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Abstract—Maintaining machine-learning models for prediction
of service performance is challenging, especially in dynamic
network and cloud environments where route changes occur,
and execution environments can be scaled and migrated. Re-
cently, transfer learning has been proposed as an approach for
leveraging already learned knowledge in a new environment.
The challenge is that the new environment may be significantly
different from the one the model is trained in, and transferred
from, with respect to data distributions and dimensionality.

In this paper, we introduce heterogeneous transfer learning
in the context of dynamic environments and show its efficiency
in predicting service performance. We propose two heteroge-
neous transfer-learning approaches and evaluate them on several
neural-network architectures and scenarios. The scenarios are
a natural consequence of network and cloud infrastructure re-
orchestration. We quantify the transfer gain, and empirically
show positive gain in a majority of cases for both approaches.
Furthermore, we study the impact of neural-network configu-
rations on the transfer gain, providing tradeoff insights. The
evaluation of the approaches is performed using data traces
collected from a cloud testbed that runs two services under
multiple realistic load conditions.

Index Terms—Service Performance, Machine Learning, Het-
erogeneous Transfer Learning

I. INTRODUCTION

A promising approach enabling intelligent telecom net-
work and service management is the use of machine-learning
models that can analyze and predict service performance
based on measurements and other observations in the network
infrastructure, as well as taking reactive and proactive re-
configuration actions [1] [2]. The ability to learn service
performance models, which is the scenario targeted in this
paper, simplifies and improves a number of management
and operational tasks such as service on-boarding, network
resource adaptation, proactive service assurance, energy opti-
mization, and root-cause analysis.

Traditionally, many machine-learning applications operate
under the assumption that train and test data are both under
the same feature space, and that they are extracted from
the same distribution [3]. Hence, when the data distribution
or its dimensionality changes, the previously crafted models
must be rebuilt from scratch, and trained with the new data.
Collecting additional data for training new models is expensive
and sometimes infeasible. This gets more accentuated in en-
vironments with real-time monitoring requirements, or limited

Fig. 1. Modeling of service metrics Y at the client given observations
of the infrastructure features in the source domain (XNW , XDC1). When
the execution environment changes to the target domain, the model must be
adapted to the new feature set (XNW , XDC2, XDC3).

computational or networking resources. Training models from
scratch, specifically for large and complex variants, also has
a footprint in terms of power consumption stemming from
extensive use of compute resources [4].

Figure 1 illustrates a management example that could lead to
a change in data distributions and dimensionality. Clients are
accessing a cloud service over the network, where the service
is being migrated and horizontally scaled from the source
to the target domain. A model for service performance Y
trained using features in the source domain (XNW , XDC1) is
no longer compatible with the larger set of features describing
the target domain (XNW , XDC2, XDC3). Another reason for
a changed feature set may be due to data-collection costs in
certain parts of the network. That is, the cost of collecting
a specific feature may not match the expected performance
improvement of the model, and thus should be removed.

Transfer learning is a mitigation approach where knowledge
learned in one environment can be leveraged in another.
This enhances the training process as it is not necessary to
develop new models from scratch. Previously built models can
rather be adapted to a new environment, which also reduces
requirements on monitoring and power consumption.

In this paper, which extends our previous work on homo-
geneous transfer learning [5] and source selection [6] [7] for
improved performance prediction, we explore two approaches
for heterogeneous transfer learning on neural-network models
in environments where source and target domains do not
share a common input feature space. Such scenarios may
occur due to changes in monitoring configurations and feature978-1-6654-0601-7/22/$31.00 © 2022 IEEE
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availability, as exemplified above. More specifically, we study
the impact of adding, removing, and changing input features
in the target domain on the transfer gain.

The main contributions of this paper are: (1) analysis of
heterogeneous transfer learning, providing empirical evidence
of feasibility and robustness in modelling performance of
networked services, (2) description and evaluation of two
heterogeneous transfer learning approaches for feed-forward
neural-network models to improve the transfer gain, and (3)
investigating the impact of neural-network configurations on
the transfer gain using multiple data traces.

