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Abstract—From object detection to semantic segmentation, deep
learning has achieved many groundbreaking results in recent
years. However, due to the increasing complexity, the execution
of neural networks on embedded platforms is greatly hindered.
This has motivated the development of several neural network
minimisation techniques, amongst which pruning has gained a
lot of focus. In this work, we perform a case study on a series
of methods with the goal of finding a small model that could
run fast on embedded devices. First, we suggest a simple, but
effective, ranking criterion for filter pruning called Mean Weight.
Then, we combine this new criterion with a threshold-aware layer-
sensitive filter pruning method, called T-sensitive pruning, to gain
high accuracy. Further, the pruning algorithm follows a structured
filter pruning approach that removes all selected filters and their
dependencies from the DNN model, leading to less computations,
and thus low inference time in lower-end CPUs. To validate the
effectiveness of the proposed method, we perform experiments on
three different datasets (with 3, 101, and 1000 classes) and two
different deep neural networks (i.e., SICK-Net and MobileNet
V1). We have obtained speedups of up to 13x on lower-end CPUs
(Armv8) with less than 1% drop in accuracy. This satisfies the goal
of transferring deep neural networks to embedded hardware while
attaining a good trade-off between inference time and accuracy.

Index Terms—Deep neural network optimisation, embedded
deep learning, embedded devices, edge Al, pruning.

I. INTRODUCTION

Machine learning has been rapidly advancing over the past
couple of decades and is now a common tool used in many
tasks that require extracting information from a large set of
data [1]. One of the main reasons behind this revolution in
the applications of machine learning is the advancement and
introduction of deep learning [2].

With the advancement of neural networks over the last
decade, the prediction error has been continuously dropping.
This improvement is, however, accompanied by deeper neural
networks, which results in bigger networks, higher computation
costs, and longer inference times. A complicated model such
as Inception-ResNetv?2 [3] contains 55.8 million parameters and
requires 13 billion operations for a single inference (208.8 ms
on Intel i7-8700k or 20.6 ms on Nvidia 1080ti). Due to this
complexity, the execution of deep neural networks usually has
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to be deployed on GPUs, leading to high acquisition and energy
costs [4]-[6].

The need for smart sensor solutions is also on the rise and
it is not feasible to have GPUs in all sensors as they are
bulky and power hungry. The sensors are expected to run
simple classification or detection algorithms without needing
additional industrial PCs or servers. An alternative to using
energy-hungry GPUs in Edge Al is hardware and FPGA-based
accelerators [7]-[9], but they result in a loss of flexibility
compared with the general purpose CPUs.

To exploit the success achieved by deep learning in industrial
and embedded applications, ways need to be found to port them
to commercially available (lower-end) CPUs, while ensuring
that the fast reaction time and accuracy requirements (maxi-
mum 1% loss) are also met. Many model minimisation tech-
niques such as pruning [10] and quantization [11], knowledge
distillation [12], etc.), inference optimisations (vector merging
[13], deep reuse [14], etc.), and new architectures (Squeezenet
[15], MobileNet [16], etc.) have been proposed to address this
problem. However, the expected results from many of these
techniques, aiming at reduction in size and computation, can
usually not be easily obtained without specialised software
and/or hardware. In addition, many of the proposed methods
only reported results on GPUs and higher-end CPUs.

Building on top of the previous works, this paper proposes
a Mean Weight ranking criterion combined with a threshold-
aware layer-sensitive filter pruning strategy with the goal of
transferring deep neural networks to embedded hardware while
attaining a good trade-off between inference time and accuracy.
The proposed criterion is simple to compute and targets filters
(rather than individual weights) to eliminate the need for spe-
cialised hardware or software to exploit the resulting sparsity
while the layer-sensitive pruning strategy adds data awareness
to the pruning strategy. We assume the accepted accuracy drop
of maximum 1% when investigating different trade-offs.

