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Abstract—Deep Neural Networks (DNNs) have shown signifi-
cant advantages in many domains, such as pattern recognition,
prediction, and control optimization. The edge computing de-
mand in the Internet-of-Things (IoTs) era has motivated many
kinds of computing platforms to accelerate DNN operations.
However, due to the massive parallel processing, the performance
of the current large-scale artificial neural network is often limited
by the huge communication overheads and storage requirements.
As a result, efficient interconnection and data movement mech-
anisms for future on-chip artificial intelligence (AI) accelerators
are worthy of study. Currently, a large body of research aims to
find an efficient on-chip interconnection to achieve low-power
and high-bandwidth DNN computing. This paper provides a
comprehensive investigation of the recent advances in efficient
on-chip interconnection and design methodology of the DNN
accelerator design. First, we provide an overview of the different
interconnection methods on the DNN accelerator. Then, the
interconnection methods on the non-ASIC DNN accelerator will
be discussed. On the other hand, with the flexible interconnection,
the DNN accelerator can support different computing flow, which
increases the computing flexibility. With this motivation, reconfig-
urable DNN computing with flexible on-chip interconnection will
be investigated in this paper. Finally, we investigate the emerging
interconnection technologies (e.g., in/near-memory processing)
for the DNN accelerator design. This paper systematically inves-
tigates the interconnection networks in modern DNN accelerator
designs. With this article, the readers are able to: 1) understand
the interconnection design for DNN accelerators; 2) evaluate
DNNs with different on-chip interconnection; 3) familiarize with
the trade-offs under different interconnections.

Index Terms—on-chip interconnection, reconfigurable inter-
connection, artificial neural network, network on chip, in/near-
memory processing

I. INTRODUCTION

THE Internet of Things (IoT) trend drives AI technology.
The notable benefits of AI have led to the advancement in

many real-world applications, such as speech recognition and
image classification [1]. The accuracy in several of these appli-
cations has reached the human-level accuracies when applying
artificial neural networks (ANN), and thus, ANN has received
much attention in recent years [2]. Among the contemporary
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ANN methods, DNNs have shown enormous advantages in
various domains. DNN is composed of a large number of
neurons which are arranged in layers, called input layer, hidden
layers, and output layer. In Convolutional Neural Networks
(CNNs), currently among the most widely used DNNs, a
neuron essentially performs a simple multiply-accumulation
(MAC) operation, and it is connected to all or part of the
neurons in the next layer. Through these connections, the
outputs of one layer become the inputs of the next layer, until
the result is obtained in the output layer.

DNNs have two phases: training and inference. In training
phase, the DNN model is created using some training data.
In the inference phase, the trained model is used to make
a prediction. The training and inference phases have several
shared functionalities, but there are key architectural differ-
ences between them. The main goal of training is to minimize
the time needed to converge to a specific accuracy, which is
related to the throughput of the system. For inference, however,
latency is as important as the throughput. While accuracy is
important for inference too, it is a common practice in some
applications to trade-off accuracy for more throughput or lower
latency [3], [4]. Memory requirement is another difference
between training and inference. inference only saves the last
layer of activations, while training needs to store almost all
the activations of all the layers for computing the gradients in
its back-propagation flow. Finally, training is usually scaled-
up and scaled-out to several nodes or even several clusters to
achieve higher throughput [5].

In order to process the massive deployment of DNN-enabled
applications efficiently, the DNN computing devices, such as
the High-Performance Servers (HPSs) or the modern edge
devices, require powerful hardware platforms to execute ex-
tensive DNN operations. Current large-scale DNNs, however,
involve complex communication, extensive computations, and
storage requirements, which are beyond the capability of cur-
rent resource-constraint embedded devices based on general-
purpose CPU and GPU processing elements. This has led
to recent growing popularity in developing domain-specific
resource-constraint platforms with dedicated processing, mem-
ory, and communication resources for DNN computation [6].

Due to the intrinsic characteristic of parallel computation in
DNN operations, it is intuitive to exploit parallelized multicore
hardware to accelerate the operations. Therefore, Application
Specific Integrated Circuits (ASICs) design is a popular way
to accelerate DNN computing on edge devices. Because of the
regular dataflow in the DNN operations, array-based intercon-
nection is usually used in most modern DNN accelerators [7]–
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[9]. With the array-level operation, the computing data, such as
partial sum and weights, can be reused efficiently. On the other
hand, because of the regular and scalable structure, the mesh-
based interconnection is an attractive alternative to connect
neurons in DNN accelerators [10]–[14]. In recent years, some
non-mesh-based interconnections (e.g., tree and Clos) were
proposed to improve the performance of certain targets, such
as efficient memory accesses or low-cost multicast commu-
nications [15]–[19]. Therefore, according to the ASIC-based
DNN designs, an efficient interconnection not only improves
the performance of DNNs but also increases DNN computing
flexibility.

Although ASIC-based DNN designs provide high through-
put with power efficiency, they suffer from expensive manu-
facturing cost in advanced technology processes. Besides, the
verification and test become more challenging as the DNN
model gets deeper. Consequently, many developers consider to
employ FPGA [20]–[23], GPU [24]–[26], or manycore CPU
[27]–[30] to compute large-scale DNN operations. Benefiting
from the programmable attribute, FPGA reduces the design
time and power consumption while enabling a fast prototype
of the DNN accelerator. Since the interconnect interface be-
tween on-board DRAM and FPGA chip dominates the overall
performance, the FPGA-based DNN designs still suffer from
long memory access latency. To solve the problem, some
researchers proposed to replace the crossbar circuit in the
memory interface with wire shifter unit [31], which will be
reviewed in this article. In order to further maximize com-
puting flexibility, it is a popular way to employ the general-
purpose GPU (GPGPU) or manycore CPU to compute DNNs
because their intrinsic parallel computing features are well-
matched with the parallel operations in DNN computing. To
communicate each processing core in CPU or GPU efficiently,
different kinds of core interconnections were proposed in
[32]–[35], which helps to improve the system performance
significantly.

In recent years, the new interconnection techniques, such as
3D vertical on-chip interconnection [36]–[41], wireless inter-
connection [42]–[44], and optical interconnection [45], [46],
etc., brought the performance revolution to DNN computing.
As mentioned before, memory access latency dominates the
overall DNN performance, which promotes the research about
in/near-memory processing techniques. Through the 3D verti-
cal interconnection, the memory can be stacked on top of logic
layer, which reduces the memory access latency significantly
[36], [37], [47]. On the other hand, some advanced memory
technologies (e.g., ReRAM and Memristor) were proposed to
improve the efficiency of memory accesses with different kinds
of interconnections, which will be investigated in this paper.
In addition to the conventional electric wire interconnection,
on-chip interconnection through optical or wireless signal is
emerging interconnection technologies and applied to the DNN
computing in recent years [48]–[56]. We will discuss these
kinds of novel on-chip interconnection technologies in this
article as well.

In summary, a proper on-chip interconnection for the DNN
operations depends on the target applications and design goals.
Therefore, this article aims to provide an overview of different

TABLE I
LIST OF ACRONYMS USED IN THE PAPER

Acronym Definition
AI Artificial Intelligence
ANN Artificial Neural Network
ASIC Application Specific Integrated Circuits
CNN Convolutional Neural Network
DNN Deep Neural Network
FIFO First-in First-out
FPGA Field Programmable Gate Array
GPU Graphical Processing Unit
IoT Internet of Things
ISA Instruction Set Architecture
LUT Lookup Table
MAC Multiply-Accumulation
NoC Network on Chip
PCM Phase-Change Memory
PE Processing Element
ReRAM Resistive Random-Access Memory
TSV Through-Silicon-Via

interconnection methods on DNN operations according to
different design scenarios. The main contributions of this
article are as follows:

1) Highlight the importance of the interconnection for the
DNN accelerator design in addition to the processing
elements (PEs) design.

2) Evaluate the DNN performance under different intercon-
nections according to diverse design goals and applica-
tions.

3) Suggest promising research directions in the future DNN
design paradigm after thoroughly investigating the state-
of-the-art designs.

The organization of the article is shown in Figure 1. Section
II investigates the ASIC-based DNN design and evaluates
different interconnections such as array-based, mesh-based,
and reconfigurable ones and tries to explain the design trade-
offs. Section III discusses the interconnection of the non-
ASIC DNN computing platforms including FPGAs, GPG-
PUs, Manycores, and embedded processors and analyzes the
performance impact according to various interconnections.
Section IV describes interconnection in emerging in/near-
memory processing paradigm and also discusses some emerg-
ing interconnection technologies (i.e., wireless and optical
interconnects) to further improve the performance of DNN
operations. Finally, we outline directions for future research
on interconnections for NN accelerators in Section V and
conclude the summary in Section VI. We have introduced all
the acronyms used in the paper in Table I.

