
Microprocessors and Microsystems 77 (2020) 103145 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

A NoC-based simulator for design and evaluation of deep neural 

networks 

Kun-Chih (Jimmy) Chen 

a , ∗, Masoumeh Ebrahimi b , Ting-Yi Wang 

a , Yuch-Chi Yang 

a , 
Yuan-Hao Liao 

a 

a Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan 
b KTH Royal Institute of Technology, Stockholm, Sweden 

a r t i c l e i n f o 

Article history: 

Received 5 March 2020 

Accepted 20 May 2020 

Available online 3 June 2020 

Keywords: 

Network-on-Chip 

Neural network 

NoC-Based neural network 

Artificial neural network 

Off-chip memory accesses, 

a b s t r a c t 

The astonishing development in the field of artificial neural networks (ANN) has brought significant ad- 

vancement in many application domains, such as pattern recognition, image classification, and computer 

vision. ANN imitates neuron behaviors and makes a decision or prediction by learning patterns and fea- 

tures from the given data set. To reach higher accuracies, neural networks are getting deeper, and conse- 

quently, the computation and storage demands on hardware platforms are steadily increasing. In addition, 

the massive data communication among neurons makes the interconnection more complex and challeng- 

ing. To overcome these challenges, ASIC-based DNN accelerators are being designed which usually incor- 

porate customized processing elements, fixed interconnection, and large off-chip memory storage. As a 

result, DNN computation involves large memory accesses due to frequent load/off-loading data, which 

significantly increases the energy consumption and latency. Also, the rigid architecture and interconnec- 

tion among processing elements limit the efficiency of the platform to specific applications. In recent 

years, Network-on-Chip-based (NoC-based) DNN becomes an emerging design paradigm because the NoC 

interconnection can help to reduce the off-chip memory accesses while offers better scalability and flexi- 

bility. To evaluate the NoC-based DNN in the early design stage, we introduce a cycle-accurate NoC-based 

DNN simulator, called DNNoC-sim. To support various operations such as convolution and pooling in the 

modern DNN models, we first propose a DNN flattening technique to convert diverse DNN operation 

into MAC-like operations. In addition, we propose a DNN slicing method to evaluate the large-scale DNN 

models on a resource-constraint NoC platform. The evaluation results show a significant reduction in the 

off-chip memory accesses compared to the state-of-the-art DNN model. We also analyze the performance 

and discuss the trade-off between different design parameters. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The notable benefits of artificial neural networks (ANNs) have

ed to the advancement in many real-world applications, such as

peech recognition and image classification [1] . The accuracy in

everal of these applications has reached those of humans. ANN

s composed of a large number of neurons which are arranged in

ayers, called input layer, hidden layers, and output layer. A neuron

erforms a simple multiply-accumulation (MAC) operation, and it

s connected to all/part of the neurons in the next layer. Through

hese connections, the outputs of one layer become the inputs of

he next layer, until the result is obtained in the output layer. To

each high accuracies in more complex applications, neural net-
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orks must get deeper, so-called Deep Neural Networks (DNN).

n the other hand, the massive deployment of DNN-enabled ap-

lications on edge devices ( e.g. , mobile devices) depends on power-

ul hardware platforms to execute extensive DNN operations. Cur-

ent large-scale DNNs, however, involve complex communication,

xtensive computations, and storage requirements which are be-

ond the capability of current resource-constraint embedded de-

ices. This has led to recent growing popularity on developing

esource-constraint platforms for DNN computation [1] . 

Currently, the most common hardware platforms to execute

NN operations are CPU, GPU, FPGA, and ASIC. Advanced CPUs

such as 48-core Qualcomm Centriq 2400 [2] and 72-core Intel

enon Phi [3] ) with an impressive many-core computing power

as enabled a faster execution of DNN operations. GPUs are an-

ther popular general-purpose computing platforms for DNN com-

utation. This is because their intrinsic parallel computing features

https://doi.org/10.1016/j.micpro.2020.103145
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2020.103145&domain=pdf
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Fig. 1. Attributes of different DNN accelerator design paradigms. 
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are well-matched with parallel operations in DNN computing. Al-

though CPUs and GPUs provide general-purpose and high parallel

computing capability to speed up the DNN computation, a general

concern is that the offered high performance comes at the cost of

high power consumption [4] . ASIC-based designs can offer higher

throughput and power efficiency while suffering from lower flexi-

bility and higher design cost. To exploit parallelism, the ASIC-based

DNN designs are usually composed of many DNN processing ele-

ments (PEs), which are arranged in a 2D array [5] . FPGAs, based

on programmable attributes, are also popular choices for running

DNN computation [6] . They can reduce the design time and power

consumption while enabling a fast prototype of the DNN acceler-

ator. Compared with the ASIC-based designs, the FPGA-based de-

signs are more flexible in the sense they are re-programmable.

However, FPGAs usually come with limited logic and storage re-

sources, which restricts the advantage of reconfigurability. In ad-

dition, to map a DNN model to the FPGA platform, it is necessary

to handle the PE design as well as the data communication de-

sign, which makes the FPGA-based design still suffer from low de-

sign flexibility. Both ASIC-based or FPGA-based designs tend to op-

timize the DNN model for a particular DNN application ( e.g. , pat-

tern recognition). In other words, the efficiency of the optimized

models drops significantly when running a different application on

the same platform. In sum, despite the benefit of high power effi-

ciency in the ASIC-based and FPGA-based designs, they suffer from

low computational flexibility as they are configured for a specific

DNN model or application. 

One solution to improve the computational flexibility of DNN

accelerators is to decouple the data communication and computa-

tion, and that would be possible through employing Network-on-

Chip (NoC) interconnection. NoC is a modular packet-switched net-

work, which enables a large number of PEs to communicate with

each other through links and routers. NoC is proven as an efficient

way to manage complex interconnection in many-core systems and

thus to achieve high energy efficiency and performance [7] . The

NoC-based design also comes with scalability, reliability, and paral-

lelism features, which makes it even more attractive in DNN com-

putation. Several NoC-based DNN accelerators have been presented

so far [8–13] . Several aspects have to be considered when integrat-

ing NoC into DNN accelerators, which are the mapping algorithm,

topology, and routing algorithm. The mapping algorithms decide

how neurons should be clustered and mapped to the processing

elements. Topology decides the number and location of routers

in the platform and how PEs are interconnected. Routing algo-

rithm defines the routes that data transfers between PEs. Thereby,

based on a specific mapping approach, neurons are mapped to PEs

where the neuron computation takes place, then the results are

sent to other PEs following the involved routing algorithm. Since

NoC-based designs decouple communication and computation, it

is not necessary to create a specific dataflow to adapt the target

DNN model, which substantially increases the computational flex-

ibility. Due to these features, unlike other ASIC-based and FPGA-

based platforms, NoC-based DNN accelerators can run different

workloads while keeping high performance and power efficiency. 

Fig. 1 summarizes the aforementioned platforms for DNN com-

putation. CPUs and GPUs are general-purpose platforms which of-

fer very high reconfigurability at runtime, and thus they support

various DNN applications. However, they suffer from huge power

consumption and high data transference latency between PEs and

off-chip memory. In the contrary, ASIC-based and FPGA-based de-

signs can be optimized for a specific DNN model, and thus they

could reach an optimal power efficiency. In return, such optimiza-

tion limits the platform reconfigurability, and as a result, a single

platform is unable to support various DNN models efficiently. NoC-

based DNN accelerators, on the other hand, are reconfigurable at

runtime and have the benefit of higher power efficiency. Thereby,
iverse DNN applications can be easily mapped and executed on

he platform. 

As mentioned before, NoC is a proper platform to provide flex-

bility and adaptability to support various types of neural network

odel on a single chip [9,14,15] . To leverage the NoC-based DNN

latform, it is necessary to develop a NoC-based hardware simu-

ator. The simulator should support not only the neural network

perations ( e.g. , MAC and pooling) but also the NoC operations

 e.g. , mapping and routing). In addition, the platform should pro-

ide hardware analysis such as power, throughput, transmission la-

ency, as well as the software result ( e.g. , classification precision).

