
NoC-based DNN Accelerator: A Future Design Paradigm
Special Session Paper

Kun-Chih (Jimmy) Chen
National Sun Yat-sen University,

Kaohsiung, Taiwan
kcchen@mail.cse.nsysu.edu.tw

Masoumeh Ebrahimi
KTH Royal Institute of Technology,

Stockholm, Sweden
mebr@kth.se

Ting-Yi Wang
Yuch-Chi Yang

National Sun Yat-sen
University,Kaohsiung, Taiwan

ABSTRACT
Deep Neural Networks (DNN) have shown significant advantages
in many domains such as pattern recognition, prediction, and con-
trol optimization. The edge computing demand in the Internet-of-
Things era has motivated many kinds of computing platforms to
accelerate the DNN operations. The most common platforms are
CPU, GPU, ASIC, and FPGA. However, these platforms suffer from
low performance (i.e., CPU and GPU), large power consumption
(i.e., CPU, GPU, ASIC, and FPGA), or low computational flexibility
at runtime (i.e., FPGA and ASIC). In this paper, we suggest the
NoC-based DNN platform as a new accelerator design paradigm.
The NoC-based designs can reduce the off-chip memory accesses
through a flexible interconnect that facilitates data exchange be-
tween processing elements on the chip. We first comprehensively
investigate conventional platforms and methodologies used in DNN
computing. Then we study and analyze different design parame-
ters to implement the NoC-based DNN accelerator. The presented
accelerator is based on mesh topology, neuron clustering, random
mapping, and XY-routing. The experimental results on LeNet, Mo-
bileNet, and VGG-16 models show the benefits of the NoC-based
DNN accelerator in reducing off-chip memory accesses and improv-
ing runtime computational flexibility.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • Com-
puter systems organization→ Architectures;

KEYWORDS
Network-on-Chip (NoC), Deep Neural Network (DNN), CNN, RNN,
Accelerators, Routing Algorithms, Mapping Algorithms, Neural
Network Simulator

ACM Reference format:
Kun-Chih (Jimmy) Chen, Masoumeh Ebrahimi, Ting-Yi Wang, and Yuch-
Chi Yang. 2019. NoC-based DNN Accelerator: A Future Design Paradigm.
In Proceedings of International Symposium on Networks-on-Chip, New York,
NY, USA, October 17–18, 2019 (NOCS ’19), 8 pages.
https://doi.org/10.1145/3313231.3352376

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NOCS ’19, October 17–18, 2019, New York, NY, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6700-4/19/10. . . $15.00
https://doi.org/10.1145/3313231.3352376

1 INTRODUCTION
Deep Neural Networks (DNNs), as a subset of Neural Networks
(NNs), have shown enormous advantages in various domains. The
number of applications benefiting from DNNs is increasing with
the most popular ones in the area of pattern recognition, image
classification, and computer vision [1][2]. The main advantage of
DNN is the offered high accuracies that come at the cost of high
computational complexity and power consumption. The recent
DNN models, such as AlexNet [3] and VGG-16 [4], consist of hun-
dreds of layers and millions of parameters that are too complex
to be efficiently run on the existing hardware platforms. There
are several algorithmic and architectural solutions to reduce the
number of parameters and computational complexity. Pruning [5]
and bit-width reduction [6] are in this category.

Another solution is to exploit parallelism through specialized
DNN accelerators and ASIC design. In spatial architectures, the
accelerators are composed of DNN processing units, arranged in
a 2D array to flow the data from one PE to another [7]. To be in-
tegrated with other algorithmic and architectural solutions, these
ASIC-based architectures demand new processor designs and con-
nectivity patterns. This trend has led to several heuristic solutions
and specific architectures. However, these architectures lack flex-
ibility, and this trend impose huge design cost. In addition, these
accelerators are optimized for a specific DNN application such
as image classification while showing a poor performance under
differing applications such as speech recognition. Another major
problem is the long data communication latency mainly due to
frequent read/write accessed from/to off-chip memory.

FPGAs are an alternative for the fast prototype of DNN acceler-
ators due to their re-programmable attribute [8]. Compared with
the ASIC-based DNN accelerators, FPGAs provide a flexible design
space for various DNN accelerator designs. However, FPGA-based
designs still suffer from low computational flexibility as they are
configured for a specific DNN model and a particular application.

To enhance the design flexibility of the current DNN accelerators
and reduce the interconnection complexity, a modular structure
similar to Networks-on-Chip (NoC) can be exploited. NoC is a
packet-switched network which enables a large number of PEs to
communicate with each other. NoC consists of routers and links,
where each router is connected to a PE (or a group of PEs), and links
connect the routers to each other. Topology determines the overall
arrangement of routers and links which can be in the form of mesh
and torus. In NoCs, resources are shared and distributed among
PEs, e.g., memory is distributed among PEs, and packets may utilize
distributed network resources in their paths toward the destination.
The superiority of NoC has inspired researchers to utilize it in the
modeling of large-scale spiking neural networks (such as SpiNNaker

https://doi.org/10.1145/3313231.3352376
https://doi.org/10.1145/3313231.3352376

NOCS ’19, October 17–18, 2019, New York, NY, USA K.C. Chen and M. Ebrahimi, et al.

Figure 1: Flexibility and reconfigurablity of current DNN ac-
celerator design paradigms.

