
On Heterogeneous Transfer Learning for Improved
Network Service Performance Prediction

Fernando Garcı́a Sanz∗, Masoumeh Ebrahimi∗†, and Andreas Johnsson∗‡
∗ Ericsson Research, Sweden, Email: {fernando.a.garcia.sanz, masoumeh.ebrahimi, andreas.a.johnsson}@ericsson.com

† Uppsala University, Department of Information Technology, Sweden, Email: andreas.johnsson@it.uu.se
‡ KTH, Division of Electronics and Embedded Systems, Sweden, Email: mebr@kth.se

Abstract—Transfer learning has been proposed as an approach
for leveraging already learned knowledge in a new environment,
especially when the amount of training data is limited. However,
due to the dynamic nature of future networks and cloud infras-
tructures, a new environment may differ from the one the model
is trained and transferred from.

In this paper, we propose and evaluate an approach based
on neural networks for heterogeneous transfer learning that
addresses model transfer between environments with different
input feature sets, which is a natural consequence of network
and cloud re-orchestration. We quantify the transfer gain, and
empirically show positive gain in a majority of cases. Further,
we study the impact of neural-network architectures on the
transfer gain, providing tradeoff insights for multiple cases.
The evaluation of the approach is performed using data traces
collected from a testbed that runs a Video-on-Demand service
and a Key-Value Store under various load conditions.

Index Terms—Service Performance, Machine Learning, Het-
erogeneous Transfer Learning.

I. INTRODUCTION

A promising approach enabling intelligent network and
service management is the use of machine-learning models
that can predict and forecast the service performance based on
available measurements and other observations in the network
and cloud infrastructure. The ability to learn performance
models simplifies management and operational tasks such as
service on-boarding, network resource adaptation, proactive
service assurance, and root-cause analysis.

Traditionally, many machine-learning applications operate
under the assumption that train and test data are both under
the same feature space, and that they are extracted from the
same distribution [1]. Hence, when the data distribution or its
dimensionality changes, the previously crafted models must
be rebuilt from scratch, and trained with the new data. Never-
theless, collecting additional data for training new models is
expensive and sometimes infeasible. This gets more accentu-
ated in environments with real-time monitoring requirements,
or limited computational or networking resources. An example
of an environmental change is illustrated in Figure 1 where
clients are accessing a cloud service over a network, that
is being migrated and scaled from the source to the target
domain. This may change the availability of features and thus
the feature space to be leveraged by the ML model.

Transfer learning is a mitigation approach where knowledge
learned in one environment can be leveraged in another. This
enhances the training process, as it is not necessary to develop

Fig. 1. Prediction of service metrics Y at the client given observations of
network and cloud infrastructure state and utilization {XNW , XDC1..3}.
The execution environment changes from source to target domain.

new models from scratch, rather using previously built models
and adapt them to a new environment.

In this paper, which builds upon our previous work on
transfer learning for service performance prediction [2], [3],
we study the feasibility of transfer learning in a heterogeneous
environment where source and target domains do not share a
common input feature space. Such changes may occur due
to changes in monitoring configurations, feature availability,
or added number of features stemming from the horizontal
scaling of the service in the target domain as exemplified by
Figure 1. More specifically, we study the impact of adding,
removing, and changing input features in the target domain
on the transfer gain.

The main contributions of this paper are: (1) an approach
for heterogeneous transfer learning for service performance
modeling, (2) an analysis indicating feasibility and robustness
of the approach, and (3) insights on the tradeoff concerning
shallow, deep-wide, and deep-narrow neural networks.

II. TRANSFER LEARNING FORMULATION

Figure 1 illustrates the scenario that is considered in this
work. Clients are interacting with services that are executing
in the cloud. In this paper, we consider data traces originating
from testbed experiments where clients access two network
services executing in one data center; a Video-on-Demand
(VoD) service and a Key-Value Store (KVS) service.

