
1

A Lego-based Neural Network Design Methodology
with Flexible NoC

Kun-Chih (Jimmy) Chen, Senior Member, IEEE, Cheng-Kang Tsai, Yi-Sheng Liao, Han-Bo Xu, and Masoumeh
Ebrahimi, Senior Member, IEEE

Abstract—Deep Neural Networks (DNNs) have shown superi-
ority in solving the problems of classification and recognition
in recent years. However, DNN hardware implementation is
challenging due to the high computational complexity and diverse
dataflow in different DNN models. To mitigate this design
challenge, a large body of research has focused on accelerating
specific DNN models or layers and proposed dedicated designs.
However, dedicated designs for specific DNN models or layers
limit the design flexibility. In this work, we take advantage
of the similarity among different DNN models and propose a
novel Lego-based Deep Neural Network on a Chip (DNNoC)
design methodology. We work on common neural computing
units (e.g., multiply-accumulation and pooling) and create some
neuron computing units called NeuLego processing elements
(NeuLegoPEs). These NeuLegoPEs are then interconnected
using a flexible Network-on-Chip (NoC), allowing to construct
different DNN models. To support large-scale DNN models,
we enhance the reusability of each NeuLegoPE by proposing
a Lego placement method. The proposed design methodology
allows leveraging different DNN model implementations, helping
to reduce implementation cost and time-to-market. Compared
with the conventional approaches, the proposed approach can
improve the average throughput by 2,802% for given DNN
models. Besides, the corresponding hardware is implemented to
validate the proposed design methodology, showing on average
12,523% hardware efficiency improvement by considering the
throughput and area overhead simultaneously.

Index Terms—Network on Chip (NoC), deep neural network
(DNN), accelerator

I. INTRODUCTION

W ITH the advancement of machine learning technology,
Deep Neural Networks (DNNs) have shown notable

benefits in many real-world applications, such as object de-
tection and speech recognition [1]. However, the high com-
putational complexity and heavy data transmission between
neuron layers make the DNN hardware implementation chal-
lenging. Therefore, it is necessary to find an efficient DNN
design paradigm to reduce the design complexity of the DNN
hardware implementation. In this direction, a large body of
research has tried to optimize architectures of different DNN
models [2]–[4]. Although these approaches reduce the design
complexity to construct a DNN accelerator [2]–[5], they are
usually developed based on a dedicated structure for specific

K.-C. Chen is with the Department of Computer Sciences and Engineering,
National Sun Yat-sen University, Taiwan.
E-mail: kcchen@mail.cse.nsysu.edu.tw

C.-K. Tsai and Y.-S. Liao are with the Department of Computer Sciences
and Engineering, National Sun Yat-sen University, Taiwan.
E-mail: {angus, ethan}@cereal.cse.nsysu.edu.tw

H.-B. Xu and M. Ebrahimi are with the KTH Royal Institute of Technology,
Sweden. E-mail: {hanbox, mebr}@kth.se

Fig. 1. (a) The conventional NoC-based DNN accelerator design lacks design
flexibility; (b) the proposed Lego-based approach can increase the design
flexibility and compatibility.

DNN models or specific DNN layers, which reduces the design
flexibility. In other words, designers need to spend a lot of time
to find a proper hardware architecture for a given DNN model,
which increases the time-to-market significantly.

To increase the design flexibility and reduce the time-to-
market of implementing different DNN models on hardware,
Chen et al. first proposed a Lego-like design methodology
to use several neuron computing blocks to construct a DNN
model [6]. However, this approach assumes that the con-
structed DNN accelerator has to compute an entire DNN
model, which is not viable to design large-scale DNN mod-
els. In addition, the high density of the data transmission
between neuron layers worsens the design challenge to im-
plement various kinds of DNN models. To further mitigate
the complexity of the data transmission in DNN computing,
many efficient interconnection networks for DNN accelerator
design were investigated in recent years [7]. Among them, the
Network-on-Chip (NoC) interconnection has attracted much
attention because of the regular and structural characteristics
[8]. Therefore, the NoC-based DNN design methodology has
become emerging and been adopted in several works in recent
years [5], [9]–[11]. However, most current NoC-based DNN
designs are developed based on a certain DNN model, which
lacks a systematic design methodology flow, as shown in
Fig. 1(a). Therefore, designers still need to spend a lot of time
to find proper hardware architectures according to different
DNN models.

Because every kind of DNN models use similar operations
with different permutations, we apply the concept of Lego-like
design methodology, introduced in [6], to develop a systematic



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 2

design flow for different DNN model implementations. In this
work, we analyze current popular DNN models, such as LeNet
[12], AlexNet [13], ResNet-18 [14], and MobileNet v1 [15]
to find similar neuron computing operations (e.g., multiply-
accumulate operation and pooling operation). Then, different
DNN models can be constructed based on the given hyperpa-
rameters (e.g., the kernel size in each convolution layer and
the number of convolution layers, pooling layers, and dense
layers). We identify and construct the common neural network
computing functions (e.g., multiply-accumulation and pool-
ing), called NeuLego processing elements (NeuLegoPEs), and
connect them to each other by using NoC. Furthermore, we
propose a Lego placement method to increase the reusability
of the NeuLegoPEs when placing them to the target NoC
platform. This design concept enhances the scalability of
DNNoC design methodology to large-scale DNN model imple-
mentations. The proposed Lego-based Deep Neural Network
on a Chip (DNNoC) design methodology is shown in Fig. 1(b).

Although the design flexibility of DNNoC can be improved
by using NoC interconnection, diverse dataflows in different
DNN models and a massive data communication in large-scale
DNN models still affect the system performance significantly
[10]. To address these issues, we further employ a traffic load
reduction method, which is composed of data compression and
multicast routing. To sum up, the main contributions of this
paper are

• Lego-based Deep Neural Network on a Chip (DNNoC)
design methodology for higher design flexibility: We
first construct the common function units used in modern
DNN models, called NeuLegoPEs. We then use the
NeuLegoPEs and interconnect them using NoC to con-
struct different DNN models. This design approach helps
to increase design flexibility of DNN implementations
significantly.

• Lego placement for the higher Lego reusability: To
leverage the large-scale DNN implementations, we pro-
pose reusing the NeuLegoPEs in the platform, which
could minimize the number of mapped NeuLegoPEs

under the constraint of hardware implementation cost. In
addition, we propose a dynamic mapping algorithm for
being able to compute a large-scale DNN on a small-scale
DNNoC platform. The implementation of NeuLegoPEs

is also presented in this work.
• Traffic load reduction for higher throughput: Due to

the huge and complex communications among neurons,
we adopt a packet compression method to reduce the
packet size. In addition, we employ a novel multicasting
approach to reduce the number of transmitted packets on
DNNoC. In this way, the traffic load on the proposed
DNNoC can be mitigated significantly.

To verify the proposed Lego-based DNNoC design method-
ology, we modified a cycle-accurate NoC simulator, ESYSim
[16], to support neuron computing functions. In addition, the
corresponding hardware overhead is analyzed. Because of the
flexible and compatible design methodology, the proposed
approach can improve average throughput by 2,802% and
average hardware efficiency by 12,523% over the conventional

design methodologies.
The rest of this paper is organized as follows. We will

investigate the state-of-the-art in Section II. Section III will
introduce the proposed Lego-based DNNoC design method-
ology. The architecture design for NeuLegoPEs and the
underlying NoC are described in Section IV. In Section V,
we analyze the experimental results. Finally, we conclude this
work in Section VI.

