This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2991749,

IEEE Transactions on Computers 1

ECDR?: Error Corrector and Detector
Relocation Router for Network-on-Chip

Letian Huang, Chikun Yuan, Junshi Wang, Masoumeh
Ebrahimi, Xuan Xie, Qiang Li

Abstract—Network-on-chip (NoC) is commonly used in modern many-
core systems due to their high bandwidth and flexibility. As the manufac-
turing process keeps scaling, the reliability challenge in NoCs increases
as well. The error correction code (ECC) is widely adopted in error
correction NoCs to improve the data correctness. At the same time,
extra stages are introduced in the router pipeline to improve the error
correction capability. As a result, conventional error correction routers
suffer from high network latency. Motivated by this limitation, i.e., we
remove the extra pipeline stages delicately introduced for error correc-
tion. We propose an error correction router, called error corrector and
detector relocation router (ECDR2), whose architecture optimizes the
pipeline flow of the router. As a result, it can achieve both low latency
and high error correction. Experimental results show that, compared
with the baseline design, ECDR? obtains to 13.67% and 39.4% less
average latency under the uniform traffic pattern and Dedup benchmark,
respectively, in an 8x8 mesh NoC. The circuit area of ECR is also 7.9%
less than that of the baseline design under 45-nm technology.

Index Terms—Network-on-Chip, Error Correction, Latency, Reliability

<+

1 INTRODUCTION

Networks-on-Chip (NoCs) are commonly adopted in Multi-
Processor System-on-Chip (MPSoC). NoCs bring the main ad-
vantages of high bandwidth, scalability, and flexibility [1]. In
smaller technology nodes, NoCs suffer from the reliability
problem caused by the soft error, crosstalk, and aging, among
others [2]. Errors may occur on the delivered data and affect
the reliability of the entire system. Therefore, it is crucial to
embed the error correction capability in NoCs and enhance the
reliability of data delivery.

The error correction code (ECC) is a widely used error cor-
rection method in NoCs [3], [4], [5], [6], [7]. The basic principle
of ECC is recovering the erroneous data by adding redundant
bits to the original data. The original data is first converted to
the well-designed codewords by encoders. Then, correctors and
decoders check the correctness of codewords to remove errors.
Correctors correct the detected errors while decoders convert the
codewords to the original data. Consequently, decoders are typ-
ically used at the end of the data transmission while correctors
are used during the transmission (e.g., in routers).

The pipeline stages in NoC routers are used to improve the
network throughput. On the other hand, error correctors are

e Letian Huang, Qiang Li are with School of Electronic Science and
Engineering, University of Electronic Science and Technology of China,
Chengdu, China.

o Chikun Yuan was with University of Electronic Science and Technology
of China, Chengdu, China. He is now with Guangdong OPPO Mobile
Telecommunications Co., Ltd., Dongguan, China.

o Junshi Wang was with University of Electronic Science and Technology
of China, Chengdu, China. He is now with Beijing Zhaoxin Electronic
Technology Co., Ltd., Beijing, China.

e Xuan Xie is with School of Automation Engineering, University of
Electronic Science and Technology of China, Chengdu, China.

o Masoumeh Ebrahimi is with Royal Institute of Technology, Stockholm,
Sweden and University of Turku, Turku, Finland.

o Corresponding author: Letian Huang, E-mail: huanglt@uestc.edu.cn.

Manuscript received April 19, 2005; revised August 26, 2015.

used in routers to ensure the correctness of data. However, the
circuit path delay of the corrector is as large as the critical path
of a router. Thereby, to implement correctors and at the same
time keep high clock frequency, traditional error correction
routers introduce extra pipeline stages [3], [4], [5], [6], resulting
in extended network latency.

Besides error correction, there are several other mechanisms
to detect or tolerate faults in NoC. Built-in self-test (BIST) is
one of these mechanisms, that sets the test controller, pattern
generators, and wrappers in the routers [8]. Using BIST, faulty
components in NoCs can be detected. Fault-tolerant routing
algorithms [9] also help to achieve higher reliability in NoCs
that aim to deliver packets to their destinations correctly
through rerouting packets. It is also possible to diagnose the
router components by setting some operation rules, such as
in NoCAlert [10]. NoCAlert is a rule-based mechanism, which
provides a comprehensive on-line and real-time fault detection
scheme for NoC error detection. To diagnose faults in the con-
trol components, NoCAlert uses some rules to detect whether
the packet’s output is illegal for the current inputs. In this
paper, we only focus on the ECC-based soft error correction
mechanism. Most of the other mechanisms are orthogonal to
ECC and can be easily combined with the proposed error
corrector and detector relocation router architecture.

In this brief, we propose an error correction router archi-
tecture named error corrector and detector relocation router
ECDR?. ECDR? brings the main advantages of low network
latency, high reliability, and low hardware overhead. Com-
pared with conventional error correction routers, the proposed
ECDR? neither introduces extra stages to the router pipeline
nor affects the clock frequency. The design of ECDR? is based
on RTL synthesizable Verilog HDL, and the evaluation platform
is built using SystemVerilog. Different routers, including the
proposed ECDR? and the baseline router, are evaluated un-
der different synthetic traffic patterns as well as the PARSEC
benchmark [11]. Results show that, compared with the baseline
router, on average, ECDR? reduces the network latency by
14.57% under six traffic patterns and by 30.84% under nine
PARSEC benchmarks.

This paper is organized as follows. Section 2 describes the
related work. In Section 3, we first introduce the generic router
architecture without error correction capability, then we pro-
pose an error correction router as the baseline design. Section
4 presents the principle and architecture of ECDR?. Section 5
gives the experimental results and analysis, and Section 6 con-
cludes the paper. The main contribution of this brief includes:

o Propose the ECDR? and its micro-architecture that provides
low latency and high reliability for NoC design.

e Carry the evaluation that proves the high performance, high
reliability, and low cost of ECDR?.

