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Abstract—Deep neural networks (DNNs) are showing superior
advantages in different domains and are opening their path
into critical applications where reliability is the main concern.
DNNs can be executed in different hardware platforms, including
general-purpose processors which usually operate under floating-
point (FP) numbering systems. Considering the small range of
weights in DNNs stored in the FP format, some bits remain
constant as 0 or 1 for all weights. On the other hand, a single
event upset may flip a bit, increasing or decreasing the value
of a weight. In this paper, we analyze the effect of bit flips in a
sample network of LeNet5, and show the sensitivity of convolution
layers to faults and the vulnerability of DNNs to a single fault
in a specific bit position. This is while the network is inherently
robust against bit flips in the other bit positions. We then show
that the choice of activation functions and pooling techniques
could alleviate the negative effects of faults to a large extend.

I. INTRODUCTION

THE notable benefits of Deep Neural Networks (DNNs)
have led to the advancement in many real-world applica-

tions, such as speech recognition and image classification. This
has resulted into the recent growing popularity on developing
advanced platforms for DNN computation.

The most common hardware platforms to execute DNN
operations are CPU, GPU, FPGA, and ASIC. These platforms
may be used for executing different DNN architectures and
models (e.g., AlexNet, VGGNet, and LeNet) with varying
sizes and complexities. Since the accuracy and supported range
of floating-point operations are enough for many applica-
tions, the general-purpose platforms, like GPUs, operate under
floating-point (FP) numbering systems, e.g., single-precision
(32-bit). This is while DNN accelerators support fixed-point
numbering systems as well. The reason is that the range
of values in neural networks can fit well in the fixed-point
format. Thereby, DNN computations can be accelerated with
a low power consumption in comparison with FP operations.
Despite the existence of DNN accelerators, still many DNN
applications are executed on general-purpose processors.

DNNs are highly resilient against noise and faults. However,
the computation platforms are subject to faults, which may oc-
cur on hardware, and that is the interest of this paper. Hardware
faults can arise from defects in hardware components or from
factors that are external to the system. Two major categories
of hardware faults are called permanent and transient faults.
Permanent faults are caused by persistent physical flaws in
the hardware, such as a short circuit or a grounded wire,
caused by process variation or aging. Transient faults, the
most common fault model in memory systems, are generally
caused by external radiation, electromagnetic interference, and
electrostatic discharge [1], [2].

A common way to model faults in digital circuits is using
the stuck-at fault model. In this model, the output of a gate is
assumed to stuck at logical 1, 0, or even an unknown state X .
Another common fault model is the random bit flip. Random
bit flip model can be used to model single event upset (SEU),
multiple bit upset (MBU), and other transient faults that occur
in storage elements [3]. The focus of this paper is on bit flip
fault models.

In this paper, we investigate a case where a sample network
of LeNet5 with a limited range of weight values runs on a
platform with a 32-bit FP numbering system. Accordingly, the
weights and biases should be stored in the 32-bit FP format.
It is worth mentioning that the FP format is supported in
almost all of the mainstream hardware platforms. We evaluate
the effect of a bit flip in different bit positions of these 32
bits. Our evaluations show that a single bit flip fault may
lead to a significant accuracy drop. Utilizing double-precision
(64-bit) or half-precision (16-bit) numbering formats does not
reduce the error rate. Our findings can be well utilized to apply
efficient fault-tolerant methods and adapt techniques to defend
adversarial bit flip attacks.

II. RELATED WORK

In [3], Torres-Huitzil and Girau review articles that address
the fault tolerance of neural networks mostly on a network
architecture level using passive fault tolerance methods. In978-1-6654-1609-2/21/$31.00 ©2021 IEEE



passive fault tolerance techniques, the system uses redundancy
and fault masking methods to tolerate faults and does not react
to faults in any special active way. Some of the methods in-
clude pruning by measuring the sensitivity of neurons to faults
[4], replicating critical neurons and adding redundancy [5],
and fault injection during training to decrease the sensitivity
to faults [6].

