
High-Performance Parallel Fault Simulation for
Multi-Core Systems

Masoomeh Karami∗, Mohammad-hashem Haghbayan∗, Masoumeh Ebrahimi†, Hamid Nejatollahi‡,
Hannu Tenhunen†, and Juha Plosila∗

∗Department of Future Technologies, University of Turku, Turku, Finland.
†Department of Electronics and Embedded Systems, Royal Institute of Technology (KTH), Kista, Sweden.

‡University of California, Irvine, CA USA.
Emails: ∗{mkaram, mohhag, juplos}@utu.fi †{mebr,hannu}@kth.se ‡ hnejatol@uci.edu

Abstract—Fault simulation is a time-consuming process that
requires customized methods and techniques to accelerate it.
Multi-threading and Multi-core approaches are two promising
techniques that can be exploited to accelerate the fault simulation
process by using different parts of the hardware at the same
time. However, an efficient parallelization is obtained only by the
refinement of software with respect to the hardware platform. In
this paper, a parallel multi-thread fault simulation technique is
proposed to accelerate the simulation process on multi-core plat-
forms. In this approach, the gate input values are independently
assigned to each thread. Each input value carries the information
of several parallel simulation processes. This provides a multi-
thread parallel fault simulation environment. The experimental
results show that the proposed technique can efficiently use
the hardware platform. In a single-core platform, the proposed
technique can reduce the time by 25% while in a dual-core
increasing the thread approximately halves the execution time.

Index Terms—Multi-core system, multi-threading, paralleliza-
tion, fault simulation

I. INTRODUCTION

Fault simulation (FS) plays an essential role in different
fields, such as test pattern generation, built-in-self-test, con-
trollability, and observability analysis [1], [2]. This process is
a challenging and time-consuming task in the VLSI design.
In FS, a circuit-under-test (CUT) is simulated for a given
fault model and a set of test patterns. This process is often
computationally intensive, particularly for modern systems that
require a large number of test patterns.

One of the most popular fault models for VLSI circuits is
the stuck-at fault model [2]. Several works have used parallel
and concurrent FS approaches to minimize the FS execution
time for the stuck-at fault model in single-core [2], [3] and
multi-core processors [4], [5]. They also use different methods
such as mixed-level fault simulation, parallelization, and event-
driven to accelerate the FS process. Mixed-level FS is an ap-
proach where non-faulty parts of a circuit are simulated faster
using a higher abstraction level, e.g., behavioral level [6]. As
FS has parallelizable characteristics, parallel processing has
been widely used for minimizing the execution time. One
parallelization technique is to partition the circuit into mutually
exclusive parts and simulate them in parallel [7], [8]. Other
parallelization solutions are based on simulating the circuit
in parallel for different sets of faults (data-parallel) or test
patterns (pattern-parallel) [9], [10].

There are two methods for implementing gate-level fault
simulation: time-driven FS and event-driven FS. In the time-
driven FS, the simulator calculates and updates all the gates’
input/output variables in each small time epoch. In the event-
driven FS, the gates’ input/output variables are calculated
based on the new occurred event, e.g., a change in the wire
value. The event-driven method is more efficient compared to
the time-driven method by being faster, using less memory,
and being more flexible [11], [12].

In this paper, a parallel event-driven FS technique is pro-
posed for multi-core systems to minimize the FS time. We
describe the entire process from fault injection to scheduling
tasks for parallel computing on different cores. The proposed
technique is based on parallel processing of the occurred
events in each level of the netlist.

II. PARALLEL EVENT-DRIVEN FAULT SIMULATION

In this section, we investigate two separate techniques to
reduce the fault-simulation (FS) time, i.e., parallel FS [4],
[5] and event-driven FS [13], [14], [11]. The considered fault
model in this paper is stuck-at-0 (S@0) or stuck-at-1 (S@1)
[2]. In a simple FS technique, after generating faults and
eliminating the overlapping faults, i.e., fault collapsing [2],
[15], faults are injected into the design. Then, the output of
the design is compared with the expected value, i.e., golden
output. If the output is the same as the golden output, it means
the fault is not propagated to the output, and thus it is masked.
Otherwise, it is said that the injected fault is observed and
detected. For example, Figure 1 shows a 1-bit multiplexer
where the output should be 0 when the signals {A, B, and
SELECT} are {000}. However, the S@1 fault on wire 3
results in OUT=1, which is different from the golden result,
and thus a fault is detected.

