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Abstract—A promising approach for leveraging the flexibility
and mitigating the complexity of future telecom systems is the use
of machine learning (ML) models that can analyze the network
performance, as well as taking proactive actions. A key enabler
for ML models is timely access to reliable data, in terms of
features, which require pervasive measurement points throughout
the network. However, excessive monitoring is associated with
network overhead. Considering domain knowledge may provide
clues to find a balance between overhead reduction and meeting
requirements on future ML use cases by monitoring just enough
features. In this work, we propose a method of unsupervised
feature selection that provides a structured approach in incorpo-
ration of the domain knowledge in terms of policies. Policies are
provided to the method in form of must-have features defined
as the features that need to be monitored at all times. We name
such family of unsupervised feature selection the policy-induced
unsupervised feature selection as the policies inform selection of
the latent features. We evaluate the performance of the method
on two rich sets of data traces collected from a data center and
a 5G-mmWave testbed. Our empirical evaluations point at the
effectiveness of the solution.

I. INTRODUCTION

Telecommunication operators deliver services under strict
service-level agreements. It is well-known that operations and
management of such systems are challenging and demanding.
A promising approach that is receiving extensive attention
in academia and industry is the use of methods and models,
trained using machine learning (ML), that can predict and
analyze the network performance, as well as taking reactive
and proactive re-configuration actions [1], [2]. The ability to
learn such models simplifies and improves a vast number of
management and operational tasks in a telecom infrastructure
ranging from spectrum management and beamforming, resource
and slice orchestration, service assurance, energy efficiency
optimization, and root-cause analysis. Real-time requirements
on the models will guide where they will be positioned, and
hence executed, as illustrated by the network sketch in Figure 1.

A key enabler for machine learning models is timely access
to reliable data both for model training and real-time inference,
thus requiring pervasive measurement points throughout the
network; for example in the remote-radio heads, the basebands,
the core network, and central data centers, as exemplified
by Figure 1. Furthermore, there is a clear research trend
in addressing the need for data. For example, data centers
are equipped with far more measurement points than ever
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Fig. 1. Schematic view of an edge telecom network, including measurement
points and AI/ML functions for operations and management. The contribution
of the paper, the policy-induced feature selector, is colored in blue.

before [3] in an attempt to enable more effective, efficient, and
environmentally friendly operations. Unfortunately, excessive
data collection for fulfilling the needs of an increasing number
of ML functions and transfer of data from a measurement point
to its consumer come with overhead cost. Processing of many
features, which may contain redundant features, increases the
complexity of ML models. The added complexity increases the
need for extra compute resources which can adversely affect
the network and performance of its services [4]. Furthermore,
the process of training machine learning models may also
be negatively affected by an excessive amount of metrics
(or features), leading to a reduced model performance as
well as increased model complexity imposing challenging
requirements on data availability and compute power on nodes
in the infrastructure that may not have such capabilities.
Statistical feature selection learning methods have been
extensively studied in the literature for supervised and un-
supervised problems which can potentially mitigate some of
the aforementioned challenges [5]. However, for the purpose of
overhead reduction, supervised feature selection (SFS) may not
be suitable. This is due to the fact that the selected features are
specific to the task underlying the use case, and they may not
generalize well to other use cases - effectively implying that
it will be necessary to continuously measure all features. The
goal of feature selection for overhead reduction shall be defined
as selecting features that can support existing use cases and
future use cases, for example by re-configuring measurement
points. In this regard, unsupervised feature selection (UFS)
is well positioned as the lack of an explicit task can help
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selection of the features that are potentially generalizable
for a wide range of use cases. Success of a UFS method
in selecting generalizable features depends on the choice of
the objective function based upon which the method has been
constructed. Defining an objective function for the UFS which
could lead to selection of generalizable features remain an open
research problem. However, we argue here that the effective
inclusion of domain knowledge in UFS can help reduce the
difficulty of the problem. Domain knowledge can be seen in
the form of policies that guide the learning towards selection
of generalizable features. The policies can be reflective of
our domain knowledge in managing a network, where the
domain knowledge may be provided by domain experts or
acquired from previous supervised ML experiences. Policies
can alternatively be reflective of certain regulations. In any
case, the assumption here is that these policies are either useful
for the support of the existing use cases or potentially useful
for the support of future use cases.

In light of this, we introduce the family of policy-induced
unsupervised feature selection (policy-induced UFS) where
polices inform selection of the latent features. Specifically,
we propose a method of policy-induced UFS named policy-
induced Concrete autoencoder (PI-CAE) which is based on
the standard Concrete autoencoders [6]. PI-CAE takes a set
of policies dictating the features that must be monitored in
the infrastructure, named must-have features. It then selects
the latent features that are complementary to the policies -
the complementary features are the ones that do not carry
redundant information and together with the policies enable
solving various ML use cases. The method objective is to
ensure that the set of selected features supports existing and
potentially future use cases while allowing inclusion of domain-
specific features deemed relevant. The selected features are then
communicated for configuration of the multiple measurement
points across the infrastructure as indicated by Figure 1.

