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Abstract—To achieve higher memory bandwidth in network-
based multiprocessor architectures, multiple dynamic random
access memories can be accessed simultaneously. In such ar-
chitectures, not only resource utilization and latency are the
critical issues but also a reordering mechanism is required to
deliver the response transactions of concurrent memory accesses
in-order. In this paper, we present a memory-efficient on-chip
network architecture to cope with these issues efficiently. Each
node of the network is equipped with a novel network interface
(NI) to deal with out-of-order delivery, and a priority-based
router to decrease the network latency. The proposed NI exploits
a streamlined reordering mechanism to handle the in-order
delivery and utilizes the advance extensible interface transaction-
based protocol to maintain compatibility with existing intellectual
property cores. To improve the memory utilization and reduce the
memory latency, an optimized memory controller is integrated in
the presented NI. Experimental results with synthetic test cases
demonstrate that the proposed on-chip network architecture
provides significant improvements in average network latency
(16%), average memory access latency (19%), and average
memory utilization (22%).

Index Terms—AXI transaction protocol, memory controller,
network interface, networks-on-chip.

I. Introduction

AS TECHNOLOGY geometries have shrunk to the deep
submicrometer regime, the communication delay and 

power consumption of global interconnections in high perfor-
mance multiprocessor systems-on-chip (MPSoCs) are becom-
ing a major bottleneck [1]–[4]. The network-on-chip (NoC) 
architecture paradigm, based on a modular packet-switched 
mechanism, can address many of the on-chip communica-
tion design issues, such as performance limitations of long 
interconnects, and integration of high number of processing 
elements (PEs) on a chip [3]–[5].

NoCs are composed of routers connecting PEs, to deliver 
the data (packets) from one place to another [6], and network 
interfaces (NIs) acting as communication interfaces between
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each PE and corresponding router. The fundamental function
of NIs is to provide data transaction between PEs and the
network infrastructure. That is, one of the practical approaches
of NIs is to translate the protocol between the PE and router
based on a standard communication protocol such as advance
extensible interface (AXI) [7], open core protocol (OCP) [8],
and device transaction level (DTL) [9].

In MPSoCs, in-order delivery is a practical approach which
should be handled when exploiting an adaptive routing algo-
rithm for distributing packets through the network [5], [10],
when obtaining memory access parallelization by sending
requests from a master intellectual property (IP) core to mul-
tiple slave memories [11], [12], or when exploiting dynamic
memory access scheduling in memory controller to reorder
memory requests [13]. In this paper, we present a memory-
efficient on-chip network architecture not only to cope with the
in-order delivery but also to improve the network performance.
The key ideas are threefold.

1) The first idea is to deal with out-of-order handling in
such a way that when a master IP-core sends requests
to different memories, the responses might be required
to return in the same order in which the master issued
the addresses. Therefore, we introduce an adaptive NI
architecture using a reordering mechanism for the pro-
posed on-chip network. In addition, resource utilization
of reorder buffers, implemented in NIs, is significantly
inefficient, inasmuch as conventional buffer management
is not efficient enough for network resources. Thus,
a streamlined adaptive reordering mechanism via re-
sourceful management of buffers is implemented in the
NI.

2) As in traditional reordering mechanisms routers do not
play any role in the reordering procedure, employing
routers in the reordering procedure is very useful to
increase utilization and reduce the average delay of on-
chip networks. Thus, the second idea is an on-chip router
architecture, called priority-based router (PR), which
assigns a priority value for each packet according to
the sequence number (SN) and distance between source
and destination.

3) The third idea is a dynamic memory controller that is
integrated into the proposed NI. The presented memory
controller is able to reorder memory requests adaptively
to improve memory utilization and reduce both memory
and network latencies.



Based on the introduced NI architecture, a hybrid NI ar-
chitecture is designed to integrate both memory and processor
in a tile. Furthermore, the presented on-chip network exploits
the AMBA AXI protocol to allow backward compatibility with
existing IP-cores [7]. We also present micro-architectures of
the proposed ideas, particularly the reordering mechanism.

This paper is organized as follows. In Section II, the
background is discussed. In Section III, a brief review of
related works is presented while the proposed NI architectures
are presented in Section IV. The PR and the efficient memory
controller are described in Section V and VI, respectively.
The experimental results are discussed in Section VII with
the summary and conclusion given in the last section.

II. Background

A. NoC Architecture

2-D mesh has many desirable properties for NoCs, including
scalability, high bandwidth, and the fixed degree of nodes
[14]. A 2-D mesh NoC-based system is shown in Fig. 1.
As mentioned earlier, NoC consists of routers (R), PEs, and
NI. PEs may be IP blocks or embedded memories. Each
core is connected to the corresponding router port using
the NI. To be compatible with existing transaction-based IP-
cores, we use the AMBA AXI protocol. AMBA AXI is an
interfacing protocol, having advanced functions such as a
multiple outstanding address function and data interleaving
function [7]. AXI, providing such advanced functions, can be
implemented on NoCs as an interface protocol between each
PE and router to avoid the structural limitations in SoCs due to
the bus architecture. The protocol can achieve very high speed
of data transmission between PEs [7]. In the AXI transaction-
based model [7], [11], IP-cores can be classified as master
(active) and slave (passive) IP-cores [12], [24]. Master IP-
cores initiate transactions by issuing read and write requests
and one or more slaves (memories) receive and execute each
request. Subsequently, a response issued by a slave can be
either an acknowledgment (corresponding to the write request)
or a data (corresponding to the read request) [12]. The AXI
protocol provides a “transaction ID” (T-ID) field assigned
to each transaction. Transactions from the same master IP-
core, but with different IDs have no ordering restriction while
transactions with the same ID must be completed in-order.
Thus, a reordering mechanism in the NI is needed to afford
this ordering requirement [7], [8], [18]. The NI lies between
a PE and the corresponding attached router. This unit forms
the foundation of the generic nature of the architecture as it
prevents the PEs from directly interacting with the rest of the
network components in the NoC.

