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Abstract Faults at either the link or router level may result in the failure of the sys-
tem. Fault-tolerant routing algorithms attempt to tolerate faults by rerouting packets
around the faulty region. This rerouting would be at the cost of significant perfor-
mance loss. The proposed algorithm in this paper is able to tolerate both faulty routers
and links with negligible impact on the performance. In fact, the proposed algorithm
avoids taking unnecessary longer paths and the shortest paths are always taken as
long as a path exists. On the other hand, fault-tolerant routing algorithms might be
based on deterministic routing in which all packets use a single path between each
pair of source and destination routers. Using deterministic routing, packets reach the
destination in the same order they have been delivered from the source so that no
reordering buffer is needed at the destination. For improving the performance, fault-
tolerant algorithms might be based on adaptive routing in which packets are delivered
through multiple paths to destinations. In this case, packets should be reordered at
the destinations demanding reordering buffers. The proposed algorithm can be con-
figured in both working modes, such that it can be based on deterministic or adaptive
routing.
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1 Introduction

Faults may occur in different components of a network as cores, links or routers. When
a core is faulty, the connected router and links can continue functioning. So, the effect
of faults is not propagated to other parts of the network. When a router or a link is
faulty, not only the connected core may not send or receive packets but also packets
from the other cores cannot be transmitted through this faulty router or link [1]. This
may result in blocking of packets and thus the failure of the whole system. Therefore,
special care should be taken when a router or link becomes faulty. The most common
solution to address this problem is to reconfigure the routing algorithm around a faulty
region and to reroute packets around this region. This implies a non-minimal routing
algorithm which increases the latency of packets significantly.

In wormhole routing, messages are divided into small flits traversing within the
network in a pipelined fashion. This approach eliminates the need to allocate large
buffers in intermediate routers along the path [2]. Moreover, in wormhole routing,
message latency is less sensible to distance. However, it should be used with special
care to avoid deadlock in the network. Deadlock is a situation when packets contin-
uously wait for each other to release resources. Routing algorithms are required to
be deadlock-free and break all cyclic dependencies among channels. Virtual channels
are mainly used in the network for avoiding deadlock, improving performance and
tolerating faults, but they impose area overhead and complexity [3].

Routing techniques provide some degrees of fault tolerance and can be catego-
rized into deterministic and adaptive [4–6]. In deterministic routing algorithms, a
fixed path is used between each pair of routers. The simplest deterministic algo-
rithm is dimension-order routing which is known as XY or YX. Implementations
of deterministic routing algorithms are simple. However, sending packets through a
single path may result in the network congestion. In adaptive routing algorithms, a
packet is not restricted to a single path and it can adaptively choose among the avail-
able paths. So, adaptive algorithms can decrease the probability of routing packets
through congested or faulty regions. Conventional fault-tolerant routing algorithms
reroute packets around faulty regions, either convex or concave, so that the selected
paths are not always the shortest ones. Rerouting is an expensive solution and con-
siderably increases packet’s latency and router’s complexity. On the other hand, most
fault-tolerant routing algorithms are focused either on tolerating faulty links or faulty
routers and a general method to tolerate both types of faults has rarely been discussed
in literature. In addition, fault-tolerant algorithms are mostly based on deterministic
routing, degrading the performance of the network.

From the in-order delivery point of view, when a master core issues several requests
(or a request consisting of several packets) to a memory, by using a deterministic
routing algorithm all packets follow the same route to reach the memory, and thus
responses arrive to the master core in the same order as well. On the other hand, when
exploiting an adaptive routing algorithm, the responses return to the master core in
different orders and therefore a reordering mechanism is needed to handle the ordering
of packets [7,8].

In this paper, we present a general fault-tolerant routing algorithm Tolerating both
Faulty Links and Routers, called TFLR. This algorithm tolerates one faulty link or
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router using the shortest paths between each pair of source and destination routers, if
a shortest path exists. It can also tolerate multiple faults if they have enough distances
from each other. TFLR can be configured to act as a deterministic or adaptive routing
algorithm. Deterministic routing assures the in-order delivery of packets while adaptive
routing improves the performance of the network. TFLR is very simple and can be
easily implemented.

The reminder of this paper is organized as follows. In Sect. 2, the related work is
discussed. In Sect. 3, the proposed fault-tolerant routing algorithm is introduced. The
results are reported in Sect. 4 while the summary and conclusion are given in the last
section.