II. RELATED WORKS

A. DNN Accelerators

In [2], Zhang et al. proposed an FPGA-based DNN ac-
celerator to accelerate the convolution operation. With the
programmable feature of FPGAs, the authors evaluated the
performance of the convolution operations in different DNN
models. However, this work does not support the operations
of other layers and thereby lacks computation flexibility. In
DLAU [4], Wang et al. proposed a scalable deep learning
accelerator unit to support different sizes of DNN models.
Although DLAU supports different kernel sizes in the con-
volution layer of DNN, it does not support operations in
other neuron layers, such as those in the pooling or dense
layer. In Eyeriss [3], Chen et al. proposed to accelerate the
convolution layer through data reuse. Nevertheless, it suffers
from low computing flexibility because it cannot compute
the dense layer efficiently. The reason is that data sharing
in dense layers is much limited than the one in convolution
layers. To increase the design flexibility, Chen et al. proposed
KASR-CNN [6], which uses Lego-like design methodology to
increase the computing flexibility of a CNN model. However,
the entire CNN model should be computed at once by using
this approach. Therefore, it is not viable to apply KASR-CNN
to design large-scale DNN models.

B. NoC-based DNN Accelerators

In Neu-NoC [10], Liu et al. proposed a high efficient
interconnection network to accelerate neuromorphic systems.
However, the network does not support DNN operations.
Eyeriss v2 [5] is an efficient DNN accelerator architecture
for the compact and sparse DNN, which is an extension of
Eyeriss by employing the NoC interconnection. Because of
the flexible NoC interconnection in Eyeriss v2, it can support
different kernel sizes for the convolution operation. Besides,
due to the sparsity feature of DNN models, data compression is
utilized to improve throughput and energy efficiency. However,
because of the applied data reuse method in this structure,
many duplicated data is transmitted on NoC. This results in
a heavy traffic load on NoC and consequently reduces the
throughput.

In [17], Mirmahaleh et al. presented a mesh-based DNN
accelerator. To mitigate the computing complexity of the target
DNN model, the authors employ a weight and neuron pruning
method. By using the proposed neuron pruning method, the
system performance (i.e., classification accuracy, throughput,
etc.) is improved and the computing power consumption is
reduced. Furthermore, the authors proposed the DNN mapping
method to apply the characteristic of row-weight stationary



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 3

TABLE I
THE COMPARISON OF THE DIFFERENT DESIGN METHODOLOGIES

On-chip
interconnection

Neuron mapping
strategy

Design
methodology

FPGA-based DNN [2] FPGA crossbar Layer-wise mapping Dedicated design
DLAU [4] Dedicated dataflow Layer-wise mapping Dedicated design
Eyeriss [3] PE array Layer-wise mapping Dedicated design
Neu-NoC [10] NoC Layer-wise mapping Dedicated design
Eyeriss v2 [5] NoC Layer-wise mapping Dedicated design
Mesh-based DNN [17] NoC Layer-wise mapping Dedicated design
Tree-based DNN [11] NoC Layer-wise mapping Dedicated design
CMesh-based DNN [18] NoC Layer-wise mapping Dedicated design
UNPU [19] NoC Layer-wise mapping Dedicated design
KASR-CNN [6] Dedicated dataflow Model-wise mapping Lego-based design
Proposed DNNoC NoC Layer-wise mapping Lego-based design

(RWS). This method could optimize the dataflow and lighten
the traffic load on the NoC. However, this work only focuses
on the dataflow between two successive neuron layers. There-
fore, it cannot be easily extended to irregular DNN architecture
(e.g., the neuron layers are not successive), such as ResNet-18
[14].

Through the topology exploration, Kwon et al. [11] pro-
posed a tree-based NoC to reduce the latency of memory
accesses. However, the corresponding design methodology for
the tree-based neural network implementation has not been
provided. Reza et al. [18] proposed to use CMesh-based
NoC for the DNN construction. Because the CMesh-based
NoC interconnection helps to reduce the data transmission
latency, the system throughput can be improved. In addition,
the CMesh-based NoC involves fewer routers and channels
than the conventional NoC architecture, which brings the
benefit of the lower area overhead. To further decrease the
traffic load on NoC, the authors considered the correlation
between layers in a DNN model and the dataflow between
neurons to propose a mapping algorithm. However, this work
only focuses on the computation flow in the dense layers.
Therefore, the proposed approach cannot be easily extended to
other kinds of neuron operations such as addition and pooling
layers in contemporary DNN models. In [19], Lee et al.
proposed UNPU architecture to accelerate the DNN operation
by applying lookup table (LUT)-based bit-serial processing
element (LBPE). Because of the fewer arithmetic operations,
UNPU achieves not only a promising reduction of energy
consumption but also a significant performance improvement.
Besides, the authors select the NoC interconnection to further
increase the flexibility of data transmission between LBPEs.
However, the area overhead is considerable in the UNPU
design because of using many lookup tables. Therefore, it is
not an efficient way to realize a large-scale DNN model [20].

TABLE I shows the comparison between different design
methodologies. Most of the current design methodologies
focus on specific neuron operations, which lacks design flex-
ibility. Although KASR-CNN [6] adopts Lego-based design
methodology to improve design flexibility, the idea is based
on mapping the entire DNN model to the given platform at
once. Therefore, the KASR-CNN design method requires a
large area to implement a large-scale DNN model, and thus
limiting its applicability. On the other hand, the proposed

Fig. 2. Design flow of the proposed Lego-based DNNoC design methodology
is composed of (a) offline DNNoC construction and (b) online DNNoC
execution.

DNNoC uses NoC interconnection to leverage the Lego-
based design methodology. By using the proposed layer-wise
mapping strategy, the computing resources can be reused to
process the neuron operations of different neuron layers. In
this way, the proposed approach improves both design as well
as computing flexibility.

III. THE PROPOSED LEGO-BASED DEEP NEURAL
NETWORK ON A CHIP (DNNoC) DESIGN METHODOLOGY

The proposed Lego-based DNNoC design flow is shown in
Fig. 2, which is composed of:

• DNNoC construction: In this stage, we use NoC in-
terconnection to leverage the DNNoC design, which is
performed offline.

• DNNoC execution: The DNNoC platform is used to
compute the target DNN model at runtime.

A. DNNoC Construction
Fig. 2(a) shows that the DNNoC Construction stage can

be further divided into (1) Model Analysis phase and (2) Lego



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 4

Fig. 3. NeuLego block design to perform (a) MaxPooling, (b) Global Average
Pooling, (c) Multiply-accumulation, and (d) Addition.

Placement phase. The Model Analysis phase is used to analyze
the target DNN model and determine the involved neuron
operations. In this phase, the corresponding NeuLegoPEs

are generated. A NeuLegoPE includes a specific neuron
operation, called NeuLego block (NeuLegoblk), and a corre-
sponding activation function block, called extension block. In
this way, different NeuLegoblks and extension blocks can be
combined to form different NeuLegoPEs and perform diverse
neuron operations, which increases design flexibility. On the
other hand, the Lego Placement phase is used to place the
selected NeuLegoPEs and interconnect them through NoC to
construct the corresponding DNNoC. The details of the two
phases will be introduced below.