II. INTERCONNECTS IN ASIC NN ACCELERATORS

In this section, we review the most common interconnection
architectures for ASIC-based NN accelerators, including array-
based, mesh-based, custom and reconfigurable communication
fabrics. First, we describe the conventional and prevailing
array-based and mesh-based interconnections employed in NN
accelerators. Then, we discuss the custom interconnections
proposed to address the shortages of conventional ones. Fi-
nally, we review the more recent reconfigurable interconnec-
tions that are emerged to address the flexibility issue of fixed
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Fig. 1. Classification of interconnects mechanisms discussed in this paper.

interconnections, and hence, improve the performance of NN
accelerators in the presence of DNNs with various structures.

A. Array-based Interconnection in NN Accelerators

The dominant computation in a DNN is the MAC operation,
which consists of four memory accesses; three memory reads
(for filter weight, fmap activation, and partial sum) and one
memory write (for the updated partial sum). It is conceivable
that in the worst case, all of the memory accesses must pass
through the high-energy-cost off-chip DRAM, which has a
severely detrimental impact on both energy efficiency and
throughput. Therefore, in the computation of DNNs, memory
access is the main bottleneck for data processing. By utilizing
data reuse through the multi-level memory hierarchy, the data
movement is majorly reduced. In fact, by maximizing the
local reuse of data in lower-level memory, and consequently
minimizing the number of references to higher-level memory
units, the power and throughput will be significantly boosted
[1], [1], [14].

To this end, spatial architectures, which have multiple levels
of local memory hierarchy and provide high parallelism in
computation, seem to be the right choice for implementing
DNNs [7], [57]–[60]. Unlike commonly used temporal ar-
chitectures such as CPUs (SIMD) and GPUs (SIMT), spatial
architectures exploit decentralized control logic for the array
of PEs. In temporal architectures, data delivery is handled
through a memory hierarchy without the possibility of direct
communications between PEs. In contrast, in spatial architec-
tures, there is an array of ALU-style PEs with the facility of di-
rect inter PE communication (i.e., dataflow processing), which
drastically reduces the frequent accesses to the costly level of
the memory hierarchy. The inter PE communication is carried
out through an on-chip network whose structure depends on
dataflow requirements so it can have a regular topology such
as bus and mesh or irregular ones. To maximize the local
data-reuse in spatial architectures, four levels of the memory
hierarchy are supported; Off-chip DRAM, global buffer, PE
array (inter PE communication), and register file [57], [61].
Also, there are input- and output-FIFO (iFIFO/oFIFO), and
also, a PE-FIFO (pFIFO). The DRAM, global buffer, and
PE array could communicate through the iFIFO/oFIFO, while
pFIFO provides the I/O communication facility for ALU in
PEs. The typical structure of spatial and temporal architecture
is depicted in Figure 2.
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Fig. 2. Massively parallel compute computing models.

Authors in [59] claim that the state-of-the-art accelerators
fail to capture all types of fine-grained parallelism that exist in
CNN models, so they are not the ideal solution for CNNs. In-
deed, they have revealed that the combination of three types of
parallelism (i.e., neuron, synapse, and feature map parallelism)
leads to eight dataflow styles of which only three of them
are supported by the state-of-the-art architectures. To mitigate
this problem they introduce an array-based architecture called
FlexFlow which supports all types of parallelism to boost
resource utilization. To support complementary parallelism
(i.e., mixed parallelisms), in addition to removing most of
the redundant interconnections among PEs they also modify
the microarchitecture of PEs. In their modifications, data can
be derived from on-chip buffers via devised vertical and
horizontal buses to each PE and also can be stored in local
storage. In this way, not only the local reuse of data is
maximized but also various types of data paths for different
types of parallelism are supported which leads to a substantial
acceleration in both training and inference procedures.

B. Mesh-based Interconnection in NN Accelerators

Scalability, power efficiency, fault-tolerant, and parallelism
of NoC, are the reasons why it has been hailed as a de facto on-
chip communication fabric for multi/many core platforms [62].
Due to these characteristics of NoC, it seems to be a proper
infrastructure to support low latency, low power, and paral-
lel communications for hardware implementation of DNNs
through multi/many core chip. The inter-layer communications
in DNNs manifest complex and distinct patterns (e.g., one-to-
many and many-to-one inter-layer communication). Because
of these facts, the task of designing NoC becomes challenging
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in terms of choosing the fitting topology and also mapping
paradigm to reduce the communication bottleneck. Among
various proposed topologies, mesh and concentrated-mesh (C-
Mesh) are shown to be fitting options [10], [11], as they
provide easy layout, high path diversity, fault-tolerant com-
munication, and proper bisection bandwidth. Mesh-based in-
terconnection can also help design area and energy optimized
DNN accelerators using emerging computing paradigms such
as in-memory processing [63], which we will discuss in future
sections.

Authors in [11] proposed DNN pruning and dataflow map-
ping on mesh-based on-chip networks. In this study, weight
and neuron pruning schemes have been proposed to improve
performance and energy-efficiency of DNNs based on the
constraint of inference accuracy. Also, they have introduced a
dataflow mapping scheme based on the row-weight stationery
(RWS) to support multicast traffic distribution in the mesh-
based NoC. The proposed technique leads to a significant
improvement in delay and energy consumption of training and
inference phases.

As it was declared earlier, due to the scalability and paral-
lelism properties of NoC, it can provide high-performance and
energy-efficient communication infrastructure for processing
DNN in multi/many-core platforms [12]. On the other hand,
by increasing the size and density of DNN, the inter-core
data transmissions have been proliferated, which offer a better
energy efficiency than intra-core communications. This issue
complicates the NoC design process, especially in terms of
topology selection and the mapping strategy. To overcome
this problem, Reza et al. [10] has proposed an efficient
concentrated-mesh (CMesh) topology and an architecture-
neuron-aware mapping scheme to implement DNNs. As in
CMesh topology, more than one core is connected to each
router, it (CMesh topology) provides the possibility of in-
tegrating more neurons of one or two DNN layers at the
cores connected to a router. This localization process re-
duces the data transmissions across the network and conse-
quently enhances the energy efficiency and execution perfor-
mance of DNNs in both training and inference phases. Also,
the architecture-neuron-aware mapping classifies the neurons
as latency-intensive (communication) or throughput-intensive
(computation), and then by considering the heterogeneous
resource capacity of the chip, tries to map the neurons close
together to reduce the communications’ delay in NoC.

To improve the bandwidth and energy efficiency of the on-
chip network for accelerating NoC-based DNNs, authors in
[13] have proposed a method for distributing traffic in a mesh-
based NoC through considering memory access mechanism in
the AlexNet, VggNet, and GoogleNet trained models. Indeed,
in this study, multiple distributor nodes have been designed
to support multicast data transmission between PEs based on
weight reuse. Furthermore, to improve the performance and
energy efficiency, a flow mapping approach based on the row-
node stationary (RNS) has been devised that can reduce the
number of memory accesses and hop counts with the aid of
distributor nodes.

By reaching the DNN applications to resource constraint
devices, e.g., mobile devices, (DNNs) have become more

compact and sparse and exhibit much more variation in their
size and shapes. For improving the performance of such DNN
models, customized hardware platforms must be incorporated
to capture emerging characteristics of DNNs (e.g., sparsity) in
a way that the sources of inefficiency, i.e., low PE and array
utilization, are eliminated. To this end, Eyeriss v2 [14] has
been proposed as an efficient DNN accelerator architecture that
targets inference phase of DNNs. In this customized hardware
platform, to provide highly flexible on-chip communications,
a hierarchical mesh topology has been exploited to cope with
the various bandwidth requirements and different amounts
of data reuse, which arose from different data types. The
structure of the hierarchical mesh NoC has two levels; the
all-to-all network at the lower level to connecting the PEs
and a mesh topology at the top level for connecting clusters
of PEs. In this study, the cost and scalability issues of
the all-to-all network are restricted by confining it within a
cluster such that there are only 12 PEs in each cluster. The
proposed hierarchical mesh can flexibly benefit from unicast
and broadcast communications when data reuse opportunity is
low and high, respectively. In this way, the performance and
energy efficiency of DNNs are enhanced when facing a wide
range of bandwidth requirements.

