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A B S T R A C T   

In this paper, we propose a generalized wrapper-based feature selection, called GeFeS, which is based on a 
parallel new intelligent genetic algorithm (GA). The proposed GeFeS works properly under different numerical 
dataset dimensions and sizes, carefully tries to avoid overfitting and significantly enhances classification accu-
racy. To make the GA more accurate, robust and intelligent, we have proposed a new operator for features 
weighting, improved the mutation and crossover operators, and integrated nested cross-validation into the GA 
process to properly validate the learning model. The k-nearest neighbor (kNN) classifier is utilized to evaluate the 
goodness of selected features. We have evaluated the efficiency of GeFeS on various datasets selected from the 
UCI machine learning repository. The performance is compared with state-of-the-art classification and feature 
selection methods. The results demonstrate that GeFeS can significantly generalize the proposed multi- 
population intelligent genetic algorithm under different sizes of two-class and multi-class datasets. We have 
achieved the average classification accuracy of 95.83%, 97.62%, 99.02%, 98.51%, and 94.28% while reducing 
the number of features from 56 to 28, 34 to 18, 279 to 135, 30 to 16, and 19 to 9 under lung cancer, dermatology, 
arrhythmia, WDBC, and hepatitis, respectively.   

1. Introduction 

With the development of new technologies, such as industrial internet- 
of-things (IoT), mankind has been pushed to an era of great information 
[1]. Nowadays, due to ubiquitous health IoT and digital healthcare, enor-
mous biomedical datasets have been generated. However, in the face of 
substantial digital information, an urgent challenge is how to acquire ac-
curate information [2]. The biomedical datasets have the characteristics of 
high-dimensionality, different sizes, data noises, and missing values [3]. 
These complex raw data demote the performance of the machine-learning 
algorithms, reducing their accuracy, reliability and generalization capa-
bility to unseen test data. Therefore, developing accurate and reliable 
machine-learning algorithms is a critical issue in auto-detection systems, 
especially for disease detection systems in medical analysis. 

Neural networks (NNs) or deep neural networks (DNNs) are proper 
candidates to solve classification problems. Despite their benefits in a wide 
range of applications in different domains, deep learning is not still a 
panacea for high-dimensional medium/small-sized data. NNs/DNNs have 

many advantages, but they need immense training datasets to establish the 
accuracy of learning classifier [4,5]. Furthermore, NNS/DNNs are not reli-
able when the data is noisy and small. NNs/DNNs are only as good as the 
data they learned from Ref. [6]. While DNNs are recently used to learn 
non-linear feature interactions, the deep structure makes them difficult to 
train [7]. NNs inherently perform feature selection, but the performance 
degrades when datasets are high dimensional and sparse [5]. Considering 
the mentioned barriers, one of the best weapons against the curse of 
dimensionality and leakage of samples in datasets is still the use of tradi-
tional machine learning and feature selection techniques. It can decrease the 
overall training time, enhance generalization, and avoid overfitting. In this 
case, a model trained on a lower-dimensional dataset is computationally 
efficient and more reliable. 

Feature selection plays a remarkable role in raising the performance 
of machine learning in terms of reducing the curse of dimensionality, 
alleviating the current situation of information abundance and knowl-
edge shortage understanding data, increasing the accuracy in the 
learning process, and reducing the complexity and time of building the 
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learning model [8]. Feature selection techniques overcome this problem 
by removing irrelevant and redundant features. Feature selection can be 
expressed as a process of choosing a minimum subset of relevant features 
from the given set of features for use in model construction. Therefore, 
the optimal feature space reduces the cost of model construction while 
enhances the classification performance or remains it relatively the same 
[9]. Three general approaches to solve the feature selection problem are 
filter, wrapper, and embedded methods. Features are chosen by statis-
tical properties in the filter category. By applying the filter approach, 
features can be immediately selected, but the selected features may not 
be the best possible ones. Hence, the performance of the learning models 
is not usually as high as that of the wrapper method [10]. The embedded 
techniques perform feature selection as part of the learning procedure. 
One of the most typical embedded technique is the decision tree algo-
rithm. The wrapper methods evaluate subsets of features according to 
their usefulness to a given predictor. The wrapper technique employs 
optimization algorithms to find an optimal subset of features. A 
remarkable accomplishment of this method is providing the use of 
optimization techniques combined with machine learning. There are 
different approaches to solve optimization problems such as determin-
istic, heuristic, and meta-heuristic searches [11]. 

However, searching for an optimal feature subset in a complex high- 
dimensional feature space is a multi-objective and NP-complete problem 
[12]. Therefore, solving these complex problems cannot be efficiently 
accomplished by deterministic methods and traditional optimization 
algorithms. The wrapper-based meta-heuristic methods are known as 
proper approaches to address the feature selection problem in 
high-dimensional datasets [13,14]. Evolutionary algorithms (EAs) are a 
well-known class of meta-heuristic searches [11]. A dominant advantage 
of EAs, compared with deterministic algorithms, is that they may avoid 
getting stuck in the local optima, although providing a guarantee for this 
is not effortless [15]. A popular group of EAs is the genetic algorithm 
(GA). GA is a type of meta-heuristic optimization method with a long 
history in the artificial intelligence and robotics domain [16]. GA is a 
population-based search technique that mimics the process of natural 
evolution. A genetic algorithm is begun with initializing a population of 
individuals and then performing frequent operations such as selection, 
crossover, mutation, and replacement. All operations of the algorithm are 
repeated until gaining a competent result or a specified iteration [17]. 

Even though EAs are fruitful in solving different problems, some draw-
backs are associated with them in dealing with large search spaces [18,19]. 
Converging to the local optima is more probable for algorithms in the large 
search spaces. In addition, the wrapper-based feature selection combined 
with EAs is computationally expensive. These problems can be mitigated by 
creating an excellent trade-off between exploration and exploitation of the 
search space [20] and parallelization. Parallelizing EAs can improve the 
quality of results while decreasing timing overhead [18,19]. Among the 
parallelization techniques of EAs, multi-population implementations are 
helpful for GAs where there are multiple processors with several memory 
units. This implementation provides a more significant population diversity 
to improve the accuracy of results while reducing the time overhead by 
distributing the computational effort [18]. 

Increasing the initial population size improves the population di-
versity, which is a key point in selecting relevant features. In a multi- 
population strategy, there is a collection of processors, such that each 
processor hosts an independent population of chromosomes and runs a 
serial GA on its population. After several iterations of running GA on the 
processors in the migration phase, which is one of the principal opera-
tors of multi-population GA, each processor selects some of the best 
chromosomes to send to other processors. The migration operator shares 
the best chromosome of each processor with the others, enabling the 
discovery of the best solution in lower iterations while providing higher 
accuracy. In this paper to effectively solve the feature selection problem, 
a novel intelligent GA with an efficient multi-population implementa-
tion is proposed. The proposed feature selection algorithm lead to 
significantly increase the classification accuracy and the reliability of 

decision-making. The proposed GA introduces an adaptive weighting 
operator to enhance the accuracy of the optimum solution. The 
weighting method runs during the process of the genetic algorithm. It 
improves the model generalization and enhances the effectiveness under 
different datasets. The method is evaluated on five medical datasets 
from UCI machine learning repository. 