2 Related work

Fault-tolerant routing algorithms can be classified into two main groups: one can
handle convex or concave regions [9–11] and the other group utilizes the contour
strategy for addressing faults [12,13]. The methods in the first group are based on
defining fault ring (f-ring) or fault chain (f-chain) around faulty regions where healthy
routers are disabled in order to form a specific shape. For example, Extended X-Y is a
well-known routing algorithm presented in [14]. This algorithm is designed based on
XY routing and the odd-even turn model [15]. Similar to the odd-even turn model, this
algorithm is deadlock-free without using any virtual channels by prohibiting certain
turns in odd and even columns. In fault-free cases and depending on the position of the
source and destination routers, this algorithm may perform similar to the XY routing
algorithm (minimal routing) or take a longer path (non-minimal routing). In more
details, if the source router is located in an even column, the packet is sent to the Y
dimension; otherwise it has to take a hop to the west direction to reach an even column
before making a turn toward the Y dimension. The packet follows YX routing until it
reaches the destination router. When the packet faces a fault along its path, it has to be
routed around the fault based on some specific rules. Two examples of Extended X-Y
are shown in Fig. 1a. As can be seen in this figure, packets have to take a very long path
to bypass faults while they could be simply routed through the shortest paths. It is worth
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Fig. 1 (a) Two examples of the Extended X-Y routing algorithm. (b) The required fault information
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Fig. 2 (a) Two examples of the ReRS routing algorithm. (b) The required fault information

mentioning that, this algorithm has many restrictions on the location of faults such as
faults cannot be tolerated on borderline routers and there should be enough distance
between faulty regions. Extended X-Y only needs to know about the fault statuses of its
direct neighbors to make its routing decision (Fig. 1b). This algorithm is deterministic
and does not make any effort toward alleviating congestion in the network.

A reconfigurable routing algorithm using the contour strategy provides the possibil-
ity of routing packets through a cycle-free contour surrounding a faulty component. For
example, Z. Zhang et al. presented a reconfigurable routing algorithm [12] to tolerate
a single faulty router in a mesh network without using virtual channels and disabling
healthy routers. We call this Reconfigurable Routing Scheme, ReRS. To tolerate more
number of faulty routers, the contours must not be overlapped and thus faulty routers
should be located far away from each other. In other words, ReRS can tolerate a single
faulty router in the network or multiple faulty routers if their contours do not overlap.
This algorithm is deterministic and thus the performance cannot be improved by dis-
tributing packets over multiple paths. This method shows that cycles can naturally be
avoided in borderline routers. Two examples of this method are shown in (Fig. 2a).
Packets are routed normally inside the network using a deterministic method and they
have to turn around a fault when facing to it. Each router should be informed about
the fault statuses of eight direct and indirect neighboring routers (Fig. 2b).

ReRs has been extended in the RAFT method [13] to tolerate two faulty links. For
this purpose, RAFT requires two virtual channels along both X and Y dimensions.
This algorithm investigates a cycle-free contour for all combinations of one and two
faulty links. This algorithm is very complicated and has many exceptional rules. Two
examples of this algorithm are illustrated in Fig. 3a. RAFT is an adaptive method
and is able to deliver packets through multiple paths. This reduces the latency as the
probability of sending packets through the shortest paths increases. In RAFT, each
router needs to know the fault statuses of twelve surrounding links (Fig. 3b).

A different fault-tolerant approach, called BFT-NoC, is presented in [16]. In this
method, two channels are used for transmitting and receiving packets between two
adjacent routers. In fault-free cases, one channel is dedicated for transmitting packets
and another one for receiving packets. The idea of BFT-NoC is to share a channel
for both transmitting and receiving packets when one of the channels is faulty. This
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Fig. 3 (a) Two examples of the RAFT routing algorithm. (b) The required fault information
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Fig. 4 (a) Clockwise and counter-clockwise turns. (b) Permitted and prohibited turns in the XY routing
algorithm (Note that dash lines indicate prohibited turns)

method reduces packets’ latencies by avoiding costly rerouting of packets. By sharing
the resources, the link performs as a bottleneck in high traffic loads. To reduce the
load on the partially functioning links, it might be better to deliver packets through
alternative routes. This is the solution that can be offered by routing algorithms. Obvi-
ously, BTF-NoC cannot be used to address faulty routers or a total link failure in both
unidirectional directions.