C. Non-mesh-based Interconnects

Current NN accelerators mostly employ variations of mesh
for the topology of NoC. Since there is no direct path among
remote PEs or memory chips, the latency of mesh-based NoC
increases as the size of NoC increases. Moreover, a NoC
should be able to efficiently handle multicast communications,
as it is the prevailing traffic pattern in DNN models. To
tackle this challenge, Custom Parallel Architecture for Neural
networks (CuPAN) is proposed [15] that targets both training
and inference phase of NNs. CuPAN leverages Clos topology,
which is a low-cost multistage network, to connect PEs
together. Clos belongs to Multi-stage interconnection networks
(MINs) family that leverages multi-layer network architecture
to efficiently connect any pair of inputs/outputs. It is in contrast
to crossbar switches which impose significant cost.

In the machine learning era, memory-augmented neural
networks (MANNs) are quickly emerging to tackle the chal-
lenges of traditional DNNs in areas such as one-shot learning
[64], [65]. MANNs rely on differentiable external memory
to decouple the dynamic state from the neural network. This
differentiable external memory is accessed by soft reads and
writes, which results in access to the entire memory locations
for each operation. This makes the MANNs memory-bound,
unlike the DNNs that are compute-bound [16]. Therefore, the
design of current DNN accelerators that allocate the majority
of die area to compute units (multiply-and-accumulate, MACs)
is inefficient for MANNs. Moreover, the current accelerators
mostly focus on dot product operations; however, MANNs rely
on all the operations equally.

To address the shortcomings of current DNN accelerators
for MANNs, Stevens et al. [16] has proposed Manna. Manna is
a memory-centric CMOS-based inference accelerator that aims
to improve the memory access in MANNs through maximizing
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on-chip memory capacity and bandwidth. It allocates the die
area to compute resources such that they can match the band-
width while avoiding underutilized resources. Manna contains
an ISA and compiler to map MANNs in order to minimize
the data-transfer and maximize the on-chip bandwidth. In NoC
design of Manna, only reduced and broadcast communication
patterns are required between tiles. So, the H-tree topology
with fixed-routing is selected for Manna to simplify the design
and reduce the number of steps needed for a communication
pattern (reduced or broadcast).

The crucial requirement of SNN applications for reliable op-
eration is preserving the integrity of spike timing. Although the
NoC paradigm offers a scalable communication infrastructure
for SNN’s hardware architectures, it can result in undesired
jitter in spike transfer timing. To solve the timing constraint
of spike delivery in the NoC-based SNNs’ hardware, Pande
et al. [17] has proposed a ring topology with fixed spike
communication latency. This work suggests a novel broadcast
dataflow control based on the timestamping technique.

One problem in using hardware accelerators for Spiking
Neural Networks (SNNs) [18] is that the conventional bus-
topology (i.e., based on a direct connection of neurons to each
other) is hardly scalable due to non-linear proportionality of
required bus lines to the number of neurons in each layer.
So, it is hard to employ a point-to-point connectivity plan for
such a massive number of connections. Exploiting multicast
communication between neurons using combined star-mesh
topologies called hierarchical network-on-chip (H-NoC) is the
solution proposed in [19]. H-NoC addresses the challenge
by constructing modular arrays of clusters of neurons via a
hierarchical structure of routers. The cluster facility is the
essential building block of H-NoC, where a group of neurons
are connected using low and high routers in a hierarchical
structure. This hierarchical structure supports both local (intra
cluster) and global (inter cluster) communication between
neurons. It leverages a traffic compression technique for the
SNN traffic pattern and communication between neurons to
decrease the traffic overhead, and hence, improve throughput.
To maintain the throughput in the presence of bursting traffic,
it balances the local and global traffic between clusters using
adaptive routing.

D. Reconfigurable Interconnects

The spatial architecture-based accelerators that are emerged
for coping with massive computational requirements of DNNs,
consist of hundreds of PEs that can be used to achieve high
level of computational parallelism. The common problem with
these accelerators is the employment of conventional topolo-
gies such as bus and mesh, which are unable to efficiently
handle massive on-chip data movement that increases with the
degree of parallelism [66]. Moreover, most of the current DNN
accelerators consider the co-design of PEs and Network on
Chip (NoC) to optimize only internal communications within
one layer. Hence, they only support fixed dataflow patterns and
lead to under-utilization of computing resources when arbitrary
dataflows, aside from the ones considered in the design flow,
are mapped on them [67]. To address the aforementioned

drawbacks of conventional interconnect, recent works have
focused on designing reconfigurable interconnects which are
able to adapt themselves with dataflow and communication
patterns within NN accelerators.

To provide a reconfigurable, scalable, and low power in-
terconnection platform for developing dense synapse/neuron
interconnection patterns, Carrillo et al. [68] has proposed an
adaptive on-chip router. The adaptive router provides the inter-
neuron connectivity for EMBRACE architecture, an embedded
mixed-signal SNN. The adaptability of the proposed NoC
comes from the adoption of an adaptive routing scheme and
adaptive arbitration policy, which leads to improved network
throughput and congestion avoidance capability, respectively.
On the other hand, by incorporating adaptive routing and
arbitration schemes, fault-tolerant capability can be achieved,
which is one of the basic requirements of large-scale SNNs.

Kwon et al. [66] proposed a reconfigurable NoC that is
made of an array of micro-switches. By reconfiguring these
micro-switches cycle by cycle, this design is able to provide
light-weight interconnects, enabling single-cycle communi-
cation for three common communication traffic patterns in
CNNs, namely scatter (buffer to PEs), local (PEs to PEs),
and gather (PEs to buffer). This design can achieve a low area
usage, energy efficiency, and high performance compared with
conventional approaches. For scatter traffics, it constructs a
tree structure using micro-switches where the root of the tree
lies in one of the top switches, and leaves are in the bottom
switches, so it works like a bus topology. In gather traffics,
each PE has a dedicated path to top switches through bypass
links in lower-level switches. Finally, for local traffics, it uses
bottom switches to form a bi-directional linear network that
allows single-cycle communication between any two PEs.

MAERI [67], [69] is a DNN accelerator design with a set
of configurable building blocks consisting of multiply and
adder engines that can be configured with tiny switches. This
new modular design can support various dataflows of arbitrary
DNNs and map them successfully on accelerator elements.
MAERI can also support approaches such as Fused CNN [70]
that aim to improve the power efficiency of accelerators. By
changing the dataflow and creating unique ones. While current
design approaches cannot support such unique dataflows on
accelerators, the reconfigurable interconnect in MAERI can
support them. This modular design is in contrast with the
conventional monolithic design of DNN accelerators and can
successfully improve the performance/watt of DNN inference,
while improving the utilization of PEs from 8% to 459% for
various DNNs compared with baseline interconnection designs
with rigid NoCs.

In most deep learning workloads, general matrix-matrix
multiplications (GEMMs) is the primary computation pattern
that appears in both inference and training phases. GEMMs
consume about 70% of computing cycles in the training
phase of DNNs. Therefore DNN accelerators usually consider
GEMMs a candidate for acceleration, which has led to the
emergence of systolic architectures such as Google Tensor
Processing Units (TPU) [9]. The systolic arrays vary in size
from 4*4 to 128*128 engines. The emerging GEMMs in
new DNN models are irregular in dimension and varies in
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levels and types of sparsity. So, it is hard to choose specific
dimensions or sparsity level to design an accelerator based on.

To address this challenge, a GEMM accelerator for DNN
training called SIGMA [71] is proposed that can handle
various irregular GEMMs dimension and different levels of
sparsity, while maximizing the utilization of computing re-
sources. The Flexible Dot Product Engine (Flex-DPE) maps
GEMMs of various dimension and sparsity levels to PEs using
scalable interconnects. For the distribution network (loading
the stationary matrix and streaming the other one), it uses the
Benes network [72], and for dot product reduction, the FAN
(Forwarding Adder Network) topology is proposed that places
the link between adders over a traditional binary adder tree.
SIMGA outperforms cutting-edge sparse accelerators by 3x
and performs better than systolic array architectures by 5.7x
for irregular sparse matrices.