Despite the fact that wrapper-based feature selection methods are 
more effective in the face of high-dimensional data, they are computa-
tionally expensive and may overfit to the training data. To mitigate these 
challenges, in this paper, our focus is on four significant characteristics 
of a proper feature selection method as: having a good generalization 
capability to unseen data, prevention from overfitting, increasing the 
average accuracy of the classifier for both two-class and multi-class 
datasets, and cost reduction for measuring feature values. The first 
two properties can be satisfied by choosing a proper model validation 
and hyper-parameter set for the classifier in use, utilizing nested cross- 
validation for evaluating the selected model and the subset of features 
(chromosomes) [21]. Furthermore, increasing the accuracy and mini-
mizing the cost are achieved by choosing a subset of essential and unique 
features with high predictive performance along with a fast and efficient 
multi-population novel genetic algorithm. The proposed method, called 
GeFeS, is evaluated on various medical datasets, representing different 
data dimensionality, sizes, and class distributions. The main contribu-
tions of this work are as follows:  

• The proposed GA introduces an adaptive embedded weighting method 
based on a novel operator, called Inverse, to make the algorithm more 
accurate, robust and intelligent. This operator is used during the process 
of the GA to generalize the algorithm for different numeric datasets.  

• GeFeS integrates the nested cross-validation into the GA process for 
model validation. An extensive analysis is performed on different 
medical datasets to evaluate the proposed method. The obtained 
results indicate that GeFeS is superior to other methods in terms of 
the optimum number of features and the classification average ac-
curacy under different sizes of numerical two-class and multi-class 
datasets while carefully tries to avoid overfitting. 

• The proposed method creates an excellent trade-off between explo-
ration and exploitation of search space by creating intelligence mu-
tation and crossover operators. These intelligent mutation and 
crossover operators are proposed, which offer a good trade-off be-
tween exploration and exploitation of the search space. This new 
genetic algorithm efficiently escapes from the local optima. 

• An efficient parallel environment is employed, which significantly en-
hances the performance of GeFeS in terms of accuracy and computa-
tional time. 

The rest of the paper is organized as follows: Section 2 covers the state-of- 
the-arts in the area. Section 3 presents GeFeS: the proposed GA-based 
feature selection. Section 4 describes the experimental designs of GeFeS. 
Section 5 evaluates the proposed method and presents the experimental 
results. Finally, Section 6 discusses the findings and Section 7 concludes the 
paper. 

2. Related work 

Currently, a massive amount of data with hundreds of features is 
produced by the leading experimental techniques in biology as well as 
the other domains. This vast amount of data comes with many irrelevant 
and redundant features. Moreover, either medium or small sample sizes 
with the high dimensionality of the features is still one of the main issues 
in medical datasets. On the other hand, data mining methods tend to 
over-fit the data, which leads to poor generalization. Therefore, there is 
a need to find an optimized and smaller set of features while avoiding 
overfitting to increase the accuracy of making decisions and reducing 
the cost [22]. As will be reported in this section, there are various studies 
focusing on the diagnosis tasks on the medical datasets by applying 
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different feature selection methods. 
Feature selection methods are generally presented in three classes 

depending on how the selection algorithm is combined with the model 
building. The classes are divided as filter, wrapper, and embedded tech-
niques. Wrappers are significantly useful when the curse of dimensionality 
becomes a considerable challenge. Although this method can be computa-
tionally expensive and may have a risk of model overfitting, these issues can 
be mitigated by a reliable optimization algorithm and an efficient imple-
mentation. This section briefly summarizes some classification and feature 
selection methods based on (deep) neural networks and some traditional 
wrapper, filter, and hybrid feature selection techniques which have been 
tested on UCI Wisconsin diagnostic breast cancer (WDBC) [23], arrhythmia 
[24], dermatology [25], hepatitis [26], and lung cancer [27] datasets. 

Xu et al. [28] proposed a hybrid method to improve the performance of 
heart arrhythmia classification by selecting relevant features from ECG 
signals and applying deep neural networks for classification. The number of 
hidden nodes were set to 25 per layer, and the networks had a varied 
number (2–4) of hidden layers. They employed the arrhythmia dataset from 
UCI to test their method. Since the dataset is highly imbalanced, the fifteen 
classes representing different kinds of heart arrhythmia are merged into one 
class, called Abnormal. The obtained best accuracy across 10-fold 
cross-validation by NNs only, DNNs only, FDR + DNNs, and PCA + DNNs 
were 82.22%, 81.42%, 82.96%, and 75.22%, respectively. Dutta et al. [29] 
presented a classification method for medical data mining. This method 
applies the firework algorithm (an evolutionary algorithm) in the training of 
multi-layer perceptron. The classification was performed on five medical 
datasets from UCI machine learning repository such as WDBC, lung cancer, 
kidney, and heart. The obtained testing accuracy based on a 10-fold 
cross-validation for WDBC and lung cancer data were 95.53% (±1.45) 
and 66.71% (±4.72), respectively. A. Saygili [30] proposed a survey on 
different classification and diagnosis prediction methods for the breast 
cancer. Several classifiers from Weka were applied on UCI WDBC dataset. 
One of the best accuracies, across 10-fold cross-validation, was obtained by 
multi-layer perceptron (98.41%). Jadhav et al. [31] presented a method 
based on a modular neural network to classify arrhythmia diseases. The 
experiments were performed on the UCI arrhythmia dataset, and a varying 
number of hidden layers (1–3) are used to construct the proposed neural 
network. The obtained testing classification accuracy was 82.22% when the 
Modular neural network (MNN) network with one to three hidden layers 
was utilized. Kumar et al. [32] proposed a dual-stage approach that com-
bines machine learning and computer vision to detect different types of 
dermatology diseases. The method has used maximum entropy model and 
artificial neural networks for the feature extraction phase. Then it has uti-
lized some classifiers such as kNN, decision tree, and neural network to 
classify the subjects. The UCI dermatology dataset has been used, and the 
system obtained an accuracy of up to 95.00%. Sun et al. [33] presented a 
collaborative deep learning method to make a clinical decision on medical 
datasets. The approach has presented neighbor-based and latent 
feature-based CF methods to diagnose diseases, and in order to extract the 
latent features a discriminative restricted Boltzmann machine has been 
proposed, where the deep learning was adopted to analyze the clinical data. 
The best-obtained accuracy and F1-score on UCI dermatology dataset were 
96.89% and 0.44, respectively. Panthong et al. [34] proposed a wrapper 
feature selection method for dimension reduction that works based on an 
ensemble learning algorithm. This work utilizes sequential forward selec-
tion (SFS), sequential backward selection (SBS), and optimize selection 
(evolutionary) based on ensemble algorithms. The experiments were con-
ducted with several UCI datasets, and the best accuracy is obtained on lung 
cancer (87.50%) and dermatology (98.36%) datasets. 10-fold 
cross-validation is applied to evaluate the model. Zainudin et al. [35] pro-
posed a hybrid feature selection algorithm as a combination of ReliefF with 
the differential evolution methods. In this study, the generation size and 
population size were adaptively determined from the number of features 
from ReliefF. The achieved kNN classification accuracies for the UCI lung 
cancer and dermatology datasets were 66.70% and 97.60%, respectively. 
10-fold cross-validation was used to validate the performance of the 