Fig. 1: An example of stuck-at FS in a 1-bit multiplier

A. Parallel fault simulation

One of the methods to accelerate the FS process is parallel
FS [16], which is also utilized in this paper. In parallel FS, each
bit in the input variables of a gate represents the propagation
of an injected fault to the output gate. Then the output gate is
evaluated by using logical operations in programming. Figure
2 depicts a parallel FS for the 1-bit multiplexer of Figure 1.
Four fault propagation scenarios are simulated in parallel in
Figure 2. The first scenario investigates the propagation of the
S@1 fault on Wire 1 (i.e., wire 1 (S@1)). The output of this
scenario equals to zero, which means the fault is masked. The
other scenarios show that the golden result and the propagation
of fault happened on wire 2 (S@0) and wire 3 (S@1). In this
example, only the effect of wire 3 (S@1) can be observed and
detected on the output.

Fig. 2: An example of parallel FS in a 1-bit multiplier

B. Event-driven fault simulation

In an event-driven FS, the FS applies only to the gates on
which an event has occurred instead of simulating all the gates.
Thus it reduces the simulation time. Algorithm 1 depicts a
pseudo code for an event-driven FS. At first, a test pattern is
injected into the simulation (line 1). Because our simulation is
event-driven, all occurred events are pushed into the STACK
(line 2) in order to pop them in a right order and compute
and update the variables (line 4). If the primary outputs are
changed after injecting a fault (line 5), the fault is detected
(line 6), so the event is pushed into the STACK (line 7).
The STACK consists of the detected events.
Algorithm 1 The algorithm for an event-driven FS
Inputs: test patterns;
Body:
1: events← Inject a new test pattern or fault(test patterns);
2: STACK.push (events);
3: while STACK.size() do
4: newEvents←Evaluate gate (STACK.pop());
5: if (Fault is injected and an event occurred on the primary output) then
6: Fault is detected;
7: STACK.push(occurred event);

The main issue with the event-driven FS is the situation
caused by Reconvergence Fanout (RF). If an RF exists in the
design, the evaluation of a gate should be delayed until all
inputs of a gate are evaluated. Otherwise, glitches may occur
in internal wires or the primary output. The issue increases
the execution time and adds extra processes to fault detection.
To address this problem, levelized event-driven simulation
could be a viable choice that restricts the event evaluation
to each level. In a levelized event-driven FS, first, the design
is levelized, where the gates in each level get their inputs from

the previous level. Each newly occurred event is placed in the
list of its corresponding level. At each level, the gates in the
event list are sequentially evaluated. Algorithm 2 illustrates
this process in pseudo code. The implementation of the
levelized fault-injectable circuits is automatic. In Algorithm 2,
an array of dynamic stacks is employed for events occurring
at each level. This process is continued until all test patterns
are injected.

Algorithm 2 The algorithm for levelized event-driven FS
Inputs: test patterns;
Body:
1: events← Inject a new test pattern or fault(test patterns);
2: for (all event in evets) do
3: STACK[level(event)].push(event);
4: for (i = min level to max level) do
5: while STACK[i].size () do
6: newEvent ← Evaluate gate (STACK[i].pop ());
7: if (Fault is injected and an event occurred on primary output) then
8: Fault is detected;
9: for (all event in newEvent) do

10: STACK[level(event)].push(event);

The levelized event-driven FS can be combined with parallel
FS. In this case, each event stack can be used for all events
occurred by parallel faults. A levelized event-driven parallel
FS method forms the base of our FS algorithm.

III. THE PROPOSED PARALLEL FAULT SIMULATION FOR
MULTI-CORE SYSTEMS

A. Parallel Processing

The aim of parallel FS in multi/many core systems is to
utilize available cores in the system as much as possible, and
thus achieving a high performance. The challenge is to find
the best method for task scheduling among cores. The main
strategy to apply the fault in the proposed FS is to apply one
test pattern and inject all available faults, and then repeat the
process for other test patterns. Experimentally, we noticed that
using this technique results in better parallelism compared to
other equivalent methods. Figure 3 shows an example of the
proposed method for parallel FS on a multi-core system. As
it is shown, there are three cores available in the system, and
three input variables are considered for each gate where the
input variables contain the data for each thread. It is worth
mentioning that the number of variables are not necessarily
the same as the number of cores. Variables are 32-bit integer,
and thereby, 32 FS scenarios can be performed per iteration
by each thread. We call performing FS on each thread a
task. Therefore, each task is assigned to one thread, and the
operating system (OS) can schedule the thread for each task
based on the available cores on the system [17].