A generic NI architecture is shown in Fig. 1. The NI consists
of input buffers (forward and reverse directions), a packetizer
unit (PU), a depacketizer unit (DU), and a reorder unit (RU).
A data burst coming from a PE is latched into the input buffer
of the corresponding NI. PU is configured to packetize the
burst data stored in the input buffer and transfer the packet to
the router. Similarly, data packets coming from the router are
latched into the input buffer located in the reverse path. DU
is configured to restore original data format, required for the

Fig. 1. Tile-based 2-D mesh topology.

PE, from the packet provided by the router. The RU performs
a packet reordering to meet the in-order requirement of each
PE.

As master IP-cores may operate at high clock frequencies
and slave IP-cores at low clock frequencies, an interface
between the IP-cores and on-chip network is required for
crossing two clock domains.

B. DRAM Structure

Dynamic random access memory (DRAM) is designed to
provide high memory depth and bandwidth. Fig. 2 shows a
simplified 3-D architecture of an DRAM memory chip with
the dimensions of bank, row, and column [13], [25], [26]. A
DRAM chip is composed of multiple independent memory
banks such that memory requests to different banks can be
serviced in parallel. Hence, a benefit of a multibank architec-
ture is that commands to different banks can be pipelined.
Each bank is formed as a 2-D array of DRAM cells that
are accessed an entire row at a time. Thus, a location in the
DRAM is identified by an address consisting of bank, row, and
column fields. A complete DRAM access may require three
commands (transactions) in addition to the data transfer: bank
precharge, row activation, and column access (read/write). A
bank precharge charges and prepares the bank, while a row-
activation command (with the bank and row address) is used
to copy all data in the selected row into the row buffer, i.e.,
sense amplifier. The row buffer serves as a cache to reduce
the latency of subsequent accesses to that row. Once a row
is in the row buffer, then column commands (read/write) can
be issued to read/write data from/into the memory addresses
(columns) contained in the row. To prepare the bank for a
next row activation after completing the column accesses, the
cached row must be written back to the bank memory array
by the precharge command [13]. Also, the timing constraints
associated with bank precharge, row activation, and column
access are tRP, tRCD, and tCL, respectively [13], [25], [27].
Since the latency of a memory request depends on whether the
requested row is in the row buffer of a bank or not, a memory
request could be a row hit, row conflict, or row empty with
different latencies [28]. A row hit occurs when a request is
accessing a row currently in the row buffer and only a read or a
write command is needed. It has the lowest bank access latency
(tCL) as only a column access is required. A row conflict occurs
when the access is to a row different from the one currently



Fig. 2. High-level structure of a DRAM.

in the row buffer. The contents of the row buffer first need
to be written back into the memory array using the precharge
command. Afterward, the required row should be opened and
accessed using the activation and read/write commands. The
row conflict has the highest bank access latency (tRP + tRCD +
tCL). If the bank is closed (precharged) or there is no row in the
row buffer then a row empty occurs. An activation command
should be issued to open the row followed by read or write
command(s). The bank access latency in this case is tRCD +tCL.

C. Memory Access Scheduling

The memory controller lies between processors and the
DRAM to generate the required commands for each request
and to schedule them on the DRAM buses. The memory
controller consists of a request table, request buffers, and a
memory access scheduler. A request table is used to store the
state of each memory request, e.g., valid, address, read/write,
header pointer to the data buffer and any additional state
necessary for memory scheduling. The data of outstanding
requests are stored in read and write buffers. The read and
write buffers (request buffers) are implemented as linked lists.
Each memory request (read and write) allocates an entry in
its respective buffer until the request is completely serviced.
Among all pending memory requests, based on the state of the
DRAM banks and the timing constraints of the DRAM, the
memory scheduler decides which DRAM command should be
issued. The average memory access latency can be reduced
and the memory bandwidth utilization can be improved if
an efficient memory scheduler is employed [13], [25], [26].
Fig. 3 reveals how the memory access scheduling affects the
performance. As shown in the figure, the sequence of four
memory requests is considered. Requests 1 and 3 are row
empties, and requests 2 and 4 are row conflicts. Timing con-
straints of a DDR2-512 MB used as example throughout this
paper are 2-2-2 (tRP-tRCD-tCL) [27]. As depicted in Fig. 3(a), if
the controller schedules the memory requests in-order, it will
take 22 memory cycles to complete them. In Fig. 3(b), the
same four requests are scheduled out-of-order. As can be seen,
request 4 is scheduled before requests 2 and 3 to turn request
4 from a row conflict to a row hit. In addition, request 3 is
pipelined after request 1, called bank interleaving, since it has

the different bank address from the bank address of request 1.
As a result, only 14 memory cycles are needed to complete the
four requests. Thus, how the memory scheduler can improve
the memory performance has been shown by this example
where the memory utilization of the in-order scheduler and
the out-of-order are 4(data)/22(cycle) = 18% and 4/14 = 29%,
respectively. In this paper, we present an optimized memory
controller that is integrated into the proposed NI to improve
the memory utilization and reduce both memory and network
latencies. The idea and the implementation details of the
proposed architecture are described in Section VI.