The main contributions of this paper are: (1) introducing
the family of policy-induced UFS and a method in this family
named policy-induced Concrete autoencoder (PI-CAE), and
(2) an extensive evaluation of the method properties and
performance using two rich set of data traces collected from
a central data center environment and a 5G-mmWave testbed
environment, representing two important parts of the telecom
network as sketched in Figure 1.

The rest of the paper is organized as follows. Section II
formally describes the problem formulation. Section III pro-
vides a brief background on Concrete autoencoders which is
the basis of our method. Section IV describes the proposed
method. Section V describes the experiments and corresponding
results. Section VII covers related work on feature selection
in networking. The paper ends with discussion in Section VI
and conclusions in Section VIIIL.

II. PROBLEM FORMULATION

The problem of feature selection has been studied in the
context of supervised and, more recently, unsupervised feature
selection (UFS). In supervised feature selection (SFS), the
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Fig. 2. A conceptual figure describing unsupervised feature selection given
policies. Given a must-have feature as the policy, the goal is to select a second
important feature that best complements the must-have feature. (A) Input
features and their descriptions. The green color-coded feature corresponds to
the must-have feature that must be monitored. For the remaining features, there
is no prior knowledge about their importance. (B) Individual importance of the
features without taking into account interactions among them. (C) Ranking of
the solutions considering the interactions of the features into account. (D) The
desired solution. The solution contains the purple color-coded feature which
complements the must-have feature.

objective is fairly clear and that is to find an optimal set
of features which are most useful for solving the supervised
learning task underlying a use use. In contrast, in UFS, there
is no explicit task. UFS can be seen as the feature selection
problem where the task has been marginalized out (averaged
out). That being said, selected features by a UFS method will
be used for solving various real-world problems, including
supervised learning problems.

The lack of an explicit task in UFS makes the problem
challenging. Incorporation of domain knowledge can help
reduce the difficulty of the problem. Domain knowledge in this
context is in the form of policies that specify the features that
must be monitored, named must-have features. The must-have
features are specified, for example, by a domain expert or from
previous supervised ML experiences.

In practice, our domain knowledge may be limited. We may
know of individual features that are important and should be
monitored. However, we may not know which combination
of the features are complementary to each other - as this is
the interactions between a subset of features that often prove
useful for solving real-world problems, such as in network
management. Furthermore, primarily relying on domain experts
might lead to a biased selection of the features.

An ideal feature selection method should be able to use
the provided policies by domain experts as “cues” in order
to discard the latent features that carry similar information
as the must-have features, and infer latent features that are
complementary to them. Refer to Figure 2 for an illustrative
conceptual example.

Problem statement: Let D of cardinality D denote
a set that includes all features, and let x € RP be a D-
dimensional vector of the measured features on the real
continuous space R, shown as x = (x4 :d € D)7 where x4
is the input measurement corresponding to the feature d. We
have collected N such measurements in a D x N-dimensional
matrix Xp = (x!,...,x"), where x",Vn € {1,..., N}, is a
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D-dimensional observation vector at the n-th time instance.
Let M C D of cardinality M < D be the observed set of

features corresponding to the policies. The set M includes

all must-have features. The goal is to find a latent set K of

features of cardinality K where X C D and KN M = ().
There are two ways to approach this problem:

(i) unsupervised feature selection given policies where the
policies M do not play a role in selection of the latent
features K, and

(ii) policy-induced unsupervised feature selection where poli-
cies M guide selection of the latent features K.

The former may be seen as the standard approach and the
latter is the proposed approach of policy-induced unsupervised
feature selection for which we develop a method named
policy-induced Concrete autoencoders. Accordingly, in the
experiments, we directly compare the above two approaches
where the primary goal is to show the importance of effective
incorporation of domain knowledge in the learning.

III. BACKGROUND: CONCRETE AUTOENCODERS

Recently, authors in [6] proposed a method of UFS, referred
to as the Concrete autoencoder, which resembles to that of
a standard autoencoder [7]. While in autoencoders, the goal
is representation learning from input features, in the Concrete
autoencoder, the goal is feature selection. Instead of the encoder,
the Concrete autoencoder uses a Concrete selector layer which
selects a stochastic linear combination of the input features
as opposed to encoding the input features as in the encoder
unit of the autoencoder. Furthermore, just as in autoencoders,
the Concrete autoencoder has a decoder which takes as the
input the filtered version of the input features and outputs a
reconstructed version of the input features.

The objectives of UFS using Concrete autoencoders are
finding a latent feature set /C and a reconstruction function
fo : RE — RP with the parameter set ¢, that minimize a loss
¢ defined as

t=£(Xp, fo(Xx)) M

where X is the filtered version of the input features Xp, and
£ is a reconstruction loss that measures dissimilarities between
Xp and its reconstructed version fp(Xx).

In the following, we briefly describe the functionality of the
Concrete selector layer, as this will serve as a basis for our
proposed solution. Refer to [6] for additional details on the
Concrete autoencoders.