Dias and Antunes in [5] consider stuck-at fault models and
by identifying the importance of elements in a network, they
decide to introduce spatial redundancy by duplicating inputs,
biases, weights, or whole neurons. This method, however,
addresses fault tolerance on a network-level and comes with a
trade-off between resiliency and increased hardware resource
usage.

Apart from the research on inherent fault tolerance of
neural network architectures, studies have been carried out
that address the underlying hardware faults and their effect
on neural networks [7]–[9]. For this aim, in a series of fault
injection experiment, Neggaz et al. [7] studies the layer-
wise performance of a CNN network called LeNet [10] after
injecting SEU in the memory containing network parameters.
Their results show that fully connected layers in LeNet are
far more destructive to the accuracy than the convolutional
layers. They explain their findings by the fact that errors in
fully connected layers propagate directly to the output, while
convolutional layers are followed by max-pooling layers that
can potentially mask abnormal data values. In [8], Beyer et al.
introduces a fault injection framework for networks modeled
with Tensorflow. In this framework, faults are injected after
the addition, multiplication, or subtraction operations in the
model graph. They perform a case study on a CNN network
specialized for traffic sign recognition and showed that faults
injected in the addition results have the greatest impact on
accuracy, lowering it by 60% in extreme cases. Bosio et al.
in [9] proposes a fault injection platform targeting Yolo and
LeNet networks. Their study is focused on autonomous driving
safety standards. The platform can measure how severely
injected faults can affect layers in the network and classify
if those faults would lead to failure.

The inherent robustness of different networks are evaluated
in [11]–[17]. The effect of Bit Flip Attacks (BFAs), injected
using row-hammer effect, laser beam, or software-based fault
injection, are utilized for this aim. In general, these works
suggest that larger DNNs are more robust against BFAs,
and different activation functions are effective on preserving
accuracy of the network due to the injected fault.

Characterizing the susceptibility of network to each bits’
fault in the weights of the network is presented in [18]–[26].
These works show that bit flip in different bits of each weight
have different effect on the network output accuracy when
considering a fixed-point or floating-point numbering system.
The accuracy of the network is more degraded due to bit flip
in the most significant bits in the fixed-point and the exponent
bits in the floating-point numbers.

In this paper, we rely on the previous works and obser-
vations which validate our work on larger DNNs. However,

by studying a small network, LeNet5, we explain in detail
why some specific bits are more susceptible to faults. Our
characterization of susceptibility of LeNet5 to faults can be
well generalized to larger networks. Our evaluation can be
utilized to design low-overhead and effective fault-tolerant
techniques. Furthermore, our results specify the bit positions
where adversarial attacks can cause a severe network accuracy
drop. In addition, by evaluating the weights’ bit positions
in LeNet5, as a case study, a comprehensive explanation of
bits susceptibility is presented in this work. Finally, activation
functions and pooling methods are investigated as potential
techniques to mask faults.

III. PRELIMINARY

A. Floating-point Numbering System

Digital signals representing real and integer values in com-
puter systems can be represented and stored in a fixed-point
or floating-point format. The fixed-point format has a fixed
number of digits after the decimal point. On the other hand,
in the floating-point format, a number is expressed using four
terms: a sign, a mantissa, a base, and an exponent as shown
in Equation 1.

±mantissa× baseexponent (1)

To represent a floating-point number in a computer system,
an IEEE754 single precision floating-point format (FP32) is
employed, composed of a sign, a mantissa, and an exponent,
as shown in Fig. 1.

Fig. 1: IEEE754 Single-precision floating-point format

In this standard, sign, mantissa and exponent have 1, 23
and 8 bits, respectively. However, due to the leading bit
convention rule, there is an implicit 1 as the most significant
bit of mantissa which serves as the integer part of the number,
making the mantissa 24 bits in total, with 23 bits of fractional
part that is stored in this format. Moreover, the exponent part
is encoded with excess-127 coding, which simply adds 127 to
the exponent before storing it.

B. LeNet5

The DNN studied in this work is LeNet5 [10], shown in
Fig. 2, which is composed of an input layer, two convolution
layers each followed by a pooling layer, three fully connected
layers, and an output layer. The activation functions are
rectified linear function (ReLU) except the last layer which
is the Sigmoid function.

