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ABSTRACT
Emerging advanced applications, such as deep learning and graph
processing, with enormous processing demand and massive mem-
ory requests call for a comprehensive processing system or ad-
vanced solutions to address these requirements. Near data process-
ing is one of the promising structures targeting this goal. However,
most recent studies have focused on processing instructions near
the main memory data banks while ignoring the benefits of process-
ing instructions near other memory hierarchy levels such as LLC.
In this study, we investigate the near LLC processing structures,
and compare it to the near main memory processing alternative,
specifically in graphics processing units. We analyze these two
structures on various applications in terms of performance and
power. Results show a clear benefit of near LLC processing over
near main memory processing in a class of applications. Further,
we suggest an architecture, which could benefit from both near
main memory and near LLC processing structures, but requiring
the applications to be characterized in advance or at run time.
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1 INTRODUCTION
Graphics processing unit (GPU) is one of the most popular plat-
forms for executing compute-intensive applications due to their
massive degree of parallel processing [24]. In a conventional GPU
structure, shown in Figure 1, each processing core, called streaming
multiprocessor (SM) in NVIDIA terms, is equipped with its own pri-
vate L1 cache. Last level cache (LLC) and main memory are shared
among all SMs, and they are accessible through an interconnection
network. An SM core first sends its data requests to the L1 cache. If
data is not available in this level, the request is sent to the lower
levels of memory hierarchy i.e. LLC and main memory. If the LLC
cache could provide the data, it sends back the response directly to
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Figure 1: Conventional GPU architecture

the corresponding SM, otherwise, the main memory is responsible
for responding the current request.

When an application is assigned to a GPU, it is divided into
various thread blocks (TBs) and each TB is assigned to an SM inde-
pendently. Each TB consists of multiple independent warps, where
eachwarp has several processing threads. The number of threads de-
pends on the length of the GPU single-instruction-multiple-thread
(SIMT) [21]. When an SM generates a memory request, its asso-
ciated warp will be blocked until receiving the memory response.
In the meantime, a ready warp continues its processes with the
current SM. Now, if all assigned warps of an SM are blocked due
to the late memory response time, the SM switches to the stall
state until at least one warp is ready for execution. This is often a
scenario in memory-intensive applications with a large number of
memory requests. The situation can get worse if application mem-
ory requests follow an irregular memory access pattern. The term
“irregular” refers to a circumstance in which the locality property of
memory requests is very low and the variety of required data blocks
is very high [5]. During the execution of such applications, memory
requests are divergent, and consecutive instructions usually call
different memory data blocks. This means the coalescing rate of
such applications is low, and the cache controller should frequently
evict an in-use data block and replace it with a new one.

To relax this issue, Near Data Processing (NDP) is introduced
with the idea of placing some processing cores near the main mem-
ory, capable of executing the offloaded instructions from SMs. This
structure could alleviate the stalling SMs challenge, thus speeding
up the memory-intensive applications. NDP could not have been
employed in traditional memory structures due to the lack of pro-
cessing cores. With the advent of new memory technologies, such
as 3D-stacked memory, processing cores can be integrated near the
main memory; therefore, providing the opportunity to process the
instructions near the data banks.

Most of the previous works [18, 26, 33, 34, 37] have focused
on investigating different Near main Memory Processing (NMP)
structures in GPU. However, few recent studies considered the
benefits of processing instructions near the intermediate levels
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of the memory hierarchy [25, 27]. In line with these works, in
this paper, we investigate near Last Level Cache (LLC) processing,
hereafter refereed to as NLP, while it can be extended to other
cache hierarchy levels. We characterize various applications and
analyze their suitability for execution near main memory or LLC.
The following are the major contributions of this paper:

• Various applications are analyzed, showing a high rate of L1
and LLC cache misses in GPU, and a clear difference between
L1 and LLC miss rates in some applications.

• An NLP structure is explained and simulated to process the
offloaded instructions near the LLC data banks. This struc-
ture is then compared with its NMP counterpart. Further a
joint structure is suggested to combine the benefits of NLP
and NMP structures.

• Experiments are conducted to show the benefits of NLP and
NMP over conventional GPU in different classes of appli-
cations in terms of performance and power. The obtained
results suggest an opportunity to characterize applications
and offload them for processing either near the LLC or main
memory to optimize their performance and power.

2 RELATEDWORK
The efficiency of near data processing not only depends on whether
offloaded instructions are selected properly but also if they are
executed in the suitable memory hierarchy level. Otherwise, NDP
may lead to inefficiency and impose extra overhead to the system.
To this end, numerous attempts have been made to perform efficient
NDP. The following are some of the studies which are reviewed.