1) NeuLego block design and model analysis: To design
a proper NeuLegoblk, we first explore four popular DNN
models (i.e., LeNet [12], AlexNet [13], ResNet-18 [14],
and MobileNet v1 [15]) as design examples and extract the
identical neuron operations to build a NeuLego block pool.
The NeuLego block pool contains many common neuron
operation units, and it can be easily extended to support new
DNN models. The four common layers in our target DNN
models are (1) Max Pooling (MP), (2) Global Average Pooling
(GAP), (3) Multiply-accumulation (MA), and (4) Addition
(Add). Therefore, we design four kinds of NeuLegoblks (i.e.,
MP, GAP, MA, and Add), and each NeuLegoblk is used to
perform the corresponding neuron operation to the received
input data. Obviously, the size of a NeuLegoblk becomes
large if it need to compute a massive amount of input data.
Hence, we define a batch parameter to indicate the computing
capacity of a NeuLegoblk and limit its size. This may cause
additional computation iterations before outputting a result. In
other words, the batch parameter is used to define the number
of inputs, in which the NeuLegoblk can support for the neuron
operation at each computing iteration. The processing flow of
each kind of NeuLegoblk is shown in Fig. 3.

As shown in Fig. 3(a), the MP block is used to find the

Fig. 4. Extension block design to perform (a) Batch normalization, and (b)
ReLU.

maximum value among input data for the given kernel size and
the channel. By defining the batch parameter, the MP block
finds the partial maximum value at each computing iteration
and obtain the global maximum value after several computing
iterations. On the other hand, as shown in Fig. 3(b), the GAP
operation is used to calculate the average of the input data,
and the computing iterations depend on the batch parameter.

The MA operation is usually adopted in convolution, depth-
wise convolution, and dense layers, which is used to mul-
tiply and accumulate the input data with the corresponding
weight data, as shown in Fig. 3(c). The MA NeuLegoPE

is used to compute the convolution operations in a chan-
nel. In other words, the convolution operations of differ-
ent channels are computed in different MA NeuLegoPEs.
The MA NeuLegoPE also supports the traditional multiply-
accumulation operations in dense layers. The required com-
puting iterations of the MA block depend on the given batch
parameter. Finally, we design an Add block as shown in Fig.
3(d). The addition layer is widely employed in ResNet-18 [14].
It is also used to skip the connections between two successive
layers and to achieve cross-layer operation. The Add operation
will add two input data and produce the result where the size of
output data is the same as the input data. Therefore, the adder
in the Add block does not need the result from the previous
computing iteration (i.e., without MUX in Fig. 3(d)).

In addition to the neuron computing for the data process,
normalization layers or activation function layers are often
used in contemporary DNN models. These two kinds of neuron
functions are usually used to assist the feature extraction
layers, such as convolution and dense layers, and to improve
the training efficiency. Among them, the Batch Normalization
(BN) layer and the Rectified Linear Unit (ReLU) layer [14]
are widely used. Therefore, we further design these exten-
sion blocks, which can be concatenated to the end of the
NeuLegoblks. Regarding the BN block, as shown in Fig. 4(a),
it normalizes the output of the preceding NeuLegoblks. The
BN operation can be expressed by:

f(x) =
γ(x− µ)√
σ2 + ε

+ β, (1)

where x is the output of a certain NeuLegoblk. The µ and
σ2 are the mean and variance of the entire batch of training
data. The γ and β are the parameters of the BN, which can
be obtained in the training phase. Besides, ε is a constant



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 5

Fig. 5. Example of a (a) DNN analysis flow at design time and (b) the corresponding DNNoC computing flow at runtime.

to avoid the value of the denominator from zero. In the
normalization stage of training, the mean and variance of the
entire batch of training data will be calculated. However, in the
inference phase, the data enters in sequence, usually without
batching, so here we use the mean and variance learned by the
model during the training phase to normalize the input data.
Therefore,

√
σ2 + ε can be calculated before the inference

phase. On the other hand, the ReLU block sets the input data
smaller than zero to zero, while the numbers greater than zero
remain unchanged, as shown in Fig. 4(b). The ReLU function
can be expressed by

f(x) = max(0, x), (2)

where x is the output of a certain NeuLegoblks. The afore-
mentioned extension blocks can be combined with variety of
NeuLegoblks.

After analyzing the neuron operations, the corresponding
NeuLegoblks and extension blocks are selected for the given
DNN model. These blocks should be placed and intercon-
nected in the DNNoC platform. To increase the reusabil-
ity of the processing elements, we group several identi-
cal NeuLegoblks along with their corresponding extension
blocks and assign them to one NeuLegoPEs. The number
of NeuLegoblks in a NeuLegoPE depends on the computing
capacity of the NeuLegoPE , determined by design specifica-
tion. In this work, the size of a NeuLegoPE is defined as the
number of NeuLegoblks in the NeuLegoPE . Therefore, the
required number of NeuLegoPEs in the constructed DNNoC,
Num(NeuLegoPE), can be represented by:

Num(NeuLegoPE) =

L∑
i=1

K∑
j=1

Num(NeuLegoblk)i,j
Cj

, (3)

where L represents the number of layers, and K indi-
cates the number of NeuLegoblk types. With this definition,

Num(NeuLegoblk)i,j shows the number of NeuLegoblks of
type j in the ith layer. Besides, Cj indicates the computing
capacity of a NeuLegoPE to execute the operations in the
j-type block.

Fig. 5(a) illustrates an example of the proposed model
analysis flow. First, for a given DNN model, the required
number of the NeuLegoblks and their types will be extracted.
In this figure, DNN is composed of two convolution layers
with different kernel sizes, two max-pooling layers with iden-
tical channel size, and three dense layers with different sizes.
Besides, in this example, we assume each NeuLegoPE can
compute 32 neuron operations in each iteration, which may
correspond to the operations in max-pooling, global average
pooling, multiply-accumulation, and addition layers. Also, we
assume that each NeuLegoPE is used to process the data from
the same data dimension. As a result, each MA NeuLegoPE

for the convolution layer and each MP NeuLegoPE for the
max-pooling layer compute the data of the same channel.
Regarding the example in Fig. 5(a), the first convolution layer
has 3 channels and the computation within each channel is
25 (i.e., less than 32). Therefore, three MA NeuLegoPEs

are enough to compute the operations, each assigned to one
channel. Similarly, three MP NeuLegoPEs are required to
compute the first max pooling layer; three MA NeuLegoPEs

are used to compute the second convolution layer; and three
MP NeuLegoPEs are needed to compute the second max
pooling layer. On the other hand, each MA NeuLegoPE for
the dense layer assists with the data process in the same layer.
For example, four, one, and one MA NeuLegoPEs are selected
for the first, second, and third dense layer, respectively, which
is determined by the total number of neurons in each dense
layer and the supported computing capacity of each PE (i.e.,
the NeuLegoPE supports 32 neuron operations at one time).
Based on this layer-wise model analysis, the proper number



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 6

of NeuLegoPEs can be determined, and the required number
of NeuLegoPEs is 18 in this example.

2) Lego placement with NoC interconnection: After gen-
erating the required NeuLegoPEs, it is necessary to place
and interconnect them by using a NoC interconnection. How-
ever, the area overhead would be large if all determined
NeuLegoPEs are mapped to the NoC platform at the same
time. As mentioned before, DNNs have similar computing
behaviors in different neuron layers. Therefore, we have
an opportunity to employ fewer NeuLegoPEs to compute
similar neuron computing, such as convolution and multiply-
accumulation.