To validate the effectiveness of different approaches, we
first evaluate it on an industrial classification scenario with
3 classes (Wood dataset) and an already optimised neural



network (SICK-Net). For scalability purposes, the procedure
is then applied to a not typical problem with 101 classes [17]
and the prevailing ImageNet dataset [18] with 1000 classes
and a slightly larger MobileNet-V1 model [16]. The main
contributions of this work are as follows:

o We evaluate different filter ranking criteria while propos-
ing a simple but effective filter ranking criterion called
Mean Weight. This criterion identifies the least important
filters for pruning based on the average value of filters’
weights.

o We suggest a variant of the layer-sensitive pruning strat-
egy, called T-sensitive pruning, and combine Mean Weight
with it to accelerate DNN inference on resource-constraint
devices with minimum accuracy loss.

« We introduce a structured filter removal algorithm to prune
filters and all subsequent dependent filters from the DNN
model to reduce computation and speed up the inference.
This can include removing an entire layer.

« We conduct extensive experiments to show the applica-
bility of our approach on different higher-end and lower-
end hardware devices, industrial and conventional DNNs
with different amount of computational complexities, and
datasets with different number of classes. We show how
a simple approach can surpass previous works in terms of
inference latency and accuracy.

The organization of the rest of the paper is as follows: We
discuss the ideas presented in previous works in Section II. The
background needed to follow the paper is presented in Section
III. The design and implementation of our proposed approach is
explained in Section I'V. The experimental results are presented
in Section V, and the paper is concluded in Section VI.

II. PREVIOUS WORK

A large body of research has focused on enabling real-
time power/energy-efficient DNN inference on embedded de-
vices [19]-[21]. Since the computing capacity and maximum
available power of embedded devices is less than conventional
CPUs, GPUs, and FPGAs, it is challenging to simply deploy
the DNNs designed for such devices on embedded devices.
Thus, various techniques such as quantization [21], [22] and
pruning [19], [20] are employed to reduce the resource demand
of DNNs, and hence, improve their performance on embedded
devices.

The quantization technique is widely used to improve the
latency of DNN inference [23]—-[26]. In this technique, the DNN
parameters are quantized from high-precision floating point
(e.g., 32-bit floating point) to lower precision floating point
(e.g., 16-bit floating point) or integer (e.g., 8/4-bit integer).
Since the low-precision floating point or integer arithmetic
operations can be executed faster than high-precision floating
point ones, this technique can improve the latency of inference,
while negatively affecting the accuracy. The improvement can
be achieved by quantization technique provided that the target
hardware processor is equipped with an exclusive instruction
set that supports the reduced-precision operations (e.g., 4-bit
integer).

The pruning strategies employed for compressing the DNN's
can be mainly divided into two categories: unstructured and
structured pruning. The most popular unstructured pruning
strategies, called weight pruning [27]-[29], leverage the weight
redundancy in the DNNs and try to achieve model compression
with slight accuracy loss. Since the weights are only zeroed-
out, these strategies usually obtain low (or even no) latency
improvement. The most popular structured pruning strategies
on the other hand, called filter pruning, consider pruning the
filters in convolution layers instead of weights [10], [30],
[31]. Unlike weight pruning, filter pruning completely removes
the selected filters from the model. The complete removal of
filters can help gain performance improvement, in the form
of decreased inference time. An example for weight and filter
pruning is illustrated in Figure 1 (a) and (b), respectively.
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Fig. 1. Weight vs Filter pruning

Different criteria have been proposed to identify the perfect
candidate filters for removal such as L1-norm [10] or using
Taylor expansion [31] to approximate the impact of each filter
on the loss function of the DNN. These criteria are either too
complex, imposing significant ranking overhead, and/or mainly
target GPUs. To address these challenges, our investigation
focuses on a simpler criterion which is more effective in
identifying and removing the least important filters, and could
achieve higher performance improvement (i.e., faster inference
with acceptable level of accuracy loss) on embedded devices.