Fault-tolerant routing algorithms could be also divided into two classes: the methods
using virtual channels [13,17,18] and those without using virtual channels [14,19].
In general, different methods define a tradeoff between the number of virtual chan-
nels, the ability to handle different fault models, and the degree of adaptiveness. The
virtual channel-based fault-tolerant routing algorithms provide better fault-tolerant
characteristics than those without virtual channels. On the other hand, fault-tolerant
routing algorithms are usually concentrated on two single point problems, tolerating
faulty links [13,16,18,20] or tolerating faulty routers [12,14,21,22]. In this paper, we
present a method and an algorithm which covers both types of faults.

3 The proposed fault-tolerant routing algorithm

3.1 Turn model

When different packets are routed inside the network, there is a possibility of forming
two complete cycles, known as clockwise and counter-clockwise (Fig. 4a). A situation
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(b)(a)

Fig. 5 Permitted and prohibited turns of TFLR

is called deadlock when each packet in a cycle waits for another one to proceed and thus
different packets block each other forever. In turn models, certain turns are prohibited
from clockwise and counter-clockwise cycles in order to break all cyclic dependencies
and thus avoiding deadlock. In the XY routing algorithm, for example, packets are first
routed along the X dimension and then along the Y dimension. As shown in Fig. 4(b),
in this algorithm, N-E (i.e. a packet moving to the north direction makes a turn to the
east direction) and S-W (i.e. a packet moving to the south direction makes a turn to
the west direction) turns cannot be taken from the clockwise cycle and N-W and S-E
turns are not used from the counter-clockwise cycle. As a result, there is no possibility
of forming a complete cycle among the remaining turns.

TFLR utilizes one and two virtual channels along the X and Y dimensions, respec-
tively, in which four cycles might be formed in the network (Fig. 5a). In order to avoid
deadlock, one turn is prohibited from each cycle which is shown in Fig. 5b. The prohib-
ited turns in each virtual channel are taken from the Mad-y method [23]. Based on this
turn model, the northeast packets can take E-N1, N1-E, and N2-E turns. For northwest
packets, the turns W-N1, N2-W, and W-N2 are allowable. Southeast packets can take
S1-E, E-S1, and S2-E turns. Finally, southwest packets can take W-S1, S1-W, and S2-
W turns. In other words, for all positions of the source and destination routers, packets
can take either X or Y dimension. This assures a fully adaptive routing algorithm.
To prove deadlock-freeness, we use a numbering mechanism similar to the Mad-y
method. This numbering mechanism shows that all the allowable turns have occurred
only in an ascending order, and thus no cycle can be formed in the network. A two-digit
number (a,b) is assigned to each input and output channel of a router in an n×m mesh
network. According to the numbering mechanism, a turn connecting the input channel
(Ia, Ib) to the output channel (Oa, Ob) is called an ascending turn when (Oa > Ia) or
((Oa = Ia) and (Ob > Ib)). Figure 6 shows the channels numbering of a router at the
position (X, Y). By using this numbering mechanism, it is guaranteed that all allowable
turns are taken strictly in an increasing order, so that the TFLR routing algorithm is
deadlock-free. For instance, if the turn E-N1 (i.e. a packet moving to the east direction
makes a turn to the north direction using the first virtual channel) is taken into consider-
ation, the west input channel with the label (Ia = m+x, Ib = 0) is connected to the first
virtual channel of the north output port having the label (Oa = m + x, Ob = 1 + y).
This turn takes place in an ascending order since ((Oa = Ia) and (Ob > Ib)). Similarly,
all the other allowable turns by TFLR are taken in an ascending order. All allowable
and unallowable turns of TFLR are listed in Table 1.