 NoC-based neural network simulator, called NN-Noxim, has been

roposed by Chen et al. in [16] . This simulator reports classification

recision, power consumption, and transmission latency based on

he given DNN model and the NoC primary parameters ( e.g. , NoC

ize, XY routing algorithm, and dimension-order mapping). How-

ver, this simulator can only simulate the neuron operation and

ata communication in the fully-connected layers. Other conven-

ional DNN models that are composed of several convolution lay-

rs, pooling layers, and fully-connected layers, are not supported

y this simulator. This simulator has been extended in [17] to sup-

ort modern DNN models and various DNN operations ( e.g. , con-

olution and pooling). However, this simulator assumes that the

arget DNN model should be small enough to fit the total PE com-

uting capacity that is offered by the platform. In other words, the

odel should be mapped to the NoC platform at once, which is

ot practically viable. In addition, both mentioned simulators in

16] and [17] only support the mesh topology. 

To simulate the large-scale DNN, in this paper we propose a

ycle-accurate high-level NoC-based DNN simulator, called DNNoC-

im. The simulation flow is shown in Fig. 2 . As shown in this

gure, first, the target DNN model is flattened into a MAC-like

NN model. For this purpose, the convolutional and pooling op-

rations are converted into simple multiply-accumulate (MAC) op-

rations. Afterward, the Flattened DNN is mapped to the generated

oC platform based on the selected NoC design parameters. As was

tated, previous simulators are unable to map a large-scale DNN to

he target NoC platform at once. To solve this problem, we pro-

ose a dynamic DNN slicing and mapping algorithm that performs

he mapping task (a large-scale DNN into a small-sized NoC plat-

orm) in several mapping iterations. When the partial DNN model

s mapped to the target NoC platform, DNNoC-Sim starts the DNN

imulation until the whole DNN is simulated. The contributions of

his paper are summarized as follows: 

1. We have provided a pre-processing flow, which includes an al-

gorithm to flatten various DNN operations into a MAC-like op-

eration and a slicing algorithm to map the target model into

the NoC-based platform. 
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Fig. 2. The simulation flow of the proposed NoC-based DNN simulator, called DNNoC-Sim. 
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2. We extend a cycle-accurate high-level NoC simulator to support

different types of DNN models. This simulator provides accurate

hardware results, such as power consumption, throughput, and

latency. The simulator reports the classification precision and

verifies the result by Keras framework [18] . Using this tool, per-

formance and memory access latency are also evaluated. 

3. We make an extensive comparison between conventional and

NoC-based DNN accelerators. We also analyze the trade-off be-

tween different design parameters in the NoC-based DNN plat-

form. 

The remainder of this paper is organized as follows. Section II

eviews the background and analyzes current popular neural net-

ork simulators. The proposed NoC-based DNN simulator, DNNoC-

im, which supports the proposed DNN flattening technique and

NN slicing method, are introduced in Section III. In Section IV,

e compare different configurations and analyze the experimental

esults. Finally, Section V concludes this paper. 

. Background and related works 

DNNs have been widely used to solve many complex real-

orld problems and achieve stunning performance in solving these

roblems. To execute the DNN models on edge devices, efficient

esource-constraint hardware platforms are needed. NoC-based de-

igns not only reduce the design complexity of the large-scale DNN

ardware implementation but also provide high-performance and

ow-latency communication for DNN applications. In this section,

e first investigate the conventional DNN simulators and the tools

or the NoC simulation. Afterward, the NoC-based DNN simulators

ill be discussed. 

.1. Conventional neural network simulators 

Deep Playground [19] is a neural network simulator based on

he Tensorflow neural network framework. The simulator visual-

zes the operation of the neural network and the training pro-

ess. Using this simulator, users can train the neural network at

eal-time, observe the training process, and get insight on how

he training process works. The Deep Playground simulator, on the
ther hand, only simulates fully-connected neural networks (such

s ANN [20] ) and does not support convolutional neural networks

uch as AlexNet and VGG-net. Therefore, the flexibility and scala-

ility of this tool is limited and not sufficient to run modern DNN

odels. In addition, Deep Playground does not give any hardware

nalysis report such as power consumption and latency. 

NNtool [21] is a MATLAB toolbox to develop neural network

odels with straightforward commands. There are many neural

etwork models provided in NNtool that can be examined and

valuated. Besides, MATLAB supports various mathematical calcu-

ations to analyze the results in detail. Hence, NNtool provides con-

gurable parameters to facilitate the simulation of neural network

odels with different architectures. However, NNtool is a software-

ased simulator that does not support hardware behavior simula-

ion. NNtool does not also support the NoC-based neural network

odel. 

.2. NoC platform simulators 

Noxim is a SystemC-based NoC simulator proposed by Cataniz

t al. [22] . Noxim became a widely used tool to simulate NoC traf-

c behavior. Based on the user-defined design parameters, such as

oC size and buffer size, Noxim first generates the correspond-

ng NoC system and determines the overall transmission dataflow.

hen, the packet transmission on the generated NoC platform can

e simulated. Noxim reports different results such as throughput,

atency, and power consumption, which can be leveraged to ana-

yze the NoC design cost at the hardware level. Although Noxim is

 helpful simulator to analyze the NoC behavior, it cannot be uti-

ized in DNN computing as it does not support neuron operations

n PEs and related clustering and mapping algorithms. 

ATLAS [23] is a java-based software simulator to evaluate the

oC system. Based on the user-defined design parameters, AT-

AS can perform DC, AC, and transient analysis for silicon, binary,

ernary, and quaternary material-based devices. ATLAS not only can

rovide a comprehensive power analysis but also detailed evalua-

ion results on the NoC transmission behavior. Although ATLAS is a

owerful tool for the detailed NoC analysis, it does not support any

unction for the neural network computation. Consequently, ATLAS
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is still not an appropriate simulator to perform the relevant analy-

sis and evaluation of NoC-based neural network hardware designs.

VisualNoC [ 24 ] is an open-source cycle-accurate full-system

simulator for many-core embedded systems. This visualization

simulator supports both network simulation and task mapping and

helps to observe the system behavior and identify the system bot-

tlenecks and deadlocks. VisualNoC records all events in the net-

work happening in routers, links, and processing elements, and all

these events can be reproduced for further analyses. In addition,

the visualization feature of VisualNoC offers an intuitive way of an-

alyzing the efficiency of different routing and mapping algorithms.

This simulator, however, does not support DNN computation. 

Booksim is an alternative and popular cycle-accurate NoC sim-

ulator, which is built in C++ and capable of supporting NoC hard-

ware simulation [25] . Booksim comes with various topologies,

routing algorithms, and other design parameters. By using this

simulator, designers can optimize the traffic dataflow and analyze

the overall system performance. Similar to other mentioned NoC

simulators, Booksim does not support the required functions to

perform neuron computing. 

2.3. NoC-based neural network simulators 

NN-Noxim is a nonproprietary cycle-accurate NoC-based neu-

ral network hardware simulator [22] . NN-Noxim has extended the

functions of Noxim and is the first NoC simulator that simulates

the neural network behavior. It is based on the mesh topology

with user-defined parameters. After mapping all neurons to PEs,

NN-Noxim processes the neural network on the generated NoC

platform. Although the neural network operations in the fully-

connected layers are implemented in NN-Noxim, it does not still

support the common operations in well-known CNN models, such

as convolution and pooling. 

NN-Noxim has been further extended in CNN-Noxim [17] to

implement NoC-based convolutional neural networks. Since CNN-

Noxim supports several complicated operations such as convolu-

tion and pooling, it can simulate various CNN models on the mesh-

based NoC platform. However, this simulator assumes that the tar-

get CNN model should be mapped to the NoC platform at once,

which depends on the available on-chip resources and memory

storage. As a result, CNN-Noxim needs to generate a very large NoC

to simulate the large-scale CNN models. Although this approach

works for small-sized DNN networks, it is not a practical simulator

for current large-scale DNN models. Also, CNN-Noxim is limited to

the mesh topology, which lacks design flexibility. 

3. Proposed NoC-based DNN simulation platform for DNN 

model evaluation 

In this section, we explain a complete process of execut-

ing a DNN network on the NoC-based simulation platform. First,

in Section 3.1 we overview the Noxim simulator and then in

Section 3.2 we introduce an enhanced simulator, called DNNoC-Sim

capable of computing DNN operations. Then, we start by flattening

the DNN network to reach a Flattened DNN model in Section 3.2.1 .

This step is achieved by converting all operations in the convo-

lution, pooling, and fully-connected layers to the MAC-like oper-

ations. Afterward, in Section 3.2.2 , we explain a proper clustering

approach to cluster the Flattened DNN model. Each cluster is then

mapped to a PE for execution. In Section 3.2.3 , we introduce the

dynamic DNN slicing and mapping algorithm to slice and map the

DNN model to fit the resource-constraint NoC platform at runtime.