III. BACKGROUND

In this section, we introduce the basic operations of a
convolutional neural network (CNN) before talking about the
optimisation works we deemed most relevant. A typical neural
network consists of multiple interconnected layers. Each of
these layers is made up weight tensors which are used in
processing inputs. In the case of a convolutional layer, these
weight tensors are grouped into entities called filters.

As shown in Fig. 2, filter pruning, unlike weight pruning,
requires the removal of complete filters from the DNN model
in question instead of replacing them with zeros. In this figure
green and yellow filters and their dependencies are completely
removed from the entire model. This eliminates the need for
specialised hardware/software to benefit from the resulting
sparsity.

The three main prerequisites of filter pruning are: 1) A
criterion to rank the filters by importance (Subsection IV-A);
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Fig. 2. Pruning dependencies when the green and yellow filters in Layer 1 are
removed

2) A strategy to remove filters either layer-by-layer or globally
(Subsection IV-B); and 3) A method to remove subsequent
dependent filters (all dependencies) from the next layers (Sub-
section IV-C). The ultimate goal is to reach a model that could
fit and run fast on lower-end CPUs.

IV. PREPARING DNN FOR EXECUTION ON EMBEDDED
DEVICES

This paper aims at studying and proposing light-weight
solutions to accelerate DNN models for deployment on em-
bedded devices by removing as many filters as possible with
an acceptable loss in accuracy (1% in this work). To achieve
this goal, we need to solve the problems mentioned in the
previous sections. We investigate the saliency of weights and
their extendibility to structured weight pruning. By considering
actual weight values in determining the importance of filters,
we propose a simple ranking criterion that exploits the proven
relationship between weight and model accuracy [32]-[35],
while having the same benefits from the lack of sparsity.

This section first describes well-known criterion to rank the
filters, including L1-Norm and Taylor expansion. Then we
suggest a simpler and more effective criterion called Mean
Weight ranking. After that, we combine all criteria with two
different pruning strategies to find out the best solution. One
strategy rank all filters in the model and remove the least
important ones while the other one remove filters layer by layer.
Finally, a structured algorithm is introduced which removes the
selected filters and their dependencies from the whole model
for faster inference (see Fig. 2).

A. Criterion to rank filters

Different works use different methods and criterion to rank
filters by their importance [10], [31], [36]. In AutoML, the
authors propose training a reinforcement learning agent to pre-
dict actions and give structured sparsity [36]. However, DNNs
are mathematical and it is technically possible to measure the
exact importance of parameters by removing them one by one
and evaluating the changes in different performance metrics
(FLOPS, size, etc.). This method is called Oracle and is the
most optimal ranking criterion, albeit too expensive [31].

In the following we draw comparison with L1-norm and
Tailor expansion ranking criteria.

1) L1-norm Ranking: In [10], Hao Li et. al. proposed a
layer-wise pruning acceleration method that uses the L1-norm
(absolute sum of weights) of filters to rank them. This simple
criterion gives an estimate of the filter’s magnitude and hence
their saliency. For each filter, its magnitude is calculated by Eq.

(1):

Magnitude = Z |W;] (1
i=1
where W, is a weight in the filter and n is the number of
weights in the filter. An example of filter selection based on
this criterion is shown in Fig. 3 (a).

2) Taylor expansion Ranking: Concurrently with the work
above, NVIDIA proposed an iterative global filter pruning
approach that interleaves greedy criteria-based pruning with
fine-tuning by back-propagation [31]. Rephrasing pruning as an
optimisation problem (see Eq. (2)), they propose a new criterion
based on a first order Taylor expansion of the network cost
function to approximate the change in the loss function when
removing a particular parameter.

[AC(Wy)| = [C(D, W; = 0) = C(D, W3)]| 2

where C'(D,W; = 0) is the cost model of D if filter W; is
pruned. Fig. 3 (b) shows an example of filter selection based
on this criterion.