To take advantage of this opportunity, we propose to share
the computing resources and find the proper number of
NeuLegoPEs for a given DNN model. To support all opera-
tions in the target DNN model, the number of NeuLegoPEs

for each NeuLegoPE type is determined based on the worst-
case consideration. In this work, we select the maximum
number of NeuLegoPEs, which will be needed at the same
time for each NeuLegoPE type. Hence, the total number of
NeuLegoPEs, TNumPE , in a DNNoC construction, can be
modeled by

TNumPE =

K∑
j=1

arg
L

max
i=1

Num(NeuLegoPE)i,j . (4)

As an example in Fig. 5(a), the largest number of required
MA NeuLegoPEs and MP NeuLegoPEs are four and three,
respectively, at the same time. Therefore, it is enough to use
seven NeuLegoPEs to compute this target DNN model.

With the information about TNumPE , the proper NoC size
can be determined. Considering an N × N NoC, N can be
defined by:

N =
⌈√

TNumPE

⌉
. (5)

Fig. 6 shows the flowchart of the proposed mapping algorithm
to efficiently map NeuLegoPEs on the target N×N NoC. The
algorithm includes three steps: (1) NeuLegoPE pool creation;
(2) row-based NeuLegoPE alignment; and (3) NeuLegoPE

filling and NoC interconnection. Fig. 7 illustrates a mapping
example to construct a DNNoC for the given DNN model
in the example of Fig. 5(a). First, by using the results of
the model analysis, the corresponding NeuLegoPE pool is
created, as shown in Fig. 7(a). The NeuLegoPE pool in-
cludes TNumPE NeuLegoPEs (i.e., 7 NeuLegoPEs in this
example) with multiple types. In the row-based NeuLegoPE

alignment stage, a proper number of NeuLegoPEs related
to different NeuLegoPE types will be selected from the
NeuLegoPE pool. Then, the selected NeuLegoPEs will be
placed along a row of the target N ×N NoC. To facilitate the
data exchange on the DNNoC, the identical NeuLegoPE types
are placed close to each other. Different types of NeuLegoPE

are placed in different rows as much as possible, as shown in
Fig. 7(b). After aligning the NeuLegoPEs along the rows,
some empty NeuLegoPE placement slots might be left, as
shown in Fig. 7(b). If there are still some NeuLegoPEs in
the NeuLegoPE pool, they will be placed into these empty
NeuLegoPE slots, by filling the rows in an ascending or-
der. Otherwise, the identical-type NeuLegoPEs, which might

Fig. 6. The proposed NeuLegoPE placement and DNNoC construction flow.

Fig. 7. The DNNoC construction flow includes (a) NeuLegoPE pool
creation, (b) row-based NeuLegoPE alignment, and (c) NeuLegoPE filling
and NoC interconnection.

be needed in the successive layers, will be used to fill in
these empty NeuLegoPE placement slots. As shown in the
example of Fig. 7(c), the MA NeuLegoPEs are selected to
fill in the empty NeuLegoPE placement slots because MA
NeuLegoPEs are used in successive dense layers. In this
way, we can provide more computing resources for those
frequently used NeuLegoPE types, and thus improving the
system performance. After placing each NeuLegoPE , the
corresponding DNNoC can be constructed by using the NoC
interconnection, as shown in Fig. 7(c).



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 7

Fig. 8. The flow chart of the proposed layer-wise dynamic mapping algorithm.

B. DNNoC Execution

After constructing the corresponding DNNoC, it will be used
to compute the target DNN model in the DNNoC Execution
stage, as shwon in Fig. 2(b). As mentioned before, we can use
fewer NeuLegoPEs to compute large-scale DNN model by
reusing the computing resource in each NeuLegoPE , which
helps to reduce the area overhead of the constructed DNNoC.
However, it is difficult to compute a large-scale DNN on the
resource-limited DNNoC platform, which includes different
types of NeuLegoPEs. Therefore, the challenges in this stage
are (1) how to map a large-scale DNN model to the limited-
size DNNoC platform and (2) how to reduce the heavy traffic
load on the DNNoC. The two design challenges will be
addressed below.

1) Dynamic mapping for large-scale DNN computing: To
address the first problem of this stage, we propose a layer-
wise dynamic mapping metho, and the flowchart is shown in
Fig. 8. The only assumption is that the available computing
resources in the constructed DNNoC should be sufficient to
fit the largest layer of the target DNN model. Fig. 5(b)
shows an example of this mapping method. Because the
constructed DNNoC platform in this example includes six MA
NeuLegoPEs and three MP NeuLegoPEs, we can compute
the neuron operations from the first to the third neuron layers
of the target DNN at once (i.e., the first mapping iteration
in Fig. 5(b)). After completing the computations of the first
mapping iteration, the temporary results will be stored in the
off-chip memory. To complete the entire DNN computation,
the neuron operations in the three MP NeuLegoPEs in the
Max Pooling layer and six MA NeuLegoPEs in the three
Dense layers are required to be computed as well. Fortunately,
the available computing resources in DNNoC are sufficient to
support the neuron operations in the remaining layers, and
thus they are mapped in the second mapping iteration. In this
way, a large-scale DNN can be computed on a resource-limited
DNNoC platform.

2) Traffic load reduction for throughput improvement:
Although the proposed DNNoC design methodology leverages
the DNN accelerator design, massive data communication in
large-scale DNN models still affect the system performance
significantly [10]. The reason is that the outputs of the cur-
rent neuron layer are required by many neurons in the next

Fig. 9. (a) Many duplicated data delivered on the NoC, which worsens the
traffic load, and (b) the Hamiltonian multicast routing algorithm can reduce
the traffic load significantly.

layer, and thus many duplicated packets should be transmitted
on the NoC platform. In addition, because of the ReLU
function, many identical computing results from the different
NeuLegoblks in the same NeuLegoPEs will be packetized
in a packet, which enlarges the packet size during the data
transmission.

Fig. 9(a) illustrates an example when the node ID 2, which
includes an MP NeuLegoPE , aims to send packets to node
IDs 5, 6, 7, and 8. Obviously, it should create four packets
to send the identical data when applying the conventional
unicast routing algorithm. The corresponding header format
is shown in Fig. 10(a). Note that the length of the Packet
Body depends on the computing capacity (Cj in Equation (3))
of the current NeuLegoPE . Besides, the bitwidth of each
computing result in the Packet Body is assumed as B bits
in this work. Hence, the required bitwidth of a unicast routing
packet, BW (Pktunicast), can be modeled as

BW (Pktunicast) = 6 + 4 dlogNe+ Cj ×B (6)

in an N ×N DNNoC. Therefore, it is not cost-efficient to use
several packets to transmit identical data, which leads to the
heavy traffic load.

To solve this problem, we employ the Hamiltonian routing
algorithm [21] to implement the multicast routing. Fig. 9(b)
illustrates an example, and the corresponding packet format
is shown in Fig. 10(b). Different from the packet format
for unicast routing in Fig. 10(a), all destination IDs should
be recorded in the Packet Header. If the packet arrives at
one of its destination nodes, the data in the packet will be
copied to the local NeuLegoPE for further computation.
Meanwhile, the bit corresponding to this destination ID in
the Packet Header is set to 0, indicating that this destination
has been reached. Afterward, this packet proceeds to the next
destinations until reaching the last destination node (i.e., the
node ID 8 in Fig. 9(b)). Since all destination IDs are recorded
in the Packet Header, the total number of required packets
can be reduced significantly. However, a longer Packet Header
is still required, which worsens the traffic congestion on the
DNNoC. For an N ×N DNNoC, the required bitwidth for a



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 8

Fig. 10. (a) The conventional multicast routing delivers several identical
packets to different destinations; (b) In Hamiltonian multicast routing, the
Packet Body stores the entire data; (c) The run-length encoding method
can further compress the successive data efficiently in Hamiltonian multicast
routing.

multicast routing packet, BW (Pktmulticast), can be modeled
by

BW (Pktmulticast) = 6 + 2 dlogNe+N2 + Cj ×B, (7)

where Cj represents the computing capacity of the current
j-type NeuLegoPE and B is the bitwidth of each data in
Packet Body. Obviously, this kind of multicast routing packet
is longer than the conventional unicast routing packet, which
counteracts the advantage of multicast routing.