Finally, in Section 3.2.4 , we explain the computing flow and the

control mechanism in a PE. 
.1. Overview of noxim 

Noxim [22] is a SystemC-based simulator which supports mesh-

ased NoC simulation. Fig. 3 shows the transaction-level model

TLM) of Noxim, which describes a 3 × 3 mesh-based NoC plat-

orm. Based on the user-defined design parameters such as the

esh size and the input buffer size, Noxim can generate a top

odule of the target NoC platform. The top module is composed of

everal tile modules where the tile modules are connected through

hannels. The channel behavior depends on the design parameters

uch as the input buffer size, the number of virtual channels, and

he network topology. Based on this hierarchical SystemC module

esign, Noxim provides detailed information about the power con-

umption, throughput, and latency, which helps the designers to

nalyze the NoC system. Although the TLM model in Noxim pro-

ides a flexible way to construct NoC in the system level, the sim-

lator is limited to the mesh-based topology and lacks design flex-

bility. 

Each tile module is composed of a router module and a PE mod-

le . The router module is used to simulate the behavior of packet

elivery. Based on a particular routing algorithm (such as XY rout-

ng or west-first routing), the router assigns an appropriate output

hannel to a packet stored in the input buffer. The switching con-

estion happens if multiple packets request the same output chan-

el. Usually, the switching congestion can be mitigated or even re-

olved by using virtual channels, a proper arbitration mechanism,

r an advanced routing algorithm that provides higher path di-

ersity for routing packets. Noxim supports many mature routing

echanisms such as X-Y routing, west-first adaptive routing and

dd-even adaptive routing. 

The PE module in Noxim is used to generate packets based on

he underlying mapping and routing algorithm. A generated packet

s composed of several flits as header, body, and tail. The header

it keeps the packet routing information such as the source and

estination addresses and the cycle in which the packet is gener-

ted. The tail flit indicates the end of the packet, which leverages

acket routing and packet switching. Finally, the body flits store

he data that is going to be transferred from the PE. Since Noxim is

 network-level simulator, the generated body flits do not carry any

pecific information and are empty. Thereby, Noxim cannot support

ny computation, such as those in DNN computing. 

.2. DNNoC-Sim: A cycle-accurate high-level NoC-based DNN 

imulator 

Most of the current simulators support either neural network

perations or traffic behavior on the NoC platform. Therefore, they

re not proper choices to simulate the NoC-based DNN opera-

ions. Although the two recent NoC-based ANN simulators ( i.e. ,

N-Noxim [16] and CNN-Noxim [17] ) can be used to execute DNN

omputing on the NoC platform, they generate a very large NoC

ize to simulate a large-scale DNN model, which is not practically

easible. Moreover, some operations in recent DNN models, such

s convolution and pooling, cannot be efficiently computed. To ad-

ress these issues, in this work, we propose a cycle-accurate high-

evel NoC-based DNN simulator, called DNNoC-Sim, which is an ex-

ension of Noxim [22] . DNNoC-Sim supports 

1. DNN Flattening : To increase the computing flexibility of the

NoC platform, various DNN operations in the convolution, pool-

ing, and fully-connected layers are converted into MAC-like op-

erations. After this process, the DNN model is flattened into the

Flattened DNN model. 

2. Neuron Clustering : To facilitate the neuron mapping on the

NoC platform and to reduce the NoC traffic, the neurons in Flat-

tened DNN are clustered where each cluster is called big neuron .
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Fig. 3. The transaction-level model (TLM) overview of Noxim. 

Fig. 4. Flattening the DNN model into Flattened DNN ; the interconnection of (a) the convolution layer and (b) the pooling layer are converted into a partially-connected 

layer; (c) the interconnection structure of a fully-connected layer is maintained. 
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After this process, the Flattened DNN will be changed to Clus-

tered DNN . 

3. Dynamic DNN Slicing and Mapping : To map a large-scale DNN

to a small-sized NoC platform, the Clustered DNN is dynamically

divided into several slices, and then each slice is mapped to the

NoC platform within one mapping iteration. 

4. Generic Neuron Computing and PE Micro-Architecture : To

compute different types of DNN operations in a shared-resource

NoC platform, each PE supports generic neuron computing. The

computing flow and the control mechanism of a generic PE are

presented. 

In this section, we introduce the aforementioned novel NoC-

ased DNN evaluation flow with a realization of the proposed

NNoC-Sim tool. 

.2.1. DNN flattening process 

As shown in Fig. 4 , the original DNN is usually composed of

everal convolution layers, pooling layers and fully-connected lay-

rs. In the convolution layer, a pre-defined kernel is convoluted

ith the input to extract some features from the input. The ker-
el size depends on the image size as well as the user experience.

he pooling layer usually accepts the output of the convolution

ayer and is used to reduce the data dimensionality ( i.e. , downsize

 group of data to a single data). The maximum and average pool-

ng are the most popular pooling methods employed in the con-

entional DNN models [26] . Finally, in the fully-connected layer, a

euron in one layer is connected to all neurons in the next layer.

he fully-connected layer is used to classify its inputs based on the

xtracted features from the upstream convolution and pooling lay-

rs. 

Conventional DNN models involve various computing types,

uch as convolution, pooling, and MAC. To facilitate the execution

f different DNN models on the same homogeneous NoC platform,

t is necessary to unify the computing types. For this purpose, we

nvestigate the computing behavior of these operations. First, we

ormulate the two-dimensional convolution operation by: 

 c(i, j) = 

n ∑ 

k =1 

n ∑ 

l=1 

(
K (m,l) × I (i + k −1 , j+ l−1) 

)
, (1) 
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Fig. 5. The flowchart of the DNN flattening process. 
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where K represents the pre-defined kernel; n represents the tar-

get kernel size; and I and O represent the input and output of the

convolution layer, respectively. If the convolution is three dimen-

sional, the kernel remains the same while the inputs come from

other dimensions, such as the R, G, B dimensions in the applica-

tion of image recognition. As a general rule, the input should be

extended into additional dimensions, and the same operation in

Equation (1) should be expanded with identical K . 

As illustrated in Fig. 4 (a), the two dimensional MAC operation

in Equation (1) can be flattened into multiple one dimensional

MAC operations. This forms the basic operation of each neuron

that can be expressed by: 

O c1 = K 1 × I 1 + K 2 × I 2 + K 3 × I 6 + K 4 × I 7 , 
O c2 = K 1 × I 2 + K 2 × I 3 + K 3 × I 7 + K 4 × I 8 , 
O c3 = K 1 × I 3 + K 2 × I 4 + K 3 × I 8 + K 4 × I 9 , 
O c4 = K 1 × I 4 + K 2 × I 5 + K 3 × I 9 + K 4 × I 10 , 

O c5 = K 1 × I 6 + K 2 × I 7 + K 3 × I 11 + K 4 × I 12 , 

O c6 = K 1 × I 7 + K 2 × I 8 + K 3 × I 12 + K 4 × I 13 , 

O c7 = K 1 × I 8 + K 2 × I 9 + K 3 × I 13 + K 4 × I 14 , 

O c8 = K 1 × I 9 + K 2 × I 10 + K 3 × I 14 + K 4 × I 15 , 

O c9 = K 1 × I 11 + K 2 × I 12 + K 3 × I 16 + K 4 × I 17 , 

O c10 = K 1 × I 12 + K 2 × I 13 + K 3 × I 17 + K 4 × I 18 , 

O c11 = K 1 × I 13 + K 2 × I 14 + K 3 × I 18 + K 4 × I 19 , 

O c12 = K 1 × I 14 + K 2 × I 15 + K 3 × I 19 + K 4 × I 20 , 

O c13 = K 1 × I 16 + K 2 × I 17 + K 3 × I 21 + K 4 × I 22 , 

O c14 = K 1 × I 17 + K 2 × I 18 + K 3 × I 22 + K 4 × I 23 , 

O c15 = K 1 × I 18 + K 2 × I 19 + K 3 × I 23 + K 4 × I 24 , 

O c16 = K 1 × I 19 + K 2 × I 20 + K 3 × I 24 + K 4 × I 25 . 

(2)

Thereby, to compute the outputs of the convolution layer, 16 neu-

rons ( i.e. , 64 MAC operations in this example) should be calculated

using the same weights ( W 1 , W 2 , W 3 , and W 4 ). This operation par-

tially connects the I layer to the O c layer, shown in Fig. 4 (a)). 

For the pooling layer, we utilize the maximum pooling opera-

tion as an efficient way to capture the most important features in

the sub-sampling operations [27] . The behavior of the maximum

pooling operation is to divide the input map into several sub-maps

and then capture the maximum of each sub-map as the output.