III. Related Work

Due to the fact that most of the recently published studies
have focused on design and description of NoC architec-
tures, there has been relatively little attention to NI designs
particularly when supporting out-of-order mechanisms [24].
The authors in [11] presented ideas of T-ID renaming and
distributed soft arbitration in the context of distributed shared
memories. In such a system, because of using global syn-
chronization in the on-chip network, the performance might
be degraded and the cost of hardware overhead for the on-
chip network is too high. In addition, the implementation of
ID renaming and reorder buffer can suffer from low resource
utilization. This idea has been improved in [18] by moving
reorder buffer resources from the NI into network routers. In
spite of increasing the resource utilization, the delay of release
packets recalling data from distributed reordering buffers can
significantly degrade the performance when the size of the
network increases [18]. Moreover, the proposed architecture
is restricted to deterministic routing algorithms, and thus, it is
not a suitable method for adaptive routing. However, neither
[11] nor [18] has presented a micro-architecture of the NI.
An efficient on-chip NI supporting shared memory abstraction
and flexible network configuration is presented by Radulescu
et al. [12]. The proposed architecture has the advantage of
improving reuse of IP-cores, and offers ordering messages
via channel implementation. Nevertheless, the performance
is penalized because of increasing latency, and besides, the
packets are routed on the same path in the NoC, which forces



Fig. 3. Memory access scheduling of four memory requests with (a) in-order and (b) with out-of-order access scheduling.

routers to use deterministic routing. Yang et al. proposed
NISAR [10], a NI architecture using the AXI protocol capable
of packet reordering based on a look up table; NISAR has
been implemented under the assumption of fixed message size
and enjoys simple control logic and design. However, such
a mechanism would lead to an inefficient use of network
resources for applications that generate periodic variable-
size messages (burst mode). Moreover, NISAR suffers from
several disadvantages described as follows. First, it permits
only a limited number of T-IDs to send several packets to
the network so that some requests with different T-IDs are
prevented from being serviced for a long period. Second,
NISAR uses a statically partitioned reorder buffer suffering
from low resource utilization. Third, NISAR presented only
a hybrid interface where the master and slave IP-cores are
integrated into a single node; however, it imposes significant
hardware and delay overhead when the master and slave IP-
cores are not integrated into a single node.

In routers, the arbitration process is performed to choose one
of multiple input channels to access an output channel. The
arbiter could follow either a non-priority or a priority scheme.
In the non-priority method, when there are multiple input port
requests for the same available output port, the arbiter uses the
first-come-first-served [29], also called first-in-first-out (FIFO),
or Round-Robin (RR) [30] policy to grant access to an input
port. In this way, starvation on a particular port is avoided
(fair). On the other hand, in the priority method when there
are multiple input port requests for the same available output
port, the arbiter would grant access to the input port request
which has the highest priority level [31]. The problem with
the priority method is that starvation could occur (unfair). In
this paper, we introduce a fair PR to improve the network
performance with low hardware overhead.

Regarding the memory scheduler, several memory schedul-
ing mechanisms were presented to improve the memory uti-
lization and to reduce the memory latency. The key idea of
these mechanisms is in the scheduler for reordering memory
accesses. The memory access scheduler proposed in [13]
reorders memory accesses to achieve high bandwidth and low
average latency. In this scheme, called bank-first scheduling,

memory accesses to different banks are issued before those to
the same bank. Shao et al. [32] proposed the burst scheduling
mechanism based on the row-first (RF) scheduling scheme. In
this scheme, memory requests that might access the same row
within a bank are formed as a group to be issued sequentially,
i.e., as a burst. Increasing the row hit rate and maximizing
the memory data bus utilization are the major design goals of
burst scheduling. The core-aware memory scheduler reveals
that it is reasonable to schedule the requests by taking into
consideration the source of the requests because the requests
from the same source exhibit better locality [26]. In [25] the
authors introduced an synchronous dynamic random access
memory (SDRAM)-aware router to send one of the competing
packets toward an SDRAM using a priority-based arbitration.
An adaptive history-based memory scheduler which tracks
the access patterns of recently scheduled accesses and se-
lects memory accesses matching the pattern of requests is
proposed in [33] and [34]. As NoCs are strongly emerging
as a communication platform for chip-multiprocessors, the
major limitation of presented memory scheduling mechanisms
is that none of them did take the order of the memory requests
into consideration. As discussed earlier, requests with the
same T-ID from the same master must be completed (returned
back) in-order. While requests would be issued out-of-order in
memories (slave-sides), the average network latency might be
increased significantly due to the out-of-order mechanism in
master sides. Therefore, it is necessary to consider the order of
memory requests for making an optimal memory scheduling.

The major contribution of this paper is to propose an
adaptive NI architecture within a dynamic buffer allocation
mechanism for the reorder buffer to increase the utilization and
overall performance. That is, using dynamic buffer allocation
to get more free slots in the reorder buffer may lead more
messages to be entered to the network. On top of that, an
efficient memory scheduler mechanism based on the order of
requests is introduced and integrated in our NI to diminish
both the memory and network latencies. We also present a
novel router architecture for incorporating network resources
to help in serializing the packets while they progress toward
their destinations.



Fig. 4. Master-side NI architecture.

Fig. 5. Slave-side NI architecture.

IV. Proposed NI Architecture

Since IP-cores are classified into masters and slaves, the NI
is also divided into the master NI (Fig. 4) and slave NI (Fig. 5).
Both NIs are partitioned into two paths: forward and reverse.
The forward path transmits the AXI transactions received from
an IP-core to a router, and the reverse path receives the packets
from the router and converts them to AXI transactions. The
proposed NIs for both master and slave sides are described in
detail as follows.

A. Master-Side NI

As shown in Fig. 4, the forward path of the master NI
transferring requests to the network is composed of an AXI-
queue, a PU, and a RU, while the reverse path, receiving the
responses from the network, is composed by a packet-queue,
a DU, and the RU. The RU is a shared module between the
forward and reverse paths.

1) AXI-Queue: The AXI master transmits write address,
write data, or read address to the NI through channels. The
AXI-queue unit performs the arbitration between write and
read transaction channels and stores requests in either write
or read request buffer. The request messages are sent to the
PU if admitted by the RU, and on top of that a SN for each
request should be prepared by the RU after the admittance.