[9][10] and CuPAN [11]) and a few DNN accelerators (such as
Eyeriss-v2 [12] and Neu-NoC [13]).

Fig. 1 summarizes the aforementioned DNN accelerator design
paradigms. CPUs and GPUs offer a very high reconfigurability
feature at runtime, which enable them to support diverse DNN
applications. However, these platforms suffer from high power
consumption and data transfer latency between PEs and off-chip
memory. In contrast, the ASIC-based DNN accelerators are specif-
ically designed for a particular DNN model in order to achieve
optimal performance and power efficiency. In return, these designs
limit the computational flexibility; and as a result, the ASIC-based
DNN accelerators are not reconfigurable at design time. As shown
in Fig. 1, although the FPGA-based designs improve the design flex-
ibility, the computational flexibility is not still sufficient to support
reconfigurability at runtime. For example, the data path is fixed
for a particular RNN or DNN model at design time, and no further
reconfiguration can be done at runtime.

Among different DNN accelerator design methodologies, a NoC-
based DNN accelerator could be an appropriate choice, which offers
power efficiency, computational flexibility, and reconfigurability.
The reason is that the NoC-based design methodology decouples
the DNN operation into computation and data transmission. Re-
garding the data transmission part, the NoC interconnection can
efficiently process various data flows for different DNN models.
Regarding the computation part, different DNN computing models
can be executed independent of the data flow. Furthermore, flexible
communication reduces the frequent accesses to the off-chip mem-
ory by handling the data transfer from one core to another on the
chip. Reducing memory accesses leads to significant power saving.
The main contributions of this paper are summarized as follows:

• We investigate the state-of-the-art DNN accelerator design
methodologies and analyze the pros and cons of each.

• We suggest Network-on-Chip as a new design paradigm to
implement future flexible DNN accelerators.

• We analyze the number of memory accesses in the conven-
tional and NoC-based designs under different DNN models
.

• We analyze the performance of the NoC-based DNN acceler-
ator under different design parameters.

2 CONVENTIONAL DNN COMPUTING
PLATFORMS

In recent years, deep neural networks (DNNs) have become the
foundation for many modern artificial intelligent (AI) applications.
While DNN delivers stunning accuracy in many AI applications,
it comes at the cost of intensive communication and extensive
computation. In this section, we review the conventional hardware
platforms to execute and accelerate DNN operations.

2.1 Common Hardware Platforms for Neural
Network Computing

Central Processing Units (CPUs) typically consist of multi-core
processors (usually from 2 to 10 cores), employed on desktop and
mobile devices. Advanced CPUs, such as 48-core QualcommCentriq
2400 [14] and 72-core Intel Xeon Phi [15], are composed of more
cores to improve the computation efficiency. CPUs are basically
designed to compute general-purpose computations, so they have
the main advantage of high computational flexibility, and they are
capable of executing complex operations. Nevertheless, they are
not suitable for DNN computing, which involves intensive parallel
while simple computations (such as multiply and accumulate in con-
volution). While it has been some attempts to exploit CPU clusters
(such as Intel BigDL [16]) to optimize deep learning libraries [17],
they cannot still satisfy the efficiency demands in DNN computing.

Nowadays, Graphics Processing Units (GPUs) are popular de-
vices to compute DNN operations. Originally, GPUs were designed
for computer graphic tasks. Due to the intrinsic parallel computing
features in GPUs, they can efficiently execute the essential DNN op-
erations in parallel, such as matrix multiplication and convolution.
Also, thanks to the powerful parallel computing platforms (such as
Tesla V100 by NVIDIA) and application programming interfaces
(such as Compute Unified Device Architecture (CUDA)), GPUs are
being extensively used for DNN acceleration in many applications
[18]. Although GPUs provide high parallel computing capability
to speed up the DNN computing, there is a general concern about
the increasing power consumption [19]. Furthermore, GPUs prac-
tically require additional communication channels (such as PCIe
or NVLink) to connect with the sampling devices. Therefore, the
data transfer latency is the other issue in this kind of computing
platforms [8].

2.2 Neural Network Accelerators
Because of the intrinsic characteristic of parallel computation in
DNN operations, it is intuitive to exploit parallelized multicore hard-
ware to accelerate the operations. However, due to the bandwidth
limitation between off-chip memory and processing cores, it is not
power and performance efficient to frequently transfer highly par-
allelized data into the parallelized multicore hardware. To achieve
a better trade-off between performance and power consumption in
DNN computing, Application Specific Integrated Circuits (ASIC)
are used to realize the DNN hardware. In ASIC-based designs, to
reach high performance and power efficiency, on-chip computing
units are optimized for a particular application [20][21][22][23]. As
a result, ASIC-based accelerators achieve superior performance and
power advantages over their CPU and GPU counterparts.

NoC-based DNN Accelerator: A Future Design Paradigm NOCS ’19, October 17–18, 2019, New York, NY, USA

Figure 2: A PE array design usually adopts the data reuse feature in DNN operations.