The rest of the paper is organized as follows. Section
II provides related work. Section III provides a formula-
tion of transfer learning for homogeneous and heterogeneous
scenarios. In Section IV, we describe two approaches for
heterogeneous transfer learning and various neural network
model alternatives. Section V describes the testbed and data
traces used for evaluation, whereas Section VI contains results.
Conclusions are located in Section VII.

II. RELATED WORK

In a seminal paper by Yosinski et al. [8], the authors
studied and highlighted the importance of feature transfer,
providing insights that neural networks learn general and
specific latent features, and that the former can be applied
to multiple image datasets. Further, in [9] the authors studied
transfer learning in the field of natural language processing,
and showed that semantic similarity impacts the transferability
of neural-network models.

Transfer learning is also becoming an increasingly impor-
tant approach for improving machine-learning performance
in dynamic network, IT, data centers, and cloud environ-
ments. Examples include methods for fault localization on IT
infrastructures [10] where transfer learning is incrementally
enriching the models, and optimization and configuration of
software systems [11] where transfer learning is used as part of
a framework to learn from the most relevant sources. Further,
in [12] the authors use transfer learning for solving problems
related to cross-platform performance prediction of different
hardware architectures. Our own works on homogeneous trans-
fer learning [5] and source selection [6] [7] are extended with
the study of scenarios with feature heterogeneity.

There are multiple ways of classifying transfer learning
approaches [3], and one key factor is the distinction between
homogeneous and heterogeneous transfer learning. Homoge-
neous transfer learning corresponds to the case when the
source and target domain feature spaces are represented by the
same attributes or features [13]. The above-mentioned works
mainly fall into this class.

As it was already mentioned, in heterogeneous transfer
learning, which is the focus of this paper, the source and target
domain do not share a common feature space. Heterogeneous
transfer learning has mainly been addressed using mapping-
based approaches [14], where features in respective source
domains are transformed to a common subspace, thereafter
used by a common predictive model in the target domain;

examples include [15] [16] [17]. Other mapping-inspired ap-
proaches can be found in [18] [19], where the mapping is done
via random forests instead of neural networks. Our work in
this paper differentiates itself by using a neural-network model
[14] with first layer replacement or modification.

There are also some other recent works in other research
domains that leverage neural-network models, for example in
[20] [21], where pre-trained models are inserted into a bigger
pipeline in order to take advantage of their embedded knowl-
edge. Nonetheless, these works do not specifically investigate
feature heterogeneity and the impact of network configuration.

III. HOMOGENEOUS AND HETEROGENEOUS TRANSFER
LEARNING FORMULATION

Figure 1 illustrates the scenario that is considered in this
work. Clients are interacting with services that are executing
in the cloud. In this paper, we consider data traces originating
from testbed experiments where clients access two network
services executing in one data center: a Video-on-Demand
(VoD) service and a Key-Value Store (KVS) service.

The learning task is to predict the service-level metrics Yt,
e.g., response time, at time t on the clients accessing the
services based on knowing the infrastructure metrics Xt, e.g.,
CPU and memory utilization, at time t. We train and evaluate
models M : Xt → Ŷt, such that Ŷt closely approximate Yt

for a given Xt using supervised machine learning.

A. Homogeneous transfer learning

Based on the definition of transfer learning in [3], a do-
main D = {X,P (X)} consists of two components: (1) a
feature space X , and (2) a marginal probability distribution
P (X), where X corresponds to the infrastructure metrics.
The number of features in X is denoted |X|. Further, a task
T = {Y,M} consists of two components: a target space
Y corresponding to service-level metrics, and an objective
predictive model M . Transfer learning is then defined as
follows. Given a source domain DS and learning task TS ,
a target domain DT and learning task TT , transfer learning
aims at reducing the cost of learning the predictive model M
in DT using the knowledge in DS and TS , where DS ̸= DT . A
model that is transferred from DS to DT is denoted MS→T , to
separate it from a model MS or MT that is trained in isolation
(i.e., from scratch) in the source or target domain. The number
of training samples in DT at time t is denoted Nt.