Based on the definition of the maximum pooling, the outputs O p 1 ,

O p 2 , O p 3 , and O p 4 can be computed by: 

O p1 = Max (F 1 , F 2 , F 5 , F 6 ) , 
O p2 = Max (F 3 , F 4 , F 7 , F 8 ) , 
O p3 = Max (F 9 , F 10 , F 13 , F 14 ) , 
O p4 = Max (F 11 , F 12 , F 15 , F 16 ) , 

(3)

Fig. 4 (b) demonstrates the maximum pooling operation. To unify

different DNN com putations, we need to convert the operations in

Eq. (3) to the MAC-like operations. Each pooling layer output can

also be represented by: 

O p(r,s ) = P m 

k =1 P 
m 

l=1 

(
W × I (r+ k −1 ,s + l−1) 

)
, (4)

where I and O p represent the input and output of the pooling

layer; m represents the pooling size; W is equal to 1; and P N 
j=1 

I j 
is defined as: 

P N j=1 I j = argmax (I j ) . (5)

In this way, the pooling operation can also be expressed with MAC-

like operations. By flattening Eq. (4) , we reach to 4 neurons to ob-

tain the whole pooling results. As shown in Fig. 4 (b), similar to the

convolution layer, the F layer and the O p layer are partially con-

nected. 

In the fully-connected layer, each neuron in one layer is fully-

connected to all neurons in the next layer. Each partial output can

be calculated by the matrix multiplication. For example, as shown
n Fig. 4 (c), the final output of O 1 and O 2 can be presented as: 

O 1 

O 2 

]
= 

[
W 1 W 2 W 3 

W 4 W 5 W 6 

]
×

[ 

O f 1 

O f 2 

O f 3 

] 

. (6)

esides, the general representation of the operation in the fully-

onnected layer can be expressed by: 

 v = 

n ×v ∑ 

k =1 

W k × O f (k %(n +1)+(v −1)) . (7)

here n is the number of neurons in a layer, and i is the number

f outputs after neuron computation in this layer. 

The DNN expansion has been described by a flowchart in Fig. 5 .

he computations in the fully-connected layer are naturally de-

cribed by MAC-type operations. As was also explained, the com-

utations in the convolution and pooling layers should be con-

erted to MAC-like operations, given in Eqs. (1) and (4) , respec-

ively. In this way, different layers in the DNN model can be con-

erted to a fully-connected or partially-connected neural network,

hat is called Flattened DNN in this paper. As it will be explained in

ection 3.2.4 , the reason for converting the operations to MAC-like

peration is to share resources in hardware. 

.2.2. Clustering strategy 

After a PE completes its execution, the results are packaged and

elivered to the next PE. As a DNN network involves thousands to

illions of neuron computations, heavy traffic load will be gen-

rated if one packet is delivered per single neuron computation.

herefore, to reduce the network traffic load and to improve com-

utational efficiency, the computation of multiple neurons can be

ssigned to one PE [9,14,15] . For this purpose, the neurons in the

lattened DNN model are divided into several groups where each

roup is called big neuron . The maximum number of neurons in a

roup ( i.e. , the big neuron size) depends on the computing capacity

f a PE. The DNN model after this grouping is called Clustered DNN .

The clustering strategy directly affects the communication load

n the NoC platform. For example, the Flattened DNN model in

ig. 6 (a) contains 4 layers and 13 neurons. By using the specific
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Fig. 6. The (a) original Flattened DNN and the Clustered DNN by using (b) proposed clustering algorithm. 
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Fig. 7. The flowchart of the proposed Dynamic DNN Slicing method. 
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lustering strategy, the neurons in different layer will be divided

nto different groups based on the group-size constraint ( i.e. , the

umber of neurons in a clustering neuron group,) as shown in

ig. 6 (b). Each big neuron is then mapped to one PE where the

ocation of a PE on the NoC platform depends on the underlying

apping strategy. The computing results of a PE should be deliv-

red to other PEs in which the big neuron has connectivity with. In

his way, the output of a big neuron becomes the input of several

ther big neurons in the next layer, which simplifies the comput-

ng flow. For example, In Fig. 6 (b), the result of G1 should be sent

o the corresponding PEs in G2 and G3. 

To select a proper clustering strategy, we analyze the character-

stics of the common neural network computing flow. Because of

he feed-forward computing flow in the common neural network

peration, the input of each neuron layer usually reuses the out-

ut results ( i.e. , partial sum) from the previous neuron layer. There-

ore, it has been proven that the output reuse computing strategy

enefit to the neural network computation [28] . By following this

omputing behavior, the inter-layer clustering strategy is adopted

n this work to leverage the output reuse computing strategy. In

his way, the feed-forward computing flow of the DNN model can

e reserved, which mitigates the traffic load on the NoC platform. 

.2.3. Dynamic DNN slicing and mapping 

After clustering the Flattened DNN , each big neuron of the Clus-

ered DNN should be mapped to the target NoC platform. In re-

ent years, many kinds of large-scale DNN models, such as VGG-

6 or AlexNet, are proposed to solve more complex problems and

chieve higher accuracy. To map the whole large-scale DNN model

o the NoC platform, either the NoC size should be enlarged or

he PE computing capacity should be increased. By enlarging the

oC size, more big neurons can be mapped to the platform. On

he other hand, by increasing the PE computing capacity, each PE

an handle larger big neuron sizes. Both solutions are not practi-

ally feasible when dealing with large-scale DNN models. Thereby,

 design challenge is to map a large-scale DNN model to the size-

imited NoC platform. 

To address the mentioned problem, we propose a DNN slic-

ng method. The minimum requirement of the proposed method is

hat the largest layer of the Clustered DNN ( i.e. , the layer that con-

ains the largest number of big neurons ) should fit the NoC plat-

orm at once. In this way, we can guarantee that at least one layer
an be mapped to the NoC platform at a time. Fig. 7 shows the

imulation flow of the proposed dynamic DNN slicing and mapping

ethod. As shown in the flowchart, the proposed slicing method is

erformed layer-by-layer and time-by-time to ensure that at least

ne layer is fully mapped to the NoC platform at a time. 

Fig. 8 illustrates an example to map the big neurons of the Clus-

ered DNN to a 2 × 2 mesh-based NoC platform. In this example,

e apply the aforementioned clustering strategy to group the neu-

ons in the Flattened DNN and generate its corresponding Clustered

NN , as shown in Fig. 6 (b). Besides, the group size is three, which

s aligned with the computing capability of the involved PE ( i.e. ,

 PE can support at most three neuron operations). By following

he rules of the proposed method, we first slice the Clustered DNN

ayer-wisely, as shown in Fig. 8 (a). The slicing decision is made

onsidering the total computing resources on the NoC platform. Af-

er slicing the Clustered DNN , we map each slice to the NoC plat-

orm. As shown in Fig. 8 (b), at the first mapping iteration, Slice-1

 i.e. , the big neurons in the first two layers containing G1, G2, and

3) is mapped to the NoC platform. The PE4 is idle because its

omputing resources are not enough to support all computations

n layer 3. After completing the computations in Slice-1, temporary

esults will be stored in the off-chip memory. At Time-2 ( i.e. , the
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Fig. 8. (a) The Clustered DNN is sliced into four slices, and (b) map each slice to the small-sized NoC within two mapping iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The computing flow of the PE computing model in the proposed DNNoC- 

Sim. 
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second mapping iteration), the big neurons in layer 3 and 4 ( i.e. ,

G4, G5, and G6) are mapped to the platform. G4 and G5 require

the temporary results of G2 and G3, and these results can be read

from the off-chip memory. By this approach, a large-scale DNN can

be mapped to a small-sized NoC platform. 

Along with the dynamic DNN slicing method at runtime, a

mapping algorithm should be applied to map each big neuron to a

PE of the NoC platform. The simplest mapping way is to map each

big neuron to the NoC platform along with the dimension order,

as shown the mapping results in Fig. 8 (b). Although this kinds of

dimension-order mapping algorithms are easy to realize, the NoC

platform may suffer from severe traffic congestion as the adjacent

big neurons are mapped too densely [16] . To alleviate this problem

and to keep simplicity, in this work, we apply the NN-aware map-

ping algorithm [9] where the traffic condition of the NoC-based

DNN design can be guarantee along with a proper routing algo-

rithm. Because of the similarity between the mesh and torus topol-

ogy, all the mapping algorithms for the mesh-based NoC platform

can also be applied to the torus-based NoC platform. 