Near main memory processing: As previous studies have
investigated, advancements in memory technology provide the
opportunity to process the instructions near main memory data
banks [2, 4, 6, 13, 15, 16, 35]. Ahn et al. [2] proposes a hardware-
based architecture without changing the programming paradigm
to determine whether an instruction should be executed in memory
or on processors, depending on the locality of data. Elliot et al.
[22] proposes a programming interface that facilitates near data
bank computation based on the locality property. Mahmut et al.
[19] tries to take advantage of near data computing by different
compiler schemes. Tang et al. [30] also provides compiler support
that partitions the computations with the goal of reducing the
distance-to-data on the on-chip network. Hsieh et al. [17] statically
determines the instructions which should be offloaded into the
auxiliary cores during the application execution. In order to relax
the inter stack communication, Kim et al. [20] suggests a network-
on-chip to allow data to be moved across different stacks.

Near cache processing: As mentioned earlier, most of the NDP
efforts are implemented as near main memory processing. Few
recent studies have focused on taking advantage of processing the
instructions near intermediate levels of the memory hierarchy, such
as LLC [11, 31]. Denzler et al. [11] proposes near cache accelerator
that its compute units are directly connected to LLC. Vieira et al.
[31] proposes a near cache bank processing mechanism to speed
up the convolutional neural network algorithm. This paper offloads
the execution instructions related to the convolutional and pooling
layers. Pattnaik et al. [27] explores eligible instruction sets for

offloading to the last level cache. They also add compute units near
the LLC data banks to execute the offloaded instructions.

Processing using storage cells: There is another set of work,
investigating in-memory processing with the focus on changing
the structure of memory cells [1, 8, 10, 12, 14, 32]. Aga et al. [1]
proposes a Compute Cache unit to enable in-place computation in
the cache by using bit-line SRAM circuit technology. Bit Prudent
In-Cache Acceleration [32] proposes an SRAM based in-cache archi-
tecture to accelerate CNN inference by leveraging network redun-
dancy. Neural-Cache [12] focuses on re-purposing cache structures
to transform them into compute units capable of fully executing
convolutional, fully connected, and pooling layers in the infer-
ence mode. Our study, however, is mainly focused on processing
instructions near the data banks without any change to the struc-
ture of memory cells. Nevertheless, it is extensible to in-memory
processing structures which enable the instruction execution by
interactions between cells.

3 A NEW LOOK INTO NEAR DATA
PROCESSING IN GPU

GPU is one of the most efficient hardware platforms that play a
significant role in speeding up compute and memory intensive ap-
plications [23]. Various studies have focused on the NDP structure
to overcome the memory bandwidth bottleneck of the processing
systems. However, NDP is still in its infancy and there is a lot of
room to fully utilize this structure.

We start this section by investigating the behaviour of various
applications with regard to L1 and LLC cache miss rates in GPU.
Then, we study the two main structures of near data processing
including: Near LLC Processing (NLP) and Near main Memory Pro-
cessing (NMP). More specifically, we describe the NLP processing
and compare it to its more traditional counterpart NMP. Finally, we
classify different applications based on their cache access pattern
and investigate their suitability for execution near LLC or main
memory.

3.1 Motivation
Many light processing cores of the conventional GPU make the
concurrent processing of thousand of threads possible. Despite its
advantages, cache structure in conventional GPU is vulnerable to
irregular data accesses [9]. While the L1 cache miss rate in Central
Processing Unit (CPU) is around 6.3% to 33% [28], this value is
around 85% in GPU, based on our experiments depicted in Figure 2.
We have performed a set of analysis on various applications (listed
in Table 5), simulated on a conventional GPU (see Table 2 for more
information).

Figure 2: Conventional GPU cache miss access rate
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Figure 3: Near main memory processing structure

As shown in Figure 2, for the examined applications, L1 and LLC
cache miss rates are very high, with an average of 85% and 50%,
respectively. Another interesting observation is the relatively high
L1 miss rate and low LLC miss rate in applications such as SCP,
HIS, SRA, and HS. This observation motivated us to investigate
the suitability of near LLC processing as data is likely resided in
this level of the memory hierarchy. This is in contrast to near main
memory processing in conventional NDP structures.

Lastly, due to the high cache miss rates in GPU, we have seen
a better potential to benefit from NDP than in CPU, so we have
chosen GPU as our main target platform for implementing NLP.