Homogeneous transfer learning is used to mitigate model
degradation stemming from execution environment changes
when XT = XS as explored in previous work [5].

B. Heterogeneous Transfer Learning

Heterogeneous transfer learning (HTL) corresponds to a
scenario where the available input features X are not identical
when the execution environment changes. This may occur due
to changes in monitoring configurations, re-orchestration of the
infrastructure, and policies for feature privacy, for example.

This paper studies, quantifies, and explains the impact
of transferring a source domain to a target domain where
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Fig. 2. (a) Homogeneous transfer learning where input feature space in the
target domain is similar to that of the source domain, (b) heterogeneous
transfer learning where the target domain contains lower or larger number
of features than the source domain.

Fig. 3. Two approaches for heterogeneous transfer learning for service-
performance prediction: (a) Random input layer strategy where the weights of
the first layer are randomly initialized, (b) Transfer input layer strategy where
the weights of common features are transferred, and the rest is initialized.

XS ̸= XT . We define two heterogeneity cases: (1) the
number of features in the source is larger than or equal to the
target domain |XS | ≥ |XT |, and (2) the number of features
in the target is larger than or equal to the source domain
|XS | ≤ |XT |. The two cases are illustrated in Figure 2.
In the result section, we examine, among other things, how
much heterogeneity is acceptable while still getting a positive
transfer gain.

IV. APPROACHES FOR TRANSFER LEARNING IN
HETEROGENEOUS SCENARIOS

In this paper, we address scenarios for transfer learning for
service performance prediction where we relax the homogene-
ity of features spaces in the source and target domains. Thus,
we describe and compare two transfer learning approaches
with regard to the heterogeneity in the input feature space. In
addition to the heterogeneity aspect, we also elaborate on the
impact of feed-forward neural network architecture choices.
We vary the configuration in terms of the number of layers and
neurons per layer. Further, in the result section, we investigate
the impact of a varying number of available samples Nt (N at
time t) in DT , as the number of samples in the target domain
may be limited due to overhead or time constraints.

A. Source and target models

The source and target feed-forward neural-network models
can be generated separately using the available samples in their
respective domains. The models are given as follows:

Source model (MS): The model consists of an input
layer, corresponding to features XS , n − 1 hidden layers
L1, ..., Ln−1, weights w1, ..., wn, and an output layer Ln

corresponding to Yt. The weights wi for a model MS are
trained using backpropagation [22] with samples in the source
domain DS .

Target model (MT ): The same neural-network architecture
is used in the target domain but all weights are randomly
initialized, and trained using the available features (where
XT ̸= XS) and samples in the target domain. This model
is thus trained with no prior knowledge and a limited, but
increasing over time, set of samples.

A domain defines the input layer to the model, which is
dependent on the number of available features. The traditional
approach of homogeneous transfer learning does not consider
the miss-match in the input layer, and thus other more ad-
vanced transfer approaches must be considered to cope with
the heterogeneity.

B. Heterogeneous transfer approaches
We propose two approaches for transferring a feed-forward

neural-network model from the source to the target domain.
Both approaches are based on partial weight transfer but has
significant differences, described below.

Random input layer (Mr
S→T ): This approach builds

upon re-training of a feed-forward neural-network model M ,
that is transferred from a source to a target domain [8].
For heterogeneous transfer learning, the knowledge transfer
corresponds to training a target model where the weights of
layers L2, ..., Ln are initialized with the weights from the
source model MS . Further, layer L1, which now has a different
number of weights, is randomly initialized to encompass
the feature heterogeneity as illustrated in Figure 3. After
knowledge transfer, the model is denoted Mr

S→T . The target
model is then fine tuned using available samples from the
target domain DT .