3.2 Tolerating faulty links and routers

A destination router might be located in eight different positions of a source router as
north, south, east, west, northeast, northwest, southeast, and southwest. Since TFLR

123



A Light-weight fault-tolerant routing algorithm tolerating faulty links and routers 637

VC2 VC1

X,Y

Fig. 6 The numbering mechanism of TFLR

Table 1 All allowable and
non-allowable turns by TFLR

Allowable turns Unallowable turns

E-N1 N1-E E-N2

E-S1 N2-E E-S2

W-N1 N2-W N1-W

W-N2 S1-E S1-W

W-S1 S2-E

W-S2 S2-W

is based on a fully adaptive routing algorithm, all shortest paths are valid for packets.
When there is a single fault in the network and the destination is in the northeast,
northwest, southeast, and southwest positions of a source router, packets are able to
use only the shortest paths to bypass the fault. Thereby, using TFLR, no rerouting
takes place in these cases and the fault is bypassed prior reaching it. Obviously, for
eastward, westward, northward, and southward packets, non-minimal paths must be
taken if the shortest path is faulty. In sum, the fault is tolerated using non-minimal
paths when the source and destination routers are located in the same row or column.
In other cases, only the shortest paths are taken from the source to the destination
router.

The example of Fig. 7 shows how the fault can be bypassed without rerouting
packets when the destination is in the northeast position of the current router. As
illustrated in Fig. 7a, the packet can be delivered to the north or east direction when
the distances along both directions are one (�X = 1 and �Y = 1). If the northeast
path is non-faulty (either the links or router), the packet will be sent through it. How-
ever, if one of the components in this path is faulty, the packet is routed through the
east direction and could safely reach the destination (as we assume there is one fault
in the network which is already bypassed). As a result, the packet is routed through
the shortest path to the destination. In Fig. 7b, the distance along the X dimension has
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Fig. 7 Bypassing faults when the destination is located in the northeast position of the source router (Note
that numbers determine the priority of selecting among different routes)

reached one while the distance along the Y dimension is greater than one (�X = 1 and
�Y ≥ 2). According to TFLR, the packet is always sent to the Y dimension if the link
and router in the north direction are non-faulty; otherwise the X dimension is selected.
The reason for this selection is that if the distance along the X dimension reaches zero,
the source and destination will be located in the same column. Thereby, if there is
a fault in one of the components in the remaining path, the packet must take a non-
minimal route to bypass the fault. This is not an optimal solution which is addressed
by TFLR. TFLR avoids reducing the distance into zero in one direction when the dis-
tance along the other direction is greater than one. In other words, when the distance
between the current and destination routers reaches one in at least one dimension, at
first the possibility of sending the packet through the greater-distance dimension is
checked. The packet is sent along the greater-distance dimension if the instant link and
router along this direction are non-faulty; otherwise the smaller-distance dimension
is examined. Consequently, in Fig. 7b the availabilities of the instant north link and
router are checked before than that of the east direction. In the next hop, the packet
faces the similar situation as in Fig. 7a, and thus only the shortest paths are selected by
TFLR so far. Similarly, in Fig. 7c, where the distances are two hops (or greater than
two) and one hop along the X and Y dimensions (�X ≥ 2 and �Y = 1), respectively,
the condition of the east direction is examined earlier than that of the north direction.
Finally, in Fig. 7d, the east and north direction have the same priority to be selected
by packets. By these choices, the packet faces a similar situation as in Fig. 7b or
Fig. 7c and thereby only the shortest paths are taken by TFLR in all cases. The idea
can be simply extended to the northwest, southeast, and southwest positions in the
network.

All possible positions of a single fault are shown in Fig. 8 when a northeast-
ward packet gets close to the destination router. As shown in Fig. 8a when �X = 1
and �Y = 1, there is a possibility of occurring faults in four links and two routers.
Regardless of the location of the fault, the availability of the NE link and N router is
checked before the E link and router. In patterns A1, A2, A3, and A6 of Fig. 8a, the NE
link and N router are non-faulty and the packet is sent to the north direction, while in
patterns A4, A5, and A7, the packet is delivered to the east direction as either the NE
link or N router is faulty. In Fig. 8b, when �X = 1 and �Y = 2, a fault might occur in
seven different locations of links and four locations of routers. In all patterns, the avail-
abilities of the N link and the N router are checked before those of the east direction.
In patterns B1, B2, B3, B4, B5, B6, B7, B9, B10, and B11, the packet is sent to the
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Fig. 8 All possible positions of a faulty link or router when the packet gets close to the destination router

north direction as both the link and router are non-faulty, while in the next hop, one of
the patterns of Fig. 8a arises (i.e. patterns A1, A2, A3, A4, A5, A6, or A7). In patterns
B8 and B12 of Fig. 8b, the packet has to be routed first to the east direction and then
the north direction in order to reach the destination router. In Fig. 8c, when �X = 2
and �Y = 1, the availability of the E link and the E router should be examined before
the N link and the N router. Therefore, in patterns C1, C2, C3, C4, C5, C6, C7, C9,
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Fig. 9 Bypassing faults when the destination is located in the (a) east (b) west (c) north, (d) south positions
of the source router (Note that numbers determine the priority of selecting among different routes)