Data dependencies among concurrent tasks may cause
negative effect on the overall performance. Because of this
scheduling of the threads is an essential step that should be
performed carefully. On the other hand, task scheduling highly
depends on the technique selected to perform FS algorithm.
In the next section, we explain the process of task scheduling
in the proposed algorithm.

Fig. 3: The overall process of the proposed method

B. Task scheduling for parallel computing

One of the important factors in parallel computing is task
scheduling. Task scheduling should balance the utilization of
all cores in the system to reach the maximum concurrency.
In the proposed task scheduling algorithm, first, the golden
result for a test pattern is generated for all tasks. Then, a
group of faults is applied to each task for FS. The fault groups
should be independent of each other for concurrent tasks. After
executing all threads, undetected faults will be accumulated.
This process is continued until all faults are injected. Finally,
the accumulated undetected faults from all threads will be
collected to inject as the next test pattern. Algorithm 3 depicts
in detail the proposed algorithm for multi-core FS and task
scheduling. This algorithm models the proposed levelized
multi-core event-driven FS that can be categorized into four
main jobs as fault collapsing, fault grouping, fault injection,
and fault simulation.

1) Fault injection process: As shown in Figure 4, the S@1
fault can be applied to a wire in a design by OR-ing the wire
with logic 1. Similarly, the S@0 fault can be generated by
AND-ing the wire with logic 0. The proposed fault-simulation
algorithm sorts the events in a different way than that of
Algorithm 2. In Algorithm 3, we disparate the memory of
stimulated gates (GATE STACK) from the memory of
stimulated faulty gates (FAULT GATE STACK). This is
because of the fault injection method, in which the events
related to the faulty gates in the next level are evaluated
before those of the ordinary gates. By using this fault-injection
method, some faults cannot be injected simultaneously for
parallel FS to a thread. These faults (named dependent
faults) should be categorized in different groups for allocation
to different threads. The function called Independent Fault
Grouping performs this categorization.

Fig. 4: An example of two dependent faults

Algorithm 3 The proposed algorithm for multi-core parallel
FS
Inputs: test patterns;
Outputs: FAULT GATE STACK: stack of levelized fault events;
GATE STACK: stack of levelized events;
Body:
1: Fault Collapsing Function();
2: for (all test pattern in test patterns) do
3: Independent Fault Grouping();
4: *FAULT STACK ← Faultinjection(test pattern);
5: Create threads (Number of Threads);
6: for (j = 1 to Number of Threads) do
7: Inject FAULT STACK[j] to thread[j] data structure;
8: //Performing event-driven parallel fault simulation
9: for (i = min level to max level) do

10: while (FAULT GATE STACK[i].size()) do
11: newEvents←Evaluate gate(FAULT GATE STACK[i].pop());
12: if (a fault is injected and primary output is changed) then
13: Fault is detected;
14: for (all event in newEvents) do
15: FAULT GATE STACK[level(event)].push (fault event);
16: GATE STACK[level(event)].push (event);
17: while (GATE STACK[i].size ()) do
18: newEvents← Evaluate gate (GATE STACK[i].pop ());
19: if (a fault is injected and primary output is changed) then
20: Fault is detected;
21: for (all event in newEvents) do
22: FAULT GATE STACK[level(event)].push (fault event);
23: GATE STACK[level(event)].push (event);
24: Collect undetected faults to *FAULT STACK;
25: Kill the generated threads();

2) Fault grouping: As was explained, for fault injection,
ANDed with zero and ORed with one can be used to generate
S@0 and S@1 faults, respectively. This method of fault injec-
tion limits the cascade of multiple faults for levelized event-
driven FS. Figure 4 illustrates the process of fault injection
with logic gates (called fault gates). In this figure, two faults
are injected into the design,

In linear fault collapsing, the input and outputs for fanout
have separate fault models that should be considered in FS
individually [2], [18]. This situation may cause a cascade of
faulty gates. In levelized event-driven FS, an occurred event
in a level will be proceeded based on the level order. In
each level, FAULT GATE STACK will be evaluated before
GATE STACK. If an event has occurred on a faulty gate, this
will be stored on the next level FAULT GATE STACK. If two
faulty gates are cascaded, the evaluation of the second fault
will be missed in the next level. In fault grouping, dependent
faults will be placed in different groups. In this case, dependent
faults will be applied to different threads to run in parallel.