The learning task is to predict the service-level metrics
Y , e.g., response time, at time t on the clients accessing
the services based on knowing the infrastructure metrics X ,
e.g., CPU utilization, at time t. We train and evaluate models
M : Xt → Ŷt, such that Ŷt closely approximate Yt for a given

Fig. 2. Two cases of a heterogeneous transfer learning approach.

Xt using supervised machine learning. In our previous work
[2], [3], we proposed and evaluated approaches using transfer
learning to mitigate model performance reduction stemming
from a selection of execution environment changes.

Based on the definition of transfer learning in [1], a do-
main D = {X,P (X)} consists of two components: (1) a
feature space X , and (2) a marginal probability distribution
P (X), where X corresponds to the infrastructure metrics.
The number of features in X is denoted |X|. Further, a task
T = {Y,M} consists of two components: (1) a target space
Y corresponding to service-level metrics, and (2) an objective
predictive model M . Transfer learning is then defined as
follows. Given a source domain DS and learning task TS ,
a target domain DT and learning task TT , transfer learning
aims at reducing the cost of learning the predictive model M
in DT using the knowledge in DS and TS , where DS 6= DT . A
model that is transferred from DS to DT is denoted MS→T , to
separate it from a model MS or MT that is trained in isolation
in the source or target domain.

III. HETEROGENEOUS TRANSFER LEARNING

In this section, we explain our transfer learning approach
with regard to the heterogeneity in the input feature space. In
addition to the heterogeneity aspect, we also elaborate on the
impact of feed-forward neural network architecture choices.
We vary the configuration in terms of the number of layers and
neurons per layer. Further in the result section, we investigate
the impact of a varying number of available samples Nt (N at
time t) in DT , as the number of samples in the target domain
may be limited due to overhead or time constraints.

A. Heterogeneous feature space

Heterogeneous transfer learning (HTL), in this paper, cor-
responds to a scenario where the available input features X
are not identical when the execution environment changes.
This may occur due to, for example, changes in monitoring
configurations, or other re-orchestration actions.

This paper studies, quantifies, and explains the impact of
transferring a source domain to a target domain where XS 6=
XT . We define two heterogeneity cases: (1) the number of
features in the source is larger than or equal to the target
domain |XS | ≥ |XT |, and (2) the number of features in the
target is larger than or equal to the source domain |XS | ≤
|XT |. The two cases are illustrated in Figure 2. In the result

section, we examine how much heterogeneity is acceptable
while still getting a positive transfer gain.

B. Model transfer strategy

The source and target models can be generated separately
using the available samples in their domains. For HTL, we
suggest transferring the model from the source domain with
partial weight transfer. These three neural-network models
are described as follows:
Source model (MS): The model consists of an input layer,
corresponding to features X , n−1 hidden layers L1, ..., Ln−1,
weights w1, ..., wn, and an output layer Ln corresponding
to Yt. The weights wi for a model MS are trained using
backpropagation [4] with samples in the source domain DS .
Scratch target model (MT): The same neural-network
architecture is used in the target domain but all weights are
randomly initialized, and trained using the available samples
in the target domain.
Target model with transferred weights (MS→T): This
model builds upon re-training of a feed-forward neural-
network model M , that is transferred from a source domain
[5]. For heterogeneous transfer learning, the knowledge
transfer corresponds to training a target model where the
weights of layers L2, ..., Ln are initialized with the weights
from the source model MS . Further, layer L1, which now
has a different number of weights, is randomly initialized to
encompass the feature heterogeneity, as illustrated in Figure
2. After knowledge transfer, the model is denoted MS→T .
The target model is then fine-tuned using available samples
from the target domain DT .

C. Neural network architectures

Heterogeneous transfer learning directly affects the first
layer of the transferred model. This is due to the fact that
the number of input features in the source domain is different
from the target domain. To overcome this heterogeneity, we
randomly initialize the weights of the first neural network
layer. This is required to match the target input space that
may be larger or smaller than the source domain input space.