2 RELATED WORK

Classical NoC routers utilize 4 pipeline stages [12]. To
reduce the number of stages, techniques such as speculative
switch allocation (SSA) [13] and lookahead routing calculation
(LRC) [14] can be applied. Each of these techniques can reduce
one pipeline stage, and thus a 2-stage router can be imple-
mented. There are also 1-stage routers such as the dimension-
sliced router [15] and virtual output queued (VOQ) router [16].
The dimension-sliced router [15] cannot support adaptive rout-
ing while the VOQ router [16] decreases the clock frequency
due to the high fanout in the output port.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
Authorized licensed use limited to: Turun Yliopisto. Downloaded qpiQgiohgr 20,2020 at 11:29:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2991749,

IEEE Transactions on Computers 2

In the field of error correction routers, remarkable works
have been published to improve the NoC reliability. How-
ever, most of these works are based on the classical 4-stage
router architectures, which usually lead to a higher network
latency than the designs with the lower number of pipeline
stages. Moreover, extra pipeline stages are usually introduced
to achieve error correction capability. But extra pipeline stages
increase the latency further.

The ECC-based fault-tolerant NoCs are generally divided
into two categories: End-to-End (E2E) and Hop-to-Hop (H2H).
In the E2E scheme, packets are encoded at the source and
decoded at the destination [7], and it can be implemented in
both software and hardware levels. Nevertheless, by applying
this scheme, errors may accumulate during the NoC data
delivery, and they grow beyond the capacity of the employed
ECC to correct them at the destination. The H2H scheme, on the
other hand, detects and corrects errors at every router, which
provides higher reliability at the cost of more area overhead.
The proposed ECDR? utilizes the H2H scheme to achieve
higher reliability.

Daniele Rossi et al. [3] proposed two ECC implementation
methods in NoCs with different quality of service (QoS) levels.
One of them targets a lower overhead router design while the
other one aims at a higher reliability router. The low-overhead
method encodes the flits before they leave a router, then corrects
and decodes the flits when they enter a router. This method
has limited reliability, as data is only protected on the links,
and errors in routers are not concerned. In the reliable method,
flits are encoded at the network interface (NI) before they are
injected into the network. Then, correctors, located at every
router port, detect errors and correct the flits. This method can
protect the data during the whole data transfer in routers and
links. Although the two mentioned methods provide different
QoS levels, the circuit delay of ECC codecs is long, and so they
introduce at least one extra pipeline stage for error correction.

An error control scheme was proposed in [4] that integrates
link error recovery and buffer error correction. This router
implements two encoder and decoder pairs. One is for the link
error correction and another one is for the buffer error correc-
tion. A flit recovery algorithm is also presented in this work to
enhance reliability further. However, the network latency is not
well considered in this work as implementing four ECC codecs
in one router needs several extra pipeline stages. As a result,
although offering high reliability, this scheme greatly increases
the latency and degrades the network performance.

Lu Wang et al. proposed a fault-tolerant router architecture
with the ability to detect permanent faults [5]. In this archi-
tecture, ECC is used to not only correct errors but also detect
permanent faults in the buffer. Flits are encoded upon entering
a buffer, and their code redundancy is stored in another buffer,
which is specially designed for this purpose. When flits leave
the buffer, they are encoded again and compared with the
previously generated code to detect permanent faults. The error
correctness also takes place in the comparison phase. This work
adopts a generic 2-stage router as a baseline while its fault-
tolerant version requires an extra stage for error correction, and
thus it leads to a 3-stage pipeline.

Dongkook et al. proposed a hop-by-hop re-transmission
router in [6]. The router has a 3-flit-depth re-transmission
buffer per virtual channel. The buffers maintains the flits until
the downstream router correctly receives them. Nevertheless,
this architecture has large design complexity and hardware
overhead due to the re-transmission control and the employed
buffers. More importantly, this router adopts one extra pipeline
stage for error detection.

Crossbar

L]
a1y

'__i
1

1

]

1

1

1

1

1

1

Il<
10
1=
1

1

1

|

1

1

1]

1

1

1
R
YYYYY
wv

>
2
wv

w

>
=
: ><

N -
gy —| I
N -

Vil

—Payload or RB———> |1, xB
L
-1 BE}:;gr -Flit-—RIi—» DIR & VC_ID
(for downstream)

DIR & VC_ID to VA/SA/SSA
(for_current)
(a) Architecture
VA
Head: SSA XB+Link
LRC
Body & Tail: SA XB+Link |

(b) Pipeline stages

Fig. 1: A generic 2-stage router without error correction ability

Pavan Poluri et al. proposed an error correction router
without adding extra pipeline stages in [17]. In this router,
the routing computation (RC) is executed twice on a packet.
After the execution of the standard RC, the second RC with the
error correction capability is executed in the next pipeline stage.
The execution is in parallel with the virtual channel allocation
unit. The results of two RCs are compared with each other to
determine the correctness of the standard RC. By executing the
second RC in parallel with virtual channel allocation (VA), the
router does not introduce an extra stage. However, this work
has two main drawbacks as low latency and low reliability.
This method is implemented on the 4-stage pipeline router
which is not a proper indicator of a good performance. Even
though the method does not add an extra stage, the latency of
the router is still high. Besides, this method only protects the
routing information (RI), but not the data carried by packets.

In summary, conventional ECC-based NoC routers have one
characteristic in common — they adopt extra pipeline stages
to implement error correction [3], [4], [5], [6]. However, the
number of pipeline stages in the high-performance routers
are strictly limited, and adding an extra stage to the pipeline
can significantly increase the network latency. Our work is
motivated by this drawback of the error correction routers.
We design ECDR? based on a 2-stage low-latency router with-
out adding any extra pipeline stages for error correction. All
packet’s data is protected to achieve high reliability.

3 GENERIC AND BASELINE ROUTER

In this section, we first describe the architecture of a generic
2-stage router without the error correction capability [13], [14],
in which our ECDR? architecture is developed based on that.
Then, we explain the baseline design that is a 3-stage error
correction router with one pipeline stage dedicated to error
correction. This type of routers was widely adopted in previous
works [3], [4], [5], [6]. For the ease of reading, Table 1 lists the
frequently used acronyms in this paper.