In Fig. 3, we draw the histogram of network weights. The
histogram shows that the network parameters are distributed
quite symmetrical and narrowly in the range [−0.6,+0.6], with
most of them being between [−0.1,+0.1]. Table I shows the
number of trainable weights in each layer of LeNet5 that can
be subject to faults.



Fig. 2: LeNet5 architecture [10]

Fig. 3: Histogram of trained weights in LeNet5

IV. BIT FLIP IN A FLOATING-POINT NUMBERING SYSTEM

A. The Fault Injection Framework

The fault injection framework takes a specific layer, and by
using a random number generator with a uniform distribution,
it chooses a parameter within the layer. Then, taking the
chosen parameter, again with a random number generator with
a uniform distribution, chooses one of 32 bits of it. It then flips
the logic state of that bit, i.e., if it was a ’1’, turns it to a ’0’
and vice versa. The last step is writing the faulty parameter
back to the storage so as to make the network seem faulty.

The procedure is repeated as many times as specified by
the number of faults. Afterwards, the framework performs
accuracy measurement on the test dataset using the now faulty
network. The framework records this accuracy, then performs
all of the steps above as per number of iterations, recording
the resulting accuracy for each one. Lastly, it averages all
of the measured accuracy values and produces desired output
graphs for evaluation and statistical analysis. The pseudo-code
is shown in Algorithm 1.

The hardware faults or SEUs are modeled as bit flips in
the data that is stored in the memory. Data in this context are
the parameters of the DNN, i.e., weights of each layer. The
fault is injected by flipping the selected bit of the randomly

Algorithm 1: The Fault Injection Procedure
Function Fault Evaluation:

Take a copy of the network;
Take a layer of the network;
for i in range(Iterations) do

for j in range(Faults) do
Randomly pick a weight in the layer;
if The weight has not been picked yet then

Transform the FP32 weight to binary;
Randomly pick a bit position between 0-31;
Flip the bit;
Transform the weight back to FP32 and store it;

Evaluate the faulty network with the test dataset;
Calculate and store accuracy;

return Average accuracy over Iterations;

Fig. 4: Bit flip on a parameter and the change of the value

chosen parameter. It is worth mentioning that all of the other
fault models which lead to multiple bit flips in memory cells,
e.g., MBU, can be modeled with this procedure. However,
to exactly characterize the susceptibility of each bit in the
network weights, we only considered the SEU.

An example of fault injection procedure is shown in Fig.
4, where the 25th bit position of a hypothetical network
parameter in FP32 format is flipped, resulting in a change
of the value in the stored parameter. This example shows how
a random fault causes the number to shrink down by a factor
of 16.

B. Impact of Faults on a FP Numbering System

1) Faults in the bits of Exponent: Fig. 5 plots the histogram
of exponent values in binary. As it can be seen, the majority
of the weights in LeNet5 have the binary exponent value of
01111001, where the three most significant bits are identical
in all of them. Let us now have a closer look at this exponent
value 01111001, which corresponds to the decimal number
121. Since in IEEE-754, exponent is encoded with excess-127,
then 121 is decoded as −6. Given this value, the mantissa is
multiplied by the factor of 2−6.

Now, if we inject a fault in the most significant bit of the
exponent (i.e., 8th bit of the exponent or the 30th bit position
in Fig. 1), the resulting value would be 11111001 = 249. After
deducting 127, the corresponding exponent would be 2122,
making the weight value extremely large. However, injecting
a fault in the 7th bit position of the exponent would make
the exponent equal to 00111001 = 57 which corresponds to
the exponent of 2−70, shrinking the weight value to near-zero.
This implies that the weight is removed from the calculations,
and somewhat pruned. In short, flipping ’0’ to ’1’ makes the
exponent larger while flipping from ’1’ to ’0’ makes it smaller.