We investigate the impact of the neural network architecture
on transfer gain in heterogeneous transfer learning. For this
purpose, we examine three neural network settings, called
shallow, deep-wide, and deep-narrow, as shown in Figure 3,
where 4 and 10 stand for the number of layers.

The shallow neural network is composed of a few layers.
Although this model may work well in the source domain, it
may not be the case in the HTL scenario when the learned
model is transferred to the target domain (to train model
MS→T). This is due to the fact that the first layer constitutes
a large proportion of the total number of parameters. So,
a significant amount of knowledge will be lost when re-
initializing the weights of the first layer. We argue that a
deeper network would trap the knowledge in the middle and
last layers of the neural network, which could be successfully
transferred to the target domain. Thereby, we propose using

Fig. 3. Neural-network model architectures: (a) shallow-4, (b) deep-wide-10,
(c) deep-narrow-10.

a deeper network when transferring models in heterogeneous
transfer learning. The hypothesis is that this should provide
an enhanced information transfer across domains, improving
the performance of the predictive model in the target one.
However, simply increasing the network depths (i.e., deep-
wide neural network) comes at the cost of an increased number
of trainable parameters, and thus the training time. Thereby,
we further try to optimize the deep network, and for this, we
keep the number of parameters similar to the shallow network,
and just spread neurons over more layers, reaching a deep-
narrow neural network. Different neural network choices and
their number of parameters, examined in our experiments, are
listed in Table II.

D. Quantifying the transfer gain

In addition to studying the performance of MS , MT , and
MS→T , we use the concept of transfer gain G to quantify the
impact of DT on MS→T , which we define as:

G = eT − eS→T , (1)

where eT and eS→T are the model errors for MT and MS→T ,
respectively. The transfer gain is inspired by the negative
transfer gap defined in [6]. Transfer gain occurs when the loss
of the transferred model MS→T is higher than MT , whereas
a negative transfer gap means the opposite.

IV. TESTBED AND DATA TRACES

The evaluation in this paper is based on realistic traces1

obtained from a testbed. A brief overview of the scenarios and
experimental infrastructure are provided below, and additional
details are available in our previous work [7].

The testbed consists of a server cluster and a set of clients,
all deployed on a rack with ten high-performance machines
interconnected by a Gigabit Ethernet. On the server cluster we
run two network services: Video-on-Demand (VoD) and Key-
Value Store (KVS). The VoD service uses a modified VLC
media player software, which provides single-representation
streaming with a varying frame rate. Further, the KVS service
uses the Voldemort software. The two services are installed
on the same machines and can execute in parallel. The client
machines act as load generators for both services.

1https://github.com/foroughsh/KTH-traces

TABLE I
EXAMPLES OF TRACES OBTAINED FROM TESTBED.

Trace ID Service(s) Load pattern Target Y # samples

K1P KVS Periodic RAvg, WAvg 28962

K1F KVS Flashcrowd RAvg, WAvg 19444

K2P KVS + VoD Periodic RAvg, WAvg 26488

K2F KVS + VoD Flashcrowd RAvg, WAvg 24225

A. Generating load on the testbed

Two load generators are running in parallel, one for the
VoD application and another for the KVS application, aiming
at emulating real traffic scenarios. The VoD load generator
controls the number of active VoD sessions, spawning and
terminating VLC clients. The KVS load generator controls
the rate of KVS operations issued per second.

Both generators produce load according to two distinct load
patterns: (1) periodic-load where the load generator produces
requests following a Poisson process whose arrival rate is
modulated by a sinusoidal function, and (2) flashcrowd-load
where the requests are following a Poisson process whose
arrival rate is modulated by a flashcrowd model [8].

B. Collected data and traces

Data traces from the testbed contain an input feature set
X and the specific service-level metrics YV oD and YKV S . A
trace is generated by extracting, and collecting, these statistics
during execution of experiments with different configurations.

The feature set X is extracted from the Linux kernels
that run on the machines. To access the kernel data, we
use System Activity Report (SAR), a popular open-source
Linux library, which provides approximately 1700 features
per server. Examples of such statistics are CPU utilization per
core, memory utilization, and disk I/O.