As mentioned before, the massive data communication latency
between the off-chip memory and the processing units has become
the system performance bottleneck in advanced DNN models. Be-
cause the DNN operation can be treated as a matrix multiplication
[7], many ASIC-based DNN designs have improved the conven-
tional unicast or systolic array architecture (Fig. 2(a) and (b)) and
developed the multicast or broadcast architecture (Fig. 2(c) and
(d)). In these architectures, the DNN computation (i.e., the matrix
multiplication) is accelerated using the characteristics of data reuse
and data sparsity. In [24], Esmaeilzadeh et al. proposed a hard-
ware called Neural Processing Unit (NPU) to approximate program
functions with approximate algorithmic transformation. DianNao
series, including DianNao [25], DaDianNao [26], and ShiDianNao
[27], use Neural Functional Unit (NFU) to perform both neuron and
synapse computations. Different from these platforms, PuDianNao
[28] employs Functional Unit (FU) as the basic execution entity. Un-
like the accelerators using NFU, PuDianNao can support additional
machine learning algorithms such as k-means, linear regression,
multi-layer perceptron (MLP), and support vector machine (SVM).
In [29], Yin et al. proposed a hybrid-NN processor that is composed
of two types of PEs and can support configurable heterogeneous
PE arrays. By exploiting the characteristic of data reuse in the con-
ventional CNN models, Chen et al. proposed the Eyeriss processor
[7] that can optimize the neural network computation for a specific
dataflow.

In spite of the fact that the ASIC-based DNN accelerators can
achieve better performance with high power efficiency, the design
flexibility is very low as the design is optimized based on the specifi-
cation of one or few DNNmodels. To mitigate this design challenge,
the FPGA-based DNN design methodology has become attractive
in recent years [8]. FPGA is an integrated circuit that allows recon-
figuration of interconnects between essential components, such as
simple logic gates and memory. In any aspect of the application
domain, it can properly reconfigure the programmable gates and
find a specific architecture to reach the design constraint within
a short period. Although the design flexibility of the FPGA-based
designs is better than the ASIC-based designs, the computational
flexibility is still limited during the runtime operation (e.g., data
paths are fixed at design time).

3 NOC-BASED NEURAL NETWORK DESIGN
3.1 NoC in Deep Learning
As mentioned before, CPU, GPU, ASIC, and FPGA can accelerate
DNN operations, but each comes with a drawback when dealing
with large-scale and hybrid DNN models. CPUs and GPUs are
power-hungry and require additional complexity around their com-
pute resources to facilitate software programmability [30]. ASIC
and FPGA devices are more power-efficient, but they are configured
and optimized for a specific model, and thus they lack computa-
tional flexibility at runtime.

To solve the problems mentioned above, Network-on-Chip (NoC)
can be integrated into the DNN accelerator [13]. The NoC-based
DNN accelerator separates the platform into data computation and
communication. Such separation brings the advantages of better
computational flexibility (e.g., different DNN models can be effi-
ciently executed on the platform) and design simplicity and scalabil-
ity (e.g., computation and computation can be separably designed
and optimized) [12]. In the NoC-based design, after executing the
neuron operations by a processing element, the obtained result is
propagated through packets to the next PE. This process is repeated
until the final result is obtained. In this way, no specific dataflow
is required to be considered in order to run the target DNN model
in the DNN accelerator efficiently. The important point is that the
flexible communication between PEs enables handling different
DNN models with varying data flows using an identical architec-
ture. Some aspects of designing an NoC-based DNN accelerator
have already been investigated in the literature. For example, an
efficient mapping algorithm was proposed in [13], and a proper
NoC topology was discussed in [31] and [32].

In summary, the offered high flexibility and regular structure
make the NoC-based DNN accelerator a new and attractive design
paradigm. With proper mapping and routing algorithms, the com-
putational power and performance can be adjusted according to
the underlying DNN models. As shown in Fig. 1, the NoC-based
designs suggest a better trade-off between the reconfigurability
feature and power consumption compared with the conventional
design choices (i.e., CPU, GPU, ASIC, and FPGA).

NOCS ’19, October 17–18, 2019, New York, NY, USA K.C. Chen and M. Ebrahimi, et al.

3.2 NoC-based ANN/DNN Simulator
NoC can reduce the interconnection complexity between PEs in
DNN accelerators. To facilitate the NoC-based DNN design, a high-
level NoC-based neural network simulator is needed. However,
most of the current simulators focus either on the traffic behavior
on the NoC [33][34][35] or the DNN computation [36][37].

One of the first tools to simulate the NoC-based ANN is proposed
by Chen et al. [38] and is called NN-Noxim. This simulator facili-
tates the NoC-based ANN evaluation in the system level. NN-Noxim
is an extension of Noxim [33], which is a popular NoC simulator
to simulate the traffic behavior on the NoC system. To improve
the hardware utilization, the computation of multiple neurons has
been assigned into one Processing Element (PE). In other words,
the original ANN is first clustered, and then the clustered ANN is
mapped to the target NoC platform. NN-Noxim reports classifica-
tion accuracy as well as the hardware results such as power and
latency.

Although NN-Noxim has embedded the fundamental functions
of ANN, it is not supporting convolution and pooling calculations.
As a result, it cannot compute most CNN models, which include
convolution and pooling operations. This issue has been addressed
by the further development of the simulator in [39].