Concrete selector layer: The selector layer makes an
explicit use of the Concrete latent variables [8]. Seen as a
module, it takes as its inputs the features Xp and a user-
specified number of latent features K. It then outputs a filtered
version of the input features Xy, where IC C D.

Let Z = (zl, ... ,zK) be a D x K-matrix of Concrete
latent variables where z* = (z% : d € D) denotes the k-th
latent variable vector and z% denotes its d-th element. A
Concrete latent variable z follows a Concrete distribution with

a location vector & = (ag : d € D) T, Vay € R+, and a scalar
temperature 7 € R, that is z ~ Concrete(a, 7),

D —7—1
D—1 Qg7
p(z;7, ) = (D — 1)t H <DdT> - @
421 \ 2= Oty
Use of the Concrete latent variables crucially allows for
differentiation with respect to o via the reparametrization trick
[8]. Accordingly, the Concrete selector layer is constructed as:

~ dist
X = Z zaXd, 4 = ¢a(a,T), (3)
deD
dis e .
where =" denotes the equality in distribution, z, is the d-th

element of a sample vector from the stochastic representation
of the Concrete distribution given by:

ulc, 7) = exp (log g + &a /1) ,

Ywepexp ((logaa +&a) /T)
and ¢ is an i.i.d. sample vector from a standard Gumbel
distribution, that is £ ~ Gumbel(0, 1).

For temperature values greater than zero, the expression in
Equation (3) is a stochastically weighted linear combination
of the input features x = (x4 :d € D)T. However, as the
temperature approaches zero, the selector layer essentially
outputs only one of the input features,

Zd**}l,
T—=+0=
zqgr — 0, vd' 7& d*,

“4)

=X~ Xd* s
vd',d*e D,
where d* is the index of the selected feature. This is known as
the zero-temperature property of the Concrete random variables
[8].

The selector layer is applied K times. The indices of the se-
lected features are stored in K. Accordingly, the filtered version
of the input features is a K x N-dimensional matrix which is
shown as Xy = (x!,...,x") where x" = (x} : k € K) .

IV. POLICY-INDUCED UNSUPERVISED FEATURE SELECTION

Returning to our problem formulation in Section II, given the
set of observed policies M C D, the objective is to infer the
latent feature set /JC C D from the input features Xp such that
the policies guide selection of latent features. For this purpose,
we introduce an adaptation of the Concrete autoencoder, named
policy-induced Concrete autoencoder (P1-CAE).

The policy-induced Concrete autoencoder consists of a
selector layer named, policy-induced Concrete selector , and a
decoder. The policy-induced Concrete selector is an adaptation
of the Concrete selector layer described in Section III. We
describe this unit in details in Section IV-A. Seen as a module,
it takes as its inputs the set of observed policies M, the input
features Xp, and a user-specified number of latent features
K. It then outputs a filtered version of the input features
Xcum where K C D and K N M = . Figure 3-(A) illustrates
a high-level block-diagram representation of PI-CAE and the
functionality of the policy-induced Concrete selector layer.

The decoder plays the role of a reconstruction function,
fo : REFM 5 RP which takes as its input the filtered version
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(A

Xp—
Policy-induced
K Concrete selector layer
M
(B)
Fig. 3. (A) Block diagram representation of the policy-induced Concrete

autoencoder; (B) Probabilistic graphical representation of the policy-induced
Concrete selector layer. Plates indicate replications, observations x™ are shown
with a shaded circle, and latent variables (z*, 0™) are shown with open squares.
The hyper-parameters (a®, 3™, 7) are shown with black circles.

of the input features Xy a¢ and produces a reconstructed
version of the inputs. The decoder functionality and implemen-
tation are identical to the one in autoencoders.

In order to guide the selection of the latent features by the
policies, we introduce a loss that discourages selection of the
latent features with similar underlying distribution to the must-
have features, by introduction of a regularization term to the
reconstruction loss. The modified loss ¢ is formally defined in
Section IV-B.

A. Policy-induced Concrete Selector Layer

Following a similar construction as the Concrete selector
layer, let Z = (zl,...,zK) be a D x K-matrix of Con-
crete latent variables. Additionally, let O = (01, .. .,oM)
be a D x M-matrix of Concrete variables corresponding to
the must-have policies, where 0™ = (0%, ...,0%) " denotes
the m-th feature vector and o]’ denotes its d-th element.
The Concrete variable o™ follows a Concrete distribution
0™ ~ Concrete(3™, 7) with the temperature parameter 7 and
a location vector 3" defined as

m 1, Vd=m,

d 0, Vd#m. )

The Concrete variables, o, share the same temperature as in
z. In other words, all Concrete latent variables are tied to the
same temperature 7.

We now construct the policy-induced Concrete selector layer
as:

dist

Xt = Ydep ZiXd, Za = da(al,T),
- dist

Zde'D OZXd7 Og = (bd(/@i?T)a

where ¢(-,-) is given by Equation (4).

The filtered version of the input features is a (K +M)x N-
dimensional matrix which is shown as Xxyua := X where
X=(x,. . ,x¥)andx" = (X" :ic KUM)".