TABLE 1: Acronym list

Acronym Description
LRC Lookahead Routing Computation
FT Hlit Type (head, body, and tail)
RI Routing Information (packet source, destination)
DIR Direction (indicate packet output port)
RB Reserved Bits (flags, packet ID, size, and so on)
OHC One-Hot Check
RDC Redundancy (of ECC/EDC)

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
Authorized licensed use limited to: Turun Yliopisto. Downloaded qpiQgiohgr 20,2020 at 11:29:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2991749,

IEEE Transactions on Computers 3

3.1 Generic 2-stage router without error correction ability

The primary function of an NoC router is to receive packets
from the input ports and forward them to the output ports.
Fig.1 (a) shows the architecture of a generic 2-stage router. The
router has five input ports and five output ports. Each input
port is equipped with N virtual channels (VCs). In order to
reduce pipeline stages, the generic router utilizes the specula-
tive switch allocator (SSA) [13] and LRC [14]. The essential
components of the generic router are as follows:

Lookahead Routing Computation (LRC): LRC is the com-
plement of RC. The basic function of RC is deciding the packet’s
output direction (DIR) for the current router. To reduce the
pipeline stages, LRC generates DIR for the downstream router.
In this case, the DIR for a given router is generated one hop
ahead and arrives simultaneously with the head flit. If a router
utilizes virtual channels, LRC also generates the VC number
for the downstream router. Therefore LRC can be executed in
parallel with allocators because LRC of the upstream router has
already generated the information required by allocators (i.e.,
DIR and VC ID). LRC only performs on the head flits as other
flits do not carry routing information (RI). The input signals of
LRC are the packet’s RI and DIR from the upstream router.

Virtual channel Allocation (VA): VA in a given router is
responsible for allocating VC in the downstream router for
the new incoming packet. VA arbitrates between VCs that are
requesting the same downstream VC. Once a VC is granted, it
holds the grant until the packet is entirely sent out. VA is only
executed for the head flit, and other flits follow the head. The
input signals of VA are DIR and the VC number.

Switch Allocation (SA): Multiple VCs on an output port
share the same physical link, and the link can transfer only
one flit in a single cycle. Consequently, SA is used to arbitrate
between VCs that are requesting the same output port. Gener-
ally, VA and SA are executed in sequence due to their logical
dependence. First, the VA should be granted, and then the SA
request can assert.

Speculative Switch Allocation (SSA): To achieve low la-
tency, SSA [13] is adopted in this generic router. The switch
allocation request can be marked either as speculative or non-
speculative. When a packet starts performing allocations, the
VA request and the speculative SA request assert at the same
time. If both VA and SSA are succeeded, the requests for the
virtual channel and switch allocation will be granted for the
head flit in a single cycle. If only VA is succeeded, the packet
must request SA again in the next cycle. However, the SA
request is no longer marked speculative since the packet is
already allocated an output virtual channel. On the other hand,
if the VA fails, no matter SSA fails or not, the packet must
request VA and SSA in the next cycle.

The SSA method works well under low traffic conditions as
fewer conflicts result in better speculation. However, there is
not any performance penalty due to speculation failure. The
reason is that none-speculative SA requests are set prior to
speculative SA requests. So none-speculative packets, which
have already been allocated an output VC, will always win
SA to speculative packets, which are expecting an output VA.
The input signal of SA and SSA is the output port ID, which is
determined by the packet’s DIR.

Fig.1 (b) shows the pipeline stages of the generic 2-stage
router. In the first stage of the router, LRC, VA, and SSA work
in parallel on the head flit, and SA is executed on the body and
tail flits. In the second stage of the router, flits are sent to the
crossbar for the link traversal.

FT.
I

."ayloa'd or RB:

Flitd—p1ls] DIR & VC_ID
(for downstrear'1)_>4>
DIR & VC_ID to VA/SA/SSA

(for_current)
s2: LRC/VA/SSA/SA

To XB

1032394400
03

|
{42408 0414

s1: ECC 53:XB+LINK

Fig. 2: Baseline 3-stage router with error correction ability

3.2 Baseline 3-stage router with error correction ability

We build the baseline error-correction router by adding an
extra pipeline stage to the generic router. The VC architecture
of the baseline 3-stage router is illustrated in Fig. 2 (a). Other
components such as allocators and crossbar are the same as
those in the generic router and are not shown in the figure.
To obtain the error correction ability, the generic router adopts
an error correction unit between the buffer and LRC. A set of
registers is placed after the ECC unit to store the corrected flits.
These registers are necessary to perform the error correction in
a single pipeline stage and to prevent the long circuit delay. As
a result, the first stage of the baseline router is consumed by
error correction. Except for the corrector, the VC structure of
the baseline router is the same as the one in a generic 2-stage
router.

In the baseline error-correction router, the allocator and LRC
units are executed in parallel after the ECC stage. As mentioned
before, only RI and DIR are needed for the execution of LRC
and allocators (instead of the whole packet), and they occupy a
few bits in the head flit. By considering these observations, we
design our ECDR? architecture and merge the error correction,
detection, LRC, VA, SA, and SSA into one stage, while keeping
clock frequency high.

4 ERROR CORRECTOR AND DETECTOR RELOCATION
ROUTER

The purpose of ECDR? is to eliminate the extra pipeline
stages dedicated to error correction. In ECDR?, we use both
ECC and EDC to protect NoC flits and to avoid long circuit
delay. This section first explains the ECC and EDC methods
which are necessary to support ECDR?. Then we present the
principle of ECDR?, followed by its detailed micro-architecture.

4.1 ECDR? ECC/EDC code methods

In an NoC packet, there are three different types of flits (i.e.,
head, body, and tail), each containing different data. As shown
in Fig 3, the head flit contains RI, DIR, and VC_ID. Other bits in
the head flit are reserved for the packet size, flags, and packet
ID. There are also some spare bits which are called reserved
bits (RB) in this brief. Body and tail flits, on the other hand,
carry payloads. All flits use 2 bits to indicate the flit type (FT).
For packet routing, the critical data are RI, DIR, VC_ID, and FT,
while payload and RB are non-critical data.