C10, and C11, the packet is sent to the east direction as both the E link and the E router
are non-faulty. In patterns C8 and C12, the packet is delivered to the north direction so
that the fault is bypassed. In all the other cases (when �X ≥ 2 and �Y ≥ 2 in Fig. 8d,
the packet is sent to the non-faulty direction. In the next hop, the patterns are similar
to Fig. 8b or Fig. 8c. In sum, all the cases are supported by using only the shortest
paths.

As it is already discussed, TFLR is a fully adaptive routing algorithm supporting
all the required turns to route packets through the shortest paths. Using TFLR, the
northeast, northwest, southeast, and southwest packets do not take any non-minimal
routes for tolerating faults.

When the packet is east-, west-, north-, or south- bounded and there is a faulty link
or router in the path, the packet must be routed through a non-minimal path around
the fault. As illustrated in Fig. 9a, for the eastward packet, at first the east link and
router are checked and if they are healthy, the packet is sent through this direction.
However, if either the link or the router is faulty, the packet is delivered to the north
or south direction. Westward packets do the same behavior (Fig. 9b). For a northward
packet facing a fault in the north link or router (Fig. 9c), the west direction is checked
earlier than the east direction. It means that rerouting through the east direction is done
only when the fault is located in the left borderline. A similar perspective is applied
to southward packets (Fig. 9d).

Now, we need to show that all the required turns for bypassing faults are in the
set of allowable turns. By investigating the required turns it can be seen that eastward
packets use the E-N1, N1-E, E-S1, and S1-E turns to bypass a faulty link or router
(Fig. 10a) in which all turns are in the set of allowable turns. Similarly, as shown
in Fig. 10b, all the required turns by the westward packets are allowable (i.e. W-N2,
N2-W, W-S2, and S2-W).

We should also prove that the northward and southward packets are routed in
the network using the allowable turns. As illustrated in Fig. 11a, b, normally the
northward and southward packets use the allowable turns as N2-W, W-N2, N2-
E, S2-W, W-S2, and S2-E to bypass faults. As shown in Fig. 11c, d, when the
source and destination routers are located in the left borderline and there is a
faulty link or router in the path, the required turns are N2-E, E-N2, N2-W, S2-
E, E-S2, and S2-W. Among them, E-N2 and E-S2 are unallowable according to
the turn model of TFLR, but a complete cycle cannot be formed in borderline
cases (as indicated in [12]) and these unallowable turns can be safely taken. The
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Fig. 11 Tolerating a fault (a) by northward packets in default cases (b) by southward packets in default
cases (c) by northward packets when a fault is in the left borderline (d) by southward packets when a fault
is in the left borderline

whole TFLR routing algorithm to tolerate both faulty links and routers is shown in
Fig. 12.

3.3 Distribution of fault information

In all cases, TFLR needs to know at most the statuses of eight surrounding links to
tolerate a faulty link (Fig. 13a). Moreover, to tolerate a faulty router, it is enough that
each router is informed about the fault statues of its four neighboring routers (Fig. 13b).
Each router is aware of the fault in its instant links, but it should be informed about
the fault information on the other links and routers as well. Therefore, 3-bit wire is
required to transfer the fault information of the north neighboring router and its east
and west links to the current router. Similarly, 3-bit wire is needed to transfer the
information from the south direction. 1-bit wire is enough to transfer the information
of the east and west neighboring routers to the current router. The whole information
that is needed by TFLR is shown in Fig. 13c.
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Fig. 12 The TFLR routing algorithm
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Fig. 13 The statuses of eight links and four routers are needed by TFLR
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3.4 Deterministic and adaptive implementation of TFLR