2) Packetizer: It converts incoming messages from the
AXI-queue unit into header and data flits, and delivers the
produced flits to the router. Since a message is composed of
several parts, the data is stored in the data buffer and the rest of
the message is loaded in corresponding registers of the header
builder unit. After the mapping unit converts the AXI address
into a network address by using an address decoder, based on
the request information loaded on related registers and the SN
provided by the reorder buffer, the header of the packet can be
assembled. Afterward, the flit controller wraps up the packet
for transmission.

3) Packet-Queue: This unit receives packets from the
router, and according to the decision of the RU a packet is
delivered to the DU or reorder buffer. In fact, when a new
packet arrives, the SN and T-ID of the packet are sent to the
RU. Based on the decision of the RU, if the packet is out-of-
order, it is transmitted to the reorder buffer, and otherwise it
is delivered to the DU directly.

4) Depacketizer: The main functionality of the DU is to
restore packets coming from either the packet-queue unit or
reorder buffer into the original data format of the AXI master
core.

5) Reorder Unit: It is the most influential part of the NI
including a status-table, a reorder-buffer, and a reorder-table.
In the forward path, preparing the SN for corresponding T-ID
and avoiding overflow of the reorder buffer (by an admittance
mechanism), are provided by this unit. On the other side, in
the reverse path, this unit determines where the outstanding
packets from the packet-queue should be transmitted (reorder
buffer or depacketizer), and when the packets in the reorder
buffer should be released to the DU.

6) Status-Table: The state of outstanding messages is kept
in a table named status-table. The status-table has n entries
where each entry corresponds to a T-ID and n is the number of
AXI T-IDs. Each entry contains the information of outstanding
messages associated with that T-ID and includes number of
outstanding messages (NM), expecting SN (ES), and LMS
fields. The NM field reveals how many messages of the given
T-ID are inside the network. This value is incremented when
a new message with the same T-ID enters the network, and is
decremented when the response message comes back to the
master core. The ES field points out the SN of the message
expected to be delivered to the master core. As the master core
expects to receive the first message first, the ES field is set to
0 at the initialization time and it is increased by receiving in-
order messages. As already mentioned, each message has a SN
indicating the order of the message within the T-ID. This value
is produced by the RU, if the message is admitted. Finally,
the LMS field defines the reserved buffer space for the last
message. The status-table might be updated in both forward
and reverse paths described as follows. Suppose that in the
forward path, the first message of a T-ID requests to enter
the network. The corresponding row of the T-ID is initiated
such that the NM, ES, and LMS fields are set to 1, 0, and the
message size, respectively, and the value of SN is initialized
to 0. However, as no ordering mechanism is required for a
single outstanding message of the given T-ID, no buffer space
needs to be reserved for this message [Procedure A, Fig. 6(a)].



Fig. 6. Status-table of the RU. (a) Procedure A (NM = 1). (b) Procedure B
(NM = 2). (c) Procedure C (NM = 1). (d) Procedure D (NM = 0).

For the second (or the rest of) admitted requests of the given
T-ID, the NM field is increased by +1, the ES field remains
unchanged, and the LMS field is set to the required buffer
size of the new message. Subsequently, the value of SN is
obtained by adding the values of NM and ES. Since more
than one message with the same T-ID is issued (NM ≥ 2),
the out-of-order handling mechanism is required. Therefore,
in order to prevent overflow of the reorder buffer, the buffer
space required by the new message is compared with the
available space of the reorder buffer. If there is enough space
for the new message (MsgSize), the required space is allocated
in the reorder buffer [Procedure B, Fig. 6(b)]. The RsrvSize
indicates the required space of all outstanding transactions in
the network. Indeed, this register reserves the number of buffer
slots required by outstanding messages of different T-IDs.

Procedure A:(sending first msg. of T−ID to network)
1 S−Table(T−ID)(NM) <= “0001”;
2 S−Table(T−ID)(ES) <= (others =>’0’);
3 S−Table(T−ID)(LMS) <= MsgSize;
4 SN <= (others =>’0’);
5 RsrvSize <= RsrvSize;

Procedure B:(sending other msgs. of T−ID to network)
1 S−Table(T−ID)(NM) <= S−Table(T−ID)(NM) + 1;
2 S−Table(T−ID)(ES) <= S−Table(T−ID)(ES);
3 S−Table(T−ID)(LMS) <= MsgSize;
4 SN <= S−Table(T−ID)(NM) +

S−Table(T−ID)(ES);
5 RsrvSize <= RsrvSize + MsgSize;

In the reverse path, the T-ID and SN of the arriving response
message are sent to the RU to find the related row in the status-
table. In the corresponding row of the T-ID, if the SN of the
incoming packet is equal to the value of ES, the packet is an
expected packet (in-order) and it should be delivered to the
DU. Thereafter, the received message size (RecvMsgSize) is
reduced from the RsrvSize, and the values of ES and NM are
added by +1 and −1, respectively [Procedure C, Fig. 6(c)].
However, if the SN of the packet is not equal to the value of
ES, the packet is out-of-order and should be delivered to the
reorder buffer. In case that the message is delivered to the DU
and the value of NM becomes 1, the reserved buffer space for
the last message (i.e., LMS) can be deallocated. If the value
of NM reaches 0, the transaction is terminated [Procedure D,
Fig. 6(d)].

Fig. 7. Dynamic buffer allocation.