The idea of ECDR? is to treat critical and non-critical data
differently from reliability, overhead, and decoding delay per-
spectives. The two main aspects in ECC/EDC are as follows:
(1) reliability, where higher reliability means lower coding
efficiency (i.e., the ratio of protection bits to the coded bits is

|_ T Critical data that affect | None-critical data that are |

\ packet routing just transferrd by routers

A ve |t RB |
Head: :| FT | | RI || DIR || 1D |:| (flags, packet 1D, size...) |!
Body& | —— === [
Tai{' H G Payload h

Fig. 3: NoC packet structure

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
Authorized licensed use limited to: Turun Yliopisto. Downloaded qpiQgiohgr 20,2020 at 11:29:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2991749,

IEEE Transactions on Computers 4
(Circuit delay: 126ps (Circuit delay: 55ps FECC SA 230ps]
3 protection bits (50%) HRMI(_GEC;) Detection only OHC ™R | SSA 230ps]
\3 redundant bits (50%) ’ \No redundant bits 30ps l VA 279ps]
R — | 309p > | Data
. RDC FT RDC | RI DIR |[VCID RDC RB RECC HM(6, 3) 126ps
Head-‘ 4bits ‘Zbits‘ 6b'1ts|6b'1ts Sbits 7bits 45bits ‘ — LRC 190ps Out
RDC | _FT RDC Payload P> 316ps
4bits [2bits|| 7bits 64bits | PECC IM(71, 64) 324ps |
J .
v - v . (a) ECDR?
Circuit delay: 30ps Payload- [Circuit delay: 324ps || SA 230 |
FTT'MERCC 2 protection bits (33%) ECC |64 protection bits (90%) | —
4 redundant bits (67%)) (HM(71,64)|7 redundant bits (10%)) ECC 324ps :l SSA 230ps |
[VA 279ps |
Fig. 4: The design example of ECDR? coding methods. RDC | TRC 190ps
refers to redundancy for each ECC. Stage 1 : Stage 2
(b) Baseline

high); (2) decoding delay, where more protection bits result in
longer decoding delay. Considering these two aspects, ECDR?
protects critical data with high-reliable and short-delay codes,
and the non-critical data with relatively lower-reliable and
longer-delay codes. By using short-delay codes for critical data,
no extra pipeline stage would be needed while keeping the
clock frequency high. On the other hand, codes with shorter
protection bits are used for non-critical data to reduce redun-
dancy and hardware overhead. A design example of different
code methods in ECDR? is shown in Fig. 4 where the circuit
delay is obtained from Synopsys Design Compiler under TSMC
45-nm technology.

ECC for FT (FT-ECC): The head flit determines the VC in
the downstream router, and the tail flit indicates the end of
a packet. An erroneous flit type (FT) may lead to incomplete
packets, packet missing, and even deadlock. The case is espe-
cially catastrophic when a body or tail flit is erroneously seen as
the head flit. To achieve good protection, ECDR? adopts triple
modular redundancy (TMR) to code FT.

ECC for RI (RI-ECC): Routing information (RI) is usually
used to indicate the destination of a packet. Erroneous RI may
result in sending the packet in a wrong direction, which in turn
may also lead to packet missing or deadlock. The width of RI
is 6 bit in this design example, so we adapt two HM(6,3) codes
to protect it.

One-hot check (OHC): One-hot coding is used to code DIR
and VC_ID due to its simplicity. One-hot coding can be used
to request VA and SA allocations without the need for any
decoding, and thus it prevents long critical delay. Moreover,
one error at any bit of a one-hot codeword makes the code
no longer one-hot. Consequently, changing form a one-hot
code to another one-hot code needs at least two erroneous
bits. As a result, the one-hot code innately has one-bit error
detection ability. The design example utilizes OHC to check the
correctness of DIR and VC_ID.

ECC for Payload and RB (Payload-ECC): Payload and
reserved bits (RB) are only used at the destination node; how-
ever, they occupy most of the bits in a packet. By assuming a
64-bit width 5-flit packet, the payload occupies 256 bits, and
the reserved data occupies 45 bits. Therefore, we protect the
payload and RB by ECC with high coding efficiency, which
is HM(71,64) code, to minimize the flit width and storage
overhead. The HM(71,64) code has 64 protection bits and 7
redundancy bits. Although RB has only 45 bits, HM(71,64) can
also be applied to it by setting the other 19 bits to a default
constant value. In this case, the encoder, corrector, and decoder
needed for HM(71,64) can be reused for both the payload and
RB, which reduce the hardware overhead.

The use of these four codes (i.e., FT-ECC, RI-ECC, OHC, and
Payload-ECC) does not impose a large overhead. The reason is

Fig. 5: The locations of ECC corrector and detector

that FT-ECC, RI-ECC, and OHC only protect very few bits in
the packet, and their correctors are light-weight accordingly.
Moreover, Payload-ECC is always needed in hop-to-hop (H2H)
error correction routers, and it is not specific to ECDR?. In other
words, critical data are protected with low-efficiency codes, but
they occupy only a few bits in a packet; Payload and RB occupy
most of the bits in a packet, but their coding efficiency is high.
As a result, the code method in ECDR? introduces minimal
encoding redundancy bits that saves the hardware overhead.

4.2 Eliminating the extra pipeline stage for error correc-
tion

Based on the proposed code methods, ECDR? can eliminate
the extra pipeline stage by merging error corrector, detector and
routing units (i.e., LRC, VA, SA, SSA) into one stage. Fig. 5 (a)
illustrates the principle of ECDR?, which shows the locations of
error corrector and detector with regard to the routing units. In
the Fig. 5, we show the delay of each block. Furthermore, the
length of each block represents its critical path delay.

Different units need specific packet information to be used
as their input signals. For example, since the VC allocation
function differs depending on the flit type (FT), the VC con-
troller needs the error-free flit type to control the allocations
request correctly. As a result, the FT-ECC correction is executed
before allocators to ensure the correct allocation operation. In
the same manner, the RI-ECC corrector and OHC unit are set
prior to LRC unit since LRC needs RI and DIR as its inputs.
The payload and RB are none-critical data, which do not affect
packet routing, and thus they are not needed by any routing
units in a router. Consequently, the Payload-ECC corrector runs
in parallel with other units.

Although FT-ECC, RI-ECC, and OHC units are set before
routing units, their critical path delay is short because of the
specially designed code methods. As can be seen in Fig.5 (a), the
summed delay of FT-ECC and VA is 309ps while that of RI-ECC
and LRC is 316ps. Both are shorter than Payload-ECC critical
path delay that is 324ps; therefore, ECDR? does not increase the
critical path delay of the entire router. In contrast, as shown in
Fig.5 (b), in the baseline router, the ECC units occupy one extra
stage to prevent a long critical-path delay. Otherwise, if the
ECC correction and the other components are simply placed
into one stage, the accumulated delay of ECC and VA will
be 603ps, which results in low clock frequency and degraded
performance. This is the main reason why traditional routers
introduce extra pipeline stages for error correction.