As was already mentioned, in deterministic routing, all packets follow a single path
between each pair of source and destination routers. This guarantees that packets
reach the destination in the same order in which they have been delivered from the
source router and thus no reordering mechanism is needed at destinations. In adaptive
routing, however, packets can be routed through different paths toward the destination
router which decreases the congestion in the network and improves the performance.
Since packets experience different congestion in the network, their arrival orders might
be different at the destination router, and thereby a reordering mechanism is needed
to handle it. In general, the deterministic routing is more used due to its simplicity
while adaptive routing is more preferred for gaining a better performance. TFLR
can be implemented in both modes. Fig. 14a shows three examples of deterministic
implementation of TFLR when packets are sent from the source routers S1, S2, and S3
toward the destination routers D1, D2, and D3. By default, for example in a fault-free
case from S1 to D1, packets are routed in the X dimension until the distance along this
dimension reaches one (�x = 1). At this point, packets are routed in the Y dimension
until the distance reaches zero along this dimension (�y = 0). Finally, packets are
delivered in the X dimension to reach the destination router (�x = 0). Therefore, all
packets traverse from S1 to D1 by following the same route, guaranteeing the in-order
delivery. In the second example (i.e. S2 to D2), packets are routed in the X dimension
until the distance reaches one. Then, packets move along the Y dimension until the
distance reaches zero. However, packets face a fault in the path and thus they have
to be routed to the X dimension. Finally, they reach the destination by moving along
the Y dimension. All the other packets do the same behavior and thus a single path is
selected by them. In the third example (i.e. S3 to D3), packets are rerouted to the west
direction when facing a fault. Then, they are rerouted along the Y dimension until
they reach the same row as the destination router, and finally the X dimension is taken
to reach the destination router. Fig. 14b shows an adaptive behavior of FTLR where
packets can use almost all the shortest paths between the source and destination.

D1

D2

S2

S1

D1

D2

S2

S1

(b)(a)

D3

S3

Fig. 14 (a) Deterministic routing (b) Adaptive routing
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4 Results and discussion

To evaluate the efficiency of the proposed fault-tolerant routing scheme, the simulator
is developed with VHDL to model all major components of the on-chip network. For
all routers, the data width is set to 32 bits and each input channel has 8 buffer slots of
32 bits. Moreover, the packet length is uniformly distributed between 5 and 10 flits.
As a performance metric, we use latency defined as the number of cycles between
the initiation of a packet by a processing element and the time when the packet is
completely delivered to the destination. The simulator is warmed up for 12,000 cycles
and then the average performance is measured over another 200,000 cycles. In adaptive
routing, when there are alternative choices, a direction with a smaller congestion
value is selected. The congestion threshold value is set to 5, meaning that a buffer is
considered as a congested one when at least 5 out of 8 buffer slots are occupied.

For evaluating the performance, TFLR, ReRS [12], and RAFT [13] methods are
compared together. TFLR is our proposed method which utilizes one and two virtual
channels along the X and Y dimension, respectively, and it is able to support either
one faulty link or router in all locations of the network. D-TFLR and A-TFLR stand
for deterministic and adaptive form of TFLR, respectively. As discussed in the related
work, ReRS does not require any virtual channel and it is able to tolerate a single faulty
router. RAFT is designed for tolerating faulty links and it is able to tolerate two faulty
links in the network in all locations [13]. The RAFT method requires two virtual chan-
nels along both dimensions. To have a fair comparison, we utilize two virtual channels
for all methods while extra virtual channels are used to improve the performance.

4.1 Performance analysis under uniform traffic profile

In the uniform traffic profile, each processing element generates data packets and
sends them to another processing element using a uniform distribution [24]. The mesh
size is considered 8 × 8. The emphasis of Fig. 15a is on the router’s fault so that the
average communication latencies of TFLR and ReRS are measured for a fault-free
and a single faulty router cases. As observed from the results, in fault-free cases, the
ReRS and D-TFLR methods are performing the best as they are based on deterministic
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Fig. 15 Performance analysis in an 8×8 mesh network when tolerating (a) a faulty router (b) a faulty link
under the uniform traffic profile
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Fig. 16 Performance analysis in an 8×8 mesh network when tolerating (a) a faulty router (b) a faulty link
under the hotspot traffic profile

routing (i.e. similar to XY routing) which is well suited to uniform traffic. As shown
in this figure, when a single fault occurs in the network, the performance of the ReRS
method significantly decreases while the TFLR method maintains the performance in
the presence of the fault.