For the purpose of this paper, we focus on modeling
the KVS service where the service-level metrics YKV S are
measured on the clients. During an experiment two main
metrics are captured, namely the Read Response Time as the
average read latency for obtaining responses over a set of
operations performed per second (RAvg), and a corresponding
metric for the Write Response Time (WAvg). The metrics are
computed using a customized benchmark tool of Voldemort.

A summary of selected traces captured in the testbed is
available in Table I. The trace ID is encoded according to ser-
vice under investigation (KVS or VoD), number of concurrent
services (1 or 2), and load pattern (periodic or flashcrowd).

C. Creation of heterogeneous traces

To study heterogeneous transfer learning for the scenarios
considered in this paper, the set of features in the source and
target domains must be different. In a first step, we reduce
the feature space to 18 features, using domain knowledge,
following the approach in [9]. Then, we artificially reduce the
number of available features utilizing the Pearson correlation
(see Figure 4) between the features and RAvg and WAvg. For
more details about the features see [7].

https://github.com/foroughsh/KTH-traces

Fig. 4. Feature correlation with RAvg and WAvg.

TABLE II
NUMBER OF PARAMETERS IN EACH OF THE NETWORKS EMPLOYING 18
FEATURES IN THE SOURCE DOMAIN AND 18 IN THE TARGET DOMAIN.

Network L1 L2, ..., Ln Total Training

parameters parameters parameters time (sec)

shallow-4 4864 131841 136705 1.48

deep-wide-6 4864 263425 268289 1.62

deep-wide-10 4864 526593 531457 1.79

deep-narrow-6 3458 133407 136865 1.45

deep-narrow-10 2432 132225 134657 1.53

For the case with lower number of features in the target,
features have been iteratively removed, starting with features
with a higher correlation with the given task (RAvg or WAvg).
In the case of having more features in the target domain,
features in the target are selected from the least to the most
correlated, with the intention of creating challenging scenarios.
For instance, the most correlated feature with both RAvg and
WAvg is rxpck.s, and the second most correlated ones are file.nr
and txpck.s, respectively.

V. RESULTS AND DISCUSSION

We evaluate the heterogeneous transfer learning approach,
explained in Section III, on a set of transfer scenarios described
in Table III, and quantify the impact of the feature space
heterogeneity and architectural neural-network design choices.

A source domain DS , and its corresponding model MS ,
are created for each transfer scenario. Further, a target domain
corresponds to a change in feature space, i.e., XS 6= XT and
possibly a change in the prediction task, i.e., TS 6= TT . This
refers to a scenario where the service provider would like to
predict either read or write response time for a KVS service
in a domain where the set of features has changed.

The Normalized Mean Absolute Error (NMAE) is used for
quantifying model performance, and is defined as:

e =
1

ȳ
(

1

m

m∑
t=1

|yt − ŷt|), (2)

TABLE III
THE HTL SCENARIOS STUDIED IN THIS WORK. ALL SCENARIOS ARE

BASED ON TRACE K2P IN TABLE I. FURTHER, P (XS) = P (XT).

DS DT MS = MT
|XS | TS |XT | TT

1 18 RAvg 18, 10, 2 RAvg shallow-4

2 2 RAvg 18, 10, 2 RAvg shallow-4

3 18 RAvg 18, 10, 2 WAvg shallow-4

4 2 RAvg 18, 10, 2 WAvg shallow-4

5 18 RAvg 2 WAvg shallow-4, deep-wide-6/10

6 2 RAvg 18 WAvg shallow-4, deep-wide-6/10

7 18 RAvg 2 WAvg shallow-4, deep-narrow-6/10

8 2 RAvg 18 WAvg shallow-4, deep-narrow-6/10

where ŷt is the model prediction for the measured performance
metric yt, and ȳ is the average of the samples yt of the test
set of size m.