III. INTERCONNECTS IN NON-ASIC NN ACCELERATORS

ASIC accelerators can significantly improve the perfor-
mance per watt of DNNs. However, their inherent limitations
such as poor scalability, difficult testing and debugging, and
extremely high monetary cost incentivize the researchers to
consider the alternatives. Therefore a large of body research
considered designing NN accelerators based on FPGAs [20]–
[23], GPGPUs [24]–[26], [73], [74], manycore processors
[27]–[30], and embedded processors [75]–[78]. In this section,
we discuss the interconnects of NN accelerators designed by
employing such hardware architectures.

A. FPGA-based NN Operation

To quench the thirst of DNNs for computational resources,
researchers from both academia and industry have consid-
ered FPGAs as a viable option. FPGAs promise remarkable
performance-energy trade-off, and hence, have been chosen as
a suitable candidate for DNN accelerator in prior works [79]–
[85]. In some FPGA-based DNN accelerators [86], [87], the
layer processors are designed and implemented to process one
or more layer of the DNN. DNN parameters, such as weights,
are stored in on-chip storage [88], [89] for small DNNs
or DRAM of FPGA for large ones. The DRAM controller
provides a wide interface, while each layer processor needs
a narrow read and write port (such as AXI stream ports) to
provide flexibility for implementing target DNN. While layer
processors can provide significant computing capacity, the in-
terconnect interface between DRAM and processors dominates
the critical path and limits the overall performance. Using
a crossbar to multiplex the wide interface to several narrow
ports leads to over-provisioning and logic and wiring resource
wastage. the conventional memory interfaces consume up to
20% of FPGA resources such (LUTs and FFs) [31], [90].

To address this challenge Medusa [31] completely changes
the architecture of memory interconnect interface. It replaces
the crossbar, FIFOs, and data-width converters in the con-
ventional design with the transposition unit. In this unit, the
data-width converters and crossbar are removed, and a shifter
is added. The FIFOs per port are also replaced with a deep
shared buffer. Transposition unit helps to divide the DRAM

bandwidth to each narrow port by transposing the data instead
of using a multiplexer. Hence, the resource usage of FPGA
decreases, and routing becomes simpler, while the DRAM
bandwidth utilization remains intact. The only drawback of
this new architecture is a negligible constant increase in
latency of memory access. Medusa can be effective for both
training and inference phases. Compared to a traditional inter-
connection, it can decrease the usage of LUTs and FFs by 4.7x
and 6x, while increasing the frequency by 1.8x. The memory
read and write transfer networks introduced by Medusa are
depicted in Figure 3.

DNNs usually have various convolutional layers with dif-
ferent input/output/kernel size features. Hence, it is hard and
complex to propose an architecture that is efficient for all
these heterogeneous layers. To tackle this problem, Rahman
et al. [91] proposed an FPGA-based flexible and efficient
architecture suitable for different kinds of convolutional layers
in DNNs. To address the problem of complex wiring inside
the architecture and input reuse patterns, it has employed a
2D mesh-like interconnect.

B. NN Operations on GPGPU

Programmability and scalability of GPUs have made them
a favorable choice as NN accelerator, even in the presence
of customized ASICs. Researchers from both academia and
industry has focused on GPU and multi-GPU accelerators
as a promising solution for training and inference of NNs.
GPUs can provide significant computing resources for NN
operations. However, the bandwidth deficiency between PEs
and memory in a single GPU or the inter-GPU communication
in multi-GPU configurations (which is widely used for training
large and complex NNs) has always been challenging, which
counteracts the advantage of the parallel computing capabili-
ties for accelerating NN operations. Significant communication
overhead of training on multi-GPU clusters originates from
1) the fast increase in the computing capacity of GPUs,
which leads to a widening gap between computation and
communication capacity, 2) the emergence of larger and more
complex DNNs with lots of layers and nodes, which leads
to millions of parameters that need to be distributed over the
network, and 3) underutilization of communication resources
by communication mechanisms [92].

To overcome the communication bottleneck on GPU, ad-
vanced PCIe interconnection and novel NVLink interconnec-
tion interface are two well-known solutions.

• PCIe. To address the shortcomings of communica-
tion in multi-GPU clusters, GradientFlow [92] pro-
poses three mechanism based on Peripheral-Component-
Interconnect-Express-Bus (PCIe): ring-based allReduce,
mixed-precision training, and overlapping the allReduce
communication of upper layers with computation of
lower layers. PCIe is a high-speed serial interconnect
that enables the integration of one or more GPU with
CPU and is widely used in GPU accelerators [93]–[95].
However, studies [96], [97] show that PCIe might become
a bottleneck for accelerators because it is slower than
interconnect between CPU and DRAM. Moreover, the
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Fig. 3. Memory read and write transfer networks in Medusa [31].
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Fig. 4. GPUs connected to each other by NVLink.

detrimental impact of PCIe on the performance of NN
accelerators becomes more significant when is adapted
for point to point communication between GPUs in
multi-GPU clusters. To address this challenge, NVLink
interconnect is introduced for multi-GPU clusters.

• NVLink. NVLink is one of the well-known intercon-
nect interfaces proposed for multi-GPU computing. This
wired-base bidirectional interface supports point-to-point
GPU-GPU and GPU-CPU communication and is based
on High-Speed-Signaling-Interconnect (NVHS). NVLink
facilitates the clustering of GPUs or GPUs and CPUs
to employ them as a larger computing unit [32], [33].
Figure 4 shows how GPGPUs can be interconnected using
NVLink.

Training large DNNs on GPU platforms is challenging
without explicitly moving the GPU buffers’ data by CPU
memory, which degrades the productivity and portability.
One alternative is employing the newly introduced feature of
Unified Memory (UM) [98] in CUDA. The Out-of-Core DNN

training framework (OC-DNN) [99] utilizes the UM along
with NVLink to improve the performance of DNN training on
single GPU and multi-GPU clusters and can provide 5x faster
training compared with CPU-based platform for out-of-core
workloads. The NVLink helps to gain significant bandwidth
between GPUs that host the DNN for training. PipeDream
[100] also employs NVLink to design a NN accelerator that
enables inter-batch pipelining, in addition to common intra-
batch parallelism in current accelerators. This improves the
throughput of DNN training.

C. NN Operations on Manycore

Spiking Neural Network Architecture (SpiNNaker) [34]
is a manycore system containing a large number of nodes
each of which is equipped with ARM9 processors and huge
amount of RAM and SDRAM. It has a system NoC that
enables application processors to access the SDRAM and
a communication NoC that is used for transferring packets
among processors. For selecting the topology of SpiNNaker,
the main goal is to minimize the length of routing, and hence,
they have used a torus for this matter.

BiNMAC (Binarized neural Network Manycore Accelera-
tor) [35] is a manycore system architecture proposed for binary
neural networks to improve the performance of both inference
and training phases. Binary NNs have a structure similar to
conventional ones (e.g., convolution layers and fully-connected
layers) but with weights constrained to -1 and +1 that replaces
the multiply-accumulate operations with additions and sub-
tractions. The instructions added to the ISA of BiNMAC can
significantly reduce the number of clocks needed for execution
of a few, but prevailing, specific functions of BNNs. The cores
in each cluster communicate with each other through a low-
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latency bus interconnect. A hierarchical routing structure is
also designed for inter-cluster communications. Compared to
a non-binarized implementation of ResNeet-20 on the same
platform, BiNMAC can reduce the energy consumption by
30x. In addition to aforementioned architectures, previous
approaches such as CHIPPER [101] (a bufferless router for
CMPs) that are proposed for general manycore systems, can be
explored for possible use in manycore-based DNN accelerators
to improve their power consumption and performance.

D. NN Operations on Embedded Processors

Most of the current works address the challenges related
to DNN specialized accelerators. However, there is a lack of
study on DNN inference acceleration on embedded multipro-
cessors that are employed in many real-time applications for
energy-efficiency and scalability.

To address this challenge, Zou et al. [102] has investi-
gated the following parallelization techniques for decreas-
ing communication overhead and accelerating inference in
embedded CMPs: 1) Traditional Parallelization where each
layer is mapped to one core and each core broadcasts its
output values to other cores for synchronization. Inter-core
communication in this case can be significantly high, which
can have detrimental impact on performance. 2) Structure
Level Parallelization where the structure of the DNN model is
slightly modified such that some cores do not broadcast their
output, which leads to decreased inter-core communication
overhead. 3) Communication Aware Sparsified Parallelization
that leverages the concept of zero value weights/neurons which
do not affect the inference accuracy and are not required to be
transmitted to other cores. This method uses the sparsification
technique, so the network can learn to converge to an accurate
structure with low communication overhead in the training
phase. It uses a 2D mesh topology for its NoC and employs
sparsity mask matrices to identify the location of cores in the
mesh topology, and hence, is aware of communication costs
between cores in NoC.