3.2 NMP vs. NLP Processing
In the Near Data Processing (NDP) structure, SM cores may offload
some instructions to other memory hierarchy levels for execution.
For this purpose, some auxiliary processing cores should be placed
near the memory data banks to process the offloaded instructions.
As a general categorization, NDP can be divided into two main
classes: Near main Memory Processing (NMP) and Near LLC Pro-
cessing (NLP). Between the two, NMP has been extensively studied
in literature by adding cores in the logic layer of the emerging 3D
memory structures.

Figure 3 shows a conventional NMP structure. Logic layers of the
3D-stacked memory are equipped with processing cores to execute
the offloaded instructions. The instructions that should be offloaded
are usually detected and labeled during the compilation time. In
SM cores, after an instruction is fetched, the decoder unit checks
whether the instruction is labeled as “to be offloaded” (into the
main memory cores) or not. Most NDP studies are focused on the
NMP structure without considering the advantages of processing
instructions near intermediate levels of the memory hierarchy.

Figure 4 demonstrates an NLP structure. As opposed to NMP,
main memory data banks are not considered as targets of offloaded
instructions. Instead, auxiliary cores are located near the LLC data
banks, and offloaded instructions use the settled data within the
LLC blocks, directly. As shown in Figure 2, applications with regular
LLC requests (such as SCP, HIS, SRA, andHS) are more likely to gain
proficiency by NLP execution. Regular LLC requests lead to low
LLC miss access and most of the L1 missed requests are responded
by the LLC during the application execution. This means most of
the data demand by offloaded instructions are provided by the LLC.

It is worth noting that although both of the NMP and NLP struc-
tures are equipped with auxiliary cores to process the offloaded

Figure 4: Near LLC processing structure

instructions, the offloaded instructions at NLP pass fewer steps to
be processed near data banks compared to its NMP counterpart.

3.3 Characterizing Applications
As can be seen in Figure 2, cache access shows various patterns
among different applications and different cache levels. We have
classified and listed applications based on these patterns in Table
1. Based on this classification, applications in Class 1 and 2 have
low or high cache miss access for both the L1 and LLC (such as
KMN, MST, and MUM) due to their inherent compute sensitivity
and data access irregularity rate. Applications in Class 3 and 4 have
high L1 miss and low LLC miss access and vice versa (such as SCP,
HIS, SRA, and HS). There is another class of applications, Class
5, showing a moderate amount of miss access for both L1 or LLC
(such as WP and BFS).

Table 1: Cache access pattern classification

Miss Access rate L1 LLC

Class 1 Low Low
Class 2 High High
Class 3 High Low
Class 4 Low High
Class 5 Moderate Moderate

Applications categorized in Class 1 and 4 of Table 1 are usually
more suitable for processing in SM cores similar to that of the
conventional GPU due to the fact that the L1 miss rate is low, and
data is likely to be hit there. In other words, these applications may
not benefit from processing near data banks, neither NLP nor NMP.

Applications that belong to Class 2 are more suitable for near
main memory processing as high LLC miss rate means a high
number of accesses to the main memory. Thereby, it is more advan-
tageous for instructions to be offloaded to the cores near the main
memory, thus motivating the NMP choice.

The applications in Class 3 have a stronger potential for execut-
ing offloaded instructions near LLC due to low LLC miss rate. For
such applications, NLP is a better choice than NMP by eliminating
the long service time of the main memory and shortening the data
path.

In the case of Class 5 applications, there is no clear benefit from
processing on SMs or cores near other memory levels. As it will
be discussed in Section 5, evaluation, these applications could still
benefit from NDP processing, either NMP or NLP. This is mainly
because of the overall high miss rates in GPU.
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Table 2: Baseline GPU configuration

Parameter Value
Total cores 56 Streaming Multiprocessors (SM)
Per core 48 warps, 32 warp width,

8 CTAs, 1536 threads, 32768 registers,
48 KB scratchpad memory

L1 data cache 32 KB, 4-way, 128B block size
LLC (L2) cache 8 x 128K, 16-way
Memory FR-FCFS scheduler, DDR3-1333H,

8 memory channel
Core, L2 clock 700 MHz, 700 MHz
Interconnect 2D mesh, XY routing, 1 core/node,

4 VCs, 4 routing latency,
1 channel latency

Table 3: NMP specific configuration

Parameter Value
Total cores 56
Main cores 48 SMs
Near main memory cores 8
Memory stack 8 memory stacks, 16 vaults/stack,
Configuration 16 banks/vault, 64 TSVs/vault
Intra-stack BW 160 GB/s per stack
Inter-stack BW 40 GB/s per link, fully connected
GPU to memory BW 80 GB/s per link