ECDR? is built based on the fact that the critical data
occupies a few bits in a packet, and short-delay codes are used
to protect them. By merging corrector, detector, and routing

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
Authorized licensed use limited to: Turun Yliopisto. Downloaded qpiQgiohgr 20,2020 at 11:29:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2991749,

IEEE Transactions on Computers 5
£ FT-ECC Control .
FT ”| Corrector Controller signals ref%éger
Corrected FT: >
Corrected Payload to XB| ,

Payload or RB:

Payload-ECC
Corrector

RB, RI, DIR, and VC_ID are merged

Corrected RB:
————Corrected RT: .
DIR & VC_ID

into one head flit, then sent to
FIF downstream router. =
q Buff(e)r P L1 et | (for downstream) }
RC result
RI > RI-ECC |_ register
Corrector LRC >

only.

Work for head flits

Save RC result only
when DIR or VC_ID is
detected erroneous.

One-Hot
Checker

DIR & VC_ID
(from RC result)

DIR & VC_ID
(from upstream router)

—>|
DIR & VC_ID
> (for current)

to VA/SA/SSA|

DIR&VC_ID from
upstream

DIR

Cycle 1 Cycle 2 Cycle 3

VC_ID 1 §§—§ 1 1 1
i HE : i

: HE oc | :

' 411 | ‘

! DIRRVC_ID SSA ! !

from RC VA H H

RI-®— 1 1

i RI-ECC LRC} Link

| | i

]]]

(b) Operations to handle erroneous DIR or VC_ID

Fig. 6: Overview of ECDR? micro-architecture

units into the same pipeline stage, ECDR? eliminates the extra
stage dedicated for error correction. As a result, protecting
critical data with short-delay codes realizes a 2-pipeline error-
correction router while keeping the clock frequency high. More-
over, protecting payload and RB the with small-redundancy
code minimizes the width of the coded flit.

4.3 ECDR? micro-architecture

Fig. 6 (a) illustrates the micro-architecture of a VC in ECDR?.
The units out of VC remain the same as the generic router.
As shown in Fig. 6 (a), FT, Rl, payload, and RB are sent to
their corresponding correctors. The VC controller receives the
corrected FT and controls other units in the VC according to the
flit type.

If the VC is currently handling a body or tail flit, the
Payload-ECC corrector receives the payload from the buffer
and sends the corrected data to the flit register through a 2-to-1
multiplexer. The corrected FT is also sent to the flit register to
form a complete flit. The flit register is placed between packet
routing and link traversal, dividing them into two stages and
thus preventing long critical path delay. The RI-ECC corrector,
LRC unit, and one-hot checker are not executed on the body
and tail flits.

The protection of the head flit is different from body and tail
flits. First, we discuss the ECC assuming that there is no error
in DIR and VC_ID because they are protected by EDC rather
than ECC. A head flit is composed of FT, RI, DIR, VC_ID, and
RB. The RB is corrected by the Payload-ECC corrector, while RI
is corrected by the RI-ECC corrector. The DIR and VC_ID for
the downstream router are calculated by the LRC unit. These
data form the new head flit, which is stored in the flit register
and sent to the downstream router through the crossbar in the
next stage.

| if o faits | Payload-ECC
! OHC
I OHC . +LRC
Head:| RI-ECC +RC RI-ECC SA XB+Link
| FT-ECC+ SSA
v VA
Body/Tail: PE¥}222;EgC XB+Link
VA
Head: ECC SSA XB+Link
LRC
Body/Tail: ECC SA XB+Link]

(c) Pipeline: ECDR? (up) vs. Baseline (down)

In addition to the bits corrected by ECC, the other bits
such as DIR and VC_ID are protected by EDC (one-hot code)
which has no correction ability. The one-hot checker is used to
detect whether any error exists in DIR or VC_ID. Nevertheless,
the one-hot code can only detect errors but cannot correct
them. Thereby, it is impossible to recover the data when errors
occur. A straight-forward method is to drop the packet and
re-transmit it, but it decreases the network performance and re-
liability. To address this issue, ECDR? adopts a similar method
as [9]. To successfully forward the packet with erroneous DIR or
VD_ID, ECDR? executes the standard RC, instead of lookahead,
to generate the correct DIR and VC_ID for the current router.
Because RC and LRC have almost the same logic function, the
LRC unit can be reused to execute the standard RC.

Fig. 6 (b) shows the cases for erroneous and correct one-
hot code with red and green lines, respectively, while the black
lines are used by both cases. If DIR or VC_ID has an error,
OHC detects the error and informs the LRC unit in Cycle 1.
Then, the LRC unit changes its function to execute the standard
RC (instead of lookahead), i.e., calculate DIR and VC_ID for the
current router. Meanwhile, the VA and SSA work in parallel
with OHC and RC. However, at the end of Cycle 1, the results
of allocators are abandoned as they are made based on the
erroneous DIR and VC_ID. Otherwise, if DIR and VC_ID have
no error, Cycle 1 is skipped. In Cycle 2, DIR and VC_ID are used
for allocators and LRC, no matter they are newly generated
in Cycle 1 or from the upstream router. To achieve the above
function, a set of registers, named RC result register, is used to
store RC results as shown in Fig.6 (a). When errors are detected,
this register stores the results of the standard RC. In this case,
the erroneous DIR and VC_ID are corrected by an additional
clock cycle. The circuit area overhead is negligible due to the

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
Authorized licensed use limited to: Turun Yliopisto. Downloaded qpiQgiohgr 20,2020 at 11:29:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2991749,

IEEE Transactions on Computers 6

reuse of the LRC unit.

Fig.6 (c) shows the pipeline stages of the ECDR® and
baseline router, differentiated by the head and body/tail flits.
Regarding the head flit, the stage count varies depending on
whether OHC fails or not. For ECDR?, only when OHC fails,
the standard RC is executed, and thus it introduces an extra
stage. Many operations are executed in the second stage, and
they are highly paralleled. Since the Payload-ECC corrector
does not feed other components, it works in parallel with oth-
ers. RI-ECC and OHC run prior LRC to ensure correct RI and
detect faults in DIR. The FT-ECC corrector is executed before
allocators as the allocation function differs depending on the
flit type. Regarding the body/tail flits, in the first stage, the FI-
ECC corrector and SA are executed in parallel with the Payload-
ECC corrector as they do not have any data dependence. In the
second stage, the flit is transferred to the downstream router
via the crossbar and link. As for the baseline router, the stage
number is fixed three. In most cases (i.e., there is no error in RI),
ECDR? has one less stage than the baseline router.