The neural network architectures considered in this work
are listed in Table II and partly shown in Figure 3. Further,
the implementation of the neural networks has been performed
by means of the Keras library2 running on top of TensorFlow3.
For the source models, the neural networks are initialized with
random weights and are trained on samples (X,Y). We use
the ReLU activation function for all the layers. The other
configurations are as: Adam optimizer [10] with a learning rate
starting at 0.001 using exponential decay with the decay rate of
85, 1000 decay steps and staircase function, and mean absolute
error (MAE) as the loss function. Each experiment was run for
a maximum of 200 epochs, with early stopping using patience
of 10 epochs and weight restoring. Regarding the data, a batch
size of 32 was used, performing a validation split of the 20%
of the training set, composed by the 80% of the trace samples,
being the test set constituted by the remaining 20%.

Similarly, in the target domain, the samples are also split.
The training set size is varied between 25 and 500 samples,
and it is used to train the transferred model MS→T and the
scratch model MT to enable calculation of transfer gain. Both
models are trained and tested on the same samples.

A. Feature space heterogeneity

In Scenarios 1 and 2, defined in Table III, we investigate the
performance of the approach for the case when the prediction
task is RAvg (i.e., TS = TT), the number of features is different
in the source and target domains (i.e., |XS | 6= |XT |), and the
model is of type shallow-4. In addition, all experiments are
evaluated using the K2P trace (see Table I). In Figure 5a, 18
input features are used in the source domain while we reduce
the number of features to 10 and then 2 in the target domain.
In Figure 5b, we keep the number of features fixed at 18 in the
target and vary the number of features in the source domain.

2https://keras.io/
3https://github.com/tensorflow/tensorflow

(a) Scenario 1: DS (18 features, RAvg) and DT (varying features, RAvg).

(b) Scenario 2: DS (2 features, RAvg) and DT (varying features, RAvg).

Fig. 5. NMAE measurement for different sets of features and the same
prediction task in the shallow-4 network.

(a) Scenario 3: DS (18 features, RAvg) and DT (varying features, WAvg).

(b) Scenario 4: DS (2 features, RAvg) and DT (varying features, WAvg).

Fig. 6. NMAE measurement for different sets of features and different
prediction tasks in a shallow-4 network.

Each plot shows the transfer gain, transferred model loss, and
scratch model loss. Standard deviation, obtained from running
the experiments multiple times, is also included.

As can be seen from these plots, transfer gain is larger when
transferring from a model with larger feature space (Figure 5a)
compared with transferring from a smaller model (Figure 5b).
Although transfer gain is limited when transferring from a
smaller model to a larger model, generally, a positive transfer
gain has been obtained in practically all cases. The gain is
reduced with an increasing number of samples in the target
domain, which corroborates our previous results [2].

In Figures 6a and 6b, we show results for Scenarios 3 and
4, where heterogeneity is introduced for the features as well
as the task, going from RAvg in the source domain to WAvg in
the target domain (TS 6= TT). A similar observation can been
made with the difference that the transfer gain is slightly lower
than in Scenarios 1 and 2. Moreover, a small negative transfer
gain can be seen in a few cases for a low number of target
samples, and when both domains contain only 2 features.

B. Shallow vs. deep neural networks in HTL

In Scenarios 5 and 6, we study the effectiveness of hetero-
geneous transfer learning using shallow and deep-wide neural
network architectures, as stated in Table II. Each scenario is

(a) Scenario 5: DS (18 features, RAvg) and DT (2 features, WAvg).

(b) Scenario 6: DS (2 features, RAvg) and DT (18 features, WAvg).

Fig. 7. NMAE measurement for shallow-4 and deep-wide networks.

(a) Scenario 7: DS (18 features, RAvg) and DT (2 features, WAvg).

(b) Scenario 8: DS (2 features, RAvg) and DT (18 features, WAvg).

Fig. 8. NMAE measurement for shallow-4 and deep-narrow networks.

evaluated for three different configurations: shallow-4, deep-
wide-6, and deep-wide-10. The source and target models have
the same architecture.