To further solve the problem of transmission bandwidth at
runtime, we compress the data by considering the fact that
there are many successive data in a packet after the ReLU
function. The run-length encoding algorithm [22] is a popular
method applied in contemporary DNN accelerators [3] to fold
the successive data and reduce the data size before storing it
to the external memory. In this work, we use the run-length
encoding algorithm to fold the successive data in a packet
and reduce the traffic load on the DNNoC. The run-length
encoding algorithm is used to compress the series of identical

data in the Packet Body into two fields (i.e., value field and
length field), as shown in Fig. 10(c). The required bitwidth
of the length field is equal to dlogCje, which depends on the
computing capacity of the current NeuLegoPE . On the other
hand, as mentioned before, we require B to represent the data
in the value field in Fig. 10(c). In case of data series in the
Packet Body including S kinds of successive identical data
sub-series and I individual data, the required bitwidth of a
multicast routing packet with run-length encoding data would
be equal to 6 + 2 dlogNe+N2 + (S + I)× (B + dlogCje).

Obviously, the required bitwidth of the Packet Body af-
ter the run-length encoding process highly depends on the
permutation of the data series with Cj data in the Packet
Body of the conventional multicast routing packet, as shown in
Fig. 10(b). Therefore, it is necessary to analyze the expected
size of the multicast routing packet with run-length encoding
data. For a case of data series with Cj B-bit data, there are
(2B)Cj kinds of possible data series. Among them, there are
(
∑Cj−1

i=0

(
Cj−1

i

)
· 2B · (2B − 1)i · (i+1)) cases, which include

at least one successive identical data sub-series in the data
series with Cj data. In addition, we need (B + dlogCje) bits
to represent an encoding unit (i.e., pair of (value, length) in
Fig. 10(c).) Therefore, the expected bitwidth of the packet size
with run-length encoding data, BW (Pktmul run), is:

BW (Pktmul run) = 6 + 2 dlogNe+N2

+

∑Cj−1
i=0

(
Cj−1

i

)
· 2B · (2B − 1)i · (i+ 1)

(2B)Cj

× (B + dlogCje).
(8)

IV. HARDWARE ARCHITECTURE DESIGN OF NeuLegoPEs

In order to facilitate the DNNoC design methodology, the
architecture of a constructed DNNoC is shown in Fig. 11,
which includes (1) NeuLegoPE architecture designs for each
neuron computation, and (2) router and network interface (NI)
designs for each NeuLegoPE interconnection. The controller
sends the control signal to each NeuLegoPE to catch the
necessary data from the global buffer and receive information
about the current mapping situation. The global buffer size
is determined by the maximum number of parameters (i.e.,
weights) in a single neuron layer of the target DNN model.
Based on the global control signals, the PE controller controls
the movement of the necessary input data or weight data
from the local data buffer of the current DNNoC tile to
the NeuLegoPE for further neuron operations. Then, the
results produced in a NeuLegoPE will be transmitted to other
NeuLegoPEs through NoC interconnection. This is the case
if multiple neuron layers are mapped to the NoC platform at
the current mapping iteration.

A. NeuLegoPE Architecture Design

As mentioned before, the required NeuLegoPEs will be de-
termined after the model analysis. Besides, each NeuLegoPE

may contain several NeuLegoblks, which are used to perform
the corresponding neuron operations. The four mentioned



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 9

Fig. 11. Each NeuLegoPE can be interconnected by using NoC intercon-
nection to construct a DNNoC architecture.

kinds of NeuLegoPEs can be further classified into memory-
less NeuLegoPEs and memory-based NeuLegoPEs. In
memory-less NeuLegoPEs, such as MP and Add, the com-
puting results can be obtained without extra weight input from
the weight memory within a tile. On the contrary, in memory-
based NeuLegoPEs, such as GAP and MA, additional weight
information is needed from weight memory to compute the
results.

Fig. 12(a) shows the architecture of the memory-less
NeuLegoPE , which is composed of several NeuLegoblks.
These blocks are executed in parallel. When the memory-less
NeuLegoPE collects all necessary data, the Block Controller
of each NeuLegoblk will sequentially capture a batch of data
from the local Input Buffer for further neuron operation (i.e.,
MP or Add) until reaching the final computation results. After
obtaining the final results, the Block Controller will activate
the D flip-flop and output the results of this NeuLegoblk.
Meanwhile, the Block Controller resets the Weight-less Neuron
Operator for the next computing iteration.

Fig. 12(b) shows the architecture of the memory-based
NeuLegoPE . Similarly, the memory-based NeuLegoPE uses
several NeuLegoblks to perform parallel neuron operations
(i.e., GAP or MA). First, the Block Controller catches the batch
of data for each NeuLegoblk from the local Input Buffer,
and the Weight-based Neuron Operator is used to perform
the corresponding neuron operation until producing the final
computation results. The required weights for the neuron
computation are stored in the Weight Memory in the DNNoC
tile. After computing the final results, the Block Controller
activates the D flip-flop to output the results. It also resets
the Weight-based Neuron Operator for the next computing
iteration.

In addition to the NeuLegoPE design, as mentioned before,
two extension PEs are designed to perform batch normalization
and ReLU operations. The extension PEs are used to perform
the corresponding data post-processing for the output of some
NeuLegoPEs. An extension PE is composed of several ex-
tension blocks, and the number of extension blocks should

Fig. 12. The NeuLegoPE can be classified into (a) memory-less
NeuLegoPE and (b) memory-based NeuLegoPE .

Fig. 13. (a) Batch normalization extension PE and (b) ReLU extension PE
are used to post-process the data from the NeuLegoPEs.

be equal to the number of NeuLegoblks of the connected
NeuLegoPE . Fig. 13(a) shows the extension PE architecture
for the batch normalization in Equation (1). Note that the
parameters (i.e., µ,

√
σ2 + ε, γ, and β in Equation (1)) for

the operation of the batch normalization is captured from
the Weight Memory in the DNNoC tile. On the other hand,
Fig. 13(b) shows the ReLU extension PE, which is used to
perform the ReLU activation function in Equation (2). With the
NeuLegoPEs and the extension PEs, the design flexibility of
the proposed DNNoC design can be improved significantly. In
other words, we can construct the target DNNoC by combining
the proper NeuLegoPEs and the extension PEs. Please note
that the extension PE can be considered as a post-processor of
the NeuLegoPEs. If a NeuLegoPE needs it, it can be patched
to the output of the NeuLegoPE . Hence, the NeuLegoPE and
the extension PE should be placed in the same DNNoC tile.



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 10

Fig. 14. (a) The conventional router design cannot support Hamiltonian
routing algorithm, and (b) the proposed router architecture.