3.2.4. Generic PE computing flow and control mechanism 

In the proposed DNNoC-Sim, a PE should be able to perform

different types of computations in convolution, pooling, and fully-

connected layers. Thereby, the PE computing flow should be de-

signed in such a way that to support different computations and

to control them at runtime. Fig. 9 shows the computing flow of

a PE receiving all the necessary data from the big neurons in the

previous layer. If the big neuron size is N , all active PEs perform N

neuron computations in parallel ( i.e. , all PEs follow the same com-

puting flow). After processing the data, PEs package the data and

deliver it to the next destination for further computing or produc-

ing the final output. Note that the destination assignment depends

on the underlying mapping algorithm. 

As mentioned before, each neuron computation requires spe-

cific weights. For example, the weights are equal to one when per-

forming the pooling operation. The weights for the convolution op-

eration depend on the adopted kernel. Finally, the weights for the

fully-connected layer are obtained through the DNN training pro-

cess. As shown in Fig. 10 (a), we employ the SystemC model to dis-

tinguish different neuron computations and to control the behavior

of the PE operation. The weight memory in Fig. 10 is used to store

all the involved weights in the current computing iteration of this

PE. In case of the DNN mapping with several iterations, the weight

memory should be updated after each mapping iteration, and the
roposed DNNoC-Sim also simulates the behavior of the weight

emory updating in abstract level. On the other hand, to support

ifferent com puting flow, the PE is controlled by a FSM control

ow, as shown in Fig. 11 . The the output control signal from the

SM will further control the involved multiplexers in Fig. 10 . Obvi-

usly, the FSM control flow is determined by the Op and DataTail

nput signals, and the corresponding output control signal is shown

n TABLE 1 . Op indicates the current neuron operation ( i.e. , convo-

ution (Conv.), pooling (Pool), or fully-connected (FC) operations).

n the other hand, the DataTail is triggered to one when all input

ata has been received ( i.e. , all the necessary partial results from

he big neurons in the previous layer). When DataTail is set to one,

he result of the last MAC operation becomes the output of this

E. After applying the activation function, the output becomes the

nput of the next PE. 
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Fig. 10. (a) The PE model and its control signals; (b) data path of the convolution and fully-connected layers; (c) data path of the pooling layer. 

Fig. 11. The finite state machine of the PE computing model in the proposed 

DNNoC-Sim. 

Table 1 

The control signal assignment for the PE computing. 

DataTail = 0 DataTail = 1 

OP = Conv. Pool FC Conv. Pool FC 

WeightEnable 1 0 1 x x x 

WeightMode CONV x FC x x x 

ALUop ADD SUB ADD x x x 

OutputSrc 1 0 1 x x x 

OutputWrite 0 0 0 1 1 1 
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The ALUop signal is used to select between the add or subtrac-

ion operation. Since the operations in the convolution and fully-

onnected layers are MAC-type operations, the addition will be se-

ected by the ALUop signal. On the other hand, in the pooling op-

ration, the input data should be compared with each other to
nd the maximum value. The comparison operation can be imple-

ented using substation ( i.e. , inverse and add operation). There-

ore, in the pooling operation, ALUop is adjusted to select the sub-

raction operation. The WeightEnable and Weightmode signals select

hether the weight should be 1 or read from weight memory. As

as already discussed, weights are set to 1 in the pooling opera-

ion while for the operations in the convolution or fully-connected

ayers, the weights are fetched from weight memory. PE can pro-

uce accumulation and subtraction results. The OutputSrc signal is

sed to select which of them should be written into the output

emory. Finally, the OutputWrite signal is used to latch the com-

uting results until the final result is obtained. 

Fig. 10 (b) and (c) illustrate two examples to demonstrate the

ata paths using the control signals in TABLE 1 . As shown in

ig. 10 (b), if Op is Conv. or FC , the MAC operations in the convolu-

ion or fully-connected layer will be performed. First, the Weight-

ode signal is adjusted to select the corresponding weight in the

eight memory. Afterward, the MAC operation is performed by

etting the WeightEnable to 1 and ALUop to ADD. As long as the

E receives the input data, the result of the MAC operation will

e latched in the output memory and reused as one of the in-

uts of the next MAC operation ( i.e., OutputSrc is set to 1 and Out-

utWrite is set to 0). As shown in Fig. 10 (c), if the Op is set to Pool,

he operation in the pooling layer will be performed ( i.e. , maxi-

al data determination). In this case, WeightEnable will be set to

, and WeightMode becomes a donât-care signal. Since the compar-

son operation can be implemented using subtraction, the ALUOp

ill be set to SUB, and the temporary result is selected by setting

he OutputSrc to 0. Finally, the OutputWrite will be set to 1 as long

s the DataTail becomes 1 ( i.e. , the current input data is the tail of

he series input data). 

In addition to a reliable flow control, the parameters required

or operation also need to be ensured. In other words, the size of

he memory that implemented in the PE must be able to accom-

odate at least larger than the group size. Besides, the accuracy

f the application is also one of the factors that affect the mem-

ry size. The designer should give the proper memory resources

ased on the computing requirement after evaluation with the

roposed simulator. Follow the FSM in Fig. 11 , memory will reload

he weight data after all output been transmitted. It is worth

entioning that all PEs in the NoC operate independently, which

eans that the weight update time of each PE is not synchronized.

taggering time of on-off-chip memory transmission and minimiz-

ng the use of transmission bandwidth is another benefit of NoC

ystems. 

. Evaluation results and analysis 

.1. Simulation setup 

To validate the proposed DNNoC-Sim, we simulate small,

edium, and large-scale DNN models, which are LeNet [29] , Mo-
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Table 2 

Comparison between conventional and NoC-based designs regard- 

ing the number of off-chip memory accesses. 

Conventional [10] NoC-based Design 

LeNet [29] 884,736 47,938 (-94.6%) 

MobileNet [30] 1,061,047,296 4,360,616 (-99.6%) 

VGG-16 [31] 1,165,128,192 138,508,072 (-88.1%) 
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bileNet [30] , and VGG-16 [31] , respectively. Besides, the NN-aware

mapping algorithm is employed in this work to map the target

DNN models to the NoC platform because it has been proven as

an efficient mapping algorithm to achieve near-optimal solution

[9] . In addition to the mapping algorithm, the involved routing

algorithm and the network topology may affect the NoC system

performance significantly. To investigate the effect bringing from

the employed routing algorithm and network topology, we select

XY routing algorithm and west-first adaptive routing algorithm in

the experiments under two different network topologies ( i.e. , mesh

and torus.) To ensure the correctness of the proposed DNNoC-Sim,

we validate the results of classification precision from DNNoC-Sim

with the one of the Keras framework [18] under 32-bit, 16-bit, and

8-bit width data. Therefore, the correctness of the proposed simu-

lator can be ensured. 

After validating the DNNoC-Sim, we have evaluated the NoC-

based DNN platform. In the following evaluations, we have first

reported the number of off-chip memory accesses in the conven-

tional DNN design and the NoC-based DNN design. Afterward, we

have analyzed the performance of the NoC-based DNN design un-

der different design parameters. Considering the conventional DNN

design, we have selected UNPU [10] as the baseline of this work.

Compared with Eyeriss [28] , UNPU can support various computa-

tions in the common DNN networks due to the flexible computing

flow. For the fair comparison, in DNNoC-Sim, each PE runs at 86.4

GPOS peak performance under 200MHz,( i.e. , similar to the UNPU

design.) Besides, the frequency of the router in DNNoC-Sim is 1GHz

( i.e. , similar to the settings in Noxim [22] .) 

4.2. Analysis of memory accesses 

In conventional DNN accelerator, the system performance is

dominated by the massive off-chip memory accesses [12] . Be-

cause the total off-chip memory latency depends on the number

of memory accesses, in this section, we first compare the num-

ber of memory accesses in the conventional ASIC-based DNN de-

sign with the NoC-based designs. We consider two different NoC-

based DNN design implementations: with and without dynamic

DNN slicing. The former assumes that all parameters of the DNN

model can fit the NoC platform at once ( i.e. , the off-chip memory

is accessed only at the beginning of the simulation). This assump-

tion is aligned with some other NoC-based architectures, such as

Intelâs Skylake [32] where the local memory size in each PE is en-

larged, and the global memory size is decreased. However, this as-

sumption may not seem realistic as in the large DNN networks,

millions of parameters should fit the local on-chip memory blocks.

Hence, in the latter case, dynamic DNN slicing is applied where

part of the DNN model is mapped to the NoC platform at a time.