Procedure C: (arriving expected packet)
1 S−Table(T−ID)(NM) <= S−Table(T−ID)(NM) − 1;
2 S−Table(T−ID)(ES) <= S−Table(T−ID)(ES) + 1;
3 S−Table(T−ID)(LMS) <= S−Table(T−ID)(LMS);
4 RsrvSize <= IF NM/=1 THEN RsrvSize –

RecvMsgSize; ELSE RsrvSize –
RecvMsgSize - LMS;

Procedure D: (arriving last packet)
1 S−Table(T−ID)(NM) <= S−Table(T−ID)(NM) − 1;
2 S−Table(T−ID)(ES) <= (others =>’0’);
3 S−Table(T−ID)(LMS) <= (others =>’0’);
4 RsrvSize <= RsrvSize;

7) Reorder-Table and Reorder-Buffer: As shown in Fig. 7,
each row of the reorder-table corresponds to an out-of-order
packet stored in the reorder-buffer. This table includes the valid
tag (v), the T-ID, the SN as well as the head pointer (P). In
the reorder-buffer, the flits of each packet are maintained by
a linked list structure providing high resource efficiency with
a little hardware overhead. On top of that, the goal of using
the shared reorder-buffer is to support variable packet sizes
and improve the buffer utilization which can also increase the
performance by feeding more packets into the network. Fig. 7
exhibits a pointer field adopted to indicate the next flit position
in the reorder-buffer. Using the proposed structure in Fig. 7,
each out-of-order packet updates the reorder-table and reorder-
buffer according to the Procedures E and F.
Procedure E: (updating Reorder-Table)
1 ReorderTable(FreeRow)(V) <= ‘1’;
2 ReorderTable(FreeRow)(T ID) <= HeaderFlit(T ID);
3 ReorderTable(FreeRow)(SN) <= HeaderFlit(SN);
4 ReorderTable(FreeRow)(P) <= Current−Free−Slot;

Procedure F: (updating Reorder-Buffer)
1 ReorderBuf(Current−Free−Slot)(V) <= ‘1’;
2 ReorderBuf(Current−Free−Slot)(Data) <= flit;
3 ReorderBuf(Current−Free−Slot)(P) <=Next−Free−Slot;
4 Current−Free−Slot <=Next−Free−Slot;

The first three operations in the Procedure E store the T-ID
and SN from the header flit of the out-of-order packet to the
available slot indicated by FreeRow in the reorder-table, and
the last operation in the Procedure E updates the pointer to
point to the available slot in the reorder-buffer. The Procedure
F is intended to store the incoming flits into the reorder-buffer.
While Current−Free−Slot shows the current free location in
the reorder-buffer to store the current flit, Next−Free−Slot
returns an available slot for the next flit. By repeating the



Fig. 8. Hybrid NI architecture.

operations in the Procedure F, all the payload flits are stored in
the reorder-buffer. The tail flit can be determined by extracting
header flit information. Whenever an in-order packet delivered
to the DU, depacketization checks the reorder-table for the
validity of any stored packet with the same T-ID and next SN.
If so, the stored packet(s) is (are) released from the RU to
the DU. If master cores, slave cores, and the network operate
at different frequencies, bi-synchronous FIFOs are deployed
between NIs and cores. Bi-synchronous FIFOs are widely used
in multi-clock systems to synchronize signals from different
clock/frequency domains. Each domain is synchronous to its
own clock signal but can be asynchronous with respect to
others in either clock frequency or phase [19]. The challenges
of designing bi-synchronous FIFOs include the enhancement
of reliability and reducing latency and power/area cost. We
identify the bi-synchronous FIFOs structure presented in [20]
can be used in the interfaces.

B. Slave-Side NI

A slave IP-core cannot operate independently. It receives
requests from master cores and responds to them. Hence, it is
not required to use reordering mechanism in the slave NI. To
avoid losing the order of header information (T-ID, SN, and so
on) carried by arriving requests, a FIFO has been considered.
After processing a request in the slave core, the response
packet should be created by the packetizer. As can be seen
from Fig. 5, to generate the response packet, after the header
content of the corresponding request is invoked from the FIFO,
and some parameters of the header (destination address, packet
size, and so on) are modified by the adapter, the response
packet can be formed. However, the components of slave-side
interface in both forward and reverse paths are similar to the
master-side interface components, except the RU.

C. Hybrid NI

The hybrid model is formed by combining the master-side
and slave-side NIs. As illustrated in Fig. 8, based on the type
of incoming packet (Req/Resp), the detector unit determines
the target unit (slave-side queue/master-side queue). Regarding
the MPSoC’s configuration, if each node is supposed to inte-
grate a dedicated processor and memory, instead of using two
NIs (master and slave), the hybrid model is more beneficial,
particularly in terms of area and power costs. This architecture
also prevents the local requests from entering the network such

Fig. 9. 4 × 4 NoC where master core 0 sends requests A, B, and C to
memories 6, 13, and 15, respectively.

that local requests can access the local memory directly. A
RR arbitration scheme is used between the local requests and
global requests coming from the network.

V. PR Architecture

A. Basic Idea of PR

In this part, we present a novel method for incorporating
network resources in serializing the packets while they traverse
inside the network. Fig. 9 shows a 4×4 tile architecture where
the master core 0 accesses three memory modules 6, 13, and
15. Assume that the master core generates three requests, A,
B, and C, with a same T-ID and sends request A to memory
15, request B to memory 13, and request C to memory 6.
Due to the in-order requirement of the AXI protocol, response
A needs to be delivered to the master core first and then
responses B and C, respectively. For simplicity, we assume
that the memory modules return responses with zero latency
and we also assume that a RR arbiter is used in each router
such that on average three cycles are needed for a packet to
win arbitration in a router. As shown in Fig. 10(a), the master
NI sends requests A, B, and C at time 0 to the network.
According to the proposed NI architecture, buffer space should
be reserved for requests B and C. By considering three cycles
waiting time at each router, requests C and B access the
memory modules 6 and 13, respectively, at cycles 9 and 12. At
cycle 18, request A accesses the memory 15 and meanwhile
the response C reaches the master NI. Response C cannot be
served by the master core before responses A and B, so it
has to be stored in the reorder buffer. At cycle 24, response B
is received by the master NI and stored in the reorder buffer
as it cannot be served earlier than response A. Response A is
received by the master NI at time 36 and it can be sent directly
to the master core. Finally, the stored responses B and C are
released from the reorder buffer and delivered to the master
core at cycles 37 and 38, respectively. However, when response
B is delivered to the master core, the allocated buffer space for
both requests B and C is released. The idea behind our method
is to give better chance to the long-distance packets with low
ordering values to win arbitration in routers. By this approach,
in the same example as Fig. 10(a), the number of waiting times
of request A in arbitration phases is probably less than that
of requests B and C (similarly, the number of waiting cycles



Fig. 10. Comparing (a) RR and (b) priority-based arbitration schemes in serializing the packets.