Fig. 15b focuses on the link’s fault so that the average communication latencies
of TFLR and RAFT are compared in fault-free and a single faulty link cases. The
performance of RAFT is slightly better than A-TFLR when there is no fault in the net-
work. The reason is that RAFT is a fully adaptive routing algorithm while in TFLR the
adaptivity is limited when packets get close to their destinations. In one-faulty cases,
TFLR maintains the performance at a very similar level while the performance of
RAFT drops significantly. This is due to the fact that TFLR can route packets through
the shortest paths while in RAFT, packets may take longer paths when facing a faulty
link.

4.2 Performance analysis under hotspot traffic profile

Under the hotspot traffic profile, one or more routers are chosen as hotspot receiving
an extra portion of traffic in addition to the regular uniform traffic. In simulations,
given a hotspot percentage of H , a newly generated packet is directed to each hotspot
router with an additional H percent probability. We simulate the hotspot traffic with a
single hotspot router with H = 10 % at (4,4) in an 8×8 mesh network. In Fig. 16a, the
performance of TFLR and ReRS is measured for fault-free and one-faulty router cases
while in Fig. 16b, the performance of TFLR and RAFT is measured for fault-free and
one-faulty link cases. In all configurations and in both figures, A-TFLR outperforms
the other approaches. This is due to the fact that A-TFLR not only avoids unnecessary
longer paths but also reduces the congestion around the faulty region, resulting in a
better performance.

4.3 Reliability evaluation under uniform traffic profile

For measuring reliability, we take the adaptive version of TFLR into consideration.
The reliability of TFLR is compared with ReRS and RAFT in terms of faulty routers
or links, respectively. We increase the number of faults from 1 to 6. All faults are
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Fig. 17 Reliability evaluation of TFLR and ReRS in a 6 × 6 mesh network under uniform traffic profile
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Fig. 18 Reliability evaluation of TFLR and RAFT in a 6 × 6 mesh network under uniform traffic profile

selected using a random function. The results are obtained using 10,000 iterations in
a 6 × 6 mesh network when the underlying traffic is uniform random. The network
is counted as reliable if all the injected packets reach their destinations. As shown in
Figs. 17 and 18, TFLR can tolerate up to 6 faulty routers and links by more than 99 %
reliability.

4.4 Hardware analysis

In addition to performance, area overhead and power consumption play an important
role in the efficiency of many-core architecture [25,26]. To assess the area overhead and
power consumption of the on-chip implementation, the whole platform of each method
is synthesized using Synopsys Design Compiler. We measured the area overhead and
power consumption of the TFLR, ReRS, and RAFT methods. RAFT uses two virtual
channels in both X and Y dimensions. TFLR utilizes one and two virtual channels
along the X and Y dimensions, respectively, while ReRS does not use any virtual
channel. The power consumption is measured under a single faulty link for RAFT and
a single faulty router for TFLR and ReRS. Each scheme includes network interfaces,
routers, and communication channels. All methods are synthesized using the TSMC
65nm technology at the operating frequency of 500 MHz and supply voltage of 1V.
We perform place-and-route, using Cadence Encounter, to have precise power and
area estimations. The power dissipation is calculated using Synopsys PrimePower in
an 8 × 8 mesh network. The layout area and power consumption of each platform are
shown in Table 2. As indicated in this table, RAFT has a larger area overhead than
TFLR and ReRS due to using more virtual channels. The area overhead of TFLR is
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Table 2 Details of hardware
implementation Network platforms Area (mm2) Power (mw)

TFLR 2.575 1.567

ReRS 2.126 1.466

RAFT 2.927 1.791

larger than ReRS as TFLR utilizes one virtual channel more than ReRS. The power
consumption of TFLR is slightly larger than ReRS. It is because of using the shortest
paths and avoiding hotspots in the network in the presence of faults.

5 Summary and conclusion

In this paper, we proposed a fault-tolerant routing algorithm, called TFLR. This algo-
rithm is general and covers both faulty links and routers in the network. It guarantees to
tolerate all locations of a single fault in the network. TFLR is not only a fault-tolerant
method but also makes attention to the performance as one of its main priorities. It
is able to maintain the performance of the network in the presence of faults because
packets are routed through the shortest paths between each pair of source and des-
tination routers as long as a path exists. TFLR can be configured in both adaptive
and deterministic modes. It can be employed in the deterministic mode if an in-order
delivery is needed while for achieving a better performance it can be implemented in
the adaptive mode, but an in-order delivery mechanism would be needed. Finally, the
TFLR routing algorithm is very simple with a negligible area overhead.
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