In each plot, we calculate the model loss for the scratch and
the transferred model, and report the transfer gain. Figure 7a
shows the case where the number of features is reduced to 2 in
the target domain, from 18 in the source domain, with varying
prediction tasks. Figure 7b covers the opposite case. As can
be observed, transfer gain increases with the neural-network
depth, and a larger gain is obtained with fewer samples.
The depth increment also helps to reduce the variance of
the transferred model in all cases. More interestingly, transfer
gain in deep-wide-10 is still significant when transferring the
model from only 2 features (Figure 7b). It is necessary to
highlight that the number of features in the source domain
highly influences the results obtained in deeper networks. In
other words, the model that was trained in the source domain
with more features (Figure 7a) has lower variance and reaches
lower loss values using fewer training samples, as compared
to the model trained with fewer features (Figure 7b).

By having 10 layers, the transferred model loss reaches its
minimum even if only few samples are available in the target
domain (e.g., 25). It implies that adding more layers does not
help in improving the transfer gain any further.

Although the deep-wide neural network options offer several

advantages in heterogeneous transfer learning, they come at
the cost of a large number of parameters, and thus a longer
training time. To address this issue, in Figure 8 corresponding
to Scenarios 7 and 8, we investigate the impact of solely
increasing the network depth while keeping the number of
parameters in the same range as the shallow network. Table
II reports the average training time of the shallow, deep-wide,
and deep-narrow neural networks over all cases in Figures 7
and 8. As reported in this table, the training time of the deep-
narrow neural networks is close to that of the shallow one,
while the training time in these networks is shorter than the
deep-wide alternatives. Contrastingly, as can be seen in Figure
8, no significant changes in transfer gain have been observed
as compared to the deep-wide alternatives in Figure 7.

VI. RELATED WORK

In a seminal paper by Yosinski et al. [5], the authors
studied and highlighted the importance of feature transfer,
providing insights that neural networks learn general and
specific latent features, and that the former can be applied
to multiple datasets. Transfer learning is also becoming an in-
creasingly important approach for improving ML performance
in dynamic networks, IT, data center, and cloud environments.
Examples include our previous works on service performance
prediction [2] [3], methods for fault localization in IT in-
frastructures [11] where transfer learning is incrementally
enriching the models, and optimization and configuration of
software systems [12] where transfer learning is used as part
of a framework to learn from the most relevant sources.

Heterogeneous transfer learning, which is the focus of
this paper, has mainly been addressed using mapping-based
approaches [13]–[15], where features in respective source do-
mains are transformed to a common subspace, thereafter used
by a common predictive model. Our work differentiates itself
by using a neural-network approach with layer replacement.
Recent approaches based on neural networks, proposed in [16],
[17], do not investigate feature heterogeneity and the impact
of network depth and size.

VII. CONCLUSION

In this paper, we proposed and evaluated an approach for
heterogeneous transfer learning for improved prediction of ser-
vice performance in networks. The approach enables transfer
of feed-forward neural-network models, and thus knowledge,
in-between network environments with dissimilar feature sets.
We evaluated the approach in multiple heterogeneous scenarios
using realistic data sets obtained from a testbed running two
different network services under varying load, namely a Video-
on-Demand and Key-Value Store service. The obtained results
provide empirical evidence showing a positive transfer gain in
a majority of cases. For example, the knowledge embedded
in a neural network, trained with 18 features in the source
domain, can successfully be transferred to a target domain
with only 2 input features, and vise versa.

Moreover, choosing an appropriate neural-network depth is
crucial to further improve the transfer gain. Deeper networks

are embedding more knowledge which results in a higher
transfer gain in all scenarios, both in the case of having a
large feature set in the source domain and a small feature
set in the target domain, and the other way around. Finally,
training deeper networks with more features in the source
domain has also proven to be an appropriate approach for
reducing variance of the transferred models.