Transfer input layer (M t
S→T ): In this approach, the model

is transferred and trained similarly to Mr
S→T , except for the

handling of L1. Removing and randomly initializing L1 may
lead to loss of encoded information, and thus, in this second
approach the shared features across domains are identified,
i.e., XS ∩XT . Once these features are identified, the position
in the input feature vector is recorded. The weights in L1

corresponding to the input feature positions are copied to
the corresponding position in the target model. This results
in a permutation-invariant weight-transfer approach. For the
remaining target domain features, random initialization is per-
formed. The approach is illustrated in Figure 3. An automatic
mapping procedure will be investigated in future work.

The hypothesis is that the second approach leverages the
fact that the domains are not completely different in terms of
features. The more similar the domains are, the more effective
the transfer input layer approach should be.

C. Quantifying the transfer gain
In addition to studying the performance of MS , MT ,

Mr
S→T , and M t

S→T , we use the concept of transfer gain G to
quantify the impact of DT on the transferred models, which
we define as:

G = eT − eS→T , (1)
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(a) Shallow and deep neural network alternatives

(b) Narrow deep neural network alternatives

Fig. 4. Neural-network model architectures considered in this paper.

where eT and eS→T are the model errors for MT and MS→T ,
respectively. The transfer gain is inspired by the negative
transfer gap defined in [23]. Transfer gain occurs when the loss
of the transferred model MS→T is higher than MT , whereas
a negative transfer gap means the opposite.

D. Neural network architectures

Heterogeneous transfer learning directly affects the first
layer of the transferred model. This is due to the fact that
the number of input features in the source domain is different
from the target domain. In this subsection, we discuss the
impact of the neural network architectures on the transfer
gain in heterogeneous transfer learning. For this purpose, we
examine two neural-network settings: 1) shallow vs. deep
neural networks, 2) narrow vs. wide neural networks.

Shallow vs. deep neural network: To study the impact
of neural network depth on the transfer gain, we examine
three cases when the number of layers is 4, 6, and 10 as
shown in Figure 4a. These networks are labelled shallow-4,
deep-wide-6, and deep-wide-10. The number of parameters in
each of these networks is listed in Table I. Our hypothesis
is that deeper networks lead to larger transfer gain as more
information is embedded in middle layers, which are not
affected by the change in the input feature space. We also
expect that there should be further gain as a result of increasing
the network depth.

Narrow vs. wide neural network: Simply increasing the
network depths (i.e., deep-wide neural networks) comes at
the cost of increased number of parameters and training
time. Thereby, we investigate the case where we keep the
number of parameters similar to the shallow network, and just
spread neurons over more layers, reaching a deep-narrow-6
and deep-narrow-10 neural network alternatives (Figure 4b).
This configuration helps us to understand the impact of the
number of parameters per layer on the transfer gain. The
number of parameters for each network is listed in Table I.

V. TESTBED AND DATA TRACES

The evaluation in this paper is based on realistic traces [24]
obtained from a testbed. A brief overview of the scenarios and

TABLE I
NUMBER OF PARAMETERS IN EACH OF THE NETWORKS EMPLOYING 18
FEATURES IN THE SOURCE DOMAIN AND 18 IN THE TARGET DOMAIN.

Network L1 L2, ..., Ln Total Training

parameters parameters parameters time (sec)

shallow-4 4864 131841 136705 1.48

deep-wide-6 4864 263425 268289 1.62

deep-wide-10 4864 526593 531457 1.79

deep-narrow-6 3458 133407 136865 1.45

deep-narrow-10 2432 132225 134657 1.53

experimental infrastructure are provided below, and additional
details are available in our previous work [25].

