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WEAK MIXING DISC AND ANNULUS
DIFFEOMORPHISMS WITH ARBITRARY LIOUVILLE
ROTATION NUMBER ON THE BOUNDARY

By BAssaM FAYAD AND MARIA SAPRYKINA

ABSTRACT. — Let M be anm-dimensional differentiable manifold with a nontrivialrclie action
S = {Sit},cp St+1 = S, preserving a smooth volume. For any Liouville numbery we construct a
sequence of area-preserving diffeomorphigihssuch that the sequendé, o S, o H,, ' converges to a
smooth weak mixing diffeomorphism @f/. The method is a quantitative version of the approximatipn b
conjugations construction introduced in [Trans. MoscowtiM&oc. 23 (1970) 1].

Form = 2 and M equal to the unit dis®? = {2 4 y* < 1} or the closed annulusé = T x [0,1]
this result proves the following dichotomy: € R \ Q is Diophantine if and only if there is no ergodic
diffeomorphism ofM whose rotation number on the boundary equa(en at least one of the boundaries
in the case of\). One part of the dichotomy follows from our constructiotie other is an unpublished
result of Michael Herman asserting thatifis Diophantine, then any area preserving diffeomorphisth wi
rotation numbery on the boundary (on at least one of the boundaries in the da&¢ displays smooth
invariant curves arbitrarily close to the boundary whickatly precludes ergodicity or even topological
transitivity.
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RESUME. — Soit M une variété différentiable de dimensiom > 2 admettant une action non triviale
du cercleS = {Si},cg, St+1 = S, qui préserve une forme volumede classeC°. Pour tout nombre
Liouville o on construit une suite de difféomorphisnigs préservant l'aire tels que la suifg, o S, o H,, *
converge vers un difffomorphismse faiblement mélangeanf dLa méthode est une version quantitative
des constructions par conjugaisons successives intesddgins [Trans. Moskow Math. Soc. 23 (1970) 1].

Pourm = 2 et M égale au disque uni®®® = {z? + 3> < 1} ou a 'anneau fermé =T x [0,1] ce
résultat prouve la dichotomie suivantev:e R \ Q est diophantien si et seulement si il n’existe pas de
difffomorphismse ergodique d& avec un nombre de rotation égalkasur le bord (sur au moins un
des bords dans le cas d¢. Un c6té de la dichotomie suit de nos constructions, l&dtun résultat non
publié de Michael Herman affirmant quecsiest diophantien, alors tout difféomorphisme préservaird’
et ayant un nombre de rotatiensur le bord (sur au moins un des bords dans le ca&)deossede des
cercles invariants réguliers arbitrairement proches dd,lm® qui exclut I'ergodicité et méme la transitivité
topologique.

0 2005 Published by Elsevier SAS

1. Introduction

We present a construction method providing analytic weakingidiffeomorphisms on the
torusT? = R¢/Z4, d > 2, and smooth weak mixing diffeomorphisms on any smooth rothif
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340 B. FAYAD AND M. SAPRYKINA

with a nontrivial circle action preserving a smooth volumeThe diffeomorphisms obtained are
homotopic to the identity and can be made arbitrarily closié t

We will effectively work either on the two torus for the antityconstructions or on the closed
annulusA =T x [0, 1] for the smooth constructions. In the case of the torus thetoaction is
exactly the same in higher dimensions and we explain in &2td4 how the smooth construction
can be transfered from the annulus to general manifoldsauvitbntrivial circle action.

By smooth diffeomorphisms on a manifold with boundary we migdinitely smooth in the
interior and such that all the derivatives can be continlyoeitended to the boundary.

We recall that a dynamical systef/, T, 1) is said to be ergodic if and only if there is no
nonconstaninvariant measurable complex functidnon (M, ), i.e. such thak(Tz) = h(z). It
is said to be weak mixing if it enjoys the stronger propertyaff havingeigenfunctionat all, i.e.
if there is no nonconstant measurable complex functiam (M, 1) such thath(Txz) = Ah(z)
for some constant € C.

The construction, on any smooth manifold with a nontriviatle action (in particulai?), of
volume preserving diffeomorphisms enjoying differentaalig properties (among others, weak
mixing) was first undertaken in [1]. Fare R denote bysS; the elements of the circle action on
M with the normalizatior; 1 = S;.