method. Wan et al. [36] proposed a feature selection algorithm based on a 
modified binary-coded ant colony optimization algorithm (MBACO) in 
cooperation with the genetic algorithm. The method includes two models, 
which are the visibility density model (VMBACO) and the pheromone 
density model (PMBACO). In VMBACO, the solution obtained by GA is 
utilized as visibility information. On the other hand, in PMBACO, the so-
lution achieved by GA is used as initial pheromone information. On the 
other hand, in PMBACO, the solution obtained by GA is used as initial 
pheromone information. The obtained classification accuracy for the UCI 
dermatology dataset was 95.16% and 94.64% for the two proposed ap-
proaches. The performance estimation of classifiers was done by choosing 
half of the data as training data, and the second half as testing data. Zhao 
et al. [37] proposed a feature selection method based on potential entropy 
evaluation criteria (FMPE). This method takes the distribution of the data 
into consideration when measuring the importance of the feature. The kNN 
classification accuracy of 98.08% is obtained on UCI dermatology dataset 
while utilizing 10-fold cross-validation. Gu et al. [38] used a very recent 
particle swarm optimization variant, known as a competitive swarm opti-
mizer (CSO) to solve high-dimensional feature selection problems. This 
work adapted the CSO, which was originally developed for continuous 
optimization, to perform feature selection. It introduced an archive tech-
nique to reduce computational cost. However, it used the kNN classifier with 
a constant hyper-parameter (k = 5) to test the effectiveness of the proposed 
algorithm. It also used the average error rates of 10-fold cross-validation on 
training data as the fitness function. The obtained average error rate was 
0.3240 on UCI arrhythmia dataset. Vinh et al. [39] proposed a feature se-
lection method based on the normalization of the mutual information 
measurement. Their method was derived from the max-relevance and 
min-redundancy (mRMR) approach. Based on their claim, they could 
eliminate the domination of relevance or redundancy. However, they ob-
tained kNN classification accuracy of 65.47% on the UCI arrhythmia dataset 
and 97.18% on WDBC data. The results show that the classification accuracy 
is significantly reduced by increasing the data dimensionality. Rao et al. 
[40] presented a feature selection algorithm based on the bee colony and 
gradient boosting decision tree. The approach utilized the bee colony 
optimization technique to identify the informative features, and achieved 
global optimization of the inputs that obtains from the decision tree. The 
proposed method was applied on several public datasets such as UCI WDBC, 
and the model performance was evaluated by 10-fold cross-validation. They 
claimed that their method effectively decreased the dimensions of the 
dataset and obtained superior classification accuracy using the selected 
features (average 92.38% and max 97.90%). Lim et al. [41] extended 
Bandler–Kohout subproduct to interval-valued fuzzy sets, introduced a 
weight parameter in the BK subproduct-based inference engine, and 
developed a fuzzification method that is able to fuzzify the input data and 
train the inference engines. The proposed algorithm was evaluated on the 
WDBC dataset and obtained 95.26% classification accuracy based on 5-fold 
cross-validation. Zheng et al. [42] developed a system for breast cancer 
diagnosis based on feature extraction using k-means and SVM (K-SVM). The 
proposed methodology improves the accuracy to 97.38% based on 10-fold 
cross-validation when tested on the WDBC dataset, and six features are 
extracted from the 32 original features for the training phase. Chen et al. 
[43] proposed a system for concurrent parameter optimization and feature 
selection for SVM based on the parallel time-variant particle swarm opti-
mization (PTVPSO). The classification accuracy of 98.44% is obtained when 
tested on the WDBC dataset. Saez et al. [44] proposed mutual information 
(MI) between features as a weighting factor for the k-nearest neighbor 
classifier. The obtained classification accuracy for the WDBC dataset was 
96.14%, and the performance estimation of classifiers was done by means of 
3 runs of a 10-fold distribution, optimally balances stratified 
cross-validation, averaging its test accuracy result. Oh et al. [45] proposed a 
hybrid genetic algorithm with embedded devised local search operations. 
They claimed that the hybridization method creates two excellent effects: a 
notable improvement in the final performance; and the acquisition of 
subset-size control. Experiments conducted on various standard datasets 
indicated that the proposed hybrid GA is superior to both a sequential search 
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algorithm and a simple GA. The method obtained the classification accuracy 
of 94.40% on WDBC dataset. Islam et al. [46] presented a novel modality for 
the prediction of breast cancer. They introduced the Support Vector Ma-
chine and k-nearest neighbor, which are the supervised machine-learning 
techniques for breast cancer detection by training its attributes. The pro-
posed system used 10-fold cross-validation to an accurate outcome. The 
techniques achieved the accuracy of 97.14% by applying k-nearest neigh-
bors on the WDBC dataset. 

3. GeFeS: generalized feature selection algorithm based on 
parallel genetic algorithm 

Previous literatures addressed the importance of selecting relevant fea-
tures in biomedical and biological problems and illustrated the state-of-the- 
art methods [9,18,19]. The process of wrapper-based feature selection is 
tied to the performance of the classification model. Feature selection is 
based on the use of optimization methods and various search strategies such 
as genetic algorithm, hill climbing, and simulated annealing. A well-studied 
variant of randomized optimization methods and search strategies are 
evolutionary search algorithms (e.g., GA) that may avoid falling into locally 
optimal solutions. While this is an advantage, on the downside, the 
wrapper-based feature selection combined with randomized search strate-
gies is computationally expensive when the data volume increases. 
Furthermore, the wrapper-based feature selection may lead to the selection 
of features that are biased and create an overfitting issue. 

In this section, a reliable feature selection method based on a parallel 
new intelligent genetic algorithm is proposed to enhance the classifi-
cation performance under different sizes of medical multi-class and two- 
class datasets. The main objective of the proposed approach is to tackle 
the wrapper-based feature selection challenges as: the tendency to 
overfitting and expensive computations while increasing the average 
accuracy of the classifier. We design an intelligent weighted genetic 
algorithm with the multi-population implementation that efficiently 
reduces the computation costs and escapes from the local optima to 
reduce the number of features while maximizing the accuracy of the 
classifier. Furthermore, it efficiently adapts to different dimensionality, 
sizes, and class distributions of numeric datasets. 

3.1. Overview of GeFeS 

We design an improved parallel genetic algorithm within the wrapper 
framework to solve the feature selection problem. Algorithm 1, Algorithm 2, 
and Fig. 1 demonstrate the progress of the proposed method. GeFeS in-
creases the classifiers’ accuracy by carefully selecting the best subset of 
features (chromosome). Through the cooperation of a proper optimization 
algorithm, a wrapper framework can achieve two main factors that affect 
the generalization ability of a classifier: selecting an optimal feature subset 

and finding the appropriate model learned from the selected features. The 
proposed framework makes the feature selection algorithm more accurate, 
efficient, and generalized. The multi-population strategy is utilized to par-
allelize computation while increasing accuracy. In the multi-population 
implementation of genetic algorithm, as shown in Fig. 1 (b), there are 
several processors that each processor separately runs a modified GA with 
its initial random population. Our proposed GA starts with creating the 
initial population of chromosomes, where each chromosome represents a 
subset of features in the dataset. Then the “goodness” of each chromosome 
(i.e., fitness value) is evaluated using kNN classifier, known as chromosome 
evaluation operator. It is worth mentioning that kNN is only a component to 
evaluate the quality of the candidate chromosomes. The parameters of the 
kNN model are carefully tuned using nested cross-validation. kNN can be 
replaced with other classifiers in the GeFeS architecture. In the current 
study, kNN is utilized due to the simplicity of the model construction and the 
lower complexity of its linear implementation to reduce the execution time. 
It helps to make fast decisions, especially for applications with the imme-
diate need for model construction. 