Executing inference on IoT nodes can significantly improve
the performance compared to simply transmitting raw data to
a central computing facility. However, it is hard to deploy
the energy and compute-hungry CNN inference tasks on low-
power energy harvesting IoT devices. While conventional
ReRAM-based accelerators can significantly enhance the per-
formance of NN accelerators, their power consumption is too
much for energy harvesting nodes. Hence, ResiRCA [103]
architecture is presented that combines an energy-efficient
configurable ReRAM-based DNN inference engine with a
battery-powered IoT node. It allows the accelerator to adapt to
a given amount of harvested energy and operate accordingly.
Moreover, the ResiSchedule designed by ResiRCA can achieve
high throughput by employing three techniques: 1) loop tiling,
2) ReRAM duplication, and 3) pipelining. It uses a simple
interconnected bus (can be seen in Figure 5) in the design
of its intelligent embedded system, which might degrade the
design’s resource efficiency. The list of selected non-ASIC
accelerators and their main features are presented in Table
II.

Fig. 5. The interconnected bus used in the design of ResiRCA [103].

IV. INTERCONNECTS AND EMERGING TECHNOLOGIES

In this section, we first review the interconnections em-
ployed in NN accelerators that leverage in/near-memory pro-
cessing. This new computing concept can help mitigate the
impact of memory wall on the performance of computing sys-
tems, including NN accelerators. However, the interconnection
network might become the new bottleneck, and hence, this
issue should be considered and addressed when designing new
NN accelerators based on in/near-memory processing. Finally,
we discuss the interconnections that employ wireless and
optical technology to improve communication among different
parts of a NN accelerator.

A. In-Memory and Near-Memory Processing

With the increasing size and complexity of NNs, it is
desirable to continue improving the performance and energy
efficiency of NN accelerators to match such an increase. Both
the number of layers and size of each layer in NNs are en-
larging, and consequently, the memory subsystem is becoming
the bottleneck in NN accelerators. Traditional approaches such
as using larger on-chip SRAMs or increasing the number of
memory channels are both power-hungry and expensive [36].

The recent advances in technology such as the emergence of
through-silicon-via (TSV, see Figure 6) have led to the advent
of 3D memory that enables the placement of DRAM dies on
top of the logic chip to tackle the memory wall challenge.
3D memory can significantly improve both bandwidth and
energy efficiency compared with conventional 2D memory.
Considering the advantages of 3D memory, it is a promising
option for designing NN accelerators [36], and hence, has
been used in a wide variety of architectures proposed for NN
accelerators [37]–[41].

Another promising solution to conquer the memory wall
challenge is in-memory computing, where novel memory tech-
nologies are employed to integrate computation and memory
to avoid costly data transfer between PEs and off-chip storage.
Some of the current emerging memory technologies such
as PCM [104], STT-RAM [105], [106], Memristor [107],
and ReRAM [108], [109] can support logic and arithmetic
operations, in addition to storing data. Hence, they have been
studied in a large body of research to accelerate applications in
different areas such as graph processing [110]–[113], scientific
computing [114]–[116], and DNNs [117]–[119].
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TABLE II
FEATURES OF REPRESENTATIVE NON-ASIC ACCELERATORS IN THE LITERATURE

Approach Hardware
Platform Interconnection Features

Medusa [31] FPGA Customized New Memory Interconnect, Reduction of FPGA Resource Usage
Simpler Routing, Increased Memory Latency

ICAN [91] FPGA 2D Mesh 3D Comput Tile, Tackling the Complex Internal Wiring
Input Reuse Network Based on 2D Mesh Like Array

GradientFlow [92] GPU PCIe Communication Backend for Distributed DNN Training
Employment of Lazy Allreduce, Coarse-Grained Sparse Communication

PipeDream [100] GPU NVLink Concurrent Scheduling of Minibatches for Training
Automatic Partitioning, Inter-Batch Pipelining

SpiNNaker [34] Manycore Torus ARM-based Accelerator, Considering Spiking NNs
Minimizing Length of Routing

BinMAC [35] Manycore Bus + Customized Accelerator for Binary NNs, Low-latency Bus for Intra-Clustr Traffic
Hierarchical Routing Structure for Inter-Cluster Traffic

Learn-to-Scale [102] Embedded 2D Mesh Considering NN Inference, Structure Level Parallelization
Communication Aware Sparsiied Parallelization

ResiRCA [103] Embedded Bus In-Memory Processing, Energy-Aware ReRAM-based DNN inference
Loop Tiling, ReRAM Duplication, Pipelining

In this section, we review the NN accelerators that leverage
aforementioned memory technologies and discuss the design
of their interconnection networks.

1) 3D Memory: The Neurocube [37] architecture is one of
the first works that leverages 3D memory to design an NN
accelerator for both training and inference. It aims to provide
programmability and scalability similar to GPU accelerators
and power efficiency and performance close to ASIC. Neu-
rocube is composed of clusters of PEs interconnected by a 2D
mesh NoC. The PEs are integrated with 3D DRAM chips and
access memory using parallel channels. To achieve the pro-
grammability and deploy different neural network topologies,
Neurocube employs a set of memory-based programmable
state machines as a programmable interface.

TETRIS [36] is another work that focuses on improving
the NN inference by employing 3D memory. Unlike other
works, TETRIS goes beyond simply combining 3D memory
with NN accelerators. First, it rebalances the design of NN
accelerator chips and allocates more area to PEs and less
area to SRAM buffers. It also moves accumulation operations,
which are simple ones, to DRAM banks to reduce memory
access. In TETRIS, the PEs are connected though a 2D-mesh
NoC. Compared to an accelerator designed with conventional
low-power DRAM memory systems, TETRIS can improve
the performance and reduce the energy by 4.1x and 1.5x,
respectively.

In 3D memory-based NN accelerators, managing the signif-
icant traffic between PEs and memory, and inter-PEs multicast
traffic is challenging. Moreover, the traffic varies significantly
over time, and from application to application. To address
this challenge, Firuzan et al. [47] has proposed an adaptive
cluster-based reconfigurable NoC that adapts its topology to
the chip’s traffic. This paper is focused on the traffic of
inference phase of NNs. To handle multicast inter-PEs and
memory-to-PE traffic, the proposed NoC can be configured as
a tree-like topology. The PEs are organized as clusters, and the
nodes inside each cluster are connected through a broadcast-
based topology. The clusters themselves are connected by a
reconfigurable network. Unlike conventional accelerators that
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Fig. 6. TSVs in 3D Memory.

employ application-specific topologies, the proposed approach
is scalable and flexible and can handle varying traffic of
various applications over time. The topology construction
mechanism of the proposed approach uses a version of Dijkstra
for finding the shortest path for the communication task graph
(CTG) of the neural network.

2) Memristor: Memristor crossbars can perform analog
matrix-vector multiplications, and hence, they make it possible
to tackle the limitations of digital designs regarding energy
efficiency. Therefore, recent studies have considered them for
designing ML inference accelerators, where the matrix mul-
tiplication is the prominent operation. Programmable Ultra-
efficient Memristor-based Accelerator (PUMA) [48] is an
ML inference accelerator that takes advantage of Memristor
crossbars and aims to achieve programmability and generality.
It employs a chip-to-chip 2D mesh interconnect similar to
DaDianNao [8].

RENO [49] also employs memristor-based crossbar (MBC)
arrays to accelerate the training of ANNs. The MBCs are
arranged hierarchically in a centralized mesh manner to mini-
mize the interconnection network cost, and they can be config-
ured to various ANNs models with different topologies using
a customized and configurable mixed-signal interconnection
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network (M-Net). Each four MBC arrays shape a group which
are connected via a group router for communication. The
group routers are then connected together through a central
router. Both digital and analog signal transmission is supported
in RENO. M-Net helps to perform both task mapping and data
migration over the MBC arrays.

ISAAC [50] explores in-situ processing, leveraging mem-
ristor crossbar arrays for speeding up analog execution of
dot-product operations in inference phase of NN accelerators.
To reduce the analog-to-digital conversion overheads, ISAAC
incorporates a novel encoding technique that is compliant with
analog computation. ISAAC has a hierarchical structure where
tiles that are the main building blocks contain various compo-
nents such as multiply-accumulate units, sigmoid, and max-
pool units. The tiles are connected using on-chip concentrated
mesh (c-mesh). Compared with DaDianNao [8], ISAAC can
improve the throughput, energy, and computational density by
14.8x, 5.5x, and 7.5x, respectively.