It is prohibitively costly to compute Oracle criterion which
empirically evaluates each parameter. The iterative pruning
strategy they employ was introduced by early works in the
1990s [37], [38] for weights. This approach involves pruning
k% of the least important filters, and retraining the DNN model
to recover the lost accuracy. This process is repeated until the
desired optimisation or the accuracy loss constraint is reached.
This work achieves up to 1.7x speedup for the VGG-16 with
the ImageNet dataset on a higher-end Intel 17-5930K CPU and
up to 2.5x on an NVIDIA Jetson TX1 GPU with 2.3% accuracy
loss. These results are pretty impressive considering all the
feautures in the 1000 classes. However, the Taylor criterion
is too complex. A point of interest is to see if such complex
filter ranking criteria can be outperformed by simpler criteria.
This work also mainly targeted higher-end CPUs and GPUs.
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Fig. 3. Least important filter: a) L1-norm ranking, b) Taylor ranking, c¢) The
proposed Weight Mean ranking



3) Mean Weight Ranking: We propose to extend
magnitude-based weight pruning criterion to filters. Instead
of sorting filters based on the sum of absolute values as in
Ll-norm (Eq. (1)), we propose to take an average sum (Eq
(3)). This criterion takes a more conservative approach in
removing filters. Weight Mean considers the importance of all
weights in the filter by taking into account their positive and
negative values. This is in contrast with L1-norm where both
negative and positive value increases the importance of a filter
rather than negating each other. In Weight Mean, by using
the average weight of a filter as its magnitude, this saliency
criterion has both the benefits of filter pruning as well as the
performance and simplicity of magnitude-based weight ranking.
This reduces the complexity of Taylor ranking and is more
flexible than the L1-norm criterion. The magnitude of a filter
with this criterion is given by Eq (3):

1 n
Magnitude = Tl Z W; (3)
i=1

where W, is a weight in the filter and n is the number of
weights in the filter. Fig. 3 (c) shows an example of filter
selection based on this criterion. Generally, Fig. 3 highlights
the fact that different criteria result in different filter removal.

B. Strategy on removing filters

After defining the filter ranking criterion, the next step is
to define a threshold line to remove the ranked filters. In
the following, two pruning strategies we evaluated. The first
strategy is based on ranking all filters in the entire model
and then remove the k% least important filters, retraining
the model, and repeating this process, thereby the strategy is
called iterative global pruning. In the second strategy, a global
threshold is defined and then based on the sensitivity of a layer,
a percentage of the ranked filters are removed in that layer.
After pruning filters in each layer, the whole model is retrained
only once. This strategy is called T-sensitive pruning.

1) Iterative global pruning: This strategy involves ranking
all the parameters of the model, pruning k% of the least
important ones, and retraining to recover the lost accuracy. The
process is repeated until the desired speedup or the accuracy
loss constraint is reached. The amount of filters pruned in each
iteration is usually determined through experimentation. In this
pruning strategy, we propose to prune 8% of the least important
filters in the model in each iteration. This allows the model to
be retrained frequently and its accuracy to stay as close to the
original one as possible. This, however, results in many more
iterations and retraining which is a costly process. Different
pruning rates (8%, 16%, etc.) were evaluated and the rate of
8% per iteration was determined was found to recover quality
faster when fine-tuning.

2) Layer-sensitive pruning: Although iterative global prun-
ing targets the least important filters in the model, it ignores
the relationship between different layers, and also between
filters in the same layer. Layer-wise pruning, however, con-
siders this relationship. Layer-sensitive pruning, as a type of
layer-wise pruning strategy, was introduced in [10] and takes