The biggest challenge here is to select a proper GeFeS model with a best 
chromosome set, evaluated using kNN classifier. The aim of the proposed 
model selection is to obtain a model that is simple and fits a given dataset 
with competent average accuracy on two-class and multi-class datasets, 
meanwhile preserving a good generalization capability to unseen data, 
which is described with more details in Subsection 3.2.2. Afterwards, the 
algorithm selects some chromosomes using the selection operator to 
improve and pass to the next generation. The improvements are made by 
using intelligent crossover, intelligent mutation, and a novel operator called 
inverse. In our intelligent crossover (IC), we create various combinations of 
chromosomes, and in our intelligent mutation (IM), we make random 
changes in some of them. The proposed operators provide an excellent 
trade-off between exploration and exploitation of the search space. While 
these changes are monitored, the inverse operator investigates the moni-
tored genes more accurately. This operator creates the weighting method, 
which is based on the behavior of the problem during the process of two 
previous operations. The inverse operator efficiently updates the weights of 
features during the program. After the inverse operator, the replacement 
operator is applied to replace the improved chromosomes with the corre-
sponding chromosomes in the first generation. Since we use the parallel 
method, the algorithm examines if it is the time for migration of the chro-
mosomes between the processors. In migration time, the best chromosome 
of each processor is replaced with the worst one of the next processor, and 
this cycle is repeated until reaching a competent result or a determined 
iteration. Several phases of the proposed algorithm are described with more 
details in Subsection 3.1. 

Algorithm 1. The proposed feature selection (GeFeS)  
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Algorithm 2. The proposed genetic algorithm (IGA)   

3.2. Performance evaluation of GeFeS 

To evaluate the performance prediction of the proposed GeFeS 
framework, we use the K-fold cross-validation (K-FCV) strategy on top of 
the GeFeS. Fig. 1 (a) gives a demonstration of the performance evalua-
tion. In each experiment set, the dataset is divided into ten separate 
subsets, and in each round of 10-fold cross-validation, one subset is held 
out for testing. The remaining sets are used for the training. In each 
round of K-FCV, the best chromosome chosen by the GeFeS model based 
on the training subset is utilized to build a kNN classifier and the con-
structed model is tested using the test dataset to evaluate the GeFeS 
feature selection method coupled with kNN classifier. 

The number of the neighbors (k), for the kNN classifier, in each round 
of the 10-FCV is set to be the most frequently chosen k for the best- 
chosen chromosome retrieved from the fitness evaluation function. 
The prediction performance of the model is then evaluated based on the 
held-out set in each round of cross-validation using accuracy criteria. 
The final performance is achieved by averaging the accuracy of all the 
10-FCV. 

3.3. Search strategy description 

The search strategy of GeFeS is based on the genetic algorithm (GA). 
GA alternatively works on two types of spaces: genotype (coding) and 
phenotype (solution). One of the pivotal issues of GAs is to map the 
phenotype space to the genotype one, i.e., representing the genes in a 
chromosome. A chromosome points to a certain-length string where all 
the genetic information of an individual is kept. This is the encoding 
phase in GA. An improper encoding breeds a poor GA performance. In 
addition, one dominant problem associated with encoding is that some 
chromosomes correspond to illegal or infeasible solutions for a given 
problem. This may become adequately intense for constrained and 

combinatorial optimization problems. Illegality takes place when a 
chromosome does not represent a solution in the related space. The 

problem can be mitigated by repair techniques that usually converts an 
illegal chromosome to a legal one. Infeasibility refers to the situation 
that a solution decoded from a chromosome lies outside the feasible area 
for the given problem. This issue can be handled by several methods that 
one of them is forcing genetic algorithms to approach an optimal solu-
tion from both feasible and infeasible areas [47]. Choosing the right 
scheme for encoding genes is a crucial task. Encoding mainly relies on 
the type of problem. Among the available encoding methods such as 
binary, integer, real-valued, ordinary, and permutation, GeFeS utilizes 
the binary encoding. The reason is that the feature selection should 
select a number of features from all available features in the complete 
dataset, and this can be perfectly represented by a binary encoding. 
Based on this encoding method, GeFeS is efficiently able to convert a 
complicated phenotype space to a one-dimensional vector that can 
represent a solution in legal and feasible areas. As it will be explained, 
GeFeS seeks all possible solutions in the search space to find the optimal 
solution. Several phases of the proposed GeFeS is described in more 
details as follows. 

3.3.1. Representation of candidate solutions 
To specify data structures in GA, the space of feasible solutions must 

be mapped onto the space of encoded solutions that is a representation 
of a GA candidate solution to the optimization problem. In GA, chro-
mosomes represent the candidate solutions, and several chromosomes 
form a population. Several encoding schemes currently used in GA such 
as binary, integer, and real-valued encodings. The selection of encoding 
is depended to the optimization problem. Regarding the essence of the 
feature selection problem, binary encoding is used in this paper. The 
initial population consists of some chromosomes; each of them carries a 
possible solution to the problem and is formed of several genes. Each 
gene shows an attribute of the intended chromosomes, and the forma-
tion and determination of these attributes is the key task in evolutionary 
algorithms. The proposed GA operates on a binary search space, and the 
chromosomes are bit strings. Fig. 2 (a) visualizes an initial population of 
this study. As can be seen in Fig. 2 (b.i), for a binary chromosome 
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employed in this work, the gene value ’1′ indicates that the corre-
sponding feature is selected while the value ’0’ means that the feature is 
not selected for passing to the chromosomal evaluation phase. The gene 
width equals the number of features in the dataset. Thus, the initial 
population is a Np × Nf matrix (IPNp×Nf ) where Np is the population size 
and Nf is the chromosome width. Typically, each bit randomly takes the 
value one or zero while the bits associated with the more relevant fea-
tures take the value one with a higher probability. Considering an 
example can be helpful to get a clear vision of the population and 
datasets in this study. Suppose that the original dataset has four columns 
of features and five rows of instances (Fig. 2 (b.ii)). Therefore, the length 
of each chromosome in the population equals four. Now, suppose that 
the selected chromosome is as same as shown in Fig. 2 (b.i), it also shows 
the indexes of the selected features. Hence based on the proposed 
chromosome, the first and the last features are selected from the original 
dataset to shape the new datasets (Fig. 2 (b.iii), which is an example of 
train 2 in Fig. 1 (c). 

3.3.2. Chromosome evaluation 
A fitness function is used to evaluate solutions (chromosomes) pro-

duced by a round in GeFeS. The probability of obtaining an optimal 
feature subset for classification can be increased by employing a proper 
fitness function for the feature selection. 

3.3.2.1. Calculating the fitness evaluation function. One of the chal-
lenging stages in evolutionary algorithms is to define a proper fitness 
evaluation function since it provides the main link between a particular 
problem and the evolutionary algorithm. The fitness function of a 
chromosome is calculated in each iteration to decide if any improvement 
is observed in the solutions or not using the chromosome in question. In 
other words, the fitness function determines how to fit a chromosome is 
(the ability of a chromosome to compete with the others). Finally, in 
each step, the chromosome with the highest fitness value is considered 
as an optimal solution. We employ kNN classifier in a nested cross- 
validation routine to evaluate the effectiveness of chromosomes while 
tuning the kNN model parameters. kNN is very simple in 

implementation while works incredibly well in practice [22]. In addi-
tion, kNN is capable of adapting to various types of data by choosing a 
proper distance measure and builds the model in a short time with a low 
prediction bias. In the kNN classifier, an object is classified by a majority 

Fig. 1. Overall procedure of the proposed method (GeFeS).  

Fig. 2. A sample of an initial population (a) and a driven dataset based on a 
chromosome (b). 
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vote of its neighbors. The kNN solves the classification problem by 
searching the shortest distance between the test data and the training set 
in the feature space. In this paper, the distance (D(xtest , xi)) measure is 
based on the Euclidean distance, given in Equation (1): 

D(xtest , xi)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑Nf

j=1
EDM(test, i, j)

√
√
√
√ (1)  

where xtest is an instance from the test set, xi is an instance from the 
training set, and Nf is the number of features. The EDM function com-
putes the Euclidean distance with the domain as the dataset and the 
range as the real numbers (EDM: D→R). This EDM function can be seen 
in Equation (2). 