3) ReRAM: Among the aforementioned memory technolo-
gies, ReRAM (metal-oxide resistive RAM) is shown to be able
to execute matrix-vector multiplication efficiently, and hence,
has been widely used in the design of NN accelerators [51]–
[55], where matrix multiplication is the prevailing operation.
PRIME [53] is one of the first works that employs ReRAM
to address the memory wall challenge in NN accelerators and
improve the performance and energy efficiency of inference
phase. It does not employ independent processing units for
implementing the accelerator, and instead it leverages the
computing capabilities of ReRAM banks directly. PRIME
simply uses a memory bus in its architecture to manage the
inter-bank communication and realize the implementation of
large-scale NNs. The architecture of PRIME is shown in
Figure 7.

Deconvolution is an important component in today’s NNs,
especially GANs (generative adversarial networks). Imple-
menting deconvolution on current ReRAM-based NN Accel-
erators, which are optimized for convolution, can significantly
degrade performance and energy efficiency. RED [55], a
ReRAM-based inference accelerator customized for deconvo-
lution, is proposed to address this challenge. To eliminate
redundant zero-padding operations in deconvolution, RED
designs a pixel-wise mapping scheme. It also proposes a zero-
skipping dataflow to enhance execution efficiency. To facilitate
the zero-skipping, RED leverages a new input buffer design
which interconnects single-functional and multi-functional
buffers (SFBs and MFBs) alternatively using a memory bus.
The PEs also communicate through an on-chip data bus.

While ReRAM can provide significant efficiency and den-
sity, its advantages have not been fully utilized in current NN
accelerator designs due to restrictions such as high communi-
cation demand among PEs, which makes the communication
a bottleneck. Earlier works that have employed in-memory
processing for NN accelerators have either used memory bus
[53]–[55] or mesh-based NoC [48]–[50] for communication
among PEs [52], [53]. Neither using memory bus nor NoC
can satisfy the huge communication demand among PEs in
ReRAM based NN accelerators. Therefore, FPSA [52] is
proposed to fill the gap between the capacity of current in-

TABLE III
SUMMARY OF DNN ACCELERATORS BASED ON IN/NEAR-MEMORY

PROCESSING

Approach Memory
Technology Interconnection Topology

Neurocube [37] 3D Memory 2D Mesh
TETRIS [36] 3D Memory 2D Mesh
Firuzan et al. [47] 3D Memory Reconfigurable
PUMA [48] Memristor 2D Mesh
RENO [49] Memristor M-Net
ISAAC [50] Memristor C-Mesh
PRIME [53] ReRAM Bus
RED [55] ReRAM Bus
FPSA [52] ReRAM Reconfigurable

terconnections and requirement of ReRAM-based accelerators
and improve the performance of NN inference. FPSA suggests
a reconfigurable routing architecture that provides a huge
amount of communication capacity via its wiring resources.
These resources are used by the placement and routing tool
to enable various routes with high communication bandwidth
and to satisfy the communication demand of ReRAM-based
PEs. Instead of memory bus or NoC, this work proposes
the employment of the reconfigurable routing architecture of
FPGAs. Previous approaches reuse physical channels to route
traffic among PEs and provide runtime flexibility. However,
the topology of NN models such as DNNs is fixed, and
hence, the runtime flexibility is unnecessary. The routing
algorithm presented in FPSA assigns a physical channel to
each signal, and hence, the datapath has a fixed time, which
allows calculating the latency of critical path in advance.
The FPGA routing architecture used here is island-style. The
ReRAM-based PEs are connected via Connection Boxes (CB)
and Switch Boxes (SBs), which are constructed by ReRAM
themselves to reduce the area consumption and compensate
for the huge number of fan-in/outs of PEs. FPSA can improve
the computational density by 31x compared with PRIME [53].

There are other works that employ in-memory processing
such as AtomLayer [120] that uses atomic layer computation
for processing one DNN layer each time to achieve efficient
training and inference, simultaneously. But since their inter-
connection architecture is not well-described, we do not further
discuss them in our work. The approaches we discussed are
summarized in Table III.

B. Wireless Interconnects

In recent years, implementing DNN applications on het-
erogeneous (i.e., the combination of CPUs and GPUs) chip
multiprocessors (CMPs) has become an area of great interest.
In these hardware platforms, communications between CPUs
and GPUs carry out through an on-chip network, which leads
to a substantial reduction in the volume of expensive off-
chip communications. However, with such a massive level
of integration, and the emergence of data-intensive DNN
applications, the conventional on-chip networks are unable
to support low-latency and energy-efficient communications.
On the other hand, the NoC in heterogeneous CMPs must
deliver different QoS levels required for both GPU and CPU
communications.
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Fig. 7. The architecture of PRIME [53].

To handle this challenge, Choi et al. [42] has proposed
a hybrid (wired+wirelss) NoC architecture for heterogeneous
CMPs which specifically targets the training phase of DNNs.
In the proposed architecture, as the CPU to the memory con-
troller (MC) communications are latency-sensitive, this type of
data exchange is carried out through the single-hop wireless
interconnects. On the other hand, with the combination of
wireless and wired interconnects, throughput-sensitive GPU-
CPU data exchange is handled. Also, to further boost the chip’s
performance of the chip, the weight transmission process to
all PEs is done by broadcasting through wireless links. The
energy-efficient and high-performance weight transmissions
prevent PEs from starvation.

In order to boost the performance and power-efficiency of
communication in massive parallel accelerators platforms and
consequently speeding up the DNNs execution, a dual-layer
(i.e., data network and weight network) on-chip network has
been proposed in [43]. In this architecture, the input and
output neurons are transmitted through a modified wired mesh
network, and the kernel weights are transmitted through the
mm-wave wireless weight network, which incorporates small-
world topology [44]. In this study, reconfigurable dataflow
management and scheduling process is done based on the
data reuse pattern of applications, which leads to efficient
data movement through the wired and wireless network layers.
Moreover, among various emerging technologies, wireless
NoC proposes a promising perspective to address the perfor-
mance, power consumption, and routing problems of planar
metal interconnections [121].

C. Optical Interconnects
Machine learning models have became the dominant work-

load in data centers, and the size of these models is rapidly
growing. To meet the high accuracy demands, training these
models is challenging. Therefor, the compute-intensive train-
ing phase of DNNs needs to better utilize parallel computing
to accelerate the training process. However, as mentioned
before, the interconnection network plays a critical role, so
its bandwidth needs to be sufficiently scaled up to support the
high level of parallelism. To this end, the integrated optical

interconnects could deliver the required I/O and also memory
bandwidth [45].

To reduce the cost of communication, and consequently
reach a power-efficient, thermal-aware, and scalable DNN
accelerator, Bernstein et al. [46], has proposed a digital optical
neural network (DONN), which benefits from intra-layer op-
tical interconnects. In DONN, which focus on inference tasks,
thanks to the near path-length-independence of optical energy
consumption, the information locality is achieved as a single
transmitter that can deliver data to multiple arbitrarily arranged
receivers. This fast and energy-efficient data delivery enables
high design flexibility and hence bypass scalability limitations.

V. FUTURE RESEARCH

While a large body of research has studied different aspects
of interconnects in NN accelerators, there are still several
challenges that need to be addressed in future research.

1) Designing Non-Mesh Topology for NN Accelerator In-
terconnects: While mesh-based interconnects are a com-
mon option for hardware accelerators, they impose a
high communication latency, especially on PEs that
are far from each other. This increased latency has a
detrimental impact on the performance of NN acceler-
ators, where a huge number of parameters need to be
transferred from one PE to others, usually in the form of
multicast traffic. Therefore designing new interconnects
based on a combination of topologies or proposing
new interconnect topologies is a fruitful future research
direction that can yield promising results. Moreover,
extending the use of reconfigurable interconnects can
also remarkably improve the performance of NN accel-
erators.

2) More Sophisticated Interconnects for Non-ASIC Accel-
erators: While ASIC accelerators are believed to provide
more energy-efficiency than other accelerators, the non-
ASIC accelerators such as FPGAs and GPUs are widely
used because of their advantages such as easy pro-
gramming, scalability, and extreme parallelism. Hence,
more sophisticated interconnects that consider the spe-
cial features of such accelerators e.g., huge memory and
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a large number of SMs in GPUs or reconfigurability
of FPGAs, is needed to be developed. These special
interconnects can help to improve the performance and
energy-efficiency of accelerators significantly by lever-
aging the aforementioned features.