Let A(M) be the closure in th&€> topology of the set of diffeomorphisms of the form
hoS;oh™!, witht € R andh area preserving>°-diffeomorphism of}/.

For a givena € R we denote byA, (M) the restricted space aonjugacies of the fixed
rotation S,,, namely the closure of the set 6P°-diffeomorphisms of the formh o S, o h~1.

It is easy to see that the sets, (M) are disjoint for differentv and in [4, Section 2.3.1], it
was proved for a particular manifoltl/ that|J, . Aa(M) & A(M). We do not know if the
inclusion remains strict on any manifold.

Anosov and Katok proved in [1] that irl(M) the set of weak mixing diffeomorphisms is
generic (contains &s dense set) in th€’> topology. Actually, it also follows from the same
paper that the same is true i, (M) for a Gs dense set ofr € R although the construction,
properly speaking, is achieved in the spatiél). However, [1] does not give a full description
of the set ofx for which the result holds i, (M). Indeed, the flexibility of the constructions in
[1] comes from the fact that is constructed inductively at the same time as the conjogstare
built, that is: at stem, o, = p,, /¢y, IS given, andh,, is constructed that commutes witlh, ; then
an+1 is chosen so close to, that f, = H,,S.,, ., H,,* (whereH,, = h; o --- o h, and eacth,,
commutes withS,, ) is sufficiently close tof,,_; to guarantee the convergence of the sequence
{fn}nen- Then stepn + 1 gets started by the choice 6f,,, etc. The finala is the limit of
o, By this procedure, there is no need to put any restrictionghe growth of the”” norms of
H,, sincea,, 1 can always be chosen close enoughtao force convergence. The counterpart
is that the limit diffeomorphism obtained in this way wilelin A, (M) with « having rational
approximations at a speed that is not controlled.

Since we want to do the construction inside, (M) for an arbitrary Liouville numbery,
we are only allowed to make use of the fact that the decawpf, — | is faster than any
polynomial ing,,. So we have to construgt, with a polynomial (ing,,) control on the growth of
its derivatives to make sure that the above procedure cgeser

Recall that an irrational numberis said to be Diophantine if it is not too well approximated
by rationals, namely if there exist strictly positive carstsy and+ such that for any couple of
integers(p, ¢) we have:

A

Iqa—pl>q7~
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WEAK MIXING DISC AND ANNULUS DIFFEOMORPHISMS 341

In this paper we work in the restricted spacdg()M) and prove the following forany
Liouville, i.e. not Diophantine and not rational, frequgnc

THEOREM 1.1. —-Let M be an m-dimensional(m > 2) differentiable manifold with a
nontrivial circle actionS = {S;},cp, Si41 = St, preserving a smooth volume If o € R is
Liouville, then the set of weak mixing diffeomorphisms itegie in theC'* topology inA,, (M).

On M =D? or A, the weak mixing diffeomorphisms we will construct.ity, (M) will have
S, as their restriction to the boundary. This clarifies thetrefabetween the ergodic properties
of the area preserving diffeomorphisms Bf and their rotation number on the boundary,
complementing the striking result of M. Herman stating thatis a smooth diffeomorphism of
the disc with a Diophantine rotation number on the boundaen there exists a set of positive
measure of smooth invariant curves in the neighborhoodeobtundary, thug is not ergodic.
By KAM theory, this phenomenon was known to happen for Diaytime o as soon as the map
f displays some twist features near the boundary. Hermauisd® force was to get rid of the
twist condition in the area preserving context. To be moeeige, we introduce the following

DEFINITION 1.2.—LetM denote eitheD? or A. Givena € R, we denote by3,, (M) the set
of area preserving’'>°-diffeomorphisms of\/ whose restriction to the boundary (to at least one
of the boundary circles in the case of the annulus) has @gotatimber.