The testbed consists of a server cluster and a set of clients,
all deployed on a rack with ten high-performance machines
interconnected by a Gigabit Ethernet. On the server cluster we
run two network services: Video-on-Demand (VoD) and Key-
Value Store (KVS). The VoD service uses a modified VLC
media player software, which provides single-representation
streaming with a varying frame rate. Further, the KVS service
uses the Voldemort software. The two services are installed
on the same machines and can execute in parallel. The client
machines act as load generators for both services.

A. Generating load on the testbed

Two load generators are running in parallel, one for the
VoD application and another for the KVS application, aiming
at emulating real traffic scenarios. The VoD load generator
controls the number of active VoD sessions, spawning and
terminating VLC clients. The KVS load generator controls
the rate of KVS operations issued per second.

Both generators produce load according to two distinct load
patterns: (1) periodic-load where the load generator produces
requests following a Poisson process whose arrival rate is
modulated by a sinusoidal function, and (2) flashcrowd-load
where the requests are following a Poisson process whose
arrival rate is modulated by a flashcrowd model [26].

B. Collected data and traces

Data traces, collected on the testbed, contain an input feature
set X and the service-level metrics YV oD and YKV S . A trace is
generated by extracting, and collecting, these statistics during
execution of experiments with different configurations.

Features X are extracted from the Linux kernels that
run on the machines. To access the kernel data, we use
System Activity Report (SAR), a popular open-source Linux
library [27], which provides approximately 1700 features per
server. Examples of such statistics are CPU utilization per
core, memory utilization, and disk I/O.

For the purpose of this paper, we focus on modeling
the KVS service where the service-level metrics YKV S are
measured on the clients. During an experiment two main
metrics are captured, namely the Read Response Time (RAvg)
as the average read latency for obtaining responses over a
set of operations performed per second, and a corresponding
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TABLE II
EXAMPLES OF TRACES OBTAINED FROM TESTBED.

Trace ID Service(s) Load pattern Target Y # samples

K1P KVS Periodic RAvg, WAvg 28962

K1F KVS Flashcrowd RAvg, WAvg 19444

K2P KVS + VoD Periodic RAvg, WAvg 26488

K2F KVS + VoD Flashcrowd RAvg, WAvg 24225

Fig. 5. Feature correlation with RAvg and WAvg.

metric for the Write Response Time (WAvg). The metrics are
computed using a customized benchmark tool of Voldemort.

A summary of selected traces captured in the testbed are
available in Table II. The trace ID is encoded according to
service under investigation (KVS/VoD), number of concurrent
services (1 or 2), and load pattern (periodic/flashcrowd).

C. Creation of heterogeneous traces

To study heterogeneous transfer learning for the scenarios
considered in this paper, the set of features in the source and
target domains must be different. In a first step, we reduced
the feature space to 18 features, using domain knowledge,
following the approach in [28]. Then we artificially reduce the
number of available features utilizing the Pearson correlation
(see Figure 5) between the features and RAvg and WAvg.
Details of each feature are available in [27].

For the case with lower number of features in the target,
features have been iteratively removed, starting with features
with a higher correlation with the given task (RAvg or WAvg).
In the case of having more features in the target domain,
features in the target are selected from the least to the most
correlated, with the intention of creating challenging scenarios.
For instance, the most correlated feature with both RAvg and
WAvg is rxpck.s, and the second most correlated ones are file.nr
and txpck.s, respectively.

VI. RESULTS AND DISCUSSION

We evaluate the two approaches for heterogeneous transfer
learning, explained in Section IV, on a set of transfer scenarios

TABLE III
TRANSFER SCENARIOS CONSIDERED. NOTE THAT P (XS) = P (XT ).

MODEL ARCHITECTURES ARE IDENTICAL, EXCEPT FOR L1 .

# DS DT Trace Model arch.
|XS | TS |XT | TT

1 18 RAvg 18, 10, 2 WAvg K2P MS = MT

2 2 RAvg 18, 10, 2 WAvg K2P MS = MT

3 18 RAvg 18, 10, 2 WAvg K2F MS = MT

4 2 RAvg 18, 10, 2 WAvg K2F MS = MT

described in Table III, and quantify the impact of the feature
heterogeneity, and architectural neural-network design choices.