5 EXPERIMENT RESULTS
5.1 Experiment setup

To evaluate the network latency and error correction ca-
pacity of ECDR?, we have performed RTL simulations. As
introduced in the Sub-section 3.2, our baseline design is a 3-
stage error correction router [3], [4], [5], [6]. We have also
evaluated the generic 2-stage router to provide comprehensive
results. To have fair error correction capacity, both ECDR? and
the baseline router adopt the same code method, as shown in
Fig.4. However, the baseline router has no scheme to reuse the
LRC unit, so packets with erroneous DIR or VC_ID are dropped
by the baseline router.

We have used synthesizable Verilog HDL to design all the
routers and SystemVerilog to build the simulation platform.
The simulated NoC utilizes 8 x 8 mesh topology and adopts the
XY deterministic routing algorithm [18]. All routers have two
VCs per input port, and the buffer in each VC has fore slots.
The comparison matrix includes network reliability, network
latency, and circuit area. The latency of a packet is defined
as the number of cycles from when the first flit is injected
to the network and the last flit is ejected from the network.
The network latency is calculated as the average latency of all
packets.

To measure the packet latency, we have used six synthetic
traffic patterns as well as various traffic traces from the PARSEC
benchmark [11]. For six traffic patterns, 1000 packets are used
to warm up the NoC, then 10000 packets are injected to each
node for latency measurement. For the PARSEC traffic traces,
we have used Simplescalar [19] and ESYNet [20] to build
and simulate a 64-node many-core system equipped with an
8 x 8 mesh interconnection. The 16 routers located at the west

TABLE 2: Percentage of erroneous packets

(a) Baseline

Error Rate | 1B5 164 25E3 5E3 75E3 1E2
Total 0366% 425% 1294% 3455% 47.60% 66.14%
Payload | 0365% 4.14% 12.65% 33.76% 46.73% 64.60%
RI 0.011% 011% 029% 079% 0.87% 1.54%
(b) ECDR?
Error Rate | 1E5 154 25E3 5E3 75E3 1E2
Total 0.005% 0288% 1.71% 690% 15.75% 29.16%
Payload | 0.005% 0288% 171% 6.8%% 15.67% 28.61%
RI 0.000% 0.000% 0.003% 0.014% 0.083% 0.55%

and east borders of the mesh are connected to the memory
controllers, while each of the other 48 routers is connected to
an Alpha 21264 processing core. Each processing core has a
private 32 KB L1 cache, and the entire system has 8 MB shared
L2 cache, distributed in the whole mesh.

5.2 Network reliability

To evaluate the network reliability, the simulation platform
should have the ability to inject errors to NoCs. In our simula-
tion platform, errors are injected by flipping values of data bits.
We define a parameter named error rate that is the probability
of flipping a bit value in one cycle. Note that the error injection
in different bits is uncorrelated, meaning that errors can be
injected into multiple bits in one cycle.

Table 2 reports the percentage of erroneous packets in
the baseline and ECDR? routers under the uniform traffic
pattern and the packet injection rate of 0.1 flit/cycle/router.
The payload row shows the percentage of packets that reach
their correct destinations but carry erroneous payload or RB,
while RI row shows the percentage of packets that reach wrong
destinations or have been dropped in NoC. The table does not
represent the generic router, because the generic router has
no error correction ability, and it encounters deadlock even
when the error rate is very low. As can be seen from the table,
ECDR? leads to lower erroneous packets than the baseline
router in all error rates. There are two main reasons for the
better reliability of ECDR®. First, ECDR? adopts the reuse of
the LRC unit which can protect packets with the erroneous
DIR and VC_ID while the baseline router drops these packets.
Second, the extra pipeline stage in the baseline router results in

—0-Baseline -O—Generic —*ECDR?

40 30
35 28
30 26
25 + 24 ;
1 1
20 U L L L Y L 1 ;
0 0.16 0.32 0 0.08 0.16 0 0.02 0.04 0.06
Uniform Transpose Hotspot
35 ~
1
1 0 . L
30 1 o
p L i
25 P i
1 1
1 1
20 L N 590 ¢ N y L s
0 0.14 0.28 0 0.14 0.28 0 0.14 0.28
BitReversal Shuffle Butterfly

(a) Average latency under synthetic traffic patterns (in clock cycle).

The horizontal ordinate is the packet injection rate in flit/cycle/router
M Baseline m ECDR> m Generic

40
35 [39.4% |
30 (30.0%)
25
(31.5%)
20 (29.6%
[29.4% |
15
10
5
0
° e
NN\ (\e SO
®) <\),‘,5\\ ((‘QQ
o

(b) Average latency under PARSEC benchmark suits (in clock cycle)

Fig. 7: Average latency in the error-free environment

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
Authorized licensed use limited to: Turun Yliopisto. Downloaded qpiQgiohgr 20,2020 at 11:29:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2991749,

IEEE Transactions on Computers 7

—0—Baseline —O—Generic —»-ECDR?

50 r 50 -
40 40 *+ J
30 d 30 ‘?—"—'*I o

20 20 *
10 \ L ') 10 L L L 5
0 1E-6 1E4 1E-2 0 1E-6 1E-4 1E-2
Canneal Dedup
50 - 50 -
40 J 40 % J[
[
30 o 30 J
20 5¢ 20
10 ¢ L L)10 L i)10 L L 5
0 _1E-6 1E-4 1E-2 0 1E-6 1E-4 1E-2 0 1E-6 1E-4 1E-2
Fluidanimate Fregmine Raytrace
50 - 50 - 50 -
40 40 * 40 /JL
30 30 30
¢ ¢ b
20 4 20 ¢ 20
10 L L)10 i i 510 i 1 J
0 _1E-6 1E-4 1E-2 0 1E-6 1E-4 1E-2 0 1E-6 1E-4 1E-2
Streamcluster Swaptions Vips

Fig. 8: Average latency (in clock cycle) under PARSEC bench-
mark suits and for different error rates

a longer data path. The longer data path introduces more errors
because errors are injected into every data bits in NoC. As a
result, more errors are injected into the baseline router during
the same period. Also, as can be observed from this table, the
erroneous count in Rl is significantly smaller than the payload.
Since ECDR? provides stronger protection for RI, deadlock can
be prevented when the error rate is high.