B. Router and Interface Design for DNNoC Interconnection

To support the multicast routing to deliver the compressed
packets from a NeuLegoPE , the router and the network
interface (NI) should be properly designed. Fig. 14(a) shows
the conventional router design. When a packet arrives at the
router through an input port, the routing computing unit will
analyze the routing information in the header of the packet.
Then, this packet will be delivered to the corresponding output
port with the assistance of the crossbar. Fig. 14(b) shows
the proposed router architecture, supporting the Hamiltonian
routing algorithm. In addition to the original structure in the
conventional router architecture, the routing computation unit
is additionally used to determine whether the current node is
one of the destinations of the multicast packet. The packet
will be replicated to the local direction by using a MUX, and
the sel signal is assigned to indicate the direction, from where
the replicated packet comes from. Meanwhile, the valid signal
is set to let the replicated packet pass through the D flip-
flop to the local direction. On the contrary, the sel signal will
be unknown, and the valid signal will not be set when the
current node is not one of the destinations. In this way, we
can block the invalid packets, preventing them to enter the
local direction.

In addition to the router design, NI design is also an
important component in the proposed DNNoC because it is
used to generate the multicast packets and to depacketize the
received packets. Fig. 15(a) shows that the NI is located at
the position between the NeuLegoPE and the router. The NI
is predominately composed of a packetizer and depacketizer,
and the corresponding architectures are shown in Fig. 15(b)
and Fig. 15(c), respectively. The packetizer (Fig. 15(b)),
first counts the length of each replicated value to make the
corresponding encoding unit (i.e., a pair of (value, length)
in Fig. 10(b)). After having an encoding unit, in case the
incoming data is different from the previous one, the enable
signal in Fig. 15(b) will be raised, and the built encoding unit
will be captured by the Body Encoder to concatenate with the
existing encoding unit(s). Meanwhile, the counter will be reset
to count for the next successive duplicated value. When the
NeuLegoPE sends out all computing results, the Done signal
is raised to represent that the body of the packet, including
several encoding units, is generated. Afterward, the Packing
unit packetizes the corresponding header, body, and tail to
form a complete packet. On the other hand, the depacketizer

Fig. 15. (a) NI is used to be the interface between the NeuLegoPE and the
router, which is composed of (b) packetizer and (c) depacketizer.

in Fig. 15(c) decomposes the received packets and extracts the
header and body of the packet. The extracted data from the
body will be analyzed by the Body Decoder unit to capture
the information of each encoding unit, which includes the
length of the replicated data. By using the information of
the encoding unit, the Data Repeater unit will generate the
corresponding length of the replicated data and store them
to the data buffer for further NeuLegoPE process. After
completing an encoding unit process, the Done signal will
be raised, and the Data Repeater unit will wait for the next
encoding unit from the Body Decoder.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To verify the proposed design methodology, we employ a
NoC simulator, called ESYSim [16]. Although the ESYSim
supports the analysis of traffic behavior on the defined NoC
platform, it does not support any neural computing functions.
In this work, we modified ESYSim to support different neural
computing functions. To launch the DNNoC simulation, we
input the defined DNN model file, including the neuron
operation type, model parameters, and the interconnection be-
tween neurons. In this way, the modified ESYSim can realize
high-level simulation to enable early architectural exploration.
In this section, we will analyze the performance and the
hardware cost of the proposed DNNoC design methodology
by using this simulator. In the following experiments, four
different common DNN models with different datasets are
analyzed (i.e., LeNet [12] with the MNIST [23] dataset and
ResNet-18 [14], AlexNet [13], and MobileNet v1 [15] with
the ImageNet [24] dataset). To place the NeuLegoPEs on
the NoC platform, we employ the Direct-X [25] algorithm
along with the proposed dynamic mapping strategy. Since
the bandwidth limitation between the off-chip memory and
global buffer affects the overall performance, similar to [5], we



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 11

Fig. 16. The performance comparison by using different routing strategies under (a) LeNet, (b) AlexNet, (c) ResNet-18, and (d) MobileNet v1 models.

Fig. 17. The performance analysis after using packet compression techniques under (a) LeNet, (b) AlexNet, (c) ResNet-18, and (d) MobileNet v1 models.

employ DDR4-3200 SDRAM memory, providing a bandwidth
of 25600 MB/s for read and write operations.

A. Performance Comparison and Analysis

To explore the performance of the DNNoC, we first analyze
the performance improvement on a 4x4 DNNoC according to
different DNN models when the Hamiltonian multicast routing
algorithm and the packet compression method are applied.
As discussed in the NeuLegoPE design, we group several
NeuLegoblks into a NeuLegoPE to increase the reusability
of the processing elements. In this experiment, the size of
NeuLegoPE is set to 2, 64, 64, and 64 for LeNet, AlexNet,

ResNet-18, and MobileNet v1, respectively. In addition, we
assume that each NeuLegoblk supports 32 neural operations
at each computing iteration (i.e., the batch parameter is 32
similar to the example in Fig. 5).

Fig. 16 shows the performance comparison between dif-
ferent methods to support multicasting (i.e., the conventional
unicast [26], the conventional multicast [27], and the Hamilto-
nian multicast routing [21]). The unicast routing [26] is based
on the XY routing algorithm while the conventional multicast
routing in [27] extends the XY routing to an XY-based
multicast routing. In the following experiments, we adopt the
Giga operations (i.e., the multiply-accumulate operations) per



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 12

TABLE II
THE ANALYSIS OF THE DESIGN TRADE-OFF ACCORDING TO THE DIFFERENT DESIGN PARAMETERS

PE
size

NoC
size

Area (um2) Power (mW ) Throughput
(GOPS)

HE score
(×10−6)Global

buffer PE Router Total Global
buffer PE Router Total

LetNet [12]
1 6x6 45,454 2,639,877 1,247,071 3,932,402 1 116 76 193 9.59 2.44
2 4x4 45,454 1,914,914 558,587 2,518,955 1 85 34 120 9.17 3.64
4 3x3 45,454 1,911,478 317,618 2,274,550 1 85 19 105 9.25 4.07

AlexNet [13]
32 6x6 7,408,983 18,010,344 1,247,071 26,666,398 185 1,580 76 1,841 55.00 2.06
64 4x4 7,408,983 8,464,522 558,587 16,432,092 185 1,185 76 1,446 54.65 3.33
128 3x3 7,408,983 5,278,709 317,618 13,005,309 185 1,210 34 1,429 54.22 4.17

ResNet-18 [14]
32 6x6 4,409,027 9,522,587 1,247,071 15,178,685 110 1,333 76 1,519 68.83 4.54
64 4x4 4,409,027 4,692,185 558,587 9,659,799 110 1,076 34 1,220 72.80 7.54
128 3x3 4,409,027 3,156,769 317,618 7,883,414 110 1,149 19 1,278 75.85 9.62

MobileNet v1 [15]
32 6x6 1,499,978 5,278,709 1,247,071 8,025,758 37 1,210 76 1,323 34.96 4.36
64 4x4 1,499,978 2,806,017 558,587 4,864,583 37 1,118 76 1,231 32.58 6.70
128 3x3 1,499,978 2,095,800 317,618 3,913,396 37 1,118 19 1,174 31.44 8.03

Note: the HE score means the hardware efficiency score, and the bold value means the design with better design parameters in the current design space.

second (GOPS) as the metric of the throughput comparison.
Compared with a conventional unicast approach, the Hamilto-
nian multicast routing algorithm can improve throughput from
7% to 49%. The reason is that the Hamiltonian multicast
routing algorithm uses a smaller packet size to transmit the
data, which mitigates the traffic load on the network. On
the other hand, throughput drops by 8% in our proposed
approach for the LeNet model. The reason is that the LeNet
model does not require too many packets to complete the
model computations, which makes the traffic load on the
DNNoC very light. Hence, the advantage of the Hamiltonian
routing algorithm, which is not a minimal routing algorithm,
may be counteracted. When the target DNN models (e.g.,
AlexNet, ResNet-18, and MobileNet v1) become large, the
Hamiltonian multicast routing algorithm could mitigate the
traffic load on DNNoC and improve the throughput by 5% to
79%. Obviously, the traffic latency dominates the performance
of the DNNoC. Therefore, we employ the run-length encoding
method to compress the data in a packet, which helps to
reduce the traffic load on the NoC platform. Fig. 17 shows the
advantage of the packet compression method. Compared with
the method without any compression technique, it can further
reduce the latency by 7% to 32% and improve throughput by
6% to 34%. The reason is that the run-length encoding method
can use smaller packet size to transmit more information on
DNNoC.