3.3 NoC Design Parameters in ANN/DNN
Accelerators

Advanced DNN models usually consist of thousands of neuron
computations, which results in huge computation, inter-neuron
communication, and memory accesses. Designing optimized accel-
erators to solve these issues has become the core of many recent
research efforts. Each PE has to execute neuron computations at
high frequency, and thus fast and energy-efficient PE designs are
highly demanded. The results of each PE should be delivered to an-
other PE in the next layer. This data transmission requires massive
inter-neuron communication, and thereby, an efficient interconnec-
tion platform is required to offer a flexible and scalable platform.
On the other hand, PE outputs and partial sums are usually stored
in the off-chip memory. Loading and offloading this data lead to
massive memory accesses, which significantly increases the power
consumption and data transfer latency. This issue also requires
proper solutions in different design levels. In this section, we inves-
tigate the solutions that NoC can contribute to addressing.

Mapping and Clustering Algorithms: Mapping algorithms
define the way in which neurons are allocated to the processing
elements. Since a single neuron computation is very simple, it is a
cost-efficient solution to assign multiple neurons to a PE [38]. So,
clustering algorithms determine how neurons are grouped. The
mapping and clustering algorithms should be designed in such a
way that to reduce the overall data communication, packet latency,
and power consumption. Different mapping and clustering algo-
rithms have been introduced so far in the area of many-core systems
[40][41]. However, it has been few contributions investigating the
mapping of ANN applications into the NoC-based platform. To
reduce traffic congestion and the data delivery latency, Liu et al.
proposed an NN-aware mapping algorithm tomap a neural network
to the NoC platform [13]. By analyzing the communication flow
in a neural network and the topology of the adopted NoC, authors

apply an exhaustive search approach to find the optimal mapping
results with the smallest data communication latency. This map-
ping algorithm reduces the average packet latency in comparison
with sequential and random mapping. In another work, Firuzan et
al. [42], proposed an approach to vertically or horizontally slice
the neural network in order to map a large-scale neural network
to the target NoC platform. In the vertical slicing, neurons in the
same layer are grouped while in the horizontal slicing, neurons in
different layers are grouped. Each group is then assigned to one PE
in the NoC platform.

Topology: Topology determines the arrangement of PEs, routers,
and links in the network. In [12], a hierarchical mesh topology is
proposed to connect PEs. The proposed topology helps in reducing
data communication in DNN computation. In [42], Firuzan et al.
proposed a cluster-based topology with a reconfigurable architec-
ture to construct an NoC-based neural network accelerator. Since a
cluster handles most of the data communication locally, this kind
of cluster-based NoC architecture can mitigate traffic congestion in
the network. The clos topology is proposed by Yasoubi et al. [11]
where PEs are connected through a direct path. The main motiva-
tion behind this work is to keep the data communication latency
scalable with respect to the mesh size.

Routing Algorithms and Router Architecture: Routing algo-
rithms define the possible routes to deliver a packet from a source
to a destination. Routing algorithms in the NoC platform have been
extensively investigated in literature [43][44]. However, the type
of data flow in neural networks is rather different and is mostly
one-to-many (i.e., data multicasting/broadcasting) and many-to-
one traffic (i.e., data gathering), so proper routing algorithms are
demanded to support these types of traffic patterns. Regarding the
router architecture, some works have utilized traditional 5-port
router with wormhole switching [26]. However, most of the cur-
rent ANN designs are based on circuit-switching, where the paths
are fixed at design time [7]. This is mainly to avoid the overhead of
routing at runtime. Packet-switched NoC, on the other hand, brings
an advantage of flexibility, which may contribute to reducing the
memory accesses.

Memory Bandwidth: As mentioned before, load and off-loading
data frommemory leads tomassivememory accesses that is counted
as one of the leading design challenges in DNN accelerators. To
alleviate this problem, Kwon et al. proposed a tree-based NoC in-
terconnect to provide a higher bandwidth between memory and
PEs [45]. Some data flow modes are also proposed to efficiently
process different actions between the memory and the PEs such
as scatter and gather. Due to employing the tree-based structure,
the complexity of the data communication between the memory
and PEs is reduced from O(n2) to O(nloдn) in comparison with
the mesh-based topology. As a result, this approach decreases the
memory access latency.

4 NOC-BASED DNN ACCELERATOR DESIGN
PARADIGM

To implement a DNN network, such as Convolutional Neural Net-
work (CNN) and Recurrent Neural Network (RNN), the network
should be first flattened into an ANN-like network. As shown in

NoC-based DNN Accelerator: A Future Design Paradigm NOCS ’19, October 17–18, 2019, New York, NY, USA

Figure 3: A CNN is flattened into ANN-like CNN: (a) the convolution layer and (b) the pooling layer can be expanded into a
partially-connected layer; (c) the interconnection structure of a fully-connected layer is maintained.

(a) (b) (c)

Figure 4: (a) The flattened DNN model (e.g., ANN-like CNN); (b) clustering neurons; (c) mapping the clustered ANN model to
the target NoC platform [38].

Fig. 3, a DNN network is usually composed of different types of lay-
ers, such as convolution layer, pooling layer, and fully-connected
layer. In order to have a flexible platform, capable of executing
different DNN models, we need to reach a unified computation
model. For this purpose, similar to [39], we express the operations
in different types of layers by Multiply-And-Accumulate (MAC)
operations as follows:

In the convolution layer , an output map is produced by per-
forming a convolution on the input data and by using a kernel.
Thereby, a partial convolution output (Oc1) can be expressed by
MAC operations:

Oc1 = K1 × I1 + K2 × I2 + K3 × I6 + K4 × I7

=
∑

l=1,2,3,4;j=1,2,6,7
(Kl × Ij). (1)

By extending this equation to calculate other partial outputs, a semi
fully-connected layer can be obtained, as illustrated in Fig. 3(a).