3) openmp.h for multi-core fault simulation: In the pro-
posed method, shown in Algorithm 3, creating threads and
determining the number of threads is essential. It is also
necessary to distribute the collapsed faults among threads to
achieve higher concurrency. Therefore, the optimal number of
threads should be properly set, and critical sections should
be determined. Based on the proposed algorithm, each gate
should have some non-sharing variables for each thread. These
copies of variables will be assigned to threads, and finally,
the fault detection results will be gathered. We use openmp.h
library of C++ to implement the algorithm. Algorithm 4
depicts the use of openmp.h functions for creating multi-

thread fault propagation for one test pattern. The #pragma
compiler generates the threads according to thread id. The
fault propagation function starts the propagation of faults in
each thread, and the detected faults will be then placed in
its corresponding thread df. The reduction parameter with
plus argument means all number of detected faults for each
thread should be added to the final value of thread df. The
num threads determines the number of threads (according to
thread id) that should be created for the selected code.
Algorithm 4 The pseudo code for creating threads in concur-
rent fault propagation
Inputs: thread id;
Outputs: detected faults;
Body:
1: fault number ← fault injection(thread id);
2: int thread df ;
3: #pragma omp parallel reduction (+ : thread df)
4: for (num threads (thread id)) do
5: thread df ← 0;
6: thread df ← thread df + fault propagation(thread id);
7: detected faults← detected faults+ thread df ;

The undetected faults should be collected and redistributed
to threads for the simulation in the next round. However,
collecting all undetected faults may cause conflict or race
between threads for accessing the memory. To eliminate the
race situation, the critical section definition is proposed, which
is described in Algorithm 5. faultStack NDF is the memory
for collecting undetected faults. The critical parameter restricts
the threads to perform the selected code concurrently. If task
scheduling between threads is balanced, this critical section
would not have a considerable impact on the performance.
Algorithm 5 The pseudo code for collecting undetected faults
Inputs: FAULT STACK;
Outputs: faultStack NDF ;
Body:
1: #pragma omp parallel
2: while (FAULT STACK[thread id].size()) do
3: if (FAULT STACK[thread id].top() is not detected) then
4: faultStack NDF [thread id].push(

FAULT STACK[thread id].top());
5: FAULT STACK[thread id].pop();

IV. EXPERIMENTAL RESULTS
To evaluate the proposed FS method, several benchmarks

are examined. We utilized Netlist-Generator [2] for evaluating
the FS on the RTL-level HDL codes. Using this tool, the
design is first modeled in the RTL format and then synthesized.
We used open source version of Microsoft Visual Studio envi-
ronment to invoke the openmp.h library. In addition, a tool is
developed for converting the ISCAS benchmark circuits to the
appropriate data structure for FS. To compare the performance
of the proposed method with other existing methods, we have
implemented the source code of the hope [13] fault simulator
in the Visual Studio environment using dynamic features such
as dynamic stack and link-list. The result obtained by this
method is the same as the result obtained by the proposed
method for one thread generation.
A. CPU Time of Single-core and Dual-core Systems

The executions were performed on a dual-core CPU with
2.2GHz clock cycles and 4GB RAM. To compare the results

with a single core processor, a single core with 2.3 GHz CPU
and 512 MB RAM is used. Table I (a) and (b) show the CPU
time of FS with 20 random test patterns on the dual core and
single core systems, respectively. Some general circuits, e.g.,
8-bit and 16-bit multiplier, and ISCAS benchmarks are used
as benchmarks. The average percent of fault coverage (FC)
is 66.67%. As can be seen in both tables, in most cases, the
CPU time decreases as the number of threads increases. This
is because of the flexibility of the proposed method in utilizing
the available cores in the system.