into consideration the sensitivity of each layer in the model.
Each layer is pruned with increments, and the accuracies are
extracted without retraining. This represents the sensitivity of
each layer and determines how much of each layer to prune.
In this strategy, the model is pruned and retrained only once.
Fig. 4 shows the sensitivity of 11 layers in the SICK-Net with
pruning increments of 10%. This means, for instance, that 50%
of both the Conv_1 and Conv_11 layers can be pruned without
losing any accuracy. It should be noted that this is the accuracy
after pruning, and some of it can be recovered by retraining
the pruned model. In this method, the number of filters pruned
per layer is decided empirically according to the sensitivity
of each layer to pruning. They achieve about 30% reduction
in FLOPs for the VGGNet (on CIFAR-10) and deep ResNets
without significant loss in the original accuracy [10]. This work
provides a great foundation for filter pruning but it does not
consider the benefits of ranking filters globally and performing
pruning in the entire model. Although the concept of layer
sensitivity introduces some level of globality, ranking filters
layer-wise only shows their level of importance in that layer
and not in the entire model. Actual inference time and real
speed up are also not reported.

3) Threshold-based Layer-sensitive pruning: To determine
and automate what percentage of filters to prune in each layer,
we extend this pruning strategy with the concept of pruning
threshold. The pruning threshold is the accuracy expected
of each layer before retraining. This is represented by the
horizontal line in the sensitivity graph on Fig. 4 (60%), and
where it intersects with each layer represents the percentage
of filters to prune. For example, considering the threshold of
60% in Fig. 4, around 90% of filters will be pruned in Conv_8.
In the case of Conv_6, where it does not intersect with the
pruning threshold, all filters may be pruned. The percentage of
filters pruned in each layer is denoted by s(layer)% in Alg. 1.
We name this enhancement strategy, T-sensitive pruning.
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Fig. 4. Sensitivity diagram of the SICK-net on the Wood dataset

C. Method to remove dependencies

In this section, we describe how the selected filters and
their dependencies to next layers are actually removed from
the whole model for faster inference. After determining the
least important filters with the proposed ranking criterion, the
model complexity is reduced for execution on lower-end CPUs.
Algorithm 1 shows the three main functions used to determine



the filters to be pruned and how they are eventually cut out of food recognition experiment on the MobileNetvl; and 3) An

the network, reducing model complexity.

Algorithm 1: Filter Removal Algorithm

1 Function Rank_Filters (M odel, Criterion, Pruning_Strategy):

2 Evaluate the saliency of every filter in Model according to
Criterion;

3 if Pruning_Strategy == Iterative global pruning then

4 Add smallest k% filters (and corresponding layers) in the

whole model to To_be_pruned, where k is determined

experimentally;

5 return To_be_pruned

6 Else if Pruning_Strategy == T-sensitive pruning then

7 for each layer in Model do

8 Add smallest s(layer)% filters in layer to To_be_pruned,
where s is the layer sensitivity threshold;

9 return To_be_pruned

11 Function Clone_Model (M odel, To_be_pruned):
12 for each layer in Model do
if any To_be_pruned in layer then
‘ Remove s(layer)% or k% filters from that particular

layer depending on the selected strategy;
15 return Model

17 Function Prune_Filters (M odel, To_be_pruned):
18 New_model = Clone_Model (M odel, T'o_be_pruned);
19 Pruned_layer = [];

20 for each layer in Model do

21 if any To_be_pruned in layer then

22 Remove corresponding output channels from weights
dimensions;

23 Append layer to Pruned_layer set;

24 if layer is data dependent on any Pruned_layer then

25 Remove corresponding input channels from weights
dimensions;

26 Set weights to corresponding layer of the New_model;

27 return New_model

The Rank_Filters function takes as input the Model, ranking
Criterion, and Pruning_Strategy. It first evaluates the impor-
tance of each filter based on the Criterion. It then ranks them
globally or layer-wise depending on the Pruning_Strategy and
returns the smallest filters to be pruned and their corresponding
layers in a dictionary called To_be_pruned. Layer sensitivity
should be calculated prior as shown in Fig. 4 in the case of the
T-sensitive pruning strategy. This ranking can be done multiple
times for the iterative global pruning strategy.