In the pooling layer , the popular maximum pooling method is
applied to capture the most important features [46]. To reuse the
MAC operations and increase the hardware utilization, we multiply
each input to the weight of 1 and apply the argmax function to find

the maximal value. Thereby, a partial pooling output (Op1) in the
sub-sampling operation can be calculated by:

Op1 = Max(Oc1,Oc2,Oc5,Oc6)

= Pi=1,2,5,6(W × Ii),
(2)

where W is 1 and the pooling operator (PNi=1Ij) is equal to [39]:

PNi=1Ii = arдmax(Ii). (3)

By repeating this operation, all outputs of the pooling layer can be
computed, as shown in Fig. 3(b).

In the fully-connected layer , each neuron in one layer is fully
connected to all neurons in the next layer. As illustrated in Fig. 3(c),
a partial output in the fully-connected layer Of 1 can be expressed
by:

Of 1 =W1 ×Op1 +W2 ×Op2 +W3 ×Op3 +W4 ×Op4

=

4∑
k=1

(Wk ×Opk).
(4)

Using a similar equation, the final outputs (i.e., O1 and O2) can be
obtained.

NOCS ’19, October 17–18, 2019, New York, NY, USA K.C. Chen and M. Ebrahimi, et al.

Based on the analysis, we can conclude that most operations
in CNN (such as convolution and pooling) can be executed using
MAC operations. As shown in Fig. 3, by this procedure, a flattened
CNN model is obtained, that is called ANN-like CNN.

After obtaining the ANN-like CNN (Fig. 4(a)), mapping algo-
rithms [38] should be applied to map the flattened model to the
NoC platform. As shown in Fig. 4(b), the first task is to divide neu-
rons into different execution groups. We cluster neurons layer by
layer, and the number of neurons per group depends on the compu-
tational power of each PE. As shown in this figure, neurons in Layer
1 are divided into Group 0 and Group 1 and their computations are
assigned to PE0 and PE1, respectively (Fig. 4(c)). Similarly, neurons
in Layer 2 are divided into Group 2, Group 3, and Group 4 and their
corresponding PEs are PE2, PE3, and PE4, respectively. When the
computations in a PE is completed, the partial results are packaged
and sent to all PEs in the next layer. For example, the obtained
results from PE0 and PE1 are transmitted to all PEs in Layer 2 (i.e.,
PE2, PE3, and PE4).

5 EVALUATION RESULTS AND ANALYSIS
In this section, we compare the conventional DNN design with that
of the NoC-based design. The comparison is made in terms of perfor-
mance and the number of memory accesses. UNPU [47] is selected
as the representative of the conventional DNN design. The rea-
son for this selection is that UNPU provides a look-up table-based
PE (LBPE) to support matrix multiplication and MAC operation.
Thereby, UNPU offers better computational flexibility in calculating
various DNN operations, in comparison with other DNN designs
such as Eyeriss [7]. To evaluate the UNPU design, we have described
its computing behavior in SystemC while for the NoC-based DNN
design, we utilized the CNN-Noxim simulator [39]. To have a fair
comparison, the latency model of UNPU is used for the analysis of
both conventional and NoC-based designs. In addition, for the sake
of simplicity, we employed mesh topology, random mapping, and
XY routing in the simulation process. However, the performance
can be improved by employing other advanced topologies [42][45],
mapping [40], and routing techniques [48]. For the memory band-
width, we assume that the bandwidth is enough to access 16 bits of
data within one cycle (i.e., similar to the assumption in UNPU [47]).
With regards to the target DNN networks, we evaluated LeNet [49],
MobileNet [50], and VGG-16 [4] as the representative of a small,
medium, and large-scale DNN model, respectively. As shown in
Fig. 5, the ANN-like CNN model of LeNet, MobileNet, and VGG-16
involves 286K, 269M, and 17B MAC operations, respectively.

5.1 The Number of Memory Accesses
In conventional DNN accelerators, the overall system performance
is highly affected by the off-chip memory accesses [45]. These mem-
ory accesses are necessary as the partial results are stored in the
off-chipmemory for further processing by other PEs. In other words,
PEs communicate with each other, mainly through read/write op-
erations from/to the off-chip memory. In the NoC-based design,
however, PEs can communicate with each other through the net-
work, and thus the off-chip memory accesses can be significantly
reduced. Moreover, the cache-coherence technique is an important

Table 1: Comparison between conventional and NoC-based
designs regarding the number of off-chip memory accesses.

Conventional [47] NoC-based Design
LeNet [49] 884,736 47,938 (-94.6%)
MobileNet [50] 1,061,047,296 4,360,616 (-99.6%)
VGG-16 [4] 1,165,128,192 138,508,072 (-88.1%)

aspect in NoC to reduce memory accesses. The data synchroniza-
tion can be achieved with mature memory-coherent techniques in
NoC [51]. Using the synchronization techniques, for example, a
weight can be loaded from the off-chip memory into one PE and
then synchronized with other PEs that need this weight. Hence, the
DNN-based NoC design not only reduces the number of off-chip
memory accesses but performs the neuron computing distributively.