Figure 3-(B) illustrates the main components of the policy-
induced Concrete selector and their relations using a proba-
bilistic graphical representation.

1€,
1€ M,

(6)

B. Loss Computation

The lack of an explicit task in unsupervised feature selection

foXxum) makes defining the loss function challenging - more so than in

supervised feature selection. One may consider the objective of
the unsupervised feature selection as finding the optimal feature
set that includes most interesting patterns in data as in [9].
Alternatively, one can take a coding-like approach and define
the objective as finding the feature set that best approximates
the data [6]. Last but not least, one can consider information
theoretic approaches in defining the objective [10].

Each approach has its own strengths and weaknesses, and
it ultimately depends on the application domain. In this
work, without loss in generality, we adopt a coding-based
loss similar to the one employed in autoencoders [7] and
standard Concrete autoencoders [6]. However, we introduce
an adaptation of this loss which includes a regularization term
that discourages selection of the latent features with similar
underlying distributions to the must-have features.

Accordingly, our choice of loss function in a general form
is expressed as:

l= Srec (XDa .fG(X)CUM)) + Sreg(zv O),

where, as introduced in Section IV-A, Z is the matrix of
Concrete variables responsible for the selection of the latent
feature set IC, and O is the Concrete variable responsible
for generation of the must-have features M. The first term,
Lrec, 18 the reconstruction loss which measures how well
the input features are being reconstructed for the selected
subset of features. The second term, £,¢g, is a regularization
loss which penalizes selection of the features with similar
underlying distributions to those of the must-have features. The
regularization loss is a non-positive quantity, that is £,z < 0.
1) Reconstruction loss: Assuming a zero-mean Gaussian
noise with the same variance o2 across all features and all
measurements, the reconstruction loss is proportional to:

(7a)

1 Y _
lree (Xp, fo(Xxum)) = 55 Y IIxi — foXi)|*,  (7b)
=1

2072 <

where x; € Xp and X; € Xxuar. The noise variance in a
general form can be assumed to be data-and-feature dependent
and expressed via a covariance matrix that is learned from
data. However, for simplicity, in all experiments, we assume
o?=1.

2) Regularization loss: The regularization loss measures
dissimilarities between the distribution of a selected feature
k € K and the policies M. For this purpose, we use the
Kullback-Leibler (KL) divergence as the choice of metric.
The regularization loss is expressed as:

e(2,0) =~ 3 3" Dia (p(0™) (")

ke meM

R
~ _KLR ( Z Zlogp(o(m’r);ﬂﬁm)—

ke meMr=1
logp(z(k”);ﬂak)), (7c)
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Algorithm 1 Policy-Induced Concrete Autoencoder (PI-CAE)

1: Inputs:
- Input features Xp.

- The set of observed policies corresponding to the must-have-features M.

- A user-specified number of latent features K.
2: Initialization:

Initialization of the reconstruction function fy : RX+ — RP with the parameter set 6 (i.e., the decoder net). Typically the decoder

net can be in form of a neural network or any other differentiable model.

k

Initialization of the location vector

= (ak:deD)T,Vak € Rug, Vk, with small random positive values.
Initialization of the initial temperature 7 € R, shown as 7o, with a relatively large scalar positive value (e.g., 7o = 10). Setting the

final value of the temperature, shown as 7r, to a small positive value (e.g., 77 = 107 2).

Initialization of the optimizer of choice gx(Vol, Vf) where the X includes all optimizer parameters such as the learning rate. The

optimizer g takes as its inputs the gradients of the loss ¢ with respect to the parameters 6 and ¢, and produces updated version of the

parameters.
3: fort=1,...,7T do
4 Adjust the temperature value 7 using: 7 < 7o(7r/70)" T .
5: for k=1,...,K and m € M do

- Draw a random sample from z" ~ Concrete(a”, 7).
- Draw random samples from o™ ~ Concrete(3™, 7).

- Construct the policy-induced Concrete selector layer for the i-th input feature x;" by application of Equation (6). Repeat

this step for all n =1,..., N, and next construct the filtered version of the input features X = (X", ...

XM=RXr:ie KUM)T.
end for
: end for

! , X)) where

: Compute gradients of the loss with respect to 6 and a”, i.e., Vol and V ¢, Vk € K.

. Update the parameters: 8, {a* : k € K} < gx (Vol, {V il : k € K}).

6

7

8: Compute loss ¢ using Equation (7a) given fy with the parameter set 6.

9

0

1: Outputs: The set & which includes the index of the latent features and updated parameters, 6 and {a” : k € K}.

where Dkr,(q1]/g2) measures the deviation of ¢go from g¢y.
In this equation, R is the number of Monte-Carlo samples,
and p(o™"); 7, B™) and p(z*"); 7, a*) are computed using
Equation (2). The KL-divergence Dk, is a non-negative
quantity. The negative sign in Equation (7c) encourages
selection of latent features which differ in their underlying
distributions to the observed must-have features given by the
policies. The interplay between the two competing objectives
is similar to the one in variational autoencoders [11].