B. Analysis of Design Trade-off and Hardware Overhead

As mentioned before, the NoC size as well as the
NeuLegoPE size affect the throughput and the hardware
cost. To analyze the design trade-off, we implement the
corresponding DNNoC designs under TSMC 40nm process
for different target DNN models. The 16-bit data precision is
adopted in this work.

TABLE II shows the implementation results of the proposed
DNNoC design methodology. Obviously, the hardware over-
head is large if NeuLegoPEs include fewer NeuLegoblks
(i.e., smaller NeuLegoPE size). However, for most layer-
by-layer DNN models (e.g., LeNet, AlexNet, and MobileNet
v1), the throughput can be improved due to higher paralleliza-
tion. On the contrary, the throughput will be degraded when

NeuLegoPE size becomes larger. The reason is that the bigger
NeuLegoPE generates larger packets including more data.
When NeuLegoPEs receive these large packets, they need
to spend more time to perform depacketization. Because the
process of the depacketization to extract data is performed in
sequence, the NeuLegoPE will receives the data in sequence,
which reduces the benefit of parallel computing using the
NoC interconnection. Consequently, the computing latency
becomes longer, which reduces throughput accordingly. On the
other hand, the DNNoC throughput for the DNN model with
cross-layer dataflow, such as ResNet-18, is better when the
NeuLegoPE size is large. Because of the cross-layer dataflow
in ResNet-18, the packet transmission latency increases when
using the layer-wise mapping strategy. Therefore, the DNNoC
with small-sized NeuLegoPE may cause heavy traffic load
on DNNoC, which reduces the throughput significantly.

To consider the throughput and the hardware cost simul-
taneously, we define a hardware efficiency score (HE score)
as

HE score =
Throughput

area
, (9)

As shown in Table II, we can find proper design parameters
for different DNN models in the current design space (i.e.,
the bold HE score). Based on these design parameters, we
compare the proposed DNNoC with state-of-the-art, as shown
in TABLE III. For a fair comparison, the involved clock
frequency and bit precision are set to 200 MHz and 16-
bit, respectively. On the other hand, we adopt ARM Cortex
A9 processor to assist with the neuron operations in Eye-
riss [3] and Eyeriss v2 [5] because they only support the
neuron operations in convolution and dense layers. As men-
tioned before, the conventional design methodologies focus
on some specific operations and lack design flexibility. For
the conventional DNN models (e.g., AlexNet) with common
neuron operations (e.g., convolution, max pooling, ReLU, and
multiply-accumulation), the overall throughput of Eyeriss [3]
and Eyeriss v2 [5] is low. The reason is that Eyeriss [3]
and Eyeriss v2 [5] employ the characteristic of data reuse to
accelerate the convolution operations and involved software
to assist with other kinds of neuron operations. Hence, the
overall throughput is worse than other approaches (i.e., UNPU
and the proposed DNNoC), which are adopting hardware to



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 13

TABLE III
THE PERFORMANCE COMPARISON BETWEEN THE RELATED WORKS AND OUR PROPOSED APPROACH

Eyeriss [3] Eyeriss v2 [5] UNPU [19] Proposed DNNoC
Technology 65nm 65nm 65nm 40nm 40nm

Area
(Gate count) 1,176k gates 2,695k gates 13,680k gates 3,371k gates 1,012k gates

On-chip SRAM 181.5 KB 246 KB 256 KB 3,760 KB 816 KB
Frequency 200 MHz 200 MHz 200 MHz 200 MHz

Bit precision 16-bit 16-bit 16-bit 16-bit
DNN model AlexNet MobileNet v1 AlexNet MobileNet v1 AlexNet MobileNet v1 AlexNet MobileNet v1
Inference/sec

(Overall) 0.92 0.69 43.19 1.63 74.35 0.71 53.69 32.79

Fig. 18. The comparison of hardware efficiency between the proposed
approach and the related works.

compute all kinds of neuron operations. The overall throughput
of UNPU is the best because it flattens each kind of DNN op-
erations into similar multiply-accumulation operations. Then,
the UNPU takes advantage of lookup tables to accelerate
the computations. However, the area overhead of UNPU is
significant because of employing a large lookup table in each
PE. On the other hand, the current design methodologies [3],
[5], [19] cannot provide an efficient design flow to implement
the contemporary DNN model (e.g., MobileNet v1) because
of the low design flexibility. Therefore, the proposed DNNoC
design methodology brings the advantage of better throughput
than the related works.

To analyze the comparison of hardware efficiency between
the proposed DNNoC and the related works, we use HE score
in Equation (9) to evaluate each design according to different
DNN models in TABLE III. Fig. 18 shows that the proposed
design methodology helps to improve the hardware efficiency
by 193% to 1,936% over the related works under the AlexNet
model. The results of hardware efficiency of our proposed
approach and Eyeriss v2 are almost the same because the
DNNoC includes a larger global buffer (i.e., on-chip SRAM),

which counteracts the advantage of the performance improve-
ment. As mentioned before, the global buffer size depends on
the largest number of parameters (i.e., weights) in a single
neuron layer of the target DNN model, which is usually the
dense layer. For a modern DNN model with fewer parameters,
such as MobileNet v1, the advantage of the proposed design
methodology is more significant. As shown in Fig. 18, the
proposed approach can improve the hardware efficiency by
5,257% to 62,329% under MobileNet v1 model over the other
related works [3], [5], [19].

VI. CONCLUSION

In this paper, a novel Lego-based Deep Neural Net-
work on Chip (DNNoC) design methodology is introduced.
First, we define some common neuron computing units,
called NeuLegoblks. To increase the hardware reutiliza-
tion, we grouped several identical NeuLegoblks to build
a NeuLegoPE . We analyzed the target DNN model and
extracted the number of NeuLegoPEs, needed in the platform.
Then, we used the NoC interconnection to interconnect the
involved NeuLegoPEs. To reduce the traffic load on the
DNNoC platform, we further employed a packet compression
method and a multicast routing algorithm. The experimental
results confirmed the fact that the proposed design method-
ology could improve the average throughput by 2,802% and
average hardware efficiency by 12,523%. Consequently, the
proposed DNNoC design methodology has the benefits of high
scalability and compatibility to be used for the design of future
DNN accelerators.

ACKNOWLEDGMENT

This work was supported by the Ministry of Science
and Technology under the grant MOST 110-2221-E-110-026-
MY3, TAIWAN; MOST 110-2218-E-110 -009, TAIWAN; and
the STINT and VR projects, SWEDEN.

REFERENCES

[1] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol.
105, no. 12, pp. 2295–2329, 2017.

[2] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’15, 2015, p. 161–170.