In this section, we compare the number of memory accesses in
the NoC-based versus the conventional design. We assume that the
resources on the platform are enough to transfer all parameters of
the given model from the off-chip memory to the NoC platform at
once. This assumption is aligned with recent NoC-based architec-
tures (such as Intel’s Skylake [52]) that reduce the global memory
size and increase those of the local ones. TABLE 1 shows the benefit
of the NoC-based DNN design, assuming that sufficient distributed
on-chip local memory is available. For example, in the LeNet net-
work, the NoC-based design first read all network parameters from
the off-chip memory through 47, 938 read accesses. It should be
noted that the local memory accesses have not been counted in TA-
BLE 1 as their imposed latency and power consumption are much
lower than off-chip memory accesses. The conventional design, on
the other hand, requires 884, 736 memory accesses due to frequent
off-chip read and write operations. Similarly, the number of off-chip
memory accesses can be reduced from approximately 106M to 4M
in MobileNet and from 10B to 138M in VGG-16 .

In sum, the results show that the distributive neuron computing
in the NoC-based design, on average, can reduce the memory ac-
cesses by 94%, 99%, and 88% in the LeNet, MobileNet, and VGG-16
network, respectively. This memory access reduction can reduce
the power consumption and increase the system performance sig-
nificantly.

5.2 Performance under Different NoC Sizes
In this section, we study the performance of the selected DNN
models under different NoC sizes as well as different group sizes.
For the performance analysis, we report the PE computational
latency, the NoC data delivery latency, and the total latency. The PE
computational latency is the total execution time to compute neuron
operations in PEs, taking into account the parallel computing. The
data delivery latency is the total time that packets spend in NoC.

For the evaluation, we consider three DNN models as LeNet,
MobileNet, and VGGnet-16; and three different NoC sizes as 6 × 6,
8 × 8, and 12 × 12. The involved packet injection rate (PIR)depends
on the execution time of a single PE, which further relies on the
group size (i.e., the PIR is equal to the reciprocal of the group size
in this work). To show the impact of different group sizes, we also
investigate the performance under three different group settings
(i.e., the number of neuron computations per PE).

NoC-based DNN Accelerator: A Future Design Paradigm NOCS ’19, October 17–18, 2019, New York, NY, USA

Figure 5: The performance evaluation of three DNN models under different NoC and neuron group sizes.

Let us first assume the LeNet network with 284K operations
under the 6 × 6 NoC size. We consider a configuration where the
maximum computational capacity of a PE is 3456 neuron compu-
tations. To assign neurons to PEs, we start with the first PE in the
platform and allocate the computation of as many neurons as to
utilize the maximum PE computational capacity (e.g., 3,456 neurons
or 10,368 MAC operations by assuming that each neuron involves
3 MAC operations). Then we continue with the next PE in the plat-
form and so on. If all PE assignments for one layer is completed,
the assignment in the next layer will be started using a new PE.

As can be seen in all sub-figures, by reducing the computational
capacity of a PE, the PE latency is reduced. On the other hand, by a
smaller group size setting, more transaction data is generated and
delivered through the NoC platform. Hence, the NoC data delivery
latency will be increased. The growth of the NoC latency is smaller
in small network sizes (e.g., 6 × 6 and 8 × 8) while the difference
becomes more significant in larger network sizes (e.g., 12× 12). The
main reason is the longer paths in larger networks.

It can also be observed that in smaller networks (e.g., LeNet and
MobileNet), the total latency is dominated by the NoC communica-
tion latency while in large-scale networks (e.g., VGG-16), the total
latency is dominated by the PE computational latency. Therefore,
the neuron clustering should be done in such a way that neither
the NoC communication latency nor the PE computation latency
becomes the system performance bottleneck. Therefore, besides im-
proving the PE design, efficient topology arrangement, routing, and

mapping algorithms are also essential to improve the performance
of the NoC-based DNN accelerators.

6 CONCLUSION
In this paper, we first investigated conventional platforms for DNN
computing (i.e., CPU, GPU, ASIC, and FPGA) and discussed the
pros and cons of each platform. Then, we introduced the NoC-
based DNN accelerator which brings the main benefits of reducing
off-chip memory accesses and enhancing runtime computational
flexibility. For the execution of a DNN model in a NoC-based plat-
form, the model was first flattened into an ANN-like network. Then
it was clustered, and each group was mapped to a PE by using
random mapping. The XY-routing was used to route packets in
the network. Compared with the conventional DNN design, the
number of memory accesses in NoC-based design was reduced by
88% up to 99% under three different DNN models. The performance
analysis showed a direct relationship between the neuron cluster-
ing and its effect on the PE and NoC latency. Finally, we came to
the conclusion that efficient PE and NoC designs are both critically
important to keep the system performance high in the NoC-based
DNN accelerators.

ACKNOWLEDGMENTS
This workwas supported by theMinistry of Science and Technology
under the grant MOST 108-2218-E-110-010 and MOST 108-2218-E-
110-006, TAIWAN; the STINT and VR projects, SWEDEN.

NOCS ’19, October 17–18, 2019, New York, NY, USA K.C. Chen and M. Ebrahimi, et al.

REFERENCES
[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

CoRR, vol. abs/1512.03385, 2015.
[2] L. Xu, J. S. Ren, C. Liu, and J. Jia, “Deep convolutional neural network for image

deconvolution,” in Advances in neural information processing systems, 2014, pp.
1790–1798.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1, ser. NIPS’12, 2012, pp. 1097–
1105.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” CoRR, vol. abs/1409.1556, 2014.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding,” CoRR, vol.
abs/1510.00149, 2015.

