IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) | 978-1-6654-0926-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/INFOCOMWKSHPS54753.2022.9798094

IEEE INFOCOM 2022 Demo

Demonstration of Policy-Induced Unsupervised
Feature Selection in a 5G network

Jalil Taghia*, Farnaz Moradi*, Hannes Larsson*, Xiaoyu Lan*, Masoumeh Ebrahimi*¥, and Andreas Johnsson*!

* Ericsson Research, Sweden, Email: {jalil.taghia, farnaz.moradi, hannes.larsson, xiaoyu.lan, andreas.a.johnsson}@ericsson.com

f Uppsala University, Department of Information Technology, Sweden, Email: andreas.johnsson@it.uu.se
i KTH, Division of Electronics and Embedded Systems, Sweden, Email: mebr@kth.se

Abstract—A Kkey enabler for integration of machine-learning
models in network management is timely access to reliable
data, in terms of features, which require pervasive measurement
points throughout the network infrastructure. However, exces-
sive measurements and monitoring is associated with network
overhead. The demonstrator described in this paper shows key
aspects of feature selection using a novel method based on
unsupervised feature selection that provides a structured approach
in incorporation of network-management domain knowledge in
terms of policies. The demonstrator showcases the benefits of the
approach in a 5G-mmWave network scenario where the model is
trained to predict round-trip time as experienced by a user.

Index Terms—Network management, feature selection, machine
learning, 5G.

I. BACKGROUND AND CONCEPTS

A key enabler for machine-learning models for network
management is timely access to reliable data for model
training and real-time inference, thus requiring pervasive
measurement points (MP) throughout the network infrastructure.
Unfortunately, excessive data collection and transfer of data
from MPs to its consumer come with overhead costs in terms
of for example network utilization. Further, processing of many
features increase the ML model complexity which can lead
to additional compute resources requirements. Furthermore,
the process of training machine learning models may also
be negatively affected by an excessive amount of features,
leading to a reduced model performance as well as increased
model complexity imposing challenging requirements on data
availability and compute power on nodes in the infrastructure
that may not have such capabilities.

Feature selection, both supervised and unsupervised, have
been extensively studied in the literature and can potentially
mitigate some of the challenges mentioned above [1]. In our
recent work we further enhance the concept of unsupervised
feature selection [2] in networking, and argue that the effective
inclusion of domain knowledge can provide improved and
more generalizable feature sets. Domain knowledge can be
seen in the form of policies that guide the learning towards
selection of an improved feature set. We proposed and evaluated
a method called Policy-Induced Concrete Autoencoder (PI-
CAE) which takes a set of policies dictating the features that
must be monitored in a network, named must-have features.
It then selects a set of latent features that are complementary
to the policies. The selected features are then communicated
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Fig. 1. 5G-mmWave testbed and demonstrator interaction. Dashed line
indicating control of MP is not implemented.

for configuration of the MPs across a network infrastructure
resulting in lowered monitoring overhead. The must-have
features can for example be selected based on experiences
acquired by a network operations center and its personnel.

Fundamental to this demonstration is the concept of un-
supervised feature selection using operator-specified policies
guiding the selection of additional latent features across a
network infrastructure. We select features given a budget on
monitored features to arrive at a feature set that is capable
of modeling RTT as experienced by a user equipment (UE)
using baseband features extracted from a SG-mmWave network.
The resulting feature sets achieve reduced overhead in terms
of monitoring costs, while at the same time maintaining the
predictive capabilities of the ML models.

II. SCENARIOS AND DATA TRACES

In the demonstration we focus on an experimental scenario
using an in-house 5G-mmWave testbed, illustrated in Figure 1,
generating a set of traces for further analysis. The equipment
corresponds to a 5G non-standalone (NSA) system, where
the control plane is served through a 4G LTE base station
(eNB) and the user-plane is served through a 5G NR base
station (gNB). The 4G LTE eNB operates on B3, 1800 MHz,
with 5 MHz bandwidth. The 5G NR gNB operates on n257,
28 GHz, with 100 MHz bandwidth. The spectrum is time-
shared between downlink (DL) and uplink (UL) using a 4:1
TDD pattern (DDDSU [3]). In this testbed there are two UEs,
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TABLE I
TRACE CONFIGURATIONS AND SPECIFICATIONS FOR THE 5G TRACES.
Trace Name Traffic Load RTT Averaging  Number
Interval of Tasks
NoTraffic-RTT1000 None 1000 (ms) 2
NoTraffic-RTT100 None 100 (ms) 2
ConstantTraffic-RTT1000 | Constant Bit Rate 1000 (ms) 2
ConstantTraffic-RTT100 Constant Bit Rate 100 (ms) 2

TABLE I
SUMMARY OF THE ML TASKS FOR THE 5G TRACES.