EDM (test, i, j)=
{

0 if ch[s][j] = 0
(xtest[j] − xi[j])2 if ch[s][j] = 1 (2)  

where ch[s][j] is the j-th genom of the s-th chromosome in the initial 
population. 

The evaluation of the chromosome j must be performed by an 
objective function (f(j)). The classification average accuracy (a avg.) and 
the number of selected features (Nsf ) are the two main criteria in our 
fitness function. As given in Equation (3), the chromosomes with a 
smaller number of features (1/Nsf

) and higher a avg. will have a larger 

fitness value. Considering that both a avg. and 1/Nsf 
are real numbers 

between zero and one, the fitness value will be between zero and two 
( 0 ≤ fitness ≤ 2). 

f (j)= a avg. + 1/
Nsf

(3) 

Accuracy is calculated as the sum of correct classifications divided by 
the total number of classified objects [48]. The overall GeFeS perfor-
mance and the chromosome fitness accuracy in the fitness function has 
been evaluated by the average classification accuracy (aavg.) as shown in 
Equation (4). 

a avg. =
∑l

i=1

(
tpi + tni

tpi + tni + fpi + fni

)/

l (4)  

where l is the number of classes and tpi, tni, fpi, and fni are true posi-
tive, true negative, false positive, and false negative, respectively. 

3.4. Model validation for chromosome evaluation 

One of the main goals of the proposed GeFeS algorithm is to select a 
proper feature set (chromosome) to construct a prediction model, where 
selected features are evaluated by the kNN classifier. The model selec-
tion aims to obtain a model that is simple and fits a given dataset with 
satisfactory accuracy, meanwhile preserving a good generalization 
capability to unseen data [22]. When kNN is used inside the fitness 
evaluation function, its model parameters must be chosen carefully in 
order to build an effective classifier for evaluating the chromosome in 
question. An important issue in the model selection is a bias-variance 
tradeoff. Bias associates with the ability of the model to approximate 
the data while variance indicates the model stability in response to new 
training examples. A “biased” model generalizes well but does not fit the 
data perfectly (“under-fitting”) while a “high-variance” model fits the 
training data well to the detriment of generalization (“overfitting”). 
There is normally a tradeoff between bias and variance, and many 
learning algorithms control this tradeoff, for instance, by a regulariza-
tion parameter that penalizes complex models in many types of linear 
modelling approaches, or the number of neighbors (k) value in kNN 
[49]. Since an algorithm like kNN does not precisely assume anything 
particular about the distribution of the data points, it has a low bias. In 
other hands, kNN has a high variance because it can easily change its 

prediction in response to the composition of the training set. kNN can 
properly fit the training data if k is selected correctly, but may not 
generalize truly to new examples. One of the eminent solutions that 
enhances this issue is choosing a proper validation method to validate 
the performance of the classification model. One of the outstanding 
validation methods is nested cross-validation [21,22]. This technique 
splits data to K folds in the outer loop and assumes one fold as the 
validation set and the remaining as the training set. The training set is 
passed to the inner loop. The inner loop uses the LOOCV to evaluate the 
received dataset for different k values. Thereby in the inner loop, one of 
the instances is chosen as the validation set, and the rest are considered 
as the inner training set. By this technique, in addition to utilizing the 
maximum training set, we also use the maximum validation set without 
having a common member between the two sets. After the inner loop 
was executed for all desired neighbors (k), the algorithm passes the best 
k to the outer loop. Then, the next segment is chosen as the new vali-
dation set, and all the above actions are repeated again, and these pro-
cedures are executed K times. Fig. 3 describes an example of a 4-fold 
nested cross-validation function in one round. 

In this study, as can be seen in Fig. 1 (c), the predictive performance 
of the model built by the kNN algorithm for fitness evaluation function is 
estimated by a nested cross-validation strategy, which consisted of an 
outer K-fold (K-FCV) and an inner leave-one-out cross-validation 
(LOOCV) for hyper-parameter selection. In K-FCV, the dataset is divided 
into K separate subsets, and one subset is held out at a time as the 
validation set, while the remaining data forms the training set used to 
build the model for predicting the held-out samples. The hyper- 
parameter selection is performed for each round on LOOCV using the 
training set. In this regard, the k value of the classifier is dynamically 
tuned in the inner cross-validation loop. Selecting an appropriate hyper- 
parameter can avoid the undesirable optimistic bias and high variance in 
the model selection. In this work, we choose the stable, most frequent k, 
chosen by the fitness function, in each fold by investigating the number of 
successful neighborhoods. It is illustrated that the nested CV is stable 
and properly fits our algorithm. 

Fig. 3. An example of 4-fold nested cross-validation, for one round.  
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3.4.1. Selection operator 
The basic idea of the selection operator is to give preference to better 

chromosomes and allow these chromosomes to pass their genes to the 
next generation. Two pairs of chromosomes (parents) are chosen based 
on their fitness scores. Chromosomes with high score have more chance 
to be selected for reproduction (producing offspring). The selection 
operator in GeFeS is the tournament technique with three members. It 
means that in every cycle, three chromosomes are randomly selected, 
and then the best one is chosen for the next generation. 

3.4.2. Exploitation strategy (intelligent crossover operator) 
Crossover and mutation are two leading operators of GA that impact 

the fitness value. Crossover is applied to each pair of selected parents 
with the responsibility of recombination. Crossover is the most potent 
recombination operator in GA. It escapes from being stuck in the local 
optima by exploring new solution regions in the search space. Crossover 
randomly exchanges genes between two chromosomes. The operator is 
applied on a random set of chromosomes that are selected based on a 
probability, called the crossover rate (Pc) [50]. Fig. 4 (a) shows an 
example of a typical crossover operation in GA. 

For binary encoding, several types of the crossover have been pre-
sented in the literatures such as single-point, multi-point, and uniform. 
In this study, the exploitation operator is created based on a multi-point 
crossover that intelligently escapes from the local optima. The proposed 
operator is a two-point crossover, acting as follows: first, two parents are 
chosen from the population based on the crossover rate (Pc). Second, 
two random numbers, like r1 and r2 (indexes of the genes), are gener-
ated such that r1 is greater or equal to one and r2 is lesser or equal to the 
number of features (r1 ≥ 1, r2 ≤ Nf ). Afterwards, the values of these two 
genes are swapped. The notable advantage of our crossover operator is 
that the crossover rate adaptively changes during the process of GA. This 
change occurs whenever the convergence of the solutions is not 
improved for some successive iterations. In other words, the value of Pc 
adaptively changes to escape from the local optima. To fulfil this goal, Pc 
is set to 0.80 at the beginning so that exploitation is performed for as 
long as the algorithm converges. When there is not any improvement of 
convergence in the last five iterations, the proposed algorithm reduces 
the crossover rate by 0.2 and increases the mutation rate (Pm) by 0.2. 
This parameter tuning continues until reaching an improvement of 
convergence. From this point, the algorithm increases the crossover rate 
by 0.2 and reduces the mutation rate by 0.2 in every five iterations until 
reaching the initial rates of crossover (i.e., 0.8) and mutation (i.e., 0.2). 
It is worth mentioning that the crossover and mutation rates never 
become less than 0.2 and more than 0.8. Increment of Pm and syn-
chronously decrement of Pc shifts the algorithm state from exploitation 
to exploration. From the perspective of local search, exploitation probes 
a promising limited region of the search space with the aim of improving 

the current solution. Whereas from the aspect of global search, explo-
ration probes a much larger region of the search space with the aim of 
finding other promising solutions that are yet to be found [51]. 