An algorithmic description of the policy-induced Concrete
autoencoder is given in Algorithm 1.

V. EXPERIMENTS

Experiments are in connection to the problem statement in
Section II. The primary goal of the experiments is to empirically
verify the effectiveness of the proposed solution in incorporation
of domain knowledge in unsupervised feature selection. Hence,
experiments are designed with that goal in mind.

A. Datasets

We consider two sets of data for the experiments, namely,
data center (DC) traces from a testbed at KTH University [12]
[13], referred to as the KTH traces and traces from an in-house
5GmmWave testbed, referred to as the 5G traces.

1) KTH traces: The publicly-available KTH traces are
collected from a testbed environment. The testbed consists
of a server cluster and a set of clients. There are two services
running on these machines, namely Video-on-Demand (VoD)
and a Key-Value (KV) store (database). Traces are generated

TABLE I

TRACE CONFIGURATIONS AND SPECIFICATIONS FOR THE KTH TRACES.
Trace Name Service Load Numbser Number

Pattern of Services  of Tasks
VoD-Single App-FlashCrowd VoD FlashCrowd 1 5
VoD-BothApps-FlashCrowd VoD FlashCrowd 2 5
VoD-SingleApp-Periodic VoD Periodic 1 5
VoD-BothApps-Periodic VoD Periodic 2 5
KV-SingleApp-FlashCrowd KV FlashCrowd 1 2
KV-BothApps-FlashCrowd KV FlashCrowd 2 2
KV-SingleApp-Periodic KV Periodic 1 2
KV-BothApps-Periodic KV Periodic 2 2

by executing testbed experiments with different configurations
where statistics are collected every second; specifically it
includes features, and service-level metrics. Features are
collected from the server cluster and the service level metrics
are collected on the client machines. Service-level metrics serve
as the machine learning tasks.

Table I summarizes traces used in the experiments. The trace
name is encoded according to service under investigation (KV
store or VoD services), number of concurrent services (either
SingleApp or BothApps), and load pattern (either periodic
or flashcrowd load). As an example, the following naming
VoD-BothApps-Flashcrowd corresponds to a trace where both
services, VoD and KV, are running under the flashcrowd load,
while the service level metrics of VoD are being measured on
the client side.

Features are collected from the Linux kernels that run on
the server cluster machines. There are about 1700 features
and examples of such are CPU utilization per core, memory
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TABLE II
SUMMARY OF THE TASKS FOR KV AND VOD SERVICES OF KTH TRACES.

Acronym Service  Description
noDispFrames VoD Number of display video frames
noAudioPlayed VoD Number of audio buffers
NetReadAveDelay VoD Net value of read average delay
NetReadOperations | VoD Net value of read operations
NetReadBytes VoD Net value of read bytes
ReadsAve KV Average read latency
WritesAve KV Average write latency
TABLE III
TRACE CONFIGURATIONS AND SPECIFICATIONS FOR THE 5G TRACES.
Trace Name Traffic Load RTT Averaging  Number
Interval of Tasks
NoTratfic-RTT1000 None 1000 (ms) 2
NoTraffic-RTT100 None 100 (ms) 2
ConstantTraffic-RTT1000 | Constant Bit Rate 1000 (ms) 2
ConstantTraffic-RTT100 Constant Bit Rate 100 (ms) 2

utilization, network utilization, and disk I/O.

The ML tasks using these traces are predicting service-level
metrics given the features collected from the Linux kernels.
ML tasks that are considered in the experiments for KV and
VoD services are summarized in Table II.

2) 5G traces: The 5G traces are collected from an in-house
5G-mmWave testbed in which the equipment corresponds to
a 5G non-standalone (NSA) system, where the control plane
is served through a 4G LTE base station (eNB) and the user-
plane is served through a 5G NR base station (gNB). The 4G
LTE eNB operates on B3, 1800 MHz, with 5 MHz bandwidth.
The 5G NR gNB operates on n257, 28 GHz, with 100 MHz
bandwidth. The spectrum is time-shared between DL and UL
using a 4:1 TDD pattern (DDDSU [14]). In this testbed we have
two user equipments (UEs), one for performance measurements
and the other for traffic load generation.

The traces obtained from this testbed contain round-trip
time (RTT) values as experienced by a UE in the network, and
approximately 200 metrics and events related to the analogue
beamforming function, the UEs connected to the base station,
and the uplink (UL) and downlink (DL) events [15]-[17].

Two different experiments are performed, corresponding
to NoTraffic and ConstantTraffic trace categories. In both
experiments, the UEs were moving for a duration of 10 minutes.
In one of the experiments, a constant bit rate traffic load (UL)
was generated, while in the other experiment, no traffic load
was added. The end-to-end round trip time (RTT) was measured
every 10ms using ICMP ping [18] with a measurement packet
size of 1400 bytes. Further, as a pre-processing step, the
RTT and the base station metrics are averaged with different
time intervals (e.g., every 100ms, 1000ms). In total, 636
features were generated from around 200 metrics based on
different averaging intervals. The traces used in this paper are
summarized in Table III. The trace name is encoded according
to traffic load (either constant traffic or no traffic) and the
averaging intervals (either 100ms or 1000ms).