Table 4: NLP specific configuration

Parameter Value
Total cores 56
Main cores 48 SMs
Near LLC cores 8

4 METHODOLOGY
In order to have a comprehensive evaluation, both NLP and NMP
structures are implemented by GPGPU-Sim v3.2.2 [3], a cycle ac-
curate simulator. We have modified this simulator in line with our
targets in this paper. In addition, we have used various benchmarks
from different benchmark suits as Rodinia [7], Parboil [29], and
CUDA SDK [36]. Table 2 demonstrates the configuration of the base-
line GPU structure while additional configurations specific to NMP
and NLP structures are shown in Table 3 and Table 4, respectively.
To ensure fair comparison, the total number of processing cores,
the size of cache memory, and the size of main memory are kept
similar in each of the three configurations, including conventional
GPU, NLP, and NMP. For example in the experiments, 56 SM cores
are allocated in the Baseline GPU configuration (Table 2) whereas
in the NMP (Table 3) and NLP (Table 4) structures, the number of
SM cores is reduced to 48, and instead 8 cores are placed either near
main memory or LLC. This keeps the total number of cores equal
across all configurations.

As described in Table 2, in all mentioned configurations, each
main core has a 32KB private L1 data cache and has access to
8*128KB shared L2 cache through the interconnection network.

Table 5: Benchmarks specifications

Abrr. (type) Name Suite Description
KMN (Class 2) Kmeans Rodinia k-means, clustering
WP (Class 5) Weather CUDA Numerical weather

prediction prediction
MST (Class 2) Mergesort CUDA Parallel merge sort
SCP (Class 3) Scalar CUDA Scalar product

product calculations
BFS (Class 5) Breadth-first Rodinia Breadth-first search

search on a graph
HIS (Class 3) Histogram Parboil Histograms for

analysis
MUM (Class 2) Mummergpu Rodinia Pairwise local

sequence alignment
SRA (Class 3) SRAD Rodinia Speckle reducing

anisotropic diffusion
HS (Class 3) Hotspot Parboil Processor temperature

estimation

The Baseline architecture and NLP are adjusted to conventional
DRAM technology and the bandwidth between the GPU main cores
and main memory is set to 80 GB/s per link similar to the NMP
architecture. On the other hand, NMP uses 3D-stacked memory
technology with Intra-stack and Inter-stack per-link bandwidths of
160 GB/s and 40 GB/s, respectively.

5 EVALUATION
This study is mainly focused on different structures of NDP where
some instructions are offloaded to lower memory hierarchy levels.
In this section, the execution behavior of several applications is
evaluated in terms of performance and power to determine which
hierarchy level (near LLC data banks or near main memory data
banks) is more desirable for processing the offloaded instructions.

5.1 Performance
Figure 5 compares the performance of the Baseline GPU configura-
tion with those of NLP and NMP. Light and dark blue bars are the
performance representative of NLP and NMP, respectively, normal-
ized to that of the Baseline. The selected applications cover Class
2, 3, and 5 in Table 1 that could benefit from NDP, which includes
both high and moderate rate of the L1 miss pattern. Applications in
Class 1 and 4 have a low L1 miss rate, so the main cores are the best
place to process them, and near data processing is of no interest.
For simplicity, we excluded these two classes from our experiments.

Figure 5: Performance comparison between Baseline, NLP
and NMP
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In Class 2 and 3, applications generate a significant amount of
memory requests with poor locality through the L1 cache, and
consequently they have a high rate of L1 miss access during the
instruction execution. In addition to the high L1 miss rate, applica-
tions of Class 2 (such as KMN,MST andMUM) have a high LLCmiss
rate as well. As explained in Section 3, these applications could ben-
efit more from near main memory processing as their required data
does not exist in the cache lines, so ultimately the main memory
has to respond to them. In this case, NLP is not an ideal choice and
may impose extra delay by complicating the memory access path.
Results from the Class 2 applications show that NMP outperforms
the Baseline and NLP alternatives by 40% and 23%, respectively.

In contrary, applications of Class 3 (such as SCP, HIS, SRA, and
HS) enjoy a low LLC miss rate. This means that the required data
for the offloaded instructions are likely available in this cache level,
and thereby, cores near LLC could benefit from the straightforward
access to the cache lines. In this case, processing the offloaded in-
structions near the LLC data banks could eliminate the long service
delay of the main memory. As a result, these applications are more
likely to achieve better speed up in NLP. As can be seen in Fig-
ure 5, processing offloaded instructions by NLP in the applications
of Class 3 leads to an average 40% and 24% higher performance
than the Baseline and NMP alternatives, respectively. The perfor-
mance improvement is partly due to bypassing the crowded main
memory queues, long row switching procedure, and inter-stack
communication overheads.