Acronym
Low Threshold
High Threshold

| Description
A low RTT threshold value
A high RTT threshold value

one for performance measurements (measurement source), and
one for generation of traffic load (traffic generator source).

The traces contain RTT values as experienced by a UE in the
network, and approximately 200 metrics and events (extracted
from the MP in Figure 1) related to the analogue beamforming
function, the UEs connected to the base station, and UL and
DL events [4]-[6].

Two different experiments were performed for this demon-
stration, corresponding to NoTraffic and ConstantTraffic trace
categories. In both experiments, the UEs were moving in a test
area for a duration of 10 minutes. In one of the experiments,
a constant bit rate traffic load (UL) was generated, while in
the other experiment, no traffic load was added. The RTT was
measured every 10ms using ICMP with a measurement packet
size of 1400 bytes. Further, as a pre-processing step, the RTT
and the base station metrics are averaged over different time
intervals (e.g., every 100ms, 1000ms). In total, 636 features
were generated from around 200 metrics based on different
averaging intervals. The traces are summarized in Table L.
The trace name is encoded according to traffic load (constant
traffic/no traffic) and the averaging intervals (100ms/1000ms).

We consider scenarios where the data traces are used to
predict RTT as experienced by the UE, based on traces from
the 5G-mmWave base station. The prediction is formalized
as a binary classification problem based on different service-
level metrics (low, high) corresponding to RTT thresholds
constituting service violations. The ML tasks using these traces
are predicting service-level metrics. Table II summarizes the
ML tasks considered in the experiments.

III. DEMONSTRATION

We demonstrate the PI-CAE method for prediction of RTT
as experienced by a UE in a 5G network, where the policy (of
features) can be interactively changed. The key components
of the demonstrator are shown in Figure 1; containing a GUI,
features and data, policies, an implementation of the method
PI-CAE, and pre-computed models. Features and data have
been pre-fetched from the frace stream receiver in the testbed.
Further, we also indicate the concept of a MP configuration
control channel from the demonstrator to the MP where the
selected features would be communicated.

The main demo screen, illustrated in Figure 2 and correspond-
ing to the GUI in Figure 1, is divided into three sections. In the
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Fig. 2. Main PI-CAE demo screen.

upper right different policies can be chosen, that is selection
of must-have features from the list of available features in the
base station. Further, the number of latent features needs to
be specified. Together, the total number of wanted features
corresponds to the monitoring budget.

In the lower right a set of pre-trained ML models (with
different feature sets) for RTT prediction is available for further
investigation with respect to model performance. The RTT
model is a classification task and thus the model performance
is measured in terms of Area Under Curve (AUC). The
model performance is compared with two other feature-
selection approaches serving as baselines; (1) supervised feature
selection which constitutes an empirical upper bound, and (2)
unsupervised feature selection with the policy added afterwards.
This is illustrated in the left part of Figure 2.

The method, PI-CAE is implemented in PyTorch, and the
demonstrator is a Kibana dashboard which visualizes the results
of the pre-trained models stored in an Elasticsearch database.

Additional demo screens will show further aspects of the
PI-CAE method, however they are omitted from the paper due
to space limitations.

ACKNOWLEDGMENT

This research has been supported by the Swedish Govern-
mental Agency for Innovation Systems, VINNOVA, through
projects ITEA3 AutoDC and Celtic ANIARA, and Swedish
Foundation for Strategic Research, SSF Strategic Mobility.

REFERENCES

[1] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu,
“Feature selection: A data perspective,” ACM Computing Surveys (CSUR),
vol. 50, no. 6, pp. 1-45, 2017.

[2] J. Taghia, F. Moradi, H. Larsson, X. Lan, M. Ebrahimi, and A. Johnsson,

“Policy-induced unsupervised feature selection: A networking case study,”

in IEEE INFOCOM 2022-IEEE Conference on Computer Communications.

IEEE, 2022.

3GPP, “NR; Physical layer procedures for control,” 3rd Generation

Partnership Project (3GPP), Technical Specification (TS), 2021, version

16.5.0.

, “NR; Physical layer procedures for data,” 3rd Generation Partnership

Project (3GPP), Technical Specification (TS), 2021, version 16.5.0.

, “NR; Physical layer measurements,” 3rd Generation Partnership

Project (3GPP), Technical Specification (TS), 2021, version 16.5.0.

, “NR; Medium Access Control (MAC) protocol specification ,” 3rd

Generation Partnership Project (3GPP), Technical Specification (TS), 2021,

version 16.5.0.

3

—_

(4]
[5]
(6]

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 11,2022 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.