In this paper, we consider scenarios where the data traces
are used to predict end-to-end RTT as experienced by the UE,
based on traces from the SG-mmWave base station. The use

TABLE IV
SUMMARY OF THE ML TASKS FOR THE 5G TRACES.

Acronym ‘ Description
Low Threshold | A low RTT threshold value
High Threshold | A high RTT threshold value

@ Policies
@ Input Features
Task Responses
Supervised Feature Policy-Induced Concrete Concrete Autoencoder
Selection (SFS) Autoencoder(PI-CAE) given Policies (CAE+P)
[ Predictive Model (e.g., Regressor or Classifier)

Fig. 4. A block diagram of the evaluation framework. Refer to Section V-B2
for additional details.

case is formalized as a binary classification problem based on
different service-level metrics (low, high) corresponding to RTT
thresholds' corresponding to service violations.The ML tasks
using these traces are predicting service-level metrics. Table IV
summarizes the ML tasks considered in the experiments.

B. Experiment Setup

1) Choosing the must-have features:

a) KTH traces: In real world scenarios, must-have
features may be identified by an expert based on domain
knowledge. However, here, we identify the must-have features
for a given task via solving a supervised feature selection
problem where the must-have features are the features with
the highest importance. This means that must-have features
are task specific and trace specific. This procedure reduces
uncertainty around usefulness of the must-have features and
facilitates validation of the proposed method.

b) 5G traces: In this case, must-have features are identi-
fied by the domain experts, and they remain the same across all
traces and all tasks. There are four features identified as must-
have, namely: uplink wide-beam RSRP, uplink narrow-beam
RSRP, downlink wide-beam RSRP, and downlink narrow-beam
RSRP [15]-[17].

2) Evaluation framework: The evaluation framework is
designed in relation to the problem statement in Section II.
The following methods are compared against each other:

(CAE+P) Latent features are inferred using the standard
Concrete auto-selector as the method of unsupervised
feature selection. A subset of features are constructed
from the features representing the must-have policies and
the latent features inferred by the Concrete auto-selector.
Selected features are fed into the predictive model. In this
construction, the policies do not play any role in selection
of the latent features.

(PI-CAE) The proposed solution where features are inferred
via the policy-induced Concrete autoencoder. Unlike
CAE+P, the selection of the latent features in PI-CAE

IThe exact values are confidential. However, the difference between low
and high is large enough to lead to different distributions across outputs.
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is guided by the policies. Selected features are fed into
the predictive model.

(SFS) For defining an approximate upper bound on the perfor-
mance, we use a supervised feature selection technique
which makes use of the task response in order to select
the most relevant features. We use Random Forest as the
feature selection method. Once the most relevant features
are selected for a given task, they are fed into the predictive
model. Note that in the case of SFS, there are no constraints
on the budget so that the number of relevant features is
task-and-trace specific and optimized for achieving the
best performance, which means that the SFS technique is
not suitable for reducing measurement overhead.

Figure 4 visualizes the evaluation framework. The methods
CAE+P and PI-CAE are initialized similarly using the same
random seed.

3) Performance evaluation:

a) KTH traces: Experiment is repeated per task and per
trace for 5 times. Data is divided into a training and a test set
(about 50% of data). Regression performance is evaluated on
the test set using mean-absolute error (MAE) between the true
responses and predicted responses. The MAE is normalized by
the mean of the true task responses and the normalized MAE
(nMAE) is reported.

b) 5G traces: Experiment is repeated per task and per
trace for 20 times. Data is divided into a training and a test set
(about 30% of data). Classification performance is evaluated on
the test set using AUC (area-under-the-curve using trapezoidal
rule) between the true responses and the predicted responses.

C. Experimental Results

As discussed in Section V-B1, for the case of KTH traces,
must-have features are trace-and-task specific, and they are
chosen via a supervised technique. While for the case of 5G
traces, must-have features are chosen by an expert, and the same
set of features are used across all traces and all tasks. When
must-have features are provided by a supervised technique, we
have some quantitative measure of their importance. However,
when they are given by a domain expert, we may have limited
understanding of their importance, e.g., we may not know if
they are the most important ones. One goal of the experiments
is to examine how effectively PI-CAE can benefit from domain
knowledge under different conditions.

1) KTH traces: We consider different scenarios by varying
the budget specified in terms of the user-defined number of
latent features K and the set of must-have features correspond-
ing to the policies M. Figure 5 summarizes the performance
across all tasks per trace. Note that, here, the average nMAE
values across tasks are reported.