The Prune_Filters function takes as input the Model and
To_be_pruned, the dictionary of the filters to be removed.
The function starts by cloning the current model using the
Clone_Model function, removing the filters in To_be_pruned
parameter from the Model configuration. It then loads the
weights from the old model into the pruned model, layer
by layer. This involves deleting the weights corresponding to
the removed filters and any of their dependencies. This data
dependency can be seen in Fig. 2 where the green and yellow
filters are removed from the first layer and all the subsequent
dependent layers.

V. EVALUATION

We empirically study and compare the pruning criteria and
procedure detailed in Section IV for three experiments: 1) a 3-
class wood flipper application on the SICK-Net; 2) a 101-class

Imagenet dataset on the MobileNetv1. Training and pruning are
performed on the first two experiments, and results are reported
for the AMD Ryzen 7 workstation, the Armv8 Raspberry Pi
4. The best joint solution (i.e., the highest and most stable
speedup) is then evaluated on an embedded camera.

A. Experimental Setup

TABLE I
DNN MODELS BENCHMARK
SICK-Net MobileNetv1
Dataset Wood Food & ImageNet
Accuracy 96.85% 72.24%
Inference Ryzen 7 4.84 ms 36.32 ms
Inference Armv8 33.14 ms 142.50 ms
# of layers 42 100
# of parameters 215M 438 M

As listed in Table I, the SICK-Net and MobileNetvl [16]
CNN models are considered in this work. SICK-Net is a
protected industrial DNN and cannot be disclosed beyond the
configurations shown in Table I. MobileNetvl is a small-
size CNN model for image classification and is widely used
for resource-constrained devices. The PyTorch and Tensorflow
packages are used for neural network processing, and the
trained DNNs are then sent for optimisation experiments. The
optimisation procedures are implemented in Python.

Three datasets are used to evaluate the scalability of the
solution: 1) Wood dataset which is an internal dataset for wood
classification with three classes and 9409 images; 2) Food [17]
with 101 classes and 101,000 images. It contains images of
food that are organized by type; and 3) ImageNet [18] with
1000 classes, which is a popular dataset that is widely used in
previous works.

TABLE II
SPECIFICATIONS OF DEVICES USED IN THE EXPERIMENTS

AMD Ryzen 7 3700x Armv8 Armv7
Device Workstation Raspberry Pi 4 | Lector621 Camera
CPU type Higher-end Lower-end Embedded Camera
CPU freq. 3.6 GHz 1.5 GHz 1 GHz
RAM 32 GB 4 GB 1 GB
(O] Ubuntu 18.04 Ubuntu 18.04 None (BusyBox)
Use Benchmark Benchmark Validation

We implemented the benchmark framework for comparing
the optimisation techniques in C++. The OpenCV package
loads the trained or optimised DNNs and records the time it
takes for a single inference. The program is cross-compiled
with OpenCV DNN as inference back-end and the binaries
are executed on two benchmark devices presented in Table II.
The employment of three different systems allows to highlight
the importance of DNN optimisation on resource constrained
devices and the possibility of Edge Al. The embedded camera



is unusable at the start due to the high latency. The benchmark
devices are used for evaluation of the proposed approach, and
the latter for portability in a real-world setup.

B. Accuracy

Fig. 5 show the accuracy against filters removed for each
experiment with the proposed Mean Weight criterion as well
as the two other criteria as L1-norm and Taylor. This quantity
is either the total number of filters pruned in the model (%)
in the case of iterative global pruning or the pruning threshold
(%) for T-sensitive pruning.

Fig. 5 (a) and (c) show how different ranking criteria
perform with the iterative global pruning strategy on different
experiments. As an example, in Fig. 5 (a) when pruning 72%
of all filters, the accuracy drops to 90% under Mean Weight
criterion that is beyond the acceptable 1% loss. Both L1-norm
and Taylor ranking maintain an accuracy loss of around 1%
after pruning away 72% of the filters in SICK-Net.