In applications of Class 5 (such as WP and BFS), however, both
L1 and LLC miss rates are moderate. That means, nearly 50% of the
L1 missed requests are responded by LLC and the other 50% will
be responded by the main memory. As demonstrated in Figure 5,
NLP and NMP structures show equal efficiency while both outper-
form the Baseline architecture, for instance by 20%, under the BFS
benchmark.

5.2 Power Consumption
We have compared NLP and NMP in terms of the power consump-
tion as well, shown in Figure 6. The results are reported based on the
Instruction per Joule (Ins/J) and normalized to the Baseline archi-
tecture. As is clear, for the selected benchmarks, an NDP-equipped
GPU (NLP or NMP) is more power efficient than the conventional
GPU architecture. On average, NLP and NMP achieve better power
efficiency by almost 11%.

The HIS benchmark, as a representative of Class 3 and suitable
for NLP, is more power efficient than the Baseline and NMP by
15% and 6%, respectively. The benefits mainly rely on eliminating
the long response time of the main memory including the queuing
delay and service time.

The KMN benchmark, as a representative of Class 2 and more
suitable for NMP, leads to a power efficiency of 18% and 13% com-
pared to its Baseline and NLP counterparts. As it is expected, NLP
may not lead to superior power efficiency in this benchmark. This
owes to the insignificant role of LLC in providing the required date,
and as a result, NLP cores should request the data from the main
memory instead, which leads to higher power consumption.

The WP and BFS benchmarks in Class 5, also show a power
efficiency of 9%, on average, with NLP or NMP over the Baseline.

Figure 6: Power comparison between Baseline, NLP and NMP

5.3 Discussion
After an in-depth analysis of our results, we came to the following
secondary reasons affecting the performance and power consump-
tion of both NLP and NMP: 1) Offloading instructions to NLP or
NMP leaves more space for data in the L1 cache, improving locality
principle. This, in turn, reduces the L1 miss access rates and the
costly cache victim rate; 2) In addition to the inherent ability of NLP
and NMP in reducing the data movement, the involved overhead
such as link traversal and the racing rate over the shared resources
also reduces; and 3) Simplicity and proximity of data access for the
offloaded instructions accelerate the application execution. Beside
all the benefits, we should mention that NDP may impose extra
area and process overhead to determine the instructions that are to
be offloaded and also for offloading them into the auxiliary cores.

6 FUTURE PERSPECTIVE
In this paper, we have seen the benefits of NLP and NMP for dif-
ferent classes of applications. Consequently, we suggest that an
optimal architecture should take advantages of both structures.
Our suggested architecture is illustrated in Figure 7, equipped with
auxiliary cores near both LLC and main memory. Using this archi-
tecture, instructions can be either offloaded to NLP or NMP directly.
Thereby, the number of accesses to the main memory could be re-
duced when NLP is chosen, whereas intermediate cache levels could
be bypassed when NMP is selected. It is expected that this joint
architecture could optimize the overall performance and power to a
great extent. However, for this to happen, either applications should
be characterized offline or the decisions on which instructions to
be offloaded and where to offload them (NLP or NMP) have to be
made dynamically at run time. This is in contrast to the current
static compilation time decision making process. Although offline
application characterization is a viable approach, for a better gener-
ality and scalability, as a part of our future work, we will investigate
dynamic instruction offloading for this joint architecture.

Figure 7: A joint architecture, combining NLP and NMP
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7 CONCLUSION
While GPU exhibits high efficiency in executing various applica-
tions, they usually show high cache miss rates in memory intensive
applications, when compared to CPU. Near data processing (NDP)
is one of the solutions to alleviate this problem by processing in-
structions near storage units. Twomain approaches of NDP are near
LLC processing (NLP) and near main memory processing (NMP).
In this paper, we characterized applications and claimed that NLP
and NMP structures behave differently on different classes of appli-
cations. After analyzing applications in terms of performance and
power, this claim has been confirmed, showing the benefits of both
structures but on different classes of applications. As an optimal
solution, we suggested a structure that offloads instructions directly
to NLP or NMP. For this to happen, applications should be charac-
terized offline. Dynamic instruction offloading was introduced as a
scalable alternative, which will be investigated in our future work.
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