This analysis shows that the bit flip impact is significant
only in the most significant bit of the exponent, which may
grow a weight by a factor of 2122, and thus suggesting a
single point of failure. This is far beyond the range of other
parameters available in the network and can quickly cause
saturation, overflow, or other problems in computation units.
If no masking, limiting, or any other measures are taken, this
large faulty weight can propagate in the network and disrupt
all calculations it is involved in. To confirm this finding, we
flip all of 32 bits of a weight one by one and in isolation from
each other, and evaluate the accuracy each time. The result in
Fig. 6 indicates a significant drop in accuracy (from 99% to
about 10%) when a fault is injected in the 30th bit position.

A similar concept applies to double-precision (FP64) and
half-precision (FP16) floating point numbering systems. The
fixed-point numbering system would alleviate the impact of



Fig. 5: Histogram of weights’ exponent values in LeNet5

Fig. 6: Accuracy vs. bit position of the fault

bit flip faults. However, fixed-point operation is not commonly
supported by general-purpose CPUs, GPUs, and compilers.

2) Faults in the bits of Sign and Mantissa: Faults in the
bits of sign and mantissa have a limited impact on the range
of values. A bit flip on the sign bit turns a positive value
to a negative value and vice versa while the range of values
remains in the common range of [−0.1,+0.1] (Fig. 3). Given
that the bits of mantissa contribute in the fraction part of a
number, in the extreme case, a bit flip in the most significant
bit of the mantissa changes a number’s value by −0.5 or +0.5.
This implies that the impact of a bit flip fault on the sign bit
is larger than that of mantissa, while in both cases, the impact
is way smaller than that of the exponent bit.

C. Masking Faults

We investigate two solutions to mask faults and prevent
the faulty weights with large values from propagating to the
subsequent layers. One solution would be limiting the values
by the choice of the non-linear activation function and the
other solution through a right choice of the pooling layer.

1) Relu vs. Sigmoid: In ReLU, the function grows as the
input increases and there is no constraint on the output of
a neuron. The Sigmoid function, on the other hand, has a
bounded range between (0, 1), thereby we expect that the
Sigmoid function could prevent the propagation of extremely
large weights to the output.

Regarding the hardware complexity of these two activation
functions, ReLU is very efficient in terms of computations
compared to Sigmoid. A simple unit that compares the input
to zero, which can be made very small with logic elements,
is sufficient to produce ReLU on hardware. Oppositely, the
Sigmoid function has an exponential term as well as a frac-
tional term. Sigmoid in its simplest form can be implemented
as a piece-wise linear approximation or a look-up table that
contains samples of the original function. Depending on the

resources available in the hardware, more precise and com-
plex implementations of Sigmoid can be implemented using
hardware or software.

2) Average vs. Max pooling: In LeNet5, each convolution
layer is followed by a pooling layer to reduce the size of
the feature map. There are different types of poolings as min
pooling, max pooling, and average pooling. Max pooling is the
one used in LeNet5, and the most popular one in the image
classification tasks. While max pooling returns the maximum
value in the portion of the feature map, average pooling returns
the average of all values in the given window. As bit flip faults,
like SEUs, tend to shrink or enlarge values, we expect that the
use of average pooling may smooth out this effect compared
to min or max pooling which likely selects the faulty values.

V. RESULT AND DISCUSSION

LeNet5 was trained on the MNIST dataset [27] using the
stochastic gradient descent optimizer with a learning rate of
0.001 and a batch size of 4. Pytorch [28] framework is used
for building LeNet5, training, testing and loading the MNIST
dataset. The baseline classification accuracy of 99.02% on the
test data set was achieved after training for 10 epochs.

A. Sensitivity of Different Layers to Faults
In the experiments, illustrated in Fig. 7, we look at the

faults in each layer of the network. The fault percentages are
presented in Table I for 1, 10 and 20 bit flips in each of
the layers. It is worth mentioning that the location of particle
strike and circuit topology is effective on the number of bit
flips, and usually the number of bit flips is less than 4 bit
flips [29]. On the other hand, some fault models like stuck-
at faults due to aging or process variation can lead to larger
number of concurrent faults.

TABLE I: Number of parameters and fault percentage in each
layer of LeNet5.