5.3 Network latency in the error-free environment

Both the router architecture and the error correction abil-
ity affect the network latency. To evaluate the pipeline stage
elimination, we only compare the network latency caused by
the router architecture difference in this subsection. The simu-
lations are carried in an error-free environment, i.e., no error is
injected.

Fig.7 (a) illustrates the network latency under different
traffic patterns. It can be seen that the generic router and ECDR?
show almost the same latency characteristics. The reason is
that the architectures of both routers are identical except the
error correction components which are not utilized in the error-
free environment. Fig.7 (a) also shows that the latency of the
baseline router is always lager than ECDR®. The reason lies
behind the extra pipeline stage in the baseline router, which
adds one cycle for delivering a flit in a router. As a result, a
packet experiences several cycles larger latency than in ECDR?
depending on the distance between its source and destination
node and the network traffic.

The packet latency under the PARSEC benchmark in an
error-free environment is shown in Fig.7 (b). Similar to the
case of synthetic traffic, the generic router and ECDR? show
a similar latency while the latency of the baseline router is
always larger. The most obvious benchmark is Dedup, on which
ECDR? has 39.4% less latency than the baseline router. Dedup
has relatively heavy traffic among all benchmarks, especially in
systems with many cores [11]. The shorter path in the generic
and ECDR? leads to lower traffic and thus the network latency.
On average, ECDR? shows 30% less latency than the baseline
routers.

5.4 Network latency with error injected

To understand the effect of error correction on the latency,
we inject errors into the network. To fairly evaluate the packet

latency when errors are injected, we adopt the retransmission
scheme to ensure 100% packet delivery. The source node re-
sends the packet if it is not correctly received by the destination
node. The latency of the retransmitted packet is calculated as
the number of cycles from when the packet is first injected into
the network until the correct one is received by the destination.
Obviously the retransmission of packets significantly increase
the average packet latency.

Fig. 8 illustrates the network latency under various PARSEC
benchmark suits and for different error rates. When the error
rate is low, the network latency is rather stable since few packet
re-transmissions occur. The latency values are similar to that
of the error-free environment in Fig.7 (b). The latency of the
baseline router is larger than both the ECDR? and generic
routers as it adopts one more pipeline stage.

As the error rate increases, the number of re-transmitted
packets grows, and the network latency increases consequently.
In Fig. 8, we define failure point as the point of the error
rate, where the latency begins to raise. The failure point can
characterize the error correction capability of the routers. A
lower failure point means the worse error correction capability.
As can be seen from the Fig. 8, under all nine benchmarks, the
failure point of ECDR? is higher than the baseline and generic
routers. This is compatible with the results in Table 2 that shows
ECDR? has better error correction capability, so that the number
of re-transmitted packets grows lower. The failure point of the
generic router is much lower than both ECDR? and the baseline
router, due to the absence of the ability to correct errors. Because
the increasing number of re-transmitted packets caused by
errors, which also creates congestion and even deadlock in the
network. The failure point of the Canneal workload is relatively
low because its workload is the heaviest among all the other
workloads. The heavy workload (i.e., more packets) leads to
more errors and a larger probability of deadlock, which is seen
as infinite latency in the simulation. The Streamcluster workload
is relatively light, so there is a low probability of encountering
deadlock, and thus the corresponding failure point is higher than
the other benchmarks. Unlike the generic router, the latency of
ECDR? and the baseline router increase more smoothly because
of their error correction capability.

5.5 Hardware overhead

We have synthesized the RTL design of three routers with
TSMC 45-nm technology. Table 3 shows the hardware com-
parison of different routers. The circuit area and power con-
sumption of ECDR? are smaller than the baseline by 8.61% and
12.21%, respectively. The reason is that the baseline router has
an extra pipeline stage which requires a set of registers to store
the pipelined data. Although ECDR? utilizes more logic gates
for error correction and LRC reuse, their hardware overhead is
small compared with the extra registers of the baseline router.
The generic router has the lowest area and power consump-
tion as it does not support error correction. Regarding the
clock frequency, the critical paths of all three routers are in
VA. Considering this critical path, the baseline router reaches
the maximum frequency of 1.47GHz, while ECDR? reaches
1.32GHz. The main reason is that ECDR? reads flits from the
FIFO buffer and uses it for VA in the same clock cycle. The
delay of reading from the buffer increases the critical path delay
of ECDRZ. In the baseline router, buffer read and VA are placed
into two different stages, thus it does not increase the critical
delay.

Table 4 lists the average latency in the unit of ns when all
the routers run at. Although the max frequency of ECDR? is

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
Authorized licensed use limited to: Turun Yliopisto. Downloaded qpiQgiohgr 20,2020 at 11:29:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2991749,

IEEE Transactions on Computers 8

TABLE 3: Hardware overhead

Designs | Area(um?) Ratio(%) | Power(mW) Ratio(%) | Critical delay(ns) | Max frequency(GHz) Ratio(%)
Baseline 51367 100.00 49.630 100.00 0.68 1.47 100.00
ECDR? 46947 91.39 43.571 87.79 0.76 1.32 89.79
Generic 37951 73.88 34.412 69.33 0.70 143 97.27

TABLE 4: Average latency of PARSEC benchmark suits (in ns)

Benchmark Baseline ECDR? Generic
Latency Latency RED.(%) Latency

Vips 227 17.7 22.13 16.3 28.27
Canneal 17.9 13.7 23.44 12.6 29.49
Dedup 28.2 19.1 32.27 17.6 37.62
Fluidanimate 13.9 11.0 21.07 10.1 27.30
Freqmine 16.4 12.9 21.33 11.9 27.54
Raytrace 23.7 18.7 21.07 17.2 27.30
Streamcluster 16.0 12.4 22.25 11.5 28.39
Swaptions 15.3 12.2 20.35 11.2 26.64
Blackscholes 14.4 11.5 20.42 10.6 26.70

decrease by 10.21%, it still achieves more than 20% latency
reduction under all benchmarks compared with the baseline.
This is mainly due to the eliminated pipeline stage. The clock
frequency of the proposed router and baseline router can both
scale lower (for example, 1 GHz) without any timing problem.
In this case, if both routers work at the same frequency, the
proposed router will achieve a significantly better performance
than the baseline router due to the stage elimination.