It should be noted that in all designs, we have assumed that the

memory bandwidth is enough to access one data within one cycle

for the high-level analysis. For different memory bandwidths, the

memory access latency can be changed proportionally. 

Table 2 shows the number of off-chip memory accesses in the

conventional DNN accelerator and the NoC-based design without

DNN slicing. The number of local memory accesses is not counted

in the table as the latency of on-chip memory access is much

lower than an off-chip memory access. Besides, the number of on-
hip memory access by using the two kinds of design paradigms

re identical. The reason is that the involved PE model in the pro-

osed simulation tool is the same as the UNPU PE model. There-

ore, the computing behavior is the same as the UNPU PE as well.

he NoC-based DNN design read from off-chip memory only at

he beginning of the DNN computation to load all parameters of

he DNN model. Then, all partial results are propagated by packets

etween PEs, and no more off-chip memory access is needed. In

he conventional DNN design, however, regular accesses to the off-

hip memory are needed to read and write partial results during

NN computation. The table shows that the new NoC-based design

aradigm can reduce off-chip memory accesses by 88.1% to 99.6%

nder different DNN models. 

As mentioned before, in practice, we cannot map a large-scale

NN model to a small-sized NoC platform. To address this issue,

e proposed a dynamic DNN slicing method where the number

f mapping iterations depends on the big neuron size as well as

he NoC size. In each mapping iteration, one or more layers are

apped to the NoC platform at a time. Partial results are stored in

he off-chip memory and reloaded to the NoC platform in the next

apping iteration. 

Fig. 12 (a), (b), and (c) show the number of off-chip mem-

ry accesses in the LeNet, MobileNet, and VGG-16 model, respec-

ively. Each network is evaluated under five different NoC sizes ( i.e. ,

 × 4, 6 × 6, 8 × 8, 10 × 10, and 12 × 12) and three big neu-

on sizes. In parallel with each configuration, we also report the

ecessary number of DNN slicing ( i.e. , mapping iteration.) Now,

et us consider the LeNet model in Fig. 12 (a) where the network

ize is 4 × 4 and the maximum computational capacity of a PE is

46 neuron computations. As shown in this figure, the number of

emory accesses increases when the computation capacity of a PE

educes ( i.e. , each PE handles a lower number of neurons). This is

ue to the fact that with lowering the PE computation capacity, a

arge-scale DNN model may not be mapped to the NoC platform at

nce. Thereby, the DNN model should be sliced and mapped to the

latform, which demands to access the off-chip memory for read-

ng/writing the partial results. As shown in Fig. 12 (a), two mapping

terations are needed when the network size is 4 × 4, and the big

euron sizes are 384 or 216. In other cases, the whole DNN net-

ork can be mapped at once. 

Similarly, in the VGG-16 model, it is impossible to map the

hole model to a 4 × 4 NoC platform when the group size is

00,704. In this case, six mapping iterations are needed to execute

he whole VGG-16 model, which leads to a large number of off-

hip memory accesses ( i.e. , 156,370,728). However, the number of

ff-chip memory accesses are still much lower than 1,165,128,192

ccesses in the conventional DNN design. The number of mapping

terations can be reduced by employing larger group sizes ( i.e. , in-

reasing the computational capacity of the PEs) or larger NoC size.

n the best case, the whole DNN model can fit the platform at

nce and thereby, the minimum number of off-chip memory ac-

esses is obtained ( i.e. , Table 2 ). The larger size of cluster or NoC

ize results in higher hardware cost, so it is a design trade-off in

he NoC-based DNN accelerator design. 

.3. Performance analysis under different design parameters 

In this section, we evaluate the performance of the NoC-based

NN accelerator under different design parameters such as NoC

ize, NoC topology, routing algorithm and group size. We analyze

he PE computational latency, the NoC data delivery latency, and

he overall latency ( i.e. , the sum of both). Because all PEs work in

arallel, the PE computational latency dominates by the PE, which

pends the longest time to compute. Hence, the total PE comput-

ng latency is calculated by summing up the longest PE computa-

ion time in each mapping iteration. On the other hand, the NoC
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Fig. 12. The off-chip memory accesses and the corresponding number of mapping iterations under (a) LeNet (b) MobileNet, and (c) VGG-16 models. 
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A  
ata delivery latency reflects the data transmission time on the

oC platform. Note that, the delay of off-chip memory accesses is

ot considered in this set of analyses. For the evaluations, we con-

ider three DNN models, five different NoC sizes, and three various

euron group sizes. The evaluation is performed on two different

oC topologies: mesh ( Fig. 13 ) and torus ( Fig. 14 ). 

We evaluated various NoC sizes from 2 × 2 to 12 × 12 and re-

orted the results for five different sizes, as shown in Fig. 13 and

ig. 14 . Although the neural network scale seems different in

eNet, MobileNet, and VGG-16, they follow the same setting in the

xperiments of ( Fig. 13 and Fig. 14 . The first group size setting

s chosen based on the assumption that the largest layer of the

lattened DNN can be mapped to the 2 × 2 NoC size within one

apping iteration. Similarly, the second and third group size set-

ings are selected by the assumption that the largest layer can be

apped to the 3 × 3 and 4 × 4 NoC size, respectively. We then

dopted these group size settings for larger NoC sizes. For exam-

le, in the LetNet model, the largest neuron layer can be mapped

o the 2 × 2 NoC in one mapping iteration when a group con-

ains 846 neurons (or less). It may take several mapping iterations

o compute the whole DNN model. On the other hand, the largest
euron layer can be mapped to the 3 × 3 and 4 × 4 NoC when

he group size is 384 and 216, respectively. Let us first analyze the

erformance of the mesh-based platform. The first observation is

hat the PE computational latency increases as the neuron group

nlarges. This is because of the heavier PE computational load. In

urn, as was discussed, a larger neuron group size leads to a lower

umber of off-chip memory accesses due to lower mapping itera-

ions, as shown in Fig. 12 . 

The NoC data delivery is another important metric to evalu-

te the performance of the NoC-based DNN accelerator. A smaller

euron group size means a lower PE computation load and a

horter packet length. Furthermore, since the whole DNN model

ay not fit the NoC platform at once, several mapping iterations

hould take place. Each mapping iteration means offloading the

raffic from NoC and transferring data through access to the off-

hip memory. By this assumption, the traffic load on the NoC is

ow, and the latency is mostly dominated by the packet length.

herefore, the NoC data delivery latency is generally shorter when

mploying smaller group sizes. In contrary, the NoC data delivery

atency becomes longer concerning the larger neuron group sizes.

ccording to the performance analysis with different routing algo-
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Fig. 13. The performance evaluation of three DNN models under different Mesh-based NoC and neuron group sizes. 

Fig. 14. The performance evaluation of three DNN models under different Torus-based NoC and neuron group sizes. 
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rithms, the adaptive routing algorithm does not improve the per-

formance significantly. The reason is that the DNN operation is a

kind of feed-forwarding layer-wise operation ( i.e. , the neuron oper-

ations are performed layer-by-layer.) Therefore, the traffic load on

the NoC platform is usually lite, which reduces the benefit bringing

from the adaptive routing. It can also be observed that the over-

all latency is dominated by the NoC communication latency. Re-

sults show that the performance under the torus topology is sim-

ilar to that of the mesh-based platform. This is because the larger

path diversity in the torus topology is diminished by employing

XY-routing and westfirst routing with OBL. In a short summary,

the design parameters of neuron group size and the NoC scale are

more important than the one of routing algorithm selection for the

NoC-based DNN computing efficiency. 
.4. Analysis of design trade-offs between design parameters 

According to Fig. 12, Fig. 13 , and Fig. 14 , we observe that the

arger neuron group size and larger NoC size lead to lower off-

hip memory accesses but longer NoC data delivery latency and PE

omputational latency. In the contrary, although the smaller group

ize and smaller NoC size lead to lower NoC data delivery latency,

ff-chip memory accesses are increased due to more remapping it-

rations. Thereby we investigate a trade-off between different de-

ign parameters to reach a high-performance NoC-based DNN ac-

elerator. 

As mentioned before, the bandwidth limitation between the

ff-chip memory and processing elements affects the overall per-

ormance. To simplify the problem, we assume that the 64-bit
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Fig. 15. The design trade-off between group size and Mesh NoC size under(a) LeNet (b) MobileNet, and (c) VGG-16 models. 