3.4.3. Exploration strategy (intelligent mutation operator) 
The main idea of mutation is to insert random genes in offspring to 

keep the diversity in the population. It is performed to prevent the 
premature convergence. Mutation randomly modifies the value of genes 
to obtain a significantly distinct phenotype of the offsprings compared to 
its parents. This operator occurs based on a probability, called mutation 
rate (Pm) [50]. Mutation may occasionally reverse the genes (i.e., from 
0 to 1 or vice versa). This operator explores the search space and dis-
covers a new exploration region to escape from the local optima. Fig. 4 
(b) shows an example of applying a typical mutation on a selected 
chromosome (chi). 

In the proposed approach, the type of mutation and Pmare adaptively 
adjusted by the algorithm. Depending on the state of the algorithm, the 
proposed mutation is intelligently applied in different forms. First, the 
bit flipped (one-point) mutation is performed in our algorithm with the 
rate of 0.20 until the algorithm appropriately converges to the optimal 
solutions. In this type of mutation, a number is randomly generated 
between 1 and the number of features (Nf ) and assigned in the varia-
ble r1. Then, the corresponding value of the r1-th gene in the selected 
chromosome is reversed. Similar to our crossover process, Pm increases 
when the algorithm does not converge further for several iterations. 
After arising the first improvement in the convergence process, the 
proposed mutation returns to its initial state. The movement to the 
initial state enhances the crossover to exploit the space better. 

In the mutation operation, an Nf -tuple vector (Wbest) is created and 
initialized to zero (Fig. 4 (c.i)). Then the fitness function is computed for 
the chromosome that the mutation operator has been run on its r1-th 
gene. The goodness of the chromosome is re-evaluated with the new 
value of fitness function. If the new value of the fitness function has a 
significant improvement, the value of the corresponding cell r1-th gene 
in Wbest is converted to one (Fig. 4 (c.ii)). This procedure continues until 
the end of the mutation operation, and Wbest is updated as needed. 

3.4.4. Inverse operator 
One of the effective factors in the process of improving convergence 

in evolutionary algorithms is the feature weighting system. In our 
method, we increase/decrease the probability of the desired features 
and try to do a precise search on the possible composed cases of these 
features. As a result, the intelligence of our work increases, and the 
exploration and exploitation actions are conducted with a better 
knowledge on the search environment. Creating a comprehensive 
method that can perform a weighting operation for various datasets is a 
vital and valuable task. In this work, we create a comprehensive 

Fig. 4. Examples of a typical crossover (a), a typical mutation (b), the proposed vector Wbest (c), and the proposed inverse (d).  
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weighting method that is embedded in the genetic algorithm process. 
The weighting operation in our algorithm consists of two main phases: 
1) recognizing the effective positives or negatives features; 2) expressing 
the presence or absence of the recognized features. These actions are 
performed continuously throughout the execution of the program and 
applied to all generations. Therefore, the features’ weights adaptively 
change depending on their impact on the chromosomes. This weighting 
system enhances the promotion of the final solution. 

The first part, recognizing the effective feature, is done in the pro-
posed mutation operator. As mentioned in the mutation phase, one of 
the gens (sth) is randomly modified, and our algorithm investigates the 
effect of removing or adding this feature to the desired chromosome. If 
this improvement (γ) is more than Equation (5), the desired gene is 
marked in a vector which identifies the effective features (Wbest [s] = 1). 

( abest − aworst )

/100 (5) 

In the second phase, some of the chromosomes are randomly selected 
in the inverse function and then the corresponding gens with the 
effective features in Wbest are reversed. Fig. 4 (d) shows an example of the 
inverse operator. Wbest and the selected chromosome for performing the 
inverse operation are shown in Fig. 4 (d.iv). The result of performing the 
inverse on the selected chromosome is shown in Fig. 4 (d.v). 

3.4.5. Replacement operator 
Replacement operator performs the process of creating the next 

generation of individuals by removing or replacing some offsprings or 
parent individuals. After applying the exploitation and exploration op-
erators, a new generation of chromosomes is produced. First, the fitness 
value of offspring, which have been reproduced so far, is calculated by 
the evaluation function. Then, the replacement is done based on the 
fitness value. In GAs, offspring usually replaces the old population using 
the steady-state or elitism replacement strategy and establishes a new 
population in the next generation. In our algorithm, the steady-state 
technique is used for the replacing process. The responsibility of the 
proposed operator is to compare each chromosome in the current pop-
ulation with its corresponding one in the last generation. If the accuracy 
of a chromosome in the current generation becomes better than its 
corresponding one in the last generation, the new chromosome is 
replaced with the old one. 

3.4.6. Migration operator 
The mission of the migration operator is to enable processors to ex-

change their best genetic materials (migration rate) at fixed intervals 
(migration gap). The migration occurs on every migration gap. In this 
paper, the migration gap is set to two generations. During the migration 
process, each processor selects and sends its best chromosomes to the 
next processor in a ring. Meanwhile, the worst chromosomes in each 
processor are replaced with the best ones received. This exchange hap-
pens with a fixed migration rate. In GeFeS, the migration rate is set to 
one chromosome. 

3.4.7. Termination strategy 
In general, the evolutionary process operates many iterations until 

the termination condition is met. Our termination criteria are a combi-
nation of the maximum number of iterations (nitr) and the ceiling ac-
curacy (aceil). Our algorithm stops when either the iteration reaches its 
maximum number or the ceiling accuracy is achieved. GeFeS calculates 
the ceiling accuracy during the execution process based on Equation (6). 
Based on our experimental observations, our method reaches the best 
convergence before this maximum number of iterations. 

aceil = awf +
(

100 − awf
)
* β (6)  

where awf is the accuracy of GeFeS before performing feature selection 
that is evaluated, in the first step of the algorithm, by kNN and the full 
dataset. β is the improvement rate (0≤ β ≤ 1). GeFeS considers the 

improvement of the average accuracy as much as β percent of awf . In this 
algorithm, β is set to 0.80. 

4. Experimental designs 

4.1. Data description 

Five different biomedical datasets, extracted from UCI Machine 
Learning Repository [23–27], are used to evaluate the system proposed 
in this study. These datasets are commonly used to evaluate 
machine-learning methods for feature selections and classifications in 
medical studies. In this study, the employed datasets can be divided into 
three categories based on the number of features and the number of 
instances presented as small, medium and large. Besides, both two-class 
and multi-class datasets are used to evaluate the performance of the 
proposed method. The most focus of this study is the detection of healthy 
and non-healthy patients (not the highly imbalanced data) in each dis-
ease type. Hence, most of the datasets are set to have two classes, and a 
binary classification scheme is applied throughout the GeFeS model. 

It should be noted that for the UCI cardiac arrhythmia, unhealthy 
classes representing the fifteen classes of different types of heart 
arrhythmia are highly imbalanced. So, it is assumed that all unhealthy 
classes are fit to one class of unhealthy against the normal (healthy) 
class. Therefore, the dataset is set to have two classes. 