(a) Dual-core system
Benchmark #Gates Thread Number

Name 1 2 3 4 6 8 10 20 30 40 FC%
8-bit multiplier 175 0.58 0.52 0.49 0.53 0.56 0.53 0.57 0.7 0.78 0.9 93.1

16-bit multiplier 787 5.67 3.6 3.32 3.21 3.29 3.35 3.54 3.91 4.47 4.88 93.5
C17 6 0.03 0.04 0.06 0.06 0.04 0.06 0.05 0.04 0.09 0.1 93.7

C432 160 0.59 0.63 0.58 0.61 0.64 0.65 0.69 0.83 0.98 1.1 56
C499 202 1.65 1.51 1.42 1.41 1.46 1.50 1.55 1.78 1.91 2.09 80.5
C880 383 2.53 2.33 2.17 2.27 2.28 2.37 2.37 2.82 3.13 3.34 63
C1355 546 5.09 4.26 3.76 3.90 3.95 3.96 4 4.55 4.96 5.35 75
C1908 880 6.22 5.05 4.57 4.52 4.62 4.72 4.78 5.30 6.13 6.64 60.8
C2670 893 40.08 31.3 28.3 28.7 28.8 29 29 29.6 31.4 33.2 62.3
C3540 1669 13.3 9.94 9.06 9.03 9.16 9.25 9.37 10 10.9 11.5 53.7
C5315 2307 89.4 58.3 52 52.6 52.7 52.7 57.5 53.6 55.3 57.1 65.9
C6288 2416 40.5 19 15.5 15.4 15.4 15.2 15.4 16.4 17.6 18.9 94.9
C7552 3512 134 77.7 67.3 66.9 66.8 66.8 66 67 69 71 69

S838 ex 446 4.01 3.74 3.42 3.49 3.53 3.58 3.62 4.29 4.52 4.85 33.4
S9234 ex 5597 184 166 165 165 165 164 163 165 168 170 38.6

S15850 ex 9772 1392 701 617 615 615 621 659 584 601 605 50.7

(b) Single-core system
Benchmark #Gates Thread Number

Name 1 2 3 4 6 8 10 20 30 40 FC%
C432 160 1.43 1.51 1.51 1.51 1.59 1.68 1.78 2.1 2.53 2.86 56
C1908 880 14.1 13.3 13.1 13 13.2 13.3 13.7 15.2 16.6 18.1 60.8
C5315 2307 175 172 165 162 161 160 161 164 168 172 65.9

TABLE I: The result of CPU time for fault simulation on ISCAS
benchmarks

In another experiment, we measured the core utilization
while running a different number of threads for FS. Using
three threads, the core utilization reaches the high usage of
97% while the usage is 50% and 89% when using one and
two threads, respectively. This shows that doubling the number
of threads does not necessarily double the utilization that is a
common observation in multi-threading. The reason is due to
synchronization, memory-access conflict, and other issues in
a different layer of software. The amount of memory usage
slightly increases when increasing the number of threads, i.e.,
1.22 GB, 1.28 GB, and 1.30 GB for one, two, and three
threads.

B. CPU Time versus the Number of Threads

Figure 5 (a) and (b) depict the CPU time with regard
to the number of generated threads in a dual-core system
when running three large-size and four small-size ISCAS
benchmarks. This figure shows that the proper number of
threads could offer an optimal CPU time. It can be seen
that by increasing the number of threads, first the FS time
sharply decreases, then it stabilizes, and finally, it starts rising
again. It should be noted that, since there are two cores in
the system, increasing the number of threads to more than
two does not result in considerable execution time reduction.

Also, by having a large number of threads in the system, the
overall communication time between threads and OS exceeds
the time reduction archived by parallelism.

1 2 3 4 6 8 10 20 30 40

10

30

50

70

90

Number of threads

C
PU

tim
e

(m
s)

C5315 C6288 C3540

(a) Large-size ISCAS benchmark circuits

1 2 3 4 6 8 10 20 30 40
0

0.5
1

1.5
2

2.5
3

3.5
4

Number of threads

C
PU

tim
e

(m
s)

C880 C499 C432 c17

(b) Small-size ISCAS benchmark circuits
Fig. 5: CPU time versus the number of threads.

C. CPU Time with regard to the Number of Gates

As parallelism needs more data structures and communica-
tion overheads, the proposed method is not suitable for smaller
designs but rather larger ones. Figure 6 shows the CPU FS time
reduction with regard to the number of gates when applying
the proposed method. It can be seen that the proposed method
improves the FS time for larger designs more than the smaller
ones.

Fig. 6: FS time reduction versus the number of gates

D. CPU Time with regard to Multi-threading

The multi-thread FS may improve the FS CPU time for both
dual-core and single-core systems. Figure 7 shows the FS time
for C5315 on single and dual core systems. As can be seen
in this figure, the CPU time can be reduced from 175ms to
160ms in a single-core system while this reduction is much
larger in a dual-core system, i.e., from 89.4 ms to 52ms. The
reason is due to the high level (OS level) of task parallelism
but not task scheduling on individual cores.