[3] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,”
IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 14

[4] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “Dlau: A scalable
deep learning accelerator unit on fpga,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 3, pp.
513–517, 2017.

[5] Y. Chen, T. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
J. Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2,
pp. 292–308, 2019.

[6] K.-C. Chen, Y.-W. Huang, G.-M. Liu, J.-W. Liang, Y.-C. Yang, and Y.-
H. Liao, “A hierarchical k-means-assisted scenario-aware reconfigurable
convolutional neural network,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 29, no. 1, pp. 176–188, 2021.

[7] S. M. Nabavinejad, M. Baharloo, K.-C. Chen, M. Palesi, T. Kogel,
and M. Ebrahimi, “An overview of efficient interconnection networks
for deep neural network accelerators,” IEEE J. Emerging and Selected
Topics in Circuits and Systems, vol. 10, no. 3, pp. 268–282, 2020.

[8] H. Zheng, K. Wang, and A. Louri, “Adapt-noc: A flexible network-
on-chip design for heterogeneous manycore architectures,” in IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2021, pp. 723–735.

[9] K.-C. J. Chen, M. Ebrahimi, T.-Y. Wang, and Y.-C. Yang, “Noc-based
dnn accelerator: A future design paradigm,” in Proceedings of the 13th
IEEE/ACM International Symposium on Networks-on-Chip, 2019.

[10] X. Liu, W. Wen, X. Qian, H. Li, and Y. Chen, “Neu-noc: A high-efficient
interconnection network for accelerated neuromorphic systems,” in 2018
23rd Asia and South Pacific Design Automation Conference (ASP-DAC),
2018, pp. 141–146.

[11] H. Kwon, A. Samajdar, and T. Krishna, “Rethinking nocs for spatial
neural network accelerators,” in 2017 Eleventh IEEE/ACM International
Symposium on Networks-on-Chip (NOCS), 2017, pp. 1–8.

[12] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E.
Hubbard, and L. D. Jackel, “Handwritten digit recognition with a back-
propagation network,” in Advances in neural information processing
systems, 1990, pp. 396–404.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25, 2012, pp. 1097–1105.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017.

[16] J. Wang, Y. Huang, M. Ebrahimi, L. Huang, Q. Li, A. Jantsch, and G. Li,
“Visualnoc: A visualization and evaluation environment for simulation
and mapping,” in Proceedings of the Third ACM International Workshop
on Many-Core Embedded Systems, 2016, p. 18–25.

[17] S. Y. H. Mirmahaleh and A. M. Rahmani, “Dnn pruning and mapping
on noc-based communication infrastructure,” Microelectronics Journal,
vol. 94, p. 104655, 2019.

[18] M. F. Reza and P. Ampadu, “Energy-efficient and high-performance
noc architecture and mapping solution for deep neural networks,”
in Proceedings of the 13th IEEE/ACM International Symposium on
Networks-on-Chip, 2019.

[19] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. Yoo, “Unpu: An
energy-efficient deep neural network accelerator with fully variable
weight bit precision,” IEEE J. Solid-State Circuits, vol. 54, no. 1, pp.
173–185, Jan 2019.

[20] K.-C. Chen and Y.-C. Yang, “An arbitrary kernel-size applicable noc-
based dnn processor design with hybrid data reuse,” in IEEE Interna-
tional Midwest Symposium on Circuits and Systems, 2021, pp. 1–4.

[21] X. Lin, P. McKinley, and L. Ni, “Deadlock-free multicast wormhole
routing in 2-d mesh multicomputers,” IEEE Transactions on Parallel
and Distributed Systems, vol. 5, no. 8, pp. 793–804, 1994.

[22] A. Birajdar, H. Agarwal, M. Bolia, and V. Gupte, “Image compression
using run length encoding and its optimisation,” in 2019 Global Con-
ference for Advancement in Technology (GCAT), 2019, pp. 1–6.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, pp. 1097–1105, 2012.

[25] K.-C. (Jimmy) Chen, M. Ebrahimi, T.-Y. Wang, Y.-C. Yang, and Y.-H.
Liao, “A noc-based simulator for design and evaluation of deep neural
networks,” Microprocessors and Microsystems, vol. 77, p. 103145, 2020.

[26] W. Zhang, L. Hou, J. Wang, S. Geng, and W. Wu, “Comparison research
between xy and odd-even routing algorithm of a 2-dimension 3x3 mesh
topology network-on-chip,” in 2009 WRI Global Congress on Intelligent
Systems, vol. 3, 2009, pp. 329–333.

[27] Z. Lu, B. Yin, and A. Jantsch, “Connection-oriented multicasting in
wormhole-switched networks on chip,” in IEEE Computer Society
Annual Symp. Emerging VLSI Technologies and Architectures, 2006.

Kun-Chih (Jimmy) Chen (IEEE S’10-M’14-
SM’21) currently is an Associate Professor of Com-
puter Science and Engineering Department of Na-
tional Sun Yat-Sen University. His research interests
include Multiprocessor SoC (MPSoC) design, Neu-
ral network learning algorithm design, Reliable sys-
tem design, and VLSI/CAD design. Dr. Chen served
as Technical Program Committee (TPC) Chair and
General Chair of the International Workshop on
Network on Chip Architectures (NoCArc) in 2018
and 2019. Besides, he was a Guest Editor of IEEE

Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS),
Journal of Systems Architecture (JSA), and Nano Communication Network
(NanoComNet). Dr. Chen received the IEEE Tainan Section Best Young
Professional Member Award, TCUS Young Scholar Innovation Award, Explo-
ration Research Award of Pan Wen Yuan Foundation, the Best Paper Award
of VLSI-DAT and the Best Student Paper Award of IEEE ISCAS. He is an
IEEE senior member and ACM member.

Cheng-Kang Tsai received the B.S. degree in infor-
mation and computer engineering from Chung Yuan
Christian University, Taoyuan, Taiwan, in 2019. He
is currently working toward the M.S. degree at the
Department of Computer Science and Engineering,
National Sun Yat-sen University, Kaohsiung, Tai-
wan. His research fields interest in the Network-
on-Chip (NoC) system design and neural network
accelerator design.

Yi-Sheng Liao received his B.S. degree from Tung-
hai University, Taiwan, in Electrical Engineering in
2019. Currently, he is pursuing his M.S. degree at
Department of Computer Science and Engineering,
National Sun Yat sen University, Taiwan. His re-
search fields interest in the neural network acceler-
ator design and network on chip system design.

Han-Bo Xu is a master student studying embed-
ded systems at KTH Royal Institute of Technology.
Currently engaged in the research of deep neural
network application in network on chip.

Masoumeh (Azin) Ebrahimi received a Ph.D. de-
gree with honors from University of Turku, Finland
in 2013 and MBA jointly from the University of
Turku and EIT-ICT School in 2015. She has led
several national and international projects such as
EU-MarieCurie-Vinnova, Academy of Finland, and
Vetenskapsrådet (VR), STINT, and SSF. She is cur-
rently an associate professor at KTH Royal Institute
of Technology, Sweden and an Adjunct Professor
at the University of Turku, Finland. Her scientific
work contains more than 100 publications, including

journal articles, conference papers, book chapters, edited proceedings, and
edited special issue of journal. She actively acts as a guest editor, organizer,
and program chair in different venues and conferences. Her main areas of
interest include interconnection networks and neural network accelerators. She
is a member of the European Network on High Performance and Embedded
Architecture and Compilation (HiPEAC) and IEEE Senior Member.