As illustrated in Fig. 5 (b) and (d), the T-sensitive pruning
strategy introduces data-awareness and globality to the Mean
Weight and Ll-norm ranking criterion. In Fig. 5 (b), at a
pruning threshold of 60%, an accuracy of the Mean Weight
criterion drops by -0.82% to 96.38%. In the Ll-norm, an
accuracy drops by -4.76% to 92.09%. At a pruning threshold
of 60%, in the Taylor criterion, the accuracy drops by -0.47%
to 96.37%.

C. Parameter Count

Iterative global and T-sensitive pruning strategies lead to
different amount of pruned parameters. Fig. 6 illustrates how
many parameters are removed when either iterative global or
T-sensitive strategies are applied. As can be seen in the figure,
T-sensitive leads to extensive parameter removal in Fig. 6 (b).

D. Inference Time

In all performed experiments, layer sensitive pruning strategy
is replaced with T-sensitive pruning (Subsection IV-B). More-
over, in all examined methods, the filters and all their dependen-
cies are removed from an entire DNN model (Subsection IV-C).
In this way, we can fairly compare and analysis different criteria
and pruning strategies under different settings as follows:

1) SICK-net DNN with the Wood dataset: This set up
represents our industrial use case. Fig. 7 reports the inference
time against the quantity of filters removed for each experiment.
As can be seen in the figure, the speedups on both ARMvS8 and
AMD Ryzen 7 are quite similar.

Fig. 7 (a) show how different ranking criteria perform with
the iterative global pruning strategy. As an example in Fig.
7 (a), when pruning 72% of all filters, the Mean Weight
criterion provides significant speedups of up to 16.05x while
the L1-norm criterion leads to the speedups of 3.69x. In Taylor
ranking, as most filters are pruned from deeper layers, it
provides lesser speedups of up to 2.55x.

Fig. 7 (b) show the results on the T-sensitive pruning strategy
when Mean Weight and L1-norm ranking criterion are applied.
As an example in Fig. 7 (b), at a pruning threshold of 60%,
the Mean Weight criterion gives a speedup of 12.99x. The

speedup is 17.71x with L1-norm ranking. The Taylor ranking,
on the other hand, is already data-aware as it uses normalised
gradients and activations to calculate ranking and thus the
improvement is minute. At a pruning threshold of 60%, the
Taylor criterion gives a speedup of 1.71x. The results obtained
from pruning experiments on our industrial case (Wood dataset
on an Armv8 sensor) are summarised in Table III, keeping in
mind the maximum acceptable accuracy drop of 1%.

The speedups obtained from the Taylor ranking criterion in
both pruning strategies and DNN models on the Wood dataset
are comparatively quite low, and thus it is discarded from the
remaining sets of experiments.

2) MobileNet-vl DNN with the Food-101 dataset: Fig. 7 (c)
and (d) show the results for the iterative global and T-sensitive
pruning strategies, respectively. As shown in Fig. 7 (c¢) and
(d), Mean Weight and L1-norm ranking criteria lead to similar
speedups under both pruning strategies. The speedups, however,
are smaller than the lighter model of SICK-Net under the Wood
dataset (Fig. 7 (a) and (b)). Looking into all experiments in
Fig. 7, we observe that a higher speedup is obtained when the
Mean Weight ranking is combined with T-sensitive pruning.
Thereby, we dig deeper into this combination in the third set
of experiments.

