications with high and middle
memory intensity highlighted in gray in Table 2), we can
match their memory characteristics (RBL and R-toW ratio)
to the two existing NMP systems.

4.1 Simulation Models
We evaluated the conventional Host CPU system using
full system gem5-NVMain hybrid simulator [33]. We use
Ramulator-Pim, a processing-in-memory simulation frame-
work to evaluate NMP subsystems [34]. This framework is
based on two simulators, ZSim [35] (a fast and accurate
simulator for thousand core systems) and Ramulator [36]
(a fast and cycle accurate DRAM simulator).

Table 3 summarizes the key parameters and configura-
tions of the simulated systems. The Host CPU system in-
cludes a 8-core ALPHA processor with two levels of private
caches (L1 and L2) per core and a shared L3 cache. The
memory subsystem is modeled using Micron DDR4 timing
parameters [37] which includes four DDR4-2666 MHz mem-
ory channels with four banks per rank and four ranks per
channel. Each memory channel has a theoretical bandwidth
of 21.3 GB/s. The application characterization (in Section 3)
is conducted on this system.

The NMP systems are based on two different memory
technologies: 3D-DRAM and 3D-PCM. Both NMP systems
extend the 3D memory systems by introducing a number of
simple cores with caches into the logic layer. Table 3 includes
more details regarding the simulated NMP systems.

5 EVALUATION RESULTS

In this section, we present the experimental results for
running memory-intensive applications (BP, BFS, HS-3D,
and SpMV) under three different platforms (Host CPU,
3D-DRAM NMP and 3D-PCM NMP). A summary of the
experimental setup for the conventional Host CPU and
NMP systems is shown in Table 3. Unless otherwise stated,
all results are normalized to the Host CPU system.

5.1 Performance Comparison
We use the execution stage average Instruction Per Cycle
(IPC) of each memory-intensive application as a perfor-
mance metric to perform speedup comparison. Fig. 6 shows
a performance comparison of memory-intensive applica-
tions under three different platforms: Host CPU with the
conventional DDR4 memory and NMP systems with pro-
cessing units embedded in logic layer of 3D-DRAM and
3D-PCM. Along the x-axis, the applications are sorted by
memory-intensity (LLC MPKI), from highest to least (see
Table 2) and average IPC results are normalized to the Host
CPU system. Fig. 6 indicates that in both NMP systems the
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average IPC of target applications has improved comparing
to the Host CPU. Comparing two NMP systems, 3D-PCM
NMP has a very negligible difference with 3D-DRAM NMP
in IPC improvement.

Fig. 7 provides further information into the performance
comparison using memory access latency. Along the y-axis,
represented values are normalized to the Host CPU system.
We draw out two findings from this figure:

1) It depicts a significant performance benefits (mem-
ory access latency reduction) for BP and SpMV
applications when running them on two NMP sys-
tems (3D-PCM NMP and 3D-DRAM NMP). As it is
shown in Table 2 (discussed in Section 3.3), BP and
SpMV exhibit a low RBL on Host CPU with DDR4
memory. Having poor data locality at the memory
array level, these applications can benefit from 3D-
stacked memories (3D-PCM and 3D-DRAM) which
deliver higher bandwidth and memory-level par-
allelism compared to DDR4 memory. Furthermore,
NMP systems eliminate data movement bottleneck
which greatly improves the memory access latency
for these applications.

2) Though there is an improvement in IPC of BFS
and HS-3D applications (see Fig. 6), we observe an
increase in memory access latency of these applica-
tions when NMP systems are employed (see Fig. 7).
To understand the reason, we look at RBL locality
of these applications when running them on Host
CPU with DDR4 memory. As it is shown in Table 2,
BFS and HS-3D have a high RBL (RB hit rate > 75%)
which is exploited by DRR4 memory because of its
large row buffer size (8KB). Lower memory access
latency (see Fig. 7 for BFS and HS-3D) on Host CPU
with DDR4 is the result of exploiting high data lo-
cality at memory array row. Running these applica-
tions on NMP system which is enabled by memory
with very small row size (256B) increases the mem-
ory access latency, since memory row misses occur
more frequently. High internal parallelism (bank-
level) offered by 3D-stacked memories (which have
processing cores in the logic layer) is exploited by
these applications. Thus, due to the high bank-level
parallelism, BFS and HS-3D exhibit a significant
improvement in their IPC with NMP execution.

5.2 Memory Power Consumption
Power analysis for DDR4 memory in Host CPU system has
been done using gem5-NVmain simulator [33]. We used
DRAMPower [41] for evaluating power consumption of
memory devices (3D-DRAM and 3D-PCM) in two NMP
systems. Fig. 8 shows the memory power consumption of
memory-intensive applications for Host CPU system with
DDR4 and two NMP systems (3D-PCM and 3D-DRAM).
The memory power consumption is normalized to the Host
CPU system. The power savings are realized across all
memory-intensive applications with NMP execution which
are obtained having shallow cache hierarchy in NMP sys-
tems that avoids excess memory access latency.

Based on Fig. 8, we observe two interesting findings.
First: for BP application that has high LLC MPKI (see Ta-
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tems across all memory-intensive applications. IPC results
are normalized to the Host CPU system.
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Fig. 7: Memory access latency comparison between Host
CPU, 3D-PCM NMP, and 3D-DRAM NMP systems across
all memory-intensive applications, normalized to the Host
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Fig. 8: Memory power consumption for Host CPU and NMP
execution cases, normalized to the Host CPU system.

ble 2), NMP systems (3D-PCM and 3D-DRAM) outperform
the Host CPU execution by an average of 46.86% and 51.48%
in memory power saving, respectively. Other applications
(BFS, HS-3D, and SpMV) with middle MPKI (see Table 2)
also experience power savings with NMP execution, still
significant but lower than BP.

Second: while 3D-DRAM NMP outperforms 3D-PCM
NMP for BP application, 3D-PCM NMP exhibits more
power saving compared to 3D-DRAM NMP for other ap-
plications (BFS, HS-3D, and SpMV). This is due to the
difference in applications’ average R-to-W ratio (Table 2).
Considering that PCM technology suffers from a high write
energy/power, we can infer that for BFS, HS-3D, and SpMV,
read operations and for BP, write operations are the domi-
nant factor in determining the memory power consumption.
This explains the reason as to why some memory-intensive
applications see more power saving than others.
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6 CONCLUSION

In this paper, we studied two NMP computing devices
based on 3D stacking (3D-DRAM and 3D-PCM) to accel-
erate data-intensive problems caused by memory wall bot-
tleneck of the conventional processing architectures. We
performed a systematic characterization for a wide range of
multi-threaded applications and revealed their performance
bottleneck. Overall, our system-level evaluation demon-
strates that the evaluated NMP systems (3D-DRAM NMP
and 3D-PCM NMP) improve the performance of memory-
intensive applications by 1.31x to 5x and reduce their total
memory energy/power consumption by an average of 40%.
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