Layer Number of weights Fault Percentage (%)
1 fault 10 faults 20 faults

Conv1 500 0.2 2 4
Conv2 25000 0.004 0.04 0.08
FC1 96000 0.0010 0.0104 0.0208
FC2 10080 0.0099 0.0992 0.1984
FC3 840 0.1190 1.1904 2.3809

Faults are injected randomly, and the impact of bit flips is
reported for each of the 100 iterations. Obviously, injecting
more faults (Fig. 7a to Fig. 7c) leads to the increased cases of
accuracy drop.

Another insight from Fig. 7 is that convolution layers are
more prone to faults than fully connected layers even if their
fault percentages are lower (see Table I). One possible reason
is that if the layer is among the first layers in the sequence
of layers, the propagation of a very large valued faulty weight
creates a chain of subsequent large intermediate results that
spreads much more into the network compared to the case
when the layer is among the last layers. These experiments
have been repeated for up to 2000 iterations. The scatter plots
for the Conv1 and Fc3 layers are illustrated in Fig. 8a and 8b.



(a) 1 bit flip

(b) 10 bit flips

(c) 20 bit flips
Fig. 7: The impact of 1, 10, and 20 bit flips on the accuracy when applied on each layer of LeNet5

(a) Conv1 (b) Fc3

Fig. 8: Scatter plot over 2000 iterations for 1 bit flip.

B. Sensitivity of Bit Positions to Faults

Our analysis show that the accuracy is almost unaffected
by flipping the bits of sign and mantissa in a single weight,
regardless of the layer that the chosen weight belongs to.
However, as shown in Fig. 9, faults in the bits of exponent
can be far more effective in the absolute value of a floating-
point number. The experiments were repeated with 10 and 20
bit flips and the same pattern was observed.

C. Sigmoid vs. ReLU

Using the insights from Section V-A, this experiment fo-
cuses only on the two most vulnerable layers: Conv1 and
Conv2. Additionally, only the exponent bit field is subject to
fault injection in this experiment. Using Sigmoid instead of
ReLU without any further hyper-parameter tuning or modi-
fications of the network, decreased the network accuracy by
1%. The resulting network was injected with 20 bit flips in
the exponent bit field of 20 distinct weights. Accuracy of the
network was evaluated after the fault injection and the whole
process was repeated for 100 times. Fig. 10 shows the result of
this experiment, confirming the effectiveness of the Sigmoid
function in masking faults, as compared to ReLU in Fig. 7c.

D. Average Pooling vs. Max Pooling

In this experiment, the original LeNet5 with max pooling
layers was modified to use average pooling layers as a measure
to lower the effect of substantially large valued faulty weights
by averaging over a window of numbers after each layer in
the network. After this change, 100 iterations of injecting 20
bit flips in the exponent bit fields of network parameters were
performed and the accuracy of each iteration was evaluated,
shown in Fig. 11. The number of accuracy dips due to the fatal
fault occurrence decreased by using average pooling. However,
the worst case fault still managed to seep through the next
layers and demolish the accuracy in a few iterations. Based on
the results, even though average pooling is more capable of
preventing the propagation of faults compared to max pooling,
it is still not as effective as a limited-range activation function.

VI. CONCLUSION

DNNs could enhance accuracy in critical applications but
ensuring reliability remains an issue. Through a case study,
we looked into the impact of bit flip faults in DNNs when
executing on the general-purpose processors operated under
the floating-point numbering systems. We analyzed and ex-
plained how a single bit flip in the most significant bit of
the exponent may result in dropping the accuracy from 99%
to about 10%. This indicates a single point of failure which
demands extra measures and protections. We then examined
different activation functions and pooling techniques to prevent
propagating the faults to the subsequent layers of the network.
We believe these findings can be utilized in the design of
efficient fault-tolerant techniques against adversarial bit-flip
attacks.



Fig. 9: The impact of 1 bit flip on the exponent

(a) Conv1 (b) Conv2

Fig. 10: Effect of 20 bit flips on accuracy using Sigmoid

(a) Conv1 (b) Conv2

Fig. 11: Effect of 20 bit flips on accuracy with Average Pooling
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