3) MobileNetvl with the ImageNet dataset: In this set of
experiments, a MobileNetvl model trained on the ImageNet
dataset is analyzed. The Mean Weight ranking criterion is
combined with the T-sensitive pruning to show the applicability
of this combination on the well-known ImageNet dataset. Being
an already compact model on the Imagenet dataset, Top-1
accuracy of the small MobileNetvl is quite low and starts from
65.40%. With T-Sensitive Mean Weight pruning (henceforth
TS-MW) Top-1 accuracy drops from 65.40% to 60.05% after
a 29.9% reduction in the number of parameters, resulting in a
1.3x speedup as shown in Fig. 9. Because of the compactness of
MobileNetv1, many state-of-the-art papers evaluate their results
on smaller datasets such as Paupamah et al. [23] which gets
a 1.6x compression of the MobileNet on CIFAR10 with no
accuracy loss compared to our 1.4x compression on the Ima-
genet with 4.9% accuracy loss. Others rather use larger models
such as Molchanov et al. [31] which gets a 1.7x speedup of
the VGG-16 (Imagenet) on i7-CPU with a 2.3% accuracy loss
compared to our 1.3x speedup of the MobileNetvl (Imagenet)
on armv8 with 4.9% accuracy loss. This not only shows the
comparability of our simple TS-MW pruning criterion but also
its applicability in the embedded world. The accuracy, inference
time, and parameter for each pruning threshold is given in Fig.
9. The results are also summarised in Table III.

E. Portability to Embedded Camera

Embedded cameras are highly used in industry automation.
Edge inference on the low-energy Lector621 (wood flipper) led
to a high latency of 598.1 ms. To reduce the latency, the SICK-
Net model is pruned with a similar configuration as in Fig. 5
(a) and (b). The pruned SICK-Net models are then deployed
on the camera, and as the result, latency dropped to 55.9 ms
with our proposed TS-MW. This satisfies the goal of porting
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TABLE III
ACCURACY LOSS AND SPEEDUP SUMMARY ON ARMV8

TABLE IV
WOOD FLIPPER ACCURACY LOSS AND SPEEDUP SUMMARY ON THE
EMBEDDED CAMERA
T-Sensitive

Ranking criterion | Iterative global

Model & dataset | Ranking criterion | Iterative global T-sensitive
SICK-Net
¢ Mean Weight -097% ,4.73x | - 0.82% , 12.99x
(Wood)
SICK-Net Li-norm + 1.19% . 3.69x - 0.65%, 5.55x
(Wood) -1.18% , 9.18x
ICK-Net -0.20% , 2.15
SICK-Ne Taylor 00 s 028% , 2.65x
(Wood) - 1.05% , 2.55x
Mobils 1
obileNety Mean Weight | - 0.53%, 1.33x | - 0.49% , 145x
(Food-101)
Mobils 1
obileNety Ll-norm S057% , 125 | - 0.64%, 1.47x
(Food-101)
MobileNetvl
obrienety Mean Weight - - 49%, 1.3x
(ImageNet)

inference to a real-world setup with only -0.82% accuracy loss.
Results are reported in Fig. 8 and Table IV.

Mean Weight -097% ,7.97x | - 0.82% , 10.70x
L1-norm +1.19% , 185x | 063% 54
- 1.18% , 6.42x

VI. CONCLUSION

In this paper, we first motivated the use of filter pruning
instead of weight pruning as it relaxes the need for specialized
hardware/software needed for handling matrix sparsity. Then,
we reviewed different filter ranking criteria and proposed Mean
Weight filter ranking criterion which offers both simplicity
and efficiency in pruning the less important filters. Further,
we combined the ranking criterion with two different filter
pruning strategies so-called iterative global and T-sensitive
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pruning. T-sensitive pruning is a proposed variation of layer-
sensitive pruning which assigned a pruning threshold to all
layers. By introducing a structured filter pruning algorithm,
we removed all selected filters and their dependencies from
a DNN model, thus speeding up inference and facilitating
the deployment of neural networks on low-energy embedded
devices equipped with lower-end CPUs. With speedup results of
up to 13x for the SICK-net, we demonstrated that our combined
ranking and pruning strategy together with the filter removal
algorithm outperforms more complex approaches such as the
Taylor ranking and is more stable than the simple L1-norm
saliency ranking.

An interesting area for further research is the generalisation
of the proposed solution to NLP tasks. Transformer architec-
tures are on the rise and replacing filters with attentions could
extend their portability to low-energy embedded devices.
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