Fig. 11. Router architecture.

of request B is probably less than request C). The possibility
of benefits from the idea of PR can be found in the case of
Fig. 10(b) in which the requests experience different waiting
periods at routers and they are supposed to be 1.5, 3, and
6 cycles for requests A, B, and C, respectively [these values
are chosen such that the results could be compared with the
example shown in Fig. 10(a)].

As illustrated in Fig. 10(b), requests A and B access their
memories at cycles 9 and 12, respectively. At cycle 18, request
C accesses the memory while response A is received by the
master NI. Since response A arrived in-order, it can be served
immediately and delivered to the master core. At cycle 24,
response B can also be directly sent to the master core. Upon
arrival of this response not only the required space for request
B is released but also the reserved buffer space for request
C is released. Finally, the response C reaches the master NI
at cycle 36 and it is delivered to the master core directly.
According to the examples in Fig. 10(a) and (b), latencies
can be considerably reduced by applying the idea of PR,

Fig. 12. Pseudo VHDL code of the PR.

i.e., in Fig. 10(b), responses A, B, and C are delivered to
the master core at cycles 18, 24, and 36 which are earlier
than in Fig. 10(a), where responses are served at cycles 36–
38, respectively. This reduction is mainly from the fact that
responses arrive at the master NI in-order, and thus can be
served immediately. Another advantage of using PR is that
the corresponding reserved buffer space in the reorder buffer
can be released sooner as the responses are mainly reaching
the master NI in-order, i.e., in Fig. 10(b), the reserved buffer
space for requests B and C are released at cycle 24 while in
Fig. 10(a) they are freed at cycle 37. The idea of PR can further
improve the performance by allowing more pending requests
to enter the network, thereby reducing the overall latencies of
packets.

B. Proposed PR

The architecture of the PR, depicted in Fig. 11, has a typical
state-of-the-art structure including input buffers, a virtual
channel (VC) allocator, a routing unit, a switch allocator, and
a crossbar. Each router has five input/output ports, and each
input port of the router has two VCs. Packets of different



Fig. 13. Proposed memory controller integrated in the slave-side NI.

message types (request and response) are assigned to corre-
sponding VCs to avoid message dependency deadlock [21].
The arbitration scheme of the switch allocator in the typical
router (TR) structure is RR. The RR scheme is a fair policy
when all packets have the same priority, otherwise priority-
based methods are more beneficial. As already mentioned,
each packet is assigned a SN and packets might be returned
back out-of-order due to the different path length and different
memory response time. The PR assigns a priority to each
packet such that long-distance packets with low SNs have
better chance to win the arbitration in routers. Accordingly,
the packet priority is computed by summing up two values.
The first one is the distance the packet must traverse between
the master and slave while the second one is obtained by
subtracting the MaxSeqNum value (the maximum SN value
that can be generated by the NI) from the PacketSeqNum value
(packet SN). The result is stored in the packet’s header and
used by router arbiters. By using the PR, packets can proceed
inside the network with different speeds according to their
priority values. Fig. 12 shows the algorithm in which the pro-
cess, Find−MaxPriority, is activated when the output channel
is available and there are multiple messages. It examines all
messages and the priority value of the corresponding input
packets and grants a message with the highest priority value. In
order to prevent starvation, each time after finding the highest
value, the priorities of defeated packets are incremented.

VI. Order Sensitive Memory Scheduler

The architecture of the proposed memory controller, dubbed
OS from order sensitive, is depicted in Fig. 13. As illustrated
in the figure, the proposed memory controller is integrated in
the slave-side NI. After arriving at the NI on the edge of the
network, requests are stored in the respective queues based on
their target banks. The data associated with write requests is
stored in the write queue. The queues are implemented as the
linked list structure which has been described in Section IV.
Depending on the SN, received requests in each bank queue
obtain a priority value to access the memory. Here we have
the same scenario as in the PR. The priority value of each

packet is based on the SN, which helps to deliver the packets
to the master NI in-order such that the corresponding reserved
buffer space in the reorder buffer can be released sooner.
Once a new request enters a queue, the process input−queue,
shown in Fig. 14, updates the priority value of each request
in the queue. The packet’s SN of received request is assigned
as a priority value for this request. In addition, to prevent
starvation, the priority values of existing requests in the queue
are incremented at every input−queue event. As mentioned
earlier, each bank arbiter selects a request from the queue with
the highest priority value based on the bank timing constraints
as the first level of scheduling procedure. Since the RF policy
has better memory utilization in comparison with the other
bank arbitration policies, the bank arbiters of the presented
memory controller also takes advantage of the RF policy. The
bank arbitration policy in our memory controller is shown in
Fig. 14. Whenever the arbiter process is activated, it tries to
find a request which is a row hit and has a higher priority value.
If there are not any row hits, the bank arbiter selects the highest
priority request which is a row conflict from the queue and
issues the DRAM commands to service the selected request.
Fig. 15 depicts the circuit of finding the suitable request in
the request buffer which is described in the arbiter process
of Fig. 14. In the second level of the scheduling procedure,
at each memory cycle the memory scheduler decides which
request from all bank arbiters should be issued. To simplify the
hardware implementation and provide the bank interleaving,
RR mechanism is utilized by the memory scheduler.

VII. Experimental Results

In this section, we evaluate the proposed on-chip network
architecture in terms of average network latency, memory
latency, and memory utilization compared with the baseline
architecture under different traffic patterns. Also, we
discuss the area and power consumption of the proposed
NoC components: NI, PR, and OS memory scheduler.
Consequently, a 2-D NoC simulator is implemented with
VHSIC hardware description language (VHDL) to model all
major components of the NoC.