Fig. 16. The design trade-off between group size and Torus NoC size under(a) LeNet (b) MobileNet, and (c) VGG-16 models. 
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andwidth that max-transmission rate is 6.4 GiB per cycle as

10] (DDR3 SDRAM memory). Fig. 15 and Fig. 16 show the design

rade-off between different design parameters. Please note that in

his set of analyses, the total latency is the sum of the PEs com-

uting latency, NoC data delivery latency, and the data transfer la-

ency to/from the off-chip memory. As illustrated in this figure, the

oC data delivery latency and the off-chip memory access latency

ominate the total latency of the NoC-based DNN design. As an ex-

mple, let us look at MobileNet execution on the mesh-based plat-

orm. The lowest total latency is obtained under the NoC size of

 × 8 and the neuron group size of 50k. Furthermore, we can find

hat better performance can be achieved under small group size as

ell as small or medium NoC size to map the medium or large-

cale DNN models ( e.g. , MobileNet or VGG-16). The reason is that

he large NoC size or large group size may lead to longer NoC data

elivery latency. On the other hand, if the target DNN model is

mall (such as LeNet), it is cost-efficient to employ larger NoC size

r larger group size to map whole DNN model to the NoC platform.

n summary, it is not that the larger the PE number or the memory

esources, the better the performance will be.For NoC-based DNN

ccelerator, each application scale has its best hardware configu-

ation. Designers must evaluate carefully before they can create a

ighly efficient and cost-effective NoC-based hardware AI design,

hich is also our biggest intention to the proposed simulator. 
. Conclusion 

The NoC-based DNN design paradigm can mitigate the DNN

ccelerator design complexity significantly. In this paper, we ex-

lained a complete evaluation flow to execute a DNN model on

he cycle-accurate NoC-based simulation platform, called DNNoC-

im. We first propose a DNN flattening method to convert var-

ous DNN operations into MAC-based operations. The flatten-

ng method improves the computing flexibility and enable map-

ing of various DNN models to the NoC platform. Furthermore,

e proposed a dynamic DNN slicing and mapping algorithm to

ap a large-scale DNN model to a small-sized NoC platform.

ith the proposed simulation platform simulator, we compare

he number of off-chip memory accesses between the conven-

ional DNN accelerator and the NoC-based DNN accelerator. Af-

erward, we investigated the performance of the NoC-based DNN

ccelerator under different design parameters. The experiments

howed that the NoC-based DNN accelerator could reduce 87%

o 99% off-chip memory accesses compared with the conven-

ional DNN design. It was also proven that the size of neuron

roup size and the NoC size are two critical design parameters

o keep the system performance high in the NoC-based DNN

ccelerators. 



14 K.-C. (Jimmy) Chen, M. Ebrahimi and T.-Y. Wang et al. / Microprocessors and Microsystems 77 (2020) 103145 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

 

 

 

[  

 

[  

 

 

 

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D  

v  

D  

t  

s  

m  

(  

A  

B  

t  

A  

2  

2  

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Declaration of Competing Interest 

The authors declare that they do not have any financial or non-

financial conflict of interests. 

Acknowledgment 

This work was supported by the Ministry of Science and Tech-

nology under the grant MOST 108-2218-E-110-010 , TAIWAN; the

STINT and VR projects, SWEDEN. 

References 

[1] V. Sze, Y. Chen, T. Yang, J.S. Emer, Efficient processing of deep neural networks:

a tutorial and survey, Proc. IEEE 105 (12) (2017) 2295–2329, doi: 10.1109/JPROC.
2017.2761740 . 

[2] B. Wolford , T. Speier , D. Bhandarkar , Qualcomm centriq 2400 processor, Hot

Chips: A Symposium on High Performance Chips, HC29, 2017 . 
[3] J. Jeffers , J. Reinders , A. Sodani , Intel xeon phi processor high performance pro-

gramming, 1st, Morgan Kaufmann, Cambridge, MA, USA, 2016 . 
[4] Q. Wang , N. Li , L. Shen , Z. Wang , A statistic approach for power analysis of

integrated gpu, Soft Comput. 23 (3) (2019) 827–836 . 
[5] F. Abuzaid, S. Hadjis, C. Zhang, C. Ré, Caffe con troll: shallow ideas to speed up

deep learning, CoRR (2015). abs/ 1504.04343 . 

[6] X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, X. Ji, High-performance fpga-based cnn
accelerator with block-floating-point arithmetic, IEEE Trans. Very Large Scale

Integr. VLSI Syst. (2019) 1–12, doi: 10.1109/TVLSI.2019.2913958 . 
[7] J. Kim , D. Park , C. Nicopoulos , N. Vijaykrishnan , C.R. Das , Design and analysis of

an noc architecture from performance, reliability and energy perspective, in:
2005 Symposium on Architectures for Networking and Communications Sys-

tems (ANCS), 2005, pp. 173–182 . 
[8] Y. Chen, T. Yang, J. Emer, V. Sze, Eyeriss v2: a flexible accelerator for emerging

deep neural networks on mobile devices, IEEE J. Emerging Sel. Top. Circuits

Syst. 9 (2) (2019) 292–308, doi: 10.1109/JETCAS.2019.2910232 . 
[9] X. Liu, W. Wen, X. Qian, H. Li, Y. Chen, Neu-noc: A high-efficient intercon-

nection network for accelerated neuromorphic systems, in: 2018 23rd Asia
and South Pacific Design Automation Conference (ASP-DAC), 2018, pp. 141–146,

doi: 10.1109/ASPDAC.2018.8297296 . 
[10] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, H. Yoo, Unpu: an energy-efficient deep

neural network accelerator with fully variable weight bit precision, IEEE J.

Solid-State Circuits 54 (1) (2019) 173–185, doi: 10.1109/JSSC.2018.2865489 . 
[11] R. Hojabr, M. Modarressi, M. Daneshtalab, A . Yasoubi, A . Khonsari, Customizing

clos network-on-chip for neural networks, IEEE Trans. Comput. 66 (11) (2017)
1865–1877, doi: 10.1109/TC.2017.2715158 . 

[12] H. Kwon, A. Samajdar, T. Krishna, Rethinking nocs for spatial neural network
accelerators, in: Proceedings of the Eleventh IEEE/ACM International Sympo-

sium on Networks-on-Chip, in: NOCS ’17, ACM, New York, NY, USA, 2017,

pp. 19:1–19:8, doi: 10.1145/3130218.3130230 . 
[13] A. Firuzan, M. Modarressi, M. Daneshtalab, M. Reshadi, Reconfigurable

network-on-chip for 3d neural network accelerators, in: 2018 Twelfth
IEEE/ACM International Symposium on Networks-on-Chip (NOCS), 2018, pp. 1–

8, doi: 10.1109/NOCS.2018.8512170 . 
[14] P.C. Holanda, C.R.W. Reinbrecht, G. Bontorin, V.V. Bandeira, R.A.L. Reis, Dhyana:

a noc-based neural network hardware architecture, in: 2016 IEEE International

Conference on Electronics, Circuits and Systems (ICECS), 2016, pp. 177–180,
doi: 10.1109/ICECS.2016.7841161 . 

[15] J. Liu, J. Harkin, L.P. Maguire, L.J. McDaid, J.J. Wade, G. Martin, Scalable
networks-on-chip interconnected architecture for astrocyte-neuron networks,

IEEE Trans. Circuits Syst. I Regul. Pap. 63 (12) (2016) 2290–2303, doi: 10.1109/
TCSI.2016.2615051 . 

[16] K.J. Chen, T. Wang, Nn-noxim: High-level cycle-accurate noc-based neural net-

works simulator, in: 2018 11th International Workshop on Network on Chip
Architectures (NoCArc), 2018, pp. 1–5, doi: 10.1109/NOCARC.2018.8541173 . 

[17] K.-C.J. Chen, T.-Y.G. Wang, Y.-C.A. Yang, Cycle-accurate noc-based convolutional
neural network simulator, in: Proceedings of the International Conference on

Omni-Layer Intelligent Systems, in: COINS ’19, ACM, New York, NY, USA, 2019,
pp. 199–204, doi: 10.1145/3312614.3312655 . 

[18] N. Ketkar , Introduction to Keras, in: Deep Learning with Python, Springer, 2017,

pp. 97–111 . 
[19] D. Smilkov, S. Carter, D. Sculley, F.B. Viégas, M. Wattenberg, Direct-

manipulation visualization of deep networks, CoRR (2017). abs/ 1708.03788 . 
[20] A.K. Jain , J. Mao , K. Mohiuddin , Artificial neural networks: a tutorial, Computer

(Long Beach Calif) (3) (1996) 31–44 . 
[21] W. Nan-lan , P. Xiang-gao , Application of matlab/nntool in neural network sys-

tem, Comput. Modern. 12 (2012) 125–128 . 
[22] V. Catania, A. Mineo, S. Monteleone, M. Palesi, D. Patti, Cycle-accurate net-

work on chip simulation with noxim, ACM Trans. Model. Comput. Simul. 27

(1) (2016) 4:1–4:25, doi: 10.1145/2953878 . 
[23] A.V. de Mello , Atlas-an environment for noc generation and evaluation, 2011 . 