1 2 3 4 6 8 10 20 30 40
0

40

80

120

160

200

Number of threads

C
PU

FS
tim

e
(m

s) C5315 1core C5315 2core

Fig. 7: CPU time of a single and dual core system for c5315

V. CONCLUSION

Fault simulation is a challenging algorithm w.r.t. its exe-
cution time and at the same time a critical step in the VLSI
design. Reducing the fault simulation execution time plays an
important role in developing better test patterns to debug the
post silicon VLSI circuits. In this paper, we proposed a multi-
thread parallel fault simulation method for multi/many core
systems. One of the important steps in the proposed method
is the task scheduling which defines how faults should be
grouped, injected, and propagated. The proposed method is
based on the levelized event-driven simulation. Results confirm
the efficiency of the fault simulation method with regard to the
number of cores, number of threads, and number of gates. As
a future work, we plan to use this approach to analyze faults in
applications such as neural networks running on a many/multi
core systems.

REFERENCES

[1] D. Lee and J. Na, “A novel simulation fault injection method for
dependability analysis,” in IEEE Design and Test of Computers, 2009,
pp. 50–61.

[2] Z. Navabi, “Digital system test and testable design: Using hdl models
and architectures,” in Springer Publisher, 2010.

[3] N. Bombieri, F. Fummi, and V. Guarnieri, “Accelerating rtl fault simu-
lation through rtl-to-tlm abstraction,” in ETS, 2011, pp. 117–122.

[4] S. Hadjitheophanous, S. N. Neophytou, and M. K. Michael, “Scalable
parallel fault simulation for shared-memory multiprocessor systems,” in
VTS, 2016, pp. 1–6.

[5] M. Gorev, R. Ubar, and S. Devadze, “Fault simulation with parallel exact
critical path tracing in multiple core environment,” in DATE, 2015, pp.
1180–1185.

[6] S. Mirkhani, M. Lavasani, and Z. Navabi, “Hierarchical fault simulation
using behavioral and gate level hardware models,” in ATS, 2002, pp.
374–379.

[7] A. Ehteram, H. Sabaghian-Bidgoli, H. Ghasvari, and S. Hessabi, “A
simple and fast solution for fault simulation using approximate parallel
critical path tracing,” in Canadian Journal of Electrical and Computer
Engineering, 2020, pp. 100–110.

[8] J. Kõusaar, R. Ubar, S. Kostin, S. Devadze, and J. Raik, “Parallel critical
path tracing fault simulation in sequential circuits,” in MIXDES, 2018,
pp. 305–310.

[9] K. Gulati and S. Khatri, “Towards acceleration of fault simulation using
graphics processing units,” in DAC, 2008, pp. 822–827.

[10] R. Mueller-Thuns et al., “VLSI logic and Fault Simulation on General-
purpose Parallel Computers,” in IEEE Trans. on CAD of Integrated
Circuits and Systems, 1993.

[11] E. Gascard and Z. Simeu-Abazi, “Quantitative analysis of dynamic fault
trees by means of monte carlo simulations: event-driven simulation
approach,” in Reliability Engineering & System Safety, 2018, pp. 487–
504.

[12] J. A. Garrido, R. R. Carrillo, N. R. Luque, and E. Ros, “Event and time
driven hybrid simulation of spiking neural networks,” in Advances in
Computational Intelligence, 2011, pp. 554–561.

[13] H. K. Lee and D. S. Ha, “Hope: an efficient parallel fault simulator for
synchronous sequential circuits,” in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 1996, pp. 1048–1058.

[14] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven gate-level
simulation with gp-gpus,” in DAC, 2009, pp. 557–562.

[15] M. Haghbayan, S. Teräväinen, A. Rahmani, P. Liljeberg, and H. Ten-
hunen, “Adaptive fault simulation on many-core microprocessor sys-
tems,” in DFTS, 2015, pp. 151–154.

[16] J. Fan and Z. Zhang, “Speeding up fault simulation using parallel fault
simulation,” in Procedia Engineering 15, 2011, pp. 1817–1821.

[17] W. Stallings, “Operating systems,” in Prentice Hall, 2001.
[18] M. H. Haghbayan, S. Karamati, F. Javaheru, and Z. Navabi, “Test pattern

selection and compaction for sequential circuits in an hdl environment,”
in ATS, 2010, pp. 53–56.