3) Power/Energy-Aware Interconnects for Embedded Pro-
cessors: Embedded processors are the prevailing option
for designing hardware devices of emerging computing
paradigms such as IoT and Edge, and these paradigms
are widely used for NN-based applications such as real-
time image classification or object detection. Due to
special conditions of the working environment, a large
portion of IoT/Edge devices are either battery-enabled
or use energy harvesting. Therefore, the power/energy
consumption is a key parameter in the design of such
devices, even more essential than performance. Litera-
ture review reveals that previous works have not paid
enough attention to the design of embedded proces-
sors’ interconnect. Moreover, the ones that considered
such processors are mostly interested in improving
the performance and pay little, if any, attention to
power/energy efficiency. Future works should consider
the power/energy consumption of interconnects when
proposing new architectures for embedded processors,
instead of sole consideration of performance.

4) Enabling High Bandwidth Interconnect for In/Near-
Memory Processing: In-memory processing and near-
memory processing are two emerging solutions for mit-
igating the impact of memory wall on the performance
of hardware accelerators, including NN accelerators, that
have achieved promising results. They can successfully
narrow the gap between processing speed of PEs and
access speed of memory. However, recent approaches
devised for NN accelerators cannot take full advantage
of capabilities provided by processing in memory tech-
nologies because the interconnect acts as a bottleneck
that renders the performance of entire NN accelerators
low. To leverage the potential of emerging memory
technologies and maximize the performance of NN
accelerators, the challenge of interconnects has to be
addressed properly in future works.

5) Leveraging approximate computing to boost the perfor-
mance and energy-efficiency of on-chip interconnects:
In computing systems, errors can be manifested due to
many reasons and can affect the quality of computation
results and consequently, the reliability of the system.
In order to find a solution to mitigate these problems,
approximate computing has emerged as an attractive
computation model by compromising accuracy for gains
in both performance and energy-efficiency [122]. Ap-
proximate computing relies on the ability of applications
and systems to tolerate the imprecision of computation
results [123]. Specifically, for DNNs, as a modern state-
of-the-art application, it has been shown that they are
inherently resilient to errors. Thanks to this feature, a
broad set of research studies have employed approximate
computing techniques to DNNs [124], [125]. By this
way, the energy and performance of such systems can

be effectively improved by running in the presence of
errors without sacrificing their classification accuracy.
By taking advantage of the error-resilient characteristic
of DNN models, most commonly-used on-chip com-
munication systems can be evaluated and subsequently
redesigned to achieve energy-efficiency and performance
gains. To provide high-performance and energy-efficient
data delivery, exploring hardware approximation tech-
niques for high-performance NoCs is crucial. In this
regard, emerging on-chip interconnect technologies such
as photonics, wireless, and 3D interconnects have the
potential of taking the advantage of inherent error re-
silience of DNNs, thanks to their higher bandwidth and
power-efficiency. Besides, some other characteristics of
DNNs applications like repeated data patterns and low
accuracy requirement of input data could reduce the
communication traffic load in NoCs [126].

VI. CONCLUSION

With the proliferation of NNs, and especially DNNs, design-
ing hardware accelerators for them are thriving. To improve
the performance and deploy DNNs flexibly, the reconfigurable
interconnect was proposed and considered with various topolo-
gies on the DNN design On the other hand, interconnection
design is also gaining more attention in emerging computing
paradigms such as near/in memory processing that aims to
conquer the memory wall challenge. To prevent intercon-
nection from becoming the bottleneck in such computing
paradigms, there is need for more advanced designs that can
provide extremely high bandwidth for communication among
different elements of NN accelerators. Emerging technologies
such as wireless and optical interconnections can also be
employed to tackle the disadvantages of conventional wired
interconnections.
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P. Bailis, K. Olukotun, C. Ré, and M. Zaharia, “Dawnbench: An end-
to-end deep learning benchmark and competition,” Training, vol. 100,
no. 101, p. 102, 2017.

[5] E. Medina and E. Dagan, “Habana labs purpose-built ai inference
and training processor architectures: Scaling ai training systems using
standard ethernet with gaudi processor,” IEEE Micro, vol. 40, no. 2,
pp. 17–24, 2020.



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 13

[6] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware
accelerators,” Communications of the ACM, vol. 63, no. 7, pp. 48–57,
July 2020.

[7] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[8] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun et al., “Dadiannao: A machine-learning supercomputer,”
in 2014 47th Annual IEEE/ACM International Symposium on Microar-
chitecture. IEEE, 2014, pp. 609–622.

[9] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Annual Intl.
Symposium on Computer Architecture (ISCA), 2017, pp. 1–12.

[10] M. F. Reza and P. Ampadu, “Energy-efficient and high-performance
noc architecture and mapping solution for deep neural networks,”
in Proceedings of the 13th IEEE/ACM International Symposium on
Networks-on-Chip, 2019, pp. 1–8.

[11] S. Y. H. Mirmahaleh and A. M. Rahmani, “Dnn pruning and mapping
on noc-based communication infrastructure,” Microelectronics Journal,
vol. 94, p. 104655, 2019.

[12] K.-C. Chen, M. Ebrahimi, T.-Y. Wang, and Y.-C. Yang, “Noc-based dnn
accelerator: A future design paradigm,” in IEEE/ACM International
Symposium on Networks-on-Chip, 2019, pp. 1–8.

[13] S. Y. H. Mirmahaleh, M. Reshadi, H. Shabani, X. Guo, and
N. Bagherzadeh, “Flow mapping and data distribution on mesh-based
deep learning accelerator,” in Proceedings of the 13th IEEE/ACM
International Symposium on Networks-on-Chip, 2019, pp. 1–8.

[14] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,”
IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 9, no. 2, pp. 292–308, 2019.

[15] A. Yasoubi, R. Hojabr, H. Takshi, M. Modarressi, and M. Danesh-
talab, “Cupan–high throughput on-chip interconnection for neural net-
works,” in International Conference on Neural Information Processing.
Springer, 2015, pp. 559–566.

[16] J. R. Stevens, A. Ranjan, D. Das, B. Kaul, and A. Raghunathan,
“Manna: An accelerator for memory-augmented neural networks,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 794–806.

[17] S. Pande, F. Morgan, G. Smit, T. Bruintjes, J. Rutgers, B. McGinley,
S. Cawley, J. Harkin, and L. McDaid, “Fixed latency on-chip inter-
connect for hardware spiking neural network architectures,” Parallel
computing, vol. 39, no. 9, pp. 357–371, 2013.

[18] S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,” Interna-
tional journal of neural systems, vol. 19, no. 04, pp. 295–308, 2009.

[19] S. Carrillo, J. Harkin, L. J. McDaid, F. Morgan, S. Pande, S. Cawley,
and B. McGinley, “Scalable hierarchical network-on-chip architecture
for spiking neural network hardware implementations,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 24, no. 12, pp. 2451–
2461, 2012.

[20] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“Dnnbuilder: an automated tool for building high-performance dnn
hardware accelerators for fpgas,” in IEEE/ACM Intl. Conference on
Computer-Aided Design (ICCAD). IEEE, 2018, pp. 1–8.

[21] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun,
W. Zhang, and J. Cong, “Fp-dnn: An automated framework for map-
ping deep neural networks onto fpgas with rtl-hls hybrid templates,”
in IEEE Intl. Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2017, pp. 152–159.

[22] Y. Chen, J. He, X. Zhang, C. Hao, and D. Chen, “Cloud-dnn: An
open framework for mapping dnn models to cloud fpgas,” in Pro-
ceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2019, pp. 73–82.

[23] X. Wei, Y. Liang, and J. Cong, “Overcoming data transfer bottlenecks
in fpga-based dnn accelerators via layer conscious memory manage-
ment,” in ACM/IEEE Design Automation Conf. (DAC), 2019, pp. 1–6.

[24] P. Hill, A. Jain, M. Hill, B. Zamirai, C.-H. Hsu, M. A. Laurenzano,
S. Mahlke, L. Tang, and J. Mars, “Deftnn: Addressing bottlenecks
for dnn execution on gpus via synapse vector elimination and near-
compute data fission,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, 2017, pp. 786–799.

[25] X. Chen, D. Z. Chen, and X. S. Hu, “modnn: Memory optimal dnn
training on gpus,” in 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2018, pp. 13–18.

[26] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishna-
murthy, and R. Sundaram, “Nexus: a gpu cluster engine for accelerating

dnn-based video analysis,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, 2019, pp. 322–337.