The main observation is that for smaller number of latent
features K, there is a clear advantage in using PI-CAE as within
the limited budget it selects the features that are complementary
to the must-have features. However, as the budget increases,
that is for larger values of K, the advantage becomes less

2Due to the lack of space, performance per task and per trace are not shown.
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Fig. 5. Performance evaluation of methods SFS, PI-CAE and CAE+P for
various number of latent features K and must-have features M. Performance
is evaluated using nMAE scores between the true and predicted responses
(lower values are preferred). The pair of (K, M) on the x-axis specify the
condition at which PI-CAE and CAE+P are evaluated. Note that SFS serves as
an approximate upper bound on the performance and its performance does not
depend on K and M. The figure shows the average results across tasks per
trace. Pairs with no statistical significance are annotated by a star symbol (*¥).

significant. The result is consistent for both scenarios of M = 2
and M = 5, and across all traces.

The result suggests that PI-CAE can achieve similar per-
formance figures as the method CAE+P but crucially for
smaller budgets. As an example, consider the trace KV-
SingleApp-PeriodicLoad. For the case of (K, M) = (98, 2), the
performance of PI-CAE and CAE+P are fairly similar but as the
budget decreases to (K, M) = (3,2), CAE+P performs poorly
while PI-CAE performs reasonably well. Similar observations
can be made across majority of the traces evaluated here.

A secondary observation is that, as expected, as the budget
increases, the performance of both unsupervised methods PI-
CAE and CAE+P improves, and given high enough budget, in
some cases, their performance can approach to that of the
supervised method SFS.

2) 5G traces: We consider different scenarios by varying the
number of latent features K for the selected set of must-have
features by the domain expert which remains the same across
all traces and tasks. Figure 6 summarizes the performance
across all tasks and per trace. In this figure, the AUC values
across tasks are reported. The main observation is that in
most scenarios PI-CAE can effectively make use of the domain
knowledge provided by the policies. As in the case of the KTH
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Fig. 6. Performance evaluation of methods SFS, PI-CAE and CAE+P for
various number of latent features K and must-have features M. Classification
performance is evaluated using AUC scores between the true and the predicted
labels (higher values are preferred). The pair of (K, M) on the x-axis specify
the condition at which PI-CAE and CAE+P are evaluated. Note that SFS serves
as an approximate upper bound on the performance and its performance does
not depend on K and M. The figure shows the average results per task
(High Threshold and Low Threshold) and per trace. Pairs with no statistical
significance are annotated by a star symbol (*¥).

traces, as the budget reduces the advantage of PI-CAE over
CAE+P becomes more noticeable.

We also compute the average gain that PI-CAE achieves over
CAE+P for each task across all traces and scenarios. For the
task labeled as High Threshold, the average gain across 20 runs
is 6.8%(%1.1%) and for the task labeled as Low Threshold,
the average gain is 8.8%(£0.8%). The average gain for Low
Threshold is statistically significantly larger than that of for
High Threshold.

VI. DISCUSSION
A. Policy-induced Concrete autoencoder

In Section I, we motivated the need for efficient incorporation
of domain knowledge in unsupervised feature selection. Accord-
ingly, we introduced the family of policy-induced unsupervised
feature selection where domain knowledge in the form of
policies inform the inference. Specifically, we developed policy-
induced Concrete autoencoder, PI-CAE, which provides a
structured way for incorporation of domain knowledge. PI-CAE
takes a set of policies in the form of must-have features, it then
selects the latent features that are importantly complementary
to the must-have features.

From the method point of view, PI-CAE uses domain
knowledge as cues and aims at finding the most complementary
features to them by discarding both redundant features, i.e.,
features with similar underlying distributions to those of the
must-have features, and features with minimal contributions in
explaining data. This property of PI-CAE is useful in overhead
reduction in network monitoring, in particular when we have
resource constrained budgets, where the budget is specified by
the maximum number of features that can be monitored.

Although, we verified the effectiveness of PI-CAE in net-
working use cases, we believe it can be applied to other case
studies where efficient incorporation of domain knowledge is
needed.

Finally, PI-CAE, as in most feature selection methods, does
not have a data-driven mechanism for automatically inferring
the number of latent features. Indeed the number of latent
features are specified by the user. Such a problem is known as
the automatic determination of the model complexity which
can be seen as an exciting future research.

B. Systems view

As discussed in Section I, timely access to reliable data
is critical for model training and real-time inference. Un-
fortunately, excessive monitoring leads to a situation where
the network and other infrastructure components become
overloaded thus reducing the capacity for services providing
a business value. Thus there is a need for intelligent feature
selection. On the other hand, there are anecdotal evidence
indicating that black-box automation in general, including
feature selection and its impact on the configuration of a
monitoring system, meets resistance when incorporated into
systems and processes for network management and operations.
Trustworthiness, robustness, and explainability are often key
aspects of criticism. This black-box challenge encountered in
networking is also consistent with observations when using ML
models for decision making in other fields [19]. The PI-CAE
approach makes an attempt at balancing the need for intelligent
feature selection that can meet future ML use cases while at the
same time providing a level of control to the network operators,
that is propagated into the running system.