The max frequency of the proposed router is 1.32GHz.
When targeting a much lower frequency (for example, 0.7
GHz), the pipeline needs a redesign to have fewer stages due
to the positive timing slack. On the other hand, if a higher
clock frequency (for example, 1.5GHz) is needed by the SoC
specification, the pipeline also must be redesigned to have more
stages for timing closure, which will introduce larger network
latency and power consumption. In other words, when the
clock frequency is scaled out of the applicable range, a pipeline
redesign is needed, and the proposed router microarchitecture
cannot be directly applied in this situation. Nevertheless, the
proposed design methodology of this paper can also be refer-
enced in the pipeline redesign even if the clock frequency needs
to be scaled.

6 CONCLUSION

In this brief, we proposed the error correction router, named
ECDR?, without adding any extra stage to the router pipeline.
We presented the router micro-architecture that adopts a 2-stage
pipeline, rather than the 3-stage pipeline used by the traditional
error correction routers. We merged different methods to pro-
vide full error coverage for NoC packets. RTL simulations show
that the proposed ECDR? has a better network performance
and reliability than the baseline router. The circuit area and
power consumption of the proposed ECDR? are also lower than
the baseline router as it does not have an extra pipeline stage
and the required registers. Compared with the baseline router,
the proposed ECDR? shows better network latency, reliability,
and hardware overhead. Even if the microarchitecture design
could not be applied directly, this design methodology can also
be referenced in pipeline redesign if the frequency needs to be
scaled.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive and helpful suggestions and comments.
This work was supported by the National Natural Science

Foundation of China (NSFC) under the Grants No.61701095,
No.61534002, No.61761136015. This work was also supported
RED.(%) by VR, Sweden.

REFERENCES

[1] L. Benini and G. D. Micheli, “Networks on chips: A new soc
paradigm,” IEEE Computer, vol. 35, no. 1, pp. 70-78, 2002.

[2] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, “Methods for fault
tolerance in networks-on-chip,” Acm Computing Surveys, vol. 46,
no. 1, pp. 1-38, 2013.

[3] D. Rossi, P. Angelini, and C. Metra, “Configurable error control
scheme for noc signal integrity,” in On-Line Testing Symposium,
2007. IOLTS 07. 13th IEEE International, pp. 43-48, IEEE, 2007.

[4] Q. Yu, B. Zhang, Y. Li, and P. Ampadu, “Error control integra-
tion scheme for reliable noc,” in IEEE International Symposium on
Circuits and Systems, pp. 3893-3896, 2010.

[5] L.Wang,S.Ma, C.Li, W. Chen, and Z. Wang, “A high performance
reliable noc router,” Integration the Vlisi Journal, vol. 58, p. 583-592,
2017.

[6] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. R. Das,
“Exploring fault-tolerant network-on-chip architectures,” in Inter-
national Conference on Dependable Systems and Networks (DSN'06),
pp- 93-104, June 2006.

[7] S. Shamshiri, A. Ghofrani, and K. T. Cheng, “End-to-end error
correction and online diagnosis for on-chip networks,” in IEEE
International Test Conference, 2011.

[8] B. Aghaei, A. Khademzadeh, M. Reshadi, and K. Badie, “A new
bist-based test approach with the fault location capability for
communication channels in network-on-chip,” Journal of Electronic
Testing, vol. 33, no. 3, pp. 1-13, 2017.

[9]1 T. Liu, J. Harkin, Y. Li, and L. Maguire, “Low cost fault-tolerant

routing algorithm for networks-on-chip,” Microprocessors & Mi-

crosystems, vol. 39, no. 6, pp. 358-372, 2015.

A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, “No-

calert:an on-line and real-time fault detection mechanism for

network-on-chip architectures,” in Ieee/acm International Sympo-

sium on Microarchitecture, pp. 60-71, 2012.

[11] C. Bienia, Benchmarking Modern Multiprocessors. PhD thesis, Prince-
ton University, January 2011.

[12] W.]. Dally and B. P. Towles, Principles and Practices of Interconnec-
tion Network. Morgan Kaufmann Publishers Inc., 2004.

[13] L.S. Peh and W.]. Dally, “A delay model and speculative architec-
ture for pipelined routers,” in The Seventh International Symposium
on High-Performance Computer Architecture, pp. 255-266, 2001.

[14] M. Galles, Spider: A High-Speed Network Interconnect. IEEE Com-
puter Society Press, 1997.

[15] J. Kim, “Low-cost router microarchitecture for on-chip networks,”

in leee/acm International Symposium on Microarchitecture, pp. 255—

266, 2009.

S. T. Nguyen and S. Oyanagi, “A low cost single-cycle router based

on virtual output queuing for on-chip networks,” in Digital System

Design: Architectures, Methods and TOOLS, pp. 60-67, 2010.

P. Poluri and A. Louri, “A soft error tolerant network-on-chip

router pipeline for multi-core systems,” IEEE Computer Architecture

Letters, vol. 14, no. 2, pp. 107-110, 2015.

W. Zhang, L. Hou, J. Wang, S. Geng, and W. Wu, “Comparison

research between xy and odd-even routing algorithm of a 2-

dimension 3x3 mesh topology network-on-chip,” in Wri Global

Congress on Intelligent Systems, pp. 329-333, 2009.

T. Austin, E. Larson, and D. Ernst, “Simplescalar: an infrastructure

for computer system modeling,” Computer, vol. 35, no. 2, pp. 59—

67, 2002.

[20] J. Wang, Y. Huang, M. Ebrahimi, L. Huang, Q. Li, A. Jantsch, and
G. Li, “Visualnoc: A visualization and evaluation environment for
simulation and mapping,” in ACM International Workshop on Many-
Core Embedded Systems, pp. 18-25, 2016.

[10]

[16]

(17]

[18]

[19]

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
Authorized licensed use limited to: Turun Yliopisto. Downloaded qpiQgiohgr 20,2020 at 11:29:21 UTC from IEEE Xplore. Restrictions apply.