[27] D. Shin, J. Lee, J. Lee, J. Lee, and H.-J. Yoo, “Dnpu: An energy-
efficient deep-learning processor with heterogeneous multi-core archi-
tecture,” IEEE Micro, vol. 38, no. 5, pp. 85–93, 2018.

[28] L. Jin, Z. Wang, R. Gu, C. Yuan, and Y. Huang, “Training large scale
deep neural networks on the intel xeon phi many-core coprocessor,” in
2014 IEEE International Parallel & Distributed Processing Symposium
Workshops. IEEE, 2014, pp. 1622–1630.

[29] T. Abtahi, A. Kulkarni, and T. Mohsenin, “Accelerating convolutional
neural network with fft on tiny cores,” in 2017 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2017, pp. 1–4.

[30] V. Turchenko, G. Bosilca, A. Bouteiller, and J. Dongarra, “Efficient
parallelization of batch pattern training algorithm on many-core and
cluster architectures,” in 2013 IEEE 7th International Conference
on Intelligent Data Acquisition and Advanced Computing Systems
(IDAACS), vol. 2. IEEE, 2013, pp. 692–698.

[31] Y. Shen, T. Ji, M. Ferdman, and P. Milder, “Medusa: A scalable
interconnect for many-port dnn accelerators and wide dram controller
interfaces,” in 2018 28th International Conference on Field Pro-
grammable Logic and Applications (FPL). IEEE, 2018, pp. 101–1014.

[32] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J. Barker,
“Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli, nvswitch and
gpudirect,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 1, pp. 94–110, 2019.

[33] D. Foley and J. Danskin, “Ultra-performance pascal gpu and nvlink
interconnect,” IEEE Micro, vol. 37, no. 2, pp. 7–17, 2017.

[34] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, and A. D. Brown, “Overview of the spinnaker system
architecture,” IEEE Transactions on Computers, vol. 62, no. 12, pp.
2454–2467, 2012.

[35] A. Jafari, M. Hosseini, A. Kulkarni, C. Patel, and T. Mohsenin, “Bin-
mac: Binarized neural network manycore accelerator,” in Proceedings
of the 2018 on Great Lakes Symposium on VLSI, 2018, pp. 443–446.

[36] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2017, pp. 751–764.

[37] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3d memory,” ACM SIGARCH Computer Architecture
News, vol. 44, no. 3, pp. 380–392, 2016.

[38] K. Ueyoshi, K. Ando, K. Hirose, S. Takamaeda-Yamazaki, M. Hamada,
T. Kuroda, and M. Motomura, “Quest: Multi-purpose log-quantized dnn
inference engine stacked on 96-mb 3-d sram using inductive coupling
technology in 40-nm cmos,” IEEE Journal of Solid-State Circuits,
vol. 54, no. 1, pp. 186–196, 2018.

[39] D. Kim, T. Na, S. Yalamanchili, and S. Mukhopadhyay, “Deeptrain: A
programmable embedded platform for training deep neural networks,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2360–2370, 2018.

[40] J.-S. Kim and J.-S. Yang, “Dris-3: Deep neural network reliability im-
provement scheme in 3d die-stacked memory based on fault analysis,”
in ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–6.

[41] B. Li, J. R. Doppa, P. P. Pande, K. Chakrabarty, J. X. Qiu, and H. Li,
“3d-reg: A 3d reram-based heterogeneous architecture for training
deep neural networks,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), vol. 16, no. 2, pp. 1–24, 2020.

[42] W. Choi, K. Duraisamy, R. G. Kim, J. R. Doppa, P. P.
Pande, R. Marculescu, and D. Marculescu, “Hybrid network-
on-chip architectures for accelerating deep learning kernels
on heterogeneous manycore platforms,” in Proceedings of the
International Conference on Compilers, Architectures and Synthesis
for Embedded Systems, ser. CASES ’16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2968455.2968510

[43] M. Sinha, S. H. Gade, W. Singh, and S. Deb, “Data-flow aware cnn
accelerator with hybrid wireless interconnection,” in 2018 IEEE 29th
International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP). IEEE, 2018, pp. 1–4.

[44] S. Deb, K. Chang, X. Yu, S. P. Sah, M. Cosic, A. Ganguly, P. P. Pande,
B. Belzer, and D. Heo, “Design of an energy-efficient cmos-compatible
noc architecture with millimeter-wave wireless interconnects,” IEEE
Transactions on Computers, vol. 62, no. 12, pp. 2382–2396, 2012.

[45] B. Klenk and L. Dennison, “Why data science and machine learning
need silicon photonics,” in Optical Fiber Communication Conference.
Optical Society of America, 2020, pp. M4F–6.



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 14

[46] L. Bernstein, A. Sludds, R. Hamerly, V. Sze, J. Emer, and D. Englund,
“Freely scalable and reconfigurable optical hardware for deep learning,”
arXiv preprint arXiv:2006.13926, 2020.

[47] A. Firuzan, M. Modarressi, M. Daneshtalab, and M. Reshadi, “Re-
configurable network-on-chip for 3d neural network accelerators,” in
2018 Twelfth IEEE/ACM International Symposium on Networks-on-
Chip (NOCS). IEEE, 2018, pp. 1–8.

[48] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S.
Williams, P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy et al.,
“Puma: A programmable ultra-efficient memristor-based accelerator
for machine learning inference,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 715–731.

[49] X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y. Wang, H. Jiang,
M. Barnell, Q. Wu et al., “Reno: A high-efficient reconfigurable
neuromorphic computing accelerator design,” in Proceedings of the
52nd Annual Design Automation Conference, 2015, pp. 1–6.

[50] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–
26, 2016.

[51] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,
S. Lam, N. Ge, J. J. Yang, and R. S. Williams, “Dot-product engine
for neuromorphic computing: Programming 1t1m crossbar to accelerate
matrix-vector multiplication,” in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, 2016, pp. 1–6.

[52] Y. Ji, Y. Zhang, X. Xie, S. Li, P. Wang, X. Hu, Y. Zhang, and
Y. Xie, “Fpsa: A full system stack solution for reconfigurable reram-
based nn accelerator architecture,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 733–747.

[53] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory,” in ACM/IEEE
International Symposium on Computer Architecture (ISCA). IEEE,
2016, pp. 27–39.

[54] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2017, pp. 541–552.

[55] Z. Li, B. Li, Z. Fan, and H. Li, “Red: A reram-based efficient
accelerator for deconvolutional computation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2020.

[56] M. Palesi, G. Ascia, D. Patti, S. Monteleone, V. Catania, and A. Mineo,
“Improving inference latency and energy of dnns through wireless
enabled multi chip-module-based architectures and model parame-
ters compression,” in 14th IEEE/ACM International Symposium on
Networks-on-Chip (NOCS 2020), 2020.

[57] V. Sze, “Designing hardware for machine learning: The important
role played by circuit designers,” IEEE Solid-State Circuits Magazine,
vol. 9, no. 4, pp. 46–54, 2017.

[58] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tangram:
Optimized coarse-grained dataflow for scalable nn accelerators,”
in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 807–820. [Online]. Available:
https://doi.org/10.1145/3297858.3304014

[59] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible
dataflow accelerator architecture for convolutional neural networks,” in
2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2017, pp. 553–564.

[60] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfig-
urable architecture for parallel patterns,” in ACM/IEEE Intl. Symposium
on Computer Architecture (ISCA), 2017, pp. 389–402.

[61] Y. Chen, J. Emer, and V. Sze, “Using dataflow to optimize energy
efficiency of deep neural network accelerators,” IEEE Micro, vol. 37,
no. 3, pp. 12–21, 2017.

[62] M. Ebrahimi and M. Daneshtalab, “Ebda: A new theory on design
and verification of deadlock-free interconnection networks,” in 2017
ACM/IEEE 44th Annual International Symposium on Computer Archi-
tecture (ISCA), 2017, pp. 703–715.

[63] G. Krishnan, S. K. Mandal, C. Chakrabarti, J.-s. Seo, U. Y. Ogras,
and Y. Cao, “Interconnect-aware area and energy optimization for in-
memory acceleration of dnns,” IEEE Design & Test, 2020.

[64] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“One-shot learning with memory-augmented neural networks,” arXiv
preprint arXiv:1605.06065, 2016.

[65] K. Ni, X. Yin, A. F. Laguna, S. Joshi, S. Dünkel, M. Trentzsch,
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