ACKNOWLEDGMENT

This research has been supported by the Swedish Govern-
mental Agency for Innovation Systems, VINNOVA, through
projects ITEA3 AutoDC and Celtic ANIARA, and Swedish
Foundation for Strategic Research, SSF Strategic Mobility.

REFERENCES

[1] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[2] F. Moradi, R. Stadler, and A. Johnsson, “Performance prediction in
dynamic clouds using transfer learning,” in IFIP/IEEE Symposium on
Integrated Network and Service Management (IM). IEEE, 2019, pp.
242–250.

[3] H. Larsson, J. Taghia, F. Moradi, and A. Johnsson, “Source selection
in transfer learning for improved service performance predictions,” in
2021 IFIP Networking Conference (IFIP Networking) and Workshops.
IEEE, 2021.

[4] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer series in statistics New York, 2001, vol. 1, no. 10.

[5] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable
are features in deep neural networks?” arXiv preprint arXiv:1411.1792,
2014.

[6] Z. Wang, Z. Dai, B. Póczos, and J. Carbonell, “Characterizing and
avoiding negative transfer,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 11 293–11 302.

[7] R. Yanggratoke, J. Ahmed, J. Ardelius, C. Flinta, A. Johnsson, D. Gill-
blad, and R. Stadler, “A service-agnostic method for predicting service
metrics in real time,” International Journal of Network Management,
vol. 28, no. 2, p. e1991, 2018.

[8] I. Ari, B. Hong, E. L. Miller, S. A. Brandt, and D. D. Long, “Managing
flash crowds on the internet,” in 11th IEEE/ACM International Sympo-
sium on Modeling, Analysis and Simulation of Computer Telecommuni-
cations Systems, 2003. MASCOTS 2003. IEEE, 2003, pp. 246–249.

[9] J. Ahmed, T. Josefsson, A. Johnsson, C. Flinta, F. Moradi, R. Pasquini,
and R. Stadler, “Automated diagnostic of virtualized service performance
degradation,” in NOMS 2018-2018 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2018, pp. 1–9.

[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[11] Y. Shehu and R. Harper, “Towards improved fault localization us-
ing transfer learning and language modeling,” in NOMS 2020-2020
IEEE/IFIP Network Operations and Management Symposium (NOMS).
IEEE, 2020.

[12] R. Krishna, V. Nair, P. Jamshidi, and T. Menzies, “Whence to learn?
transferring knowledge in configurable systems using beetle,” IEEE
Transactions on Software Engineering, 2020.

[13] X. Shi, Q. Liu, W. Fan, S. Y. Philip, and R. Zhu, “Transfer learning on
heterogenous feature spaces via spectral transformation,” in 2010 IEEE
international conference on data mining. IEEE, 2010, pp. 1049–1054.

[14] J. Zhou, S. Pan, I. Tsang, and Y. Yan, “Hybrid heterogeneous transfer
learning through deep learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 28, no. 1, 2014.

[15] L. Duan, D. Xu, and I. Tsang, “Learning with augmented features
for heterogeneous domain adaptation,” arXiv preprint arXiv:1206.4660,
2012.

[16] Z. Xia, L. Wang, W. Qu, J. Zhou, and Y. Gu, “Neural network based deep
transfer learning for cross-domain dependency parsing,” in International
Conference on Artificial Intelligence and Security. Springer, 2020.

[17] T. Karb, N. Kühl, R. Hirt, and V. Glivici-Cotruta, “A network-based
transfer learning approach to improve sales forecasting of new products,”
arXiv preprint arXiv:2005.06978, 2020.

	Introduction
	Transfer Learning Formulation
	Heterogeneous Transfer Learning
	Heterogeneous feature space
	Model transfer strategy
	Neural network architectures
	Quantifying the transfer gain

	Testbed and Data Traces
	Generating load on the testbed
	Collected data and traces
	Creation of heterogeneous traces

	Results and Discussion
	Feature space heterogeneity
	Shallow vs. deep neural networks in HTL

	Related Work
	Conclusion
	References