[6] V. Vanhoucke and M. Z. Mao, “Improving the speed of neural networks on cpus,”
2011.

[7] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient recon-
figurable accelerator for deep convolutional neural networks,” IEEE Journal of
Solid-State Circuits, vol. 52, no. 1, pp. 127–138, Jan 2017.

[8] X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji, “High-performance fpga-based
cnn accelerator with block-floating-point arithmetic,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, pp. 1–12, 2019.

[9] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R.
Lester, A. D. Brown, and S. B. Furber, “Spinnaker: A 1-w 18-core system-on-chip
for massively-parallel neural network simulation,” IEEE Journal of Solid-State
Circuits, vol. 48, no. 8, pp. 1943–1953, Aug 2013.

[10] S. Carrillo, J. Harkin, L. J. McDaid, F. Morgan, S. Pande, S. Cawley, and B.McGinley,
“Scalable hierarchical network-on-chip architecture for spiking neural network
hardware implementations,” IEEE Transactions on Parallel and Distributed Systems,
vol. 24, no. 12, pp. 2451–2461, Dec 2013.

[11] A. Yasoubi, R. Hojabr, H. Takshi, M. Modarressi, and M. Daneshtalab, “Cupan –
high throughput on-chip interconnection for neural networks,” in Neural Infor-
mation Processing, S. Arik, T. Huang, W. K. Lai, and Q. Liu, Eds. Cham: Springer
International Publishing, 2015, pp. 559–566.

[12] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss v2: A Flexible and High-Performance Ac-
celerator for EmergingDeepNeural Networks,” arXiv e-prints, p. arXiv:1807.07928,
Jul 2018.

[13] X. Liu, W. Wen, X. Qian, H. Li, and Y. Chen, “Neu-noc: A high-efficient intercon-
nection network for accelerated neuromorphic systems,” in 2018 23rd Asia and
South Pacific Design Automation Conference (ASP-DAC), Jan 2018, pp. 141–146.

[14] B. Wolford, T. Speier, and D. Bhandarkar, “Qualcomm centriq 2400 processor,” in
Hot Chips: A Symposium on High Performance Chips, ser. HC29, 2017.

[15] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor High Performance
Programming, 1st ed. Cambridge, MA, USA: Morgan Kaufmann, 2016.

[16] J. Dai, Y. Wang, X. Qiu, and D. D. et al. (2017) Bigdl: A distributed deep learning
framework for big data.

[17] F. Abuzaid, S. Hadjis, C. Zhang, and C. Ré, “Caffe con troll: Shallow ideas to speed
up deep learning,” CoRR, vol. abs/1504.04343, 2015.

[18] T. Baji, “Evolution of the gpu device widely used in ai and massive parallel pro-
cessing,” in IEEE 2nd Electron Devices Technology and Manufacturing Conference,
ser. EDTM’18, 2018, pp. 7–9.

[19] Q. Wang, N. Li, L. Shen, and Z. Wang, “A statistic approach for power analysis of
integrated gpu,” Soft Computing, vol. 23, no. 3, pp. 827–836, 2019.

[20] C. Farabet, C. Poulet, and Y. LeCun, “An fpga-based stream processor for em-
bedded real-time vision with convolutional networks,” in IEEE 12th International
Conference on Computer Vision Workshops, ser. ICCV’09, 2009.

[21] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with
limited numerical precision,” CoRR, vol. abs/1502.02551, 2015.

[22] B. Moons and M. Verhelst, “A 0.3âĂŞ2.6 tops/w precision-scalable processor for
real-time large-scale convnets,” in IEEE Symposium on VLSI Circuits, ser. VLSI-
Circuits’16, 2016, p. 2.

[23] S. Yin, P. Ouyang, and S. Tang, “A 1.06-to-5.09 tops/w reconfigurable hybrid-
neural-network processor for deep learning applications,” in IEEE Symposium on
VLSI Circuits, ser. VLSI-Circuits’17, 2017, p. 2.

[24] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for
general-purpose approximate programs,” IEEE Micro, vol. 33, no. 3, pp. 16–27,
May 2013.

[25] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diannao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning,”
in Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’14, 2014, pp. 269–
284.

[26] T. Luo, S. Liu, L. Li, Y. Wang, S. Zhang, T. Chen, Z. Xu, O. Temam, and Y. Chen,
“Dadiannao: A neural network supercomputer,” IEEE Transactions on Computers,
vol. 66, no. 1, pp. 73–88, Jan 2017.

[27] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, andO. Temam,
“Shidiannao: Shifting vision processing closer to the sensor,” in 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture (ISCA), June 2015,
pp. 92–104.

[28] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, and Y. Chen,
“Pudiannao: A polyvalent machine learning accelerator,” in Proceedings of the
Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’15, 2015, pp. 369–381.

[29] S. Yin, P. Ouyang, S. Tang, F. Tu, X. Li, S. Zheng, T. Lu, J. Gu, L. Liu, and S. Wei,
“A high energy efficient reconfigurable hybrid neural network processor for
deep learning applications,” IEEE Journal of Solid-State Circuits, vol. 53, no. 4, pp.
968–982, April 2018.