In this work, all datasets with different ranges in feature values are 
normalized. Normalization is a part of data preparation for machine 
learning. The goal of normalization is to change the values of numeric 
features in the dataset to a common scale, without distorting differences 
in the ranges of values. GeFeS employs the min-max scaling technique as 
the normalization method in the preprocessing step. GeFeS utilizes the 
min-max scaling to rescale the value of features in the range of [0, 1]. 
Missing values in the datasets are replaced with the mean value during 
the preprocessing phases. Table 1 summarizes the details for each 
dataset used in this study. 

4.2. Experimental setup 

The proposed feature selection algorithm (GeFeS) was implemented 
in Visual C++ using the MPI library for parallelization. Although GeFeS 
works on both shared memory and message passing architectures, it was 
run with MPICH2 on a shared memory structure. The ring topology has 
been used for connections. All implementations and experiments have 
been performed on an Intel Core i7-4770 CPU 3.40 GHz, RAM 16.00 GB, 
running Windows 7 Enterprise (64-bit). Seven cores have been lever-
aged in the parallel implementation. To obtain the average accuracy of 
the classifier for all datasets, the prediction power of the model is 
evaluated by 10-fold cross-validation. 

According to the operational process of parallel evolutionary 
computation algorithm, the results of GA and parallel implementation 
depend on parameter setting to some extent. Fine-tuning of the pa-
rameters could improve the results. The parallel GA parameters are 
indicated in Table 2. 

5. Experimental results 

In this study, we proposed a new parallel genetic algorithm for 

Table 1 
General cases of UCI public employed datasets.  

Name Sample size no. of features no. of classes 

Lung 32 56 3 
Dermatology 366 34 6 
Arrhythmia 452 279 2 
WDBC 569 30 2 
Hepatitis 155 19 2  
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feature selection to improve the accuracy and reliability of kNN classi-
fier, as a sample, by selecting relevant features, minimizing the risk of 
data overfitting. A series of experiments have been carried out to eval-
uate the effectiveness of the proposed method, GeFeS (a generalized GA- 
based feature selection algorithm). We used five different UCI medical 
datasets to test the GeFeS performance. The proposed method has been 
compared with several state-of-the-art studies in the area of feature se-
lection and classification of medical datasets. These studies, which can 
be seen with more details in Section 2, include deep learning [28,33], 
neural networks [29,32], filters [37], hybrids [35,40], and wrappers 
[36,46] feature selection and classification methods for medical data-
sets. Comparisons against the state-of-the-art methods have been per-
formed base on the reported detection accuracy from the literature on 
the same datasets. Besides, the comparison has been performed with 
three well-known traditional feature selection techniques that have been 
implemented in Weka 3.8, an open-source machine learning software 
[52]. The first algorithm is ReliefF, which evaluates the worth of an 
attribute by repeatedly sampling an instance and considering the value 
of the given attribute for the nearest instance of the same and different 
classes [53]. The second one is Cfs, correlation feature selection, which 
evaluates the worth of a subset of features by considering the individual 
predictive ability of each feature along with the degree of redundancy 
between them [53]. The third algorithm is PCA, principal component 
algorithm, which performs a principal component analysis and trans-
formation of the data [53]. 

In this work, we attempted to improve the classification performance 
using feature selection. The prediction power of the model is evaluated 
based on 10-fold cross-validation. The final performance was achieved 
by averaging the accuracy of all the 10-FCV. Table 3 and Fig. 5 illustrate 
that feature selection has enhanced further the classification accuracy. 

To further compare the prediction power of GeFeS algorithm, the 
average accuracy and F-score of all folds have been compared to several 
state-of-the-art feature selection methods. The results are shown in 

Table 4 and Table 5. Classification accuracy is widely used as a single 
measure for summarizing the model performance. Precision is the 
number of correct positive predictions, divided by the total number of 
positive predictions returned by the classifier and the recall counts for 
the number of correctly predicted positives out of all real positives (True 
positives + False negative). F-score is the harmonic mean of the preci-
sion and the recall. F-score tries to capture both properties of the pre-
cision and recall into one measure for assessing the classifiers’ 
prediction power. 

As shown in Fig. 6 and Table 6, we have computed the running time 
spent by GeFeS in serial and parallel implementations on all datasets for 
comparing of the computational time. 

To explore how many features and which features were selected, we 
further conducted an experiment on all five datasets to investigate the 
detailed feature selection mechanism of the GeFeS algorithm. For the 
simplicity in Table 7, we show the selected features through one time 
run of 10-fold CV for hepatitis and dermatology datasets, as two sam-
ples. The original numbers of features of each dataset were 34 and 19, 
respectively. Besides, the frequency of selected features in one run 10- 
fold CV on the hepatitis data can be seen in Table 8. 

In meta-heuristic optimization approaches, determining whether a 
measure quantity converged acceptably in each iteration is an important 
task. In this regard, Fig. 8 shows the convergence of GeFeS for ten folds 
on all datasets. 

6. Discussion 

The proposed wrapper-based feature selection method, GeFeS, has 
given promising results by employing a new intelligent genetic algo-
rithm. In the classification of different diseases under various sizes of 
numeric two-class and multi-class datasets, GeFeS obtained accuracies 
of up to 99.02% and F-measure up to 98.97%. The performance of GeFeS 
was compared with different feature selection methods in order to 
demonstrate its superiority using five medical datasets extracted from 
the UCI machine learning repository. The experimental results on the 
five medical datasets show that GeFeS with the multi-objective optimi-
zation approach outperforms the other methods in terms of the average 
accuracy, F-measure, and the lower number of selected features. We 
compared the performance of GeFeS with several state-of-the-art 
methods whose evaluation protocols are similar to ours. 

Two-class cases: [28] proposed a hybrid feature selection in a 
combination of a DNN, and the accuracy of 82.96% under arrhythmia 
data was reported. We achieved 16% more detection accuracy on 
healthy and unhealthy cases. We obtained 3% more accurate result than 

Table 2 
Parameters used in GeFeS.  

Parameter Explanation Value 

Nproc. no. of processors 7 
Mg migration gap 1 chromosome 
Mr migration rate 2 iterations 
Np  population size 100 
nitr  maximum no. of iterations 100 
IC crossover operator intelligent & adaptive 
Pc  crossover rate 0.20 ≤ Pc ≤ 0.80  
IM mutation operator intelligent & adaptive 
Pm  mutation rate 0.20 ≤ Pm ≤ 0.80  
Pi  inverse rate 0.30 
β  improvement rate 0.80 
rpl replacement steady-state 
k no. of the neighbors in kNN dynamic 
K no. of the folds in CV 10 
Nf  no. of features in dataset 19–279 
Ni  no. of instances in dataset 32–569  

Table 3 
Classification average accuracy (%) of GeFeS with/without feature selection 
(FS).  

Dataset Original Selected 

no. of all 
features 

Accuracy 
without FS 

no. of selected 
features 

Accuracy 
with FS 

Lung Cancer 56 71.87 28 95.83 
Dermatology 34 82.41 18 97.62 
Arrhythmia 279 95.80 135 99.02 
WDBC 30 92.25 16 98.51 
Hepatitis 19 85.06 9 94.28  Fig. 5. Predictive average accuracy of GeFeS with & without performing FS.  
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[29], which proposed a firework algorithm to train an MLP and reported 
the accuracy of 95.53% under the WDBC dataset [40]. presented a 
feature selection based on BCO and gradient boosting decision tree and 
reported the accuracy of 92.80% under WDBC data while we achieved 
5.71% higher accuracy. We gained 1.37% larger accuracy than [46], 
which proposed a feature selection method based on a hybrid GA with 
embedded devised local search operations and reported the accuracy of 
97.14% under the WDBC dataset. 