Table III lists four main scenarios examined in this section.
For each source domain (DS) in Table III, multiple models
(MS) are created using the 5 different neural-network model
architectures defined in Table I. The chosen neural-network
model is assumed to be the same in the source and target
domain (i.e., MS = MT ). In scenarios concerning hetero-
geneous transfer learning, a target domain (DT ) corresponds
to a change in feature space, i.e., XS ̸= XT , and in this
paper, we set the number of target-domain features to 18,
10, or 2. Further, the prediction task always changes, i.e.,
TS ̸= TT . This corresponds to a scenario where the service
provider for example would like to predict either read or
write response time for a KVS service in a domain where
the set of features has changed. The model performance is
evaluated for an increasing set of samples in the target domain
(N = [25, 50, 75, 100, 250, 500]).

The Normalized Mean Absolute Error (NMAE) is used for
quantifying model performance, and is defined as:

e =
1

ȳ
(
1

m

m∑
t=1

|yt − ŷt|), (2)

where ŷt is the model prediction for the measured performance
metric yt, and ȳ is the average of the samples yt of the test
set of size m. Other metrics lead to similar conclusions.

The neural network architectures considered in this work
are listed in Table I and shown in Figure 4. Further, the
implementation of the neural networks has been performed by
means of the Keras library [29] running on top of TensorFlow
[30]. For the source models, the neural networks are initialized
with random weights and are trained on samples (X,Y ). We
use the rectified linear unit (ReLU) activation function for all
the layers, Adam optimizer [31] with a learning rate starting
at 0.001 using exponential decay with decay rate 85, 1000
decay steps and staircase function, and mean absolute error
(MAE) as the loss function. Each experiment was run for a
maximum of 200 epochs, with early stopping using a patience
of 10 epochs and weight restoring. Regarding the data, a batch
size of 32 was used, performing a validation split of 20% of
the training set, composed by the 80% of the trace samples,
being the test set constituted by the remaining 20%.
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(a) (c) (e)

(b) (d) (f)

Fig. 6. NMAE for (a-b) homogeneous and (c-f) heterogeneous transfer
learning in a shallow-4 network using the Random input layer approach.

Similarly, in the target domain, the samples are also split.
The training set size is varied between 25 and 500 samples,
and it is used to train the transferred model MS→T , using one
of the proposed transfer approaches, and the scratch model
MT to enable calculation of transfer gain. Both models are
trained and tested on the same samples, being the test size
much bigger than the number of samples employed for the
training in the target domain.

A. Homogeneous vs. heterogeneous transfer learning

In Figure 6, belonging to Scenario 1 and 2 in Table III, we
report NMAE for different number of training samples where
features in the source and target domains are either the same
(homogeneous: Figure 6a and 6b) or different (heterogeneous:
Figure 6c to 6f). In these results, the neural-network model
is of type shallow-4, the trace is K2P (see Table II), and the
prediction task is different in the source (RAvg) and target
(WAvg) domains (i.e., TS ̸= TT ). Random input layer is the
approach used for the heterogeneous transfer-learning cases.
Each plot shows the transfer gain, transferred model loss, and
scratch model loss. The scratch model (MT ) refers to a model
that is rebuilt from scratch, that is a randomly initialized model
trained with the available samples Nt in the target domain.

The results show that in most cases both homogeneous
and heterogeneous transfer learning lead to a positive transfer
gain. However, a small negative transfer gain can be seen
in a few cases for low number of target samples, and when
both domains contain only 2 features. As expected, the gain is
reduced with increasing the number of samples in the target
domain, which corroborates our previous results [5]. In the
case of heterogeneous transfer learning, the transfer gain is
larger when transferring from a model with a larger feature
space (e.g., Figure 6c and 6e) compared to transferring from
a smaller model (e.g., Figure 6d and 6f). This is due to the
fact that more information can be obtained from the source
domain, which can then be transferred to the target domain.