[24] J. Wang, Y. Huang, M. Ebrahimi, L. Huang, Q. Li, A. Jantsch, G. Li, Visual-
noc: a visualization and evaluation environment for simulation and mapping,

in: Proceedings of the Third ACM International Workshop on Many-core Em-
bedded Systems, in: MES ’16, ACM, New York, NY, USA, 2016, pp. 18–25,
doi: 10.1145/29344 95.294 9544 . 

25] N. Jiang , G. Michelogiannakis , D. Becker , B. Towles , W.J. Dally , Booksim 2.0
Users Guide, Standford University, 2010 . 

26] Y.-L. Boureau , J. Ponce , Y. LeCun , A theoretical analysis of feature pooling in vi-
sual recognition, in: Proceedings of the 27th International Conference on Ma-

chine Learning (ICML-10), 2010, pp. 111–118 . 
[27] D. Scherer , A. Müller , S. Behnke , Evaluation of pooling operations in convo-

lutional architectures for object recognition, in: International Conference on

Artificial Neural Networks, Springer, 2010, pp. 92–101 . 
28] Y. Chen, T. Krishna, J.S. Emer, V. Sze, Eyeriss: an energy-efficient reconfigurable

accelerator for deep convolutional neural networks, IEEE. Solid-State Circuits
52 (1) (2017) 127–138, doi: 10.1109/JSSC.2016.2616357 . 

29] Y. LeCun , B.E. Boser , J.S. Denker , D. Henderson , R.E. Howard , W.E. Hubbard ,
L.D. Jackel , Handwritten digit recognition with a back-propagation network, in:

Advances in Neural Information Processing Systems, 1990, pp. 396–404 . 

[30] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, H. Adam, Mobilenets: efficient convolutional neural networks for mo-

bile vision applications, CoRR (2017). abs/ 1704.04861 . 
[31] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale

image recognition, CoRR (2014). abs/ 1409.1556 . 
32] J. Doweck, W. Kao, A.K. Lu, J. Mandelblat, A. Rahatekar, L. Rappoport, E. Rotem,

A . Yasin, A . Yoaz, Inside 6th-generation intel core: new microarchitecture code-

named skylake, IEEE Micro 37 (2) (2017) 52–62, doi: 10.1109/MM.2017.38 . 

Kun Chih (Jimmy) Chen (IEEE S’10 M’14) received his B.S.

degree from National Taiwan Ocean University, Taiwan, in
Computer Science and Engineering in 2007. He received

the M.S. degree from National Sun Yat Sen University, Tai-
wan, in Computer Science and Engineering in 2009. He

received the PhD degree from Nation Taiwan University,

Taiwan, in Graduate Institute of Electronics Engineering
in 2013. From October 2014 to January 2015, he served

as a postdoctoral fellow in Intel NTU Connected Context
Computing Center working on the development of Gree n

Sensing Platform for Internet of Things ( IoTs ), Reliable
Thermoelectric Converter, and Power aware Software De-

fined Network (SDN). From February 2015 to July 2016,

r. Chen joined the faculty of Electronic Engineering Department of Feng Chia Uni-
ersity. He is currently an Assistance Professor of Computer Science and Engineering

epartment of National Sun Yat Sen University. His research interests include Mul-
iprocessor SoC (MPSoC) design, Neural network learning algorithm design, Reliable

ystem design, a nd VLSI/CAD design. Dr. Chen served as Technical Program Com-
ittee (TPC) Chair of the International Workshop on Network on Chip Architectures

NoCArc 2018), General Chair of the International Workshop on Network on Chip

rchitectures (NoCArc 2019) and Gues t Editor of Journal of Systems Architecture.
esides, he also served as the technical program committee of some major IEEE in-

ernational conferences, such as ISCAS and SOCC. Dr. Chen received the Best Paper
ward of International Symposium on VLSI Design, Automation and Test (VLSI DAT

014), the Best Paper Award of International Joint Conference on Convergence (IJCC
016), and the Best PhD Dissertation Award of IEEE Taipei Section in 2014. He is a

ember of IEEE 

Masoumeh (Azin) Ebrahimi received a PhD degree with

honors from University of Turku, Finland in 2013 and

MBA in 2015. She is currently a senior researcher at KTH
Royal Institute of Technology, Sweden and an Adjunct

professor (Docent) at University of Turku, Finland. Her
scientific work contains more than 100 publications in-

cluding journal articles, conference papers, book chapters,
edited proceedings, and edited special issue of journal.

She actively acts as a guest editor, organizer, and program

chair in different venues and conferences. Her main areas
of interest include interconnection networks and neural

network accelerators. 

Ting Yi Wang received his B.S. degree from National Sun

Yat sen University, Taiwan, in Computer Science and Engi-
neering in 2017. Currently, he is pursuing his M.S. degree

at Department of Computer Science and Engineering, Na-

tional Sun Yat sen University, Taiwan. His research fields
interest in the neural network accelerator design and net-

work on chip system design. 

https://doi.org/10.13039/501100003711
https://doi.org/10.1109/JPROC.2017.2761740
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0003
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0003
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0003
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0003
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0004
arxiv:1504.04343
https://doi.org/10.1109/TVLSI.2019.2913958
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0007
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0007
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0007
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0007
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0007
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0007
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1109/ASPDAC.2018.8297296
https://doi.org/10.1109/JSSC.2018.2865489
https://doi.org/10.1109/TC.2017.2715158
https://doi.org/10.1145/3130218.3130230
https://doi.org/10.1109/NOCS.2018.8512170
https://doi.org/10.1109/ICECS.2016.7841161
https://doi.org/10.1109/TCSI.2016.2615051
https://doi.org/10.1109/NOCARC.2018.8541173
https://doi.org/10.1145/3312614.3312655
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0018
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0018
arxiv:1708.03788
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0020
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0020
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0020
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0020
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0021
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0021
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0021
https://doi.org/10.1145/2953878
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0023
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0023
https://doi.org/10.1145/2934495.2949544
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0025
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0025
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0025
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0025
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0025
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0025
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0026
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0026
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0026
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0026
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0027
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0027
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0027
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0027
https://doi.org/10.1109/JSSC.2016.2616357
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0029
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0029
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0029
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0029
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0029
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0029
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0029
http://refhub.elsevier.com/S0141-9331(20)30312-4/sbref0029
arxiv:1704.04861
arxiv:1409.1556
https://doi.org/10.1109/MM.2017.38


K.-C. (Jimmy) Chen, M. Ebrahimi and T.-Y. Wang et al. / Microprocessors and Microsystems 77 (2020) 103145 15 

 

 

 

 

 

 

 

 

 

 

 

 

Yueh Chi Yang received his B.S. degree from National Sun

Yat sen University, Taiwan, in Computer Science and Engi-
neering in 2018. Currently, he is pursuing his M.S. degree

at Department of Computer Science and Engineering, Na-

tional Sun Yat sen University, Taiwan. His research fields
interest in the neural network accelerator design and NoC

system design. 
Yuan Hao Liao received his B.S. degree from National

Changhua University of Education, Taiwan, in Computer
Science and Information Engineering in 2018. Currently,

he is pursuing his M.S. degree at Department of Computer

Science and Engineering, National Sun Yat sen Univ ersity,
Taiwan. His research fields interest in the thermal aware

multicore system design. 


	A NoC-based simulator for design and evaluation of deep neural networks
	1 Introduction
	2 Background and related works
	2.1 Conventional neural network simulators
	2.2 NoC platform simulators
	2.3 NoC-based neural network simulators

	3 Proposed NoC-based DNN simulation platform for DNN model evaluation
	3.1 Overview of noxim
	3.2 DNNoC-Sim: A cycle-accurate high-level NoC-based DNN simulator
	3.2.1 DNN flattening process
	3.2.2 Clustering strategy
	3.2.3 Dynamic DNN slicing and mapping
	3.2.4 Generic PE computing flow and control mechanism


	4 Evaluation results and analysis
	4.1 Simulation setup
	4.2 Analysis of memory accesses
	4.3 Performance analysis under different design parameters
	4.4 Analysis of design trade-offs between design parameters

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	References