[30] N. P. Jouppi and et. el., “In-datacenter performance analysis of a tensor processing
unit,” in Proceedings of the 44th Annual International Symposium on Computer
Architecture, ser. ISCA ’17, 2017, pp. 1–12.

[31] J. Liu, J. Harkin, L. P. Maguire, L. J. McDaid, J. J. Wade, and G. Martin, “Scalable
networks-on-chip interconnected architecture for astrocyte-neuron networks,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 12, pp.
2290–2303, Dec 2016.

[32] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, J. K. Kim, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-level dynamically composable architecture for accel-
erating deep neural networks,” CoRR, vol. abs/1712.01507, 2017.

[33] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, “Cycle-accurate
network on chip simulation with noxim,” ACM Trans. Model. Comput. Simul.,
vol. 27, no. 1, pp. 4:1–4:25, Aug. 2016.

[34] D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E. Shaw, J. Kim, and
W. J. Dally, “A detailed and flexible cycle-accurate network-on-chip simulator,”
in 2013 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), April 2013, pp. 86–96.

[35] A. V. de Mello, “Atlas-an environment for noc generation and evaluation,” 2011.
[36] R. N. et al., “Gan playground - experiment with gan in your browser,” 2017.
[37] D. Smilkov and S. Carter, “A neural network playground - tensorflow,” 2017.
[38] K. J. Chen and T. Wang, “Nn-noxim: High-level cycle-accurate noc-based neural

networks simulator,” in 2018 11th International Workshop on Network on Chip
Architectures (NoCArc), Oct 2018, pp. 1–5.

[39] K.-C. J. Chen, T.-Y. G. Wang, and Y.-C. A. Yang, “Cycle-accurate noc-based convo-
lutional neural network simulator,” in Proceedings of the International Conference
on Omni-Layer Intelligent Systems, ser. COINS ’19, 2019, pp. 199–204.

[40] “Testing aware dynamic mapping for path-centric network-on-chip test,” Inte-
gration, vol. 67, pp. 134 – 143, 2019.

[41] L. Huang, S. Chen, Q. Wu, M. Ebrahimi, J. Wang, S. Jiang, and Q. Li, “A lifetime-
aware mapping algorithm to extend mttf of networks-on-chip,” in 2018 23rd
Asia and South Pacific Design Automation Conference (ASP-DAC), Jan 2018, pp.
147–152.

[42] A. Firuzan, M. Modarressi, and M. Daneshtalab, “Reconfigurable communication
fabric for efficient implementation of neural networks,” in 2015 10th International
Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC),
June 2015, pp. 1–8.

[43] M. Palesi and M. Daneshtalab, Routing Algorithms in Networks-on-Chip. Springer
Publishing Company, Incorporated, 2013.

[44] M. Ebrahimi, M. Daneshtalab, F. Farahnakian, J. Plosila, P. Liljeberg, M. Palesi,
and H. Tenhunen, “Haraq: Congestion-aware learning model for highly adaptive
routing algorithm in on-chip networks,” in 2012 IEEE/ACM Sixth International
Symposium on Networks-on-Chip, May 2012, pp. 19–26.

[45] H. Kwon, A. Samajdar, and T. Krishna, “Rethinking nocs for spatial neural network
accelerators,” in Proceedings of the Eleventh IEEE/ACM International Symposium
on Networks-on-Chip, ser. NOCS ’17, 2017, pp. 19:1–19:8.

[46] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in con-
volutional architectures for object recognition,” in International conference on
artificial neural networks. Springer, 2010, pp. 92–101.

[47] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. Yoo, “Unpu: An energy-efficient
deep neural network accelerator with fully variable weight bit precision,” IEEE
Journal of Solid-State Circuits, vol. 54, no. 1, pp. 173–185, Jan 2019.

[48] M. Ebrahimi and M. Daneshtalab, “Ebda: A new theory on design and verifica-
tion of deadlock-free interconnection networks,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), June 2017, pp. 703–715.

[49] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,W. E. Hubbard, and
L. D. Jackel, “Handwritten digit recognition with a back-propagation network,”
in Advances in neural information processing systems, 1990, pp. 396–404.

[50] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.

[51] D. Giri, P. Mantovani, and L. P. Carloni, “Noc-based support of heterogeneous
cache-coherence models for accelerators,” in Proceedings of the Twelfth IEEE/ACM
International Symposium on Networks-on-Chip, ser. NOCS ’18, 2018, pp. 1:1–1:8.

[52] J. Doweck, W. Kao, A. K. Lu, J. Mandelblat, A. Rahatekar, L. Rappoport, E. Rotem,
A. Yasin, and A. Yoaz, “Inside 6th-generation intel core: New microarchitecture
code-named skylake,” IEEE Micro, vol. 37, no. 2, pp. 52–62, Mar 2017.

	Abstract
	1 Introduction
	2 Conventional DNN Computing Platforms
	2.1 Common Hardware Platforms for Neural Network Computing
	2.2 Neural Network Accelerators

	3 NoC-based Neural Network Design
	3.1 NoC in Deep Learning
	3.2 NoC-based ANN/DNN Simulator
	3.3 NoC Design Parameters in ANN/DNN Accelerators

	4 NoC-based DNN Accelerator Design Paradigm
	5 Evaluation Results and Analysis
	5.1 The Number of Memory Accesses
	5.2 Performance under Different NoC Sizes

	6 Conclusion
	Acknowledgments
	References