Multi-class cases: [32] presented a feature selection method based 
on the maximum entropy model and an ANN and reported the accuracy 
of 95.00% under the dermatology data. On the other hand, we obtained 
2.62% more detection accuracy on six classes of diseases. We obtained 
2.46% more accurate result than [36], which proposed a feature selec-
tion based on a modified ACO with a GA and reported the accuracy of 
95.16% under the dermatology dataset [33]. proposed a collaborative 
DNN with a neighbor-based and latent feature-based CF and reported 
the accuracy of 96.89% under dermatology data. We achieved 0.73% 
more accurate detection of different dermatology diseases. GeFeS 
reached the average accuracy of 97.62% under the dermatology dataset 
while a combination of ReliefF with differential evolution method under 
the same dataset [35] reported the best accuracy of 97.60% [37]. 

presented a feature selection method based on FMPE and reported the 
best accuracy of 98.08%. This method reduced the number of features 
from 34 to 29 under the dermatology dataset. We achieved an average 
accuracy of 97.62% while reducing the number of features from 34 to 18 
under the same dataset. 

As can be seen in Table 4, in all five datasets, the accuracy has 
improved dramatically using GeFeS with the feature selection capa-
bility. The average classification accuracies in GeFeS with feature se-
lection compared with GeFeS without feature selection capability have 
been improved by 23.96%, 14.61%, 3.22%, 6.26%, and 9.22% under 
lung cancer, dermatology, arrhythmia, WDBC, and hepatitis, while the 
number of features has been reduced to 28, 18, 135, 16, and 9, respec-
tively. The results reported in Table 4 demonstrated that our feature 
selection method is more robust than the others with regard to classi-
fication average accuracy and the size of applied datasets. As can be seen 
in Table 5, we have also calculated the recall, precision and F-measure to 
further investigate the possibility of class unbalance and its effect on 
accuracy. As shown in Fig. 6 and Table 6, parallel GeFeS needs much less 
CPU time when compared to serial GeFeS. Moreover, as mentioned 
before, the multi-population strategy in parallel implementation has 
increased the accuracy of the algorithm while reducing the CPU con-
sumption time. As shown in Fig. 7, not all features are selected for 
classification after the feature selection on all datasets. For Hepatitis 
dataset, the average number of selected features by GeFeS is 8, and the 
most important features are F5, F6, F8, and F18 which can be found in the 
frequency of selected features of 10-fold CV as shown in Table 8. For 
Dermatology dataset, the average number of selected features by GeFeS 
is 18, and the most important features are F5, F8, F9, F14, F21, F22, F28, 
and F33, which can be found in the frequency of selected features of 10- 
fold CV as shown in Fig. 7 (b). This figure guides the health applications 
designers to find the most essential features in each dataset. The curves 
of Fig. 8 thoroughly show that the convergence of GeFeS to the optimum 
solutions, in terms of accuracy of kNN, is ascending and robust for all 

Table 4 
The average accuracy (%) of GeFeS vs. state-of-the-art methods.  

Datasets Methods 

GeFeS ReliefF Cfs PCA [28] [29] [32] [33] [35] [36] [37] [40] [46] 

Lung 95.83 87.50 87.50 78.12  66.71   72.2     
Dermatology 97.62 95.62 96.72 92.13   95.00 96.89 97.60 95.16 98.08   
Arrhythmia 99.02 67.66 67.92 65.05 82.96         
WDBC 98.51 93.67 95.78 83.85  95.53      92.80 97.14 
Hepatitis 94.28 85.80 83.22 83.01           

Table 5 
The experimental results of classification for GeFeS on two-class and multi-class datasets.  

Dataset # of instances # of healthy instances # of unhealthy instances Recall Precision F-Measure Accuracy (%) 

Lung 32 0 23 (9, 13, 10) 0.937 0.944 0.938 95.83 
Dermatology 366 0 112 (112, 61, 72, 49, 52, 20) 0.921 0.905 0.911 97.62 
Arrhythmia 452 245 207 0.984 0.994 0.989 99.02 
WDBC 569 357 212 0.981 0.993 0.987 98.51 
Hepatitis 155 32 123 0.789 0.918 0.848 94.28  

Fig. 6. The average CPU time of the proposed serial and parallel imple-
mentations on each dataset. 

Table 6 
Comparison of serial and parallel implementations of GeFeS in terms of average 
accuracy (%) and consumption time (s) on all datasets.  

Dataset Serial Parallel 

Accuracy (%) Time (s) Accuracy (%) Time (s) 

Lung 93.78 420 95.83 181.41 
Dermatology 95.96 26898 97.62 6830 
Arrhythmia 98.00 59049 99.02 13122 
WDBC 96.05 47029 98.51 10451 
Hepatitis 91.50 880 94.28 358  
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Fig. 7. The frequency of the selected features in one run 10-fold CV process on the five datasets.  
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Fig. 8. Convergence of GeFeS on the five datasets.  
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folds, or different search spaces. It should be mentioned that the dif-
ferences in the ending points of the curves are deduced from the second 
termination criteria of GeFeS. Our algorithm stops when either the 
maximum iteration number is reached or the ceiling accuracy (aceil) is 
achieved. 

The obtained results show that the performance of GeFeS is com-
parable with state-of-the-art articles. The obtained results have 
demonstrated that the proposed method is effective in feature selection, 
thereby in diseases detection on the five UCI medical datasets. GeFeS 
thoroughly handles the small to large, two-class to multi-class, and high- 
dimensional datasets that we have utilized in this paper. 

7. Conclusion and future work 

Selecting relevant and removing redundant features in high- 
dimensional biomedical datasets is essential for increasing the perfor-
mance of machine-learning algorithms in terms of raising the prediction 
accuracy of detection and reducing the time of building the algorithm. In 
this work, we proposed GeFeS, a wrapper-based feature selection and 
parameter optimization method for kNN based on a novel parallel ge-
netic algorithm to increase the accuracy, reliability, and generalization 
of the classifier. It is worth mentioning that kNN is an embedded 
component in the proposed GA that can be easily replaced by other 
classifiers. The main novelties of this method, in terms of genetic algo-
rithm, lie in the adopted weighting operator (a new operator for genetic 
algorithm, called inverse), intelligent crossover, and mutation opera-
tors. In addition, we utilized the nested cross-validation in chromosome 
evaluation step to select the best chromosome, suggest a good general-
ization capability to unseen data, and minimize the risk of data over-
fitting. To evaluate the performance prediction of the proposed 
algorithm, we used a K-fold cross-validation strategy on top of GeFeS. 
Moreover, the proposed method was implemented in an efficient par-
allel environment, which further enhanced the performance of the 
GeFeS in terms of accuracy and computational time. 

The aim of the improvements and novelties was at maximizing the 
generalization capability and the accuracy of the proposed algorithm 
under both two-class and multi-class data from small-scale to large-scale 
while reducing the number of features and the consumption time. These 
objectives led the algorithm to make more reliable diagnosis decisions. 
Based on our experiential analysis, it can be safely concluded that the 
GeFeS method can serve as a promising tool for parameter optimization 
and feature selection in kNN by avoiding overfitting of the classifier 
model. The experiments on a number of datasets with different sizes 

proved that GeFeS achieved remarkably good results when faces with 
large, small, high-dimensional, two-class, and multi-class datasets. 

As future works, we plan to develop GeFeS for unsupervised prob-
lems, which is optimized with more hyper-parameters and highly 
imbalanced datasets. Furthermore, we plan to make our method more 
efficient with a hybrid parallel implementation. Finally, we plan to 
develop an open-source tool of GeFeS for different classifiers and 
clusters. 
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