Fig. 14. Pseudo VHDL code of the arbiter in the memory controller.

A. System Configuration

In this paper, we use a 25-node (5 × 5) 2-D mesh on-chip
network with two different configurations for the entire archi-
tecture. In the first configuration (A), illustrated in Fig. 16,
out of 25 nodes, 10 nodes are assumed to be processors
(master cores, connected by master NIs) and remaining 15
nodes are memories (slave cores, connected by slave NIs). For
the second configuration (B), each node is considered to have a
processor and a memory (master and slave cores, connected by
a hybrid NI). The processors are 32b-AXI and the memories
specified in Section II, are DDR2-256 MB (tRP-tRCD-tCL = 2-
2-2, 32b, 4 banks) [27]. We assume that the memories are
integrated on a separate die which is stacked on top of the
processor layer [35]–[37]. Inasmuch as the memories are now
stacked on top of the processors layer, the front-side bus and
memory controller operate at the same speed as the processors.
The timing of each stacked DRAM module is still the same
as in a traditional DRAM memory (tCAS, tRAS, and so on, are
unchanged) [35]–[37]. We adopt a commercial memory con-
troller with memory interface, DDR2SPA module from Gaisler
IP-cores [38]. Along with the proposed OS memory scheduler,
another memory scheduler with RF policy is also implemented
as the default scheduler for the memory controller. The
network of each configuration that has been considered for
experimental results is formed either by TR or by PRs.

Fig. 15. Request selector circuit.

Fig. 16. Layout of the system configuration A.

The array size, routing algorithm, link width, number of
VCs, buffer depth of each VC, and traffic type are the other
parameters which must be specified for the simulator. The
routers adopt the XY routing algorithm [22], [23] and utilize
wormhole switching. For all routers, the data width (flit size)
is set to 32 bits, and the buffer depth of each VC to five flits.
Message structures for the AXI protocol are defined in [12]
and [28]. For the request, the command and all its control bits
(flags) are included in the first flit of the packet, the memory
address is set in the second flit, and the write data (in the
case of a write command) is appended at the end. For the
response message, the control bits are included in the first flit
while the read data is appended at the end if the response
relates to a read request. Hence, the packet length for write
responses and read requests are 1 flit and 2 flits, respectively,
while the packet length for data messages, representative of
read responses and write requests, is variable and depends on
the write request/read response length (burst size) produced by
a master/slave core. As a performance metric, we use latency
defined as the number of cycles between the initiation of a
request operation issued by a master (processor) and the time
when the response is completely delivered to the master from
the slave (memory). The request rate is defined as the ratio of



Fig. 17. Performance evaluation of both configurations under (a) uniform and (b) non-uniform traffic models.

the successful read/write request injections into the NI over the
total number of injection attempts. All the cores and routers
are assumed to operate at 1 GHz, and for fair comparison, we
keep the bisection bandwidth constant in all configurations.
All memories (slave cores) can be accessed simultaneously
by each master core continuously generating memory requests.
Furthermore, the size of each queue (and FIFO) in the network
is set to 8×32 bits and the size of the reorder buffer is set to
48 words. If the maximum burst size is set to 8, the baseline
architecture utilizing a statically partitioned reorder buffer [10]
can support at most six outstanding read requests in a 48-word
reorder buffer (regardless of the exact size of the requests),
while the proposed approach is able to embed as many requests
as can be reserved in the reorder buffer, i.e., at most 48 and
at least six outstanding read requests.

B. Performance Evaluation

To evaluate the performance of the proposed schemes, uni-
form and non-uniform/localized synthetic traffic patterns are
considered separately for both configurations (A and B). These
workloads provide insight into the strengths and weaknesses of
the different buffer management mechanisms in the intercon-
nection networks, and we expect applications to stand between
these two synthetic traffic patterns [39]–[41]. The random
traffic represents the most generic case, where each processor
sends in-order read/write requests to memories with a uniform
probability. Hence, the target memory and request type (read
or write) are selected randomly. Eight burst sizes, from 1 to
8, are stochastically chosen according to the data length of
the request. In the non-uniform mode, 70% of the traffic is
local requests, where the destination memory is one hop away
from the master core, and the remaining 30% of the traffic is
uniformly distributed to the non-local memory modules. We
also consider the hotspot traffic pattern where four memory
nodes are chosen as hotspots receiving an extra portion of the
traffic (10%) in addition to the regular uniform traffic [22],
[23]. For the uniform and hotspot traffic profiles, we obtained
very similar performance gains in each configuration, though
they are not presented due to the lack of space.

Fig. 17(a) and (b) shows the simulation results under the
uniform and non-uniform traffic models, respectively. In each
configuration, the on-chip network utilizing the proposed NI,
denoted by MS (master/slave NI) and H (hybrid NI), is
compared with the network equipped with the baseline NI.

Fig. 18. Effect of reorder buffer size on the performance under the uniform
traffic model.

As demonstrated in both figures, compared with the baseline
architecture, the NoC using the proposed NI reduces the
average latency when the request rate increases under the
uniform and non-uniform traffic models. The foremost reason
for such an improvement is due to employing the shared
reorder buffer in the NI which allows more messages to enter
the network, i.e., this leads more requests to be released from
the injection queue.

We also vary the reorder buffer size to show how relative
reorder buffer size affects the performance. Fig. 18 illustrates
the average network latency of both configurations near the
saturation point (0.6) under the uniform traffic profile. It
reveals that as the reorder buffer size increases, the average
network latency reduces. Given the same reorder buffer size,
the proposed NI achieves better performance gain, e.g., when
the reorder buffer size is 48, the performance gain for the
configuration A and B is up to 16% and 21%, respectively. The
proposed scheme not only achieves significant performance
gains but also enables reducing the area overhead of reorder
buffer by more than 60%. For instance, the proposed scheme
in the configuration A with a reorder buffer size of 32 offers
a better performance than a reorder buffer size of 80 in the
baseline method.