(a) Approach: Random input layer.

(b) Approach: Transfer input layer.

Fig. 7. NMAE for the two approaches using a shallow-4 neural network.

(a) Scenario 1: DS (18 features, RAvg) and DT (2 features, WAvg).

(b) Scenario 2: DS (2 features, RAvg) and DT (18 features, WAvg).

Fig. 8. NMAE for shallow-4 and deep-wide networks using the Random
input layer approach.

(a) Scenario 1: DS (18 features, RAvg) and DT (2 features, WAvg).

(b) Scenario 2: DS (2 features, RAvg) and DT (18 features, WAvg).

Fig. 9. NMAE for shallow-4 and deep-narrow networks using the Random
input layer approach.

B. Random vs. transferred input layer strategies

In Figure 7, belonging to Scenario 1 and 2 in Table III,
we study the performance of the two heterogeneous transfer
approaches discussed in Section IV. All the other config-
urations are similar to the previous experiments. In each
plot, we calculate the model loss for the scratch and the
transferred model, and report the transfer gain. As can be seen
in this figure, larger transfer gain is obtained when using the
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(a) 25 training samples

(b) 75 training samples

(c) 250 training samples

Fig. 10. NMAE comparison between the scratch model and the two proposed transfer approaches when the number of samples in the target domain is: (a)
25 (b) 75, and (c) 250. The experiments correspond to Scenario 1 and 2 with trace K2P. In the source domain (DS ), the number of features is 18 or 2 and
the learning task is TS = RAvg. In the target domain (DT ), the number of features is 18, 10, or 2 and the learning task is TT = WAvg.

(a) 25 training samples

(b) 75 training samples

(c) 250 training samples

Fig. 11. NMAE comparison between the scratch model and the two proposed transfer approaches, similarly to Figure 10 but in this case using the K2F
traces, corresponding to Scenarios 3 and 4.

transfer input layer strategy (Figure 7b) than when using the
random input layer strategy (Figure 7a), specially for a lower
number of samples. This observation is true for both cases of
transferring from a smaller or lager feature set. The superiority
of the transfer input layer strategy shows the importance of
transferring the weights of the first layer whenever possible.

C. Shallow vs. deep neural networks

In Figure 8, corresponding to Scenarios 1 and 2 in Table III,
we study the effectiveness of heterogeneous transfer learning
using shallow and deep-wide neural network architectures, as

stated in Table I. Each scenario is evaluated for three differ-
ent configurations: shallow-4, deep-wide-6, and deep-wide-10.
The source and target models have the same architecture. In
addition, we fix the transfer strategy to random input layer in
this set of experiments to be able to solely study the impact
of the network architecture depth on the transfer gain.

Figure 8a shows the case where the number of features is
reduced to 2 in the target domain, from 18 in the source
domain, with varying prediction tasks. Figure 8b covers the
opposite case. As can be observed, transfer gain increases with
the neural-network depth, and a larger gain is obtained when
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having a lower number of samples. The depth increment also
helps to greatly reduce the variance of the transferred model
in all cases. More interestingly, transfer gain in deep-wide-
10 is still significant when transferring the model from only
2 features (Figure 8b). It is necessary to highlight that here,
the number of features employed in the source domain highly
influences the results obtained in deeper networks. In other
words, the model that was trained in the source domain with
more features (Figure 8a) has lower variance and reaches lower
loss values using fewer training samples, as compared to the
model trained with fewer features (Figure 8b).

By having 10 layers, the transferred model loss reaches its
minimum even if only few samples are available in the target
domain (e.g., 25). It implies that adding more layers does not
help in improving the transfer gain any further.