From an architectural viewpoint, the proposed PI-CAE
method could be integrated as a key functionality in the
Open Radio Access Network (O-RAN) architecture, which
is a concept based on interoperability and standardization [20].
The function would have an obvious place in e.g. the Network
Management System and the Intelligent Controller layers to
control the measurement points based on operator-defined
policies. Note however that O-RAN is just one possibility,
and thus, Figure 1 is very generic in its design.

VII. RELATED WORK

Feature selection is an important step in building machine
learning models with the aim of removing irrelevant, redundant,
or misleading features from a given dataset while achieving a
good generalization capability [5], [21], [22]. Feature selection
techniques broadly can be categorized into supervised (e.g.,
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[23], [24]) and unsupervised (e.g., [6], [9]) methods. While
supervised learning incorporates information about the labels
(or output responses) in the selection process, unsupervised
learning does not rely on existence of such information.
Supervised and unsupervised feature selections are used widely
in application domains such as pattern recognition, and image
processing, while they are receiving increasing attention in
the areas of computer systems and networks. In this domain,
feature selection could leverage network operations and service
management while at the same time mitigate the overhead
challenges related to the increasing amount of data created
throughout the system.

Feature selection for networking: In general, the works
discussed below can be divided into either feature selection
or representation learning, where the former set of approaches
maintains the explainability of a data-driven model. Further,
these approaches can be used for controlling the monitoring
infrastructure. Representation learning techniques on the other
hand, such as principle component analysis, fail with respect
to both these two important properties.

In [4], the authors describe a low-cost method of obtaining
a sparse representation of the data collected at each individual
server while preserving a specified fidelity with respect to the
original signal. Further, in [10], [25], the authors introduce
an unsupervised algorithm for online feature selection. The
method is instantiated by a feature ranking algorithm. The
algorithm does not consider changes in feature importance
over time, which is a drawback in case the system enters a
new unknown state. The work in [26] provides a comparison
of multiple dimensionality reduction techniques with the
objective to reduce the learning complexity while maintaining
the prediction accuracy of a supervised task for network
management. However, none of these techniques are specifically
designed for reducing the network monitoring overhead.

In [27], the authors explore feature extraction and dimen-
sionality reduction techniques for cellular networks in a fault
diagnosis problem. The intended use case is deployment as a
component between monitoring of network features and their
usage in performance analysis in mobile networks.

A framework for dimensionality reduction, based on both
feature selection and reduction, is presented in [28]. The
framework is targeting radio networks and the self-healing
processes. The method presented in this paper is complementary
to this type of frameworks, giving the operator necessary tools
for control in the dimensionality reduction process.

Classification of network traffic and flows has been an active
research area for over two decades, e.g., [29], [30]. This type
of functionality improves, for example, routing algorithms and
decisions. Feature selection can improve the model performance
also in this field. In [31], which is a recent example, the authors
explore properties of sequential feature selection methods for
training ML models for the classification of the traffic flows.

In [32], the authors propose a method for real-time prediction
of QoE-relevant metrics for encrypted video traffic. They
experimental evaluation showed that a feature selection method
based on information gain ranking and manually selected

threshold using expert knowledge can lead to similar prediction
performance compared to the full feature set.

In [33], an ensemble feature selection method for malware
detection is presented. The method selects the most discrimi-
native features using labeled data and the most representative
features using unlabeled data.

Importantly, none of the above discussed works consider
the novel aspects of this paper, namely the capability of
specifying operator requirements, using policies, on must-
have features. Existing feature selection methods often ignore
domain knowledge which can lead to removal of critical
features for the application. A related work that considers
domain knowledge in feature selection is discussed in [24].
The authors propose a multi-layer supervised feature selection
method which integrates knowledge from domain experts by
means of weighted scoring. After assigning importance scores
to the features by the human experts, the features are evaluated
with respect to sparsity, correlation, and redundancy to select
features that are distinct and correlated with the target features.
The method is heuristic and at times limited as the importance
scores are computed based on the observational data from the
features and not the underlying distributions of the features.
As an example, observed instances of two arbitrary features
might seem different from each other while in fact they share
similar underlying distributions.

VIII. CONCLUSION

We introduced a new family of methods for unsupervised
feature selection named policy-induced unsupervised feature
selection in which domain knowledge guides selection of
the latent features. Domain knowledge is in the form of
a set of policies which are provided by domain experts or
previous experiences. The policies dictate which features must
be monitored in the infrastructure, referred to as the must-have
features. In this regard, we introduced a method named policy-
induced Concrete autoencoder PI-CAE. Conceptually, PI-CAE
takes the must-have features as cues and selects the latent
features that are complementary to the must-have features. We
verified the effectiveness of our theoretical contributions on
data traces collected from a central data center environment and
a 5G-mmWave testbed environment. We showed that PI-CAE
can effectively make use of the domain knowledge provided by
the policies. Importantly, the benefit of using PI-CAE becomes
more apparent when we have limited budget, that is when
only a few number of features can be monitored. This property
of the PI-CAE makes the method in particular attractive for
overhead reduction in network management. Finally, although
we discussed the method in a networking case study, we believe
the method can be applied in other studies where effective
incorporation of domain knowledge is needed.
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