Regarding the configuration B, using the master-side and
slave-side NIs instead of the hybrid NI when each node is
composed of a dedicated processor and memory gives a better
performance, but as discussed in the next section it is not a
cost-efficient approach. The hybrid structure deteriorates the
performance because the buffer resources are shared. However,



Fig. 19. Performance impact of using the PR under the (a) uniform and (b) non-uniform traffic models.

Fig. 20. Performance impact of using the OS memory controller under the (a) uniform and (b) non-uniform traffic models.

the performance given by the hybrid structure close to the
saturation point is around 34% and 18% less than the other
structure under the uniform and non-uniform traffic models,
respectively. The performance penalty under the non-uniform
traffic model is not significant compared to the uniform traffic
model because the hybrid NI allows the local requests to
access the local memory directly. Fig. 19(a) and (b) depicts
the performance gain of the presented PR architecture under
uniform and non-uniform traffic models, respectively. In each
configuration the network formed by the PRs reduces the
average latency compared to the network formed by TRs.
The performance gain near the saturation point (0.6) under
the uniform traffic model for configuration A and B is about
15% and 13%, respectively, while the hardware overhead of
this router is less than 2% in comparison with the TR. This
reveals that giving priority to packets according to their SN and
remaining distance helps to deliver the packets to the master NI
in-order. Therefore, the corresponding reserved buffer space in
the reorder buffer can be released sooner and master cores can
receive responses earlier than using the TRs.

To explore the impact of the proposed OS memory sched-
uler, we compare the network equipped with the OS scheduler
with the one using the default scheduler (RF) where both
networks are formed by the TRs. Fig. 20(a) and (b) presents
the performance comparison between the two networks for
each configuration under the uniform and non-uniform traffic
models. Compared with the RF scheme, the network utilizing
the OS scheduler gives significant improvements in average
network latency. The performance gain of the OS scheduler

close to the saturation rate under the uniform traffic model for
configuration A and B is up to 17% and 16%, respectively. The
average memory utilization and average memory latency are
also computed near the saturation rate under the uniform traffic
profile for the configuration A. According to our observation,
at least half of the request buffers of each memory controller
are occupied under the uniform traffic model with the given
injection rate, which keeps the memory controller busy all
the time. As a result, compared with the RF scheme, the
average utilization of memories is improved by 22% while
the average memory latency is reduced by 19%. Compared
with RF, the hardware overhead of the OS scheme is negligible
since both of them have similar request and data queues, buffer
management, and bank interleaving arbiter. In addition, near
the saturation rate under the uniform traffic profile for the
configuration A the average and maximum buffer occupancy
of reorder buffers is around 70% and above 90%, respectively.
The average and maximum outstanding messages in the system
is around 160 and 230, respectively.

C. Hardware Overhead

For appraising the area overhead of the proposed architec-
tures, each scheme is synthesized by Synopsys D.C. using the
UMC 90 nm technology with an operating point of 1 GHz and
supply voltage 1 V. We perform place-and-route, using Ca-
dence Encounter, to have precise power and area estimations.
The power dissipation of each scheme, including both dynamic
and leakage power, is also calculated near the saturation point
(0.6) under the uniform traffic model using Synopsys Prime-



TABLE I

Hardware Implementation Details

Components Area (mm2) Power (mW)
Slave-side 0.0428 17
Master-side 0.0755 26
Hybrid 0.1014 37
Memory controller (OS) 0.0807 31
Memory controller (RF) 0.0798 27
TR 0.1853 65
PR 0.1881 68

Power. In addition to the aforementioned configuration of the
NI, the T-ID and SN are set to 4-bit and 3-bit, respectively.
The layout areas and power consumptions of the master-side,
slave-side, hybrid interfaces, different memory controller, and
routers are listed in Table I. As can be seen from the table,
using the hybrid architecture for the latter configuration (B)
is more beneficial (in terms of power and area) than using
the master-side and slave-side models when each node is
composed of a dedicated processor and memory. That is, using
a hybrid NI model reduces 14.3% and 13.8% in hardware area
and power dissipation, respectively. Because all queues (and
FIFOs) are equal in size, they do not affect the comparison. On
the other hand, the master-side and slave-side NI architectures
are more cost efficient if each node consists of a dedicated
processor or memory as in the former configuration (A). Also,
comparing the area cost of the baseline model to each proposed
NI indicates that the hardware overheads of implementing the
proposed NI schemes are less than 0.5%. Furthermore, for
the slave-side interface within the memory controller, since
each of the memories utilized in this paper has four banks,
four bank queues have been implemented in the memory
controller.

VIII. Conclusion

Accessing several memory modules in parallel to augment
the memory bandwidth, may lead to deadlock caused by the
in-order requirement [11]. The deadlock can be solved if a
reordering mechanism is exploited by the NI. The resource
utilization of the conventional reordering methods is not
efficient enough. Therefore, in this paper, we presented a high
performance NI with a novel dynamic buffer allocation and
a PR model to improve the resource utilization, and overall
on-chip network performance. In addition to the resource
utilization of the NI and on-chip network, the utilization of
memories considerably affects the network latency. Therefore,
we have developed an optimized scheduling method for the
DRAM memories and integrated it in the NI such that the
network and memory latencies were reduced significantly
in comparison with the baseline architecture. The micro-
architectures of the proposed NIs which are compatible with
the AMBA AXI protocol have been presented. A cycle-
accurate simulator was used to evaluate the efficiency of the
proposed architecture. Under both uniform and non-uniform
traffic models, in high traffic load, the proposed NI architecture
has lower average delay in comparison with the baseline
architecture.
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