D. Narrow vs. wide neural networks

Although the deep-wide neural network options offer several
advantages in heterogeneous transfer learning, it comes at
the cost of a large number of parameters, and thus a longer
training time. To address this issue, in Figure 9 corresponding
to Scenarios 1 and 2 in Table III, we investigate the impact of
solely increasing the network depth while keeping the number
of parameters in the same range as the shallow-4 network.
Table I reports the average training time of the shallow, deep-
wide, and deep-narrow neural networks over all cases in Figure
8 and 9. As can be seen in this table, the training time of the
deep-narrow neural networks is close to that of the shallow
one, while the training time in these networks is shorter than
the deep-wide alternatives. Contrastingly, as shown in Figure
9, no significant changes in transfer gain have been observed
as compared to the deep-wide alternatives (Figure 8).

E. Evaluation over multiple traces and approaches

In this section, we provide two comprehensive examples
shown in Figures 10 and 11, experimenting over K2P and
K2F traces, respectively. Figure 10 refers to Scenario 1 and 2
in Table III while Figure 11 belongs to Scenario 3 and 4. The
figures compare different neural-network design alternatives
proposed and discussed in this paper. NMAE is reported for
all 5 neural network architectures over different number of
samples (N = [25, 75, 250]) in the target domain. The two
transferred strategies (i.e., random input layer and transfer
input layer) are also compared against the scratch loss. The
number of features in the source domain is selected to be 18
or 2 whereas it is 18, 10, and 2 in the target domain.

As can be seen in Figure 10, the impact of the transfer input
layer strategy is more significant in shallow-4 network. The
reason is that the first layer constitutes a large proportion of
the total number of parameters. Thereby, a significant amount
of knowledge will be lost when re-initializing the weights of
the first layer as in the random input layer strategy. On the
other hand, deeper networks would trap the knowledge in the
middle and last layers of the neural network, which could
be successfully transferred to the target domain. Thereby, we
conclude that although a shallow neural network may work

well in the source domain, it may not be the case in a
heterogeneous scenario when the learned model is transferred
to the target domain (to train model MS→T ), especially when
the random input layer strategy is applied. On the other hand,
it is interesting to observe that the impact of the neural-
network architecture choices is more limited when employing
the transfer input layer strategy.

We also observe that, in most cases, wider neural network
choices lead to lower NMAE. However, the advantage is
limited compared to narrow alternatives which offer shorter
training time due to a smaller number of parameters. Thereby,
deep-narrow architectures would be better choices in terms of
offering low NMAE while still having a short training time.

Another important observation is that the transfer gain is
larger when transferring from a source domain with more
features (e.g., 18 in the source and 2 in the target domain).
However, interestingly, positive gain is also obtained in the
opposite case (e.g., 2 in the source and 18 in the target
domain).

Last but not the least, the transfer gain shrinks as the number
of samples in the target domain increases, which we have
already seen in multiple earlier examples.

We repeated the experiment on the K2F trace (Figure 11)
and similar observations have been reached, clearly showing
the applicability and generality of heterogeneous transfer
learning in service metric predictions.

VII. CONCLUSION

In this paper, we proposed and evaluated two approaches for
heterogeneous transfer learning, named Random input layer
and Transfer input layer, for improved prediction of service
performance in telecom networks. The approaches enable
transfer of neural-network models, and thus knowledge, in-
between environments with highly dissimilar feature sets.

The approaches were evaluated in multiple scenarios using
realistic data sets obtained from a testbed running two different
network services under varying load, namely a Video-on-
Demand and Key-Value Store service. The obtained results
provide empirical evidence showing a positive transfer gain in
a majority of cases. For example, the knowledge embedded in
a neural-network model, trained with 2 features in the source
domain, can successfully be transferred to a target domain
with 18 input features, and vise versa.

Further, a comprehensive evaluation of the two approaches
show that the Transfer input layer often is more capable,
especially with low availability of target-domain samples, and
smaller model architectures. Choosing an appropriate neural-
network depth is also crucial for transfer gain and shorter
training time. Deeper networks are embedding more knowl-
edge which results in a higher transfer gain in all scenarios.
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