THEOREM 1.3 (Herman). Let M denote eithefD? or A. For a Diophantineq, let F ¢
B, (M). Then the boundary df/ (on which the rotation number is) is accumulated by a set of
positive measure of invariant curves Bf

In the case of the disc and the annulus, as a corollary of Ene®d.1 and 1.3, we have the
following characterization of Diophantine numbers:

COROLLARY 1.4.—-Let M denote eitheD? or A. A number € R\ Q is Diophantine if and
only if there is no ergodic diffeomorphisfne B, (M).

On M = T? and under a more restrictive condition anthe method of approximation by
conjugations can be undertaken in the real analytic togodogl with very explicit conjugations.
For an arbitrary fixed > 0, for anyn € N, we set:

(1.1) ¢n(0,7) = (0,7 + g7 cos(2mq,0)),
gn(0,7) = (0 + [ngl]r,7),
hn:gno¢na Hn:hlo"’ohna
fn=H,oR oH L.

Q41
Here [] denotes the integer part of the number @dlenotes the actiof9,r) — (6 +t,r). The
convergence of the diffeomorphisnfs is in the sense of a usual metig(-,-), based on the
supremum norm of analytic functions over the complex stfipidth p; see Section 2.2 for the
definition. We will prove the following

THEOREM 1.5. —Leta € R be such that, for som&> 0, equation

| —pn/gn| < eXp(_Q}L-HS)

has an infinite number of integer solutiops, ¢, (wherep,, and ¢,, are relatively prime for

eachn). Take0 < o < min{é/3,1}. Then, for allp > 0, there exists a sequence, = p,,/qn
(which is a subsequence of the solutions of the equation jlsmah that the corresponding
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342 B. FAYAD AND M. SAPRYKINA

diffeomorphismsf,,, constructed in(1.1), converge in the sense of thg(-,-)-metric, and
f=1lim, ., f, is weak mixing.

Weak mixing diffeomorphisms, given by this theorem, arequely ergodic. This can be
shown by the same method as in [9].

Remark1.6. — The result in Theorem 1.5 is actually weaker than wisat loe obtained
by time change, e.g. the existence Bh of real analytic weak mixing reparametrizations of
Ry(1,0) for any irrationala: such thatimsup,,¢z, ,en- —% #0[2,6,7,10]. Indeed, such
reparametrizations beloragpriori to A, (T?) (cf. [4]). However, we included the constructions
onT? with explicit successive conjugations as in (1.1) becaeg@toof of weak mixing follows
almost immediately from the general criteria we estabtidlodreat the general smooth case, and
also because these constructions might be generalizetie¢o mianifolds where the techniques
of reparametrizations are not available.

2. Preliminaries
2.1. General scheme of the constructions

Here we give a general scheme of the construction of theatifephisms as a limit of
conjugacies of a given Liouvillean action while Section 3lioes the particular choices that
will yield the weak mixing property for the limit diffeomohpsm. Henceforth)/ denotes either
the torusT? or the annulus\ and we consider polar coordinat@sr) on M that denotes either
the torusT? or the annulug\. By )\ andy. we denote the usual Lebesgue measureR and on
R?, respectively. The term “measure-preserving” will refethie measurg.

Fora € R, we consider the ma§, : M — M, (6,r) — (6 + «,r). The diffeomorphisms that
we shall construct, are obtained as limits of measure pregetransformations
o H;l.

n+1

(2.1) f= lim f,, wheref,=H,oS,

Here o, = p,,/q, is a convergent sequence of rational numbers, such |that «,,| — 0
monotonically; H,, is a sequence of measure preserving diffeomorphism&/ofn different
constructions, the convergence ff will be meant in theC* or real analytic category; the
topology in each case is standard, and will be recalled iti@ec2.2 and 2.3.

EachH,, is obtained as a composition

(22) Hn:hlo"'ohna
where eveny,, is a measure preserving diffeomorphismidfsatisfying
(2.3) hp 0 Sy, =Sa, 0hn.

At stepn, h, must display enough stretching to insure an increasingilligion of the orbits
of H, 0S,,., o H,'. However, this stretching must be appropriately contcbiléth respect to
| — av, | to guarantee convergence of the construction.

2.1.1. Decomposition of h,,
In the subsequent constructions, eaghwill be obtained as a composition

(24) I = gn 0 On,

whereg,, is constructed in such a way thét,, o ¢, = ¢, 0 S;,,,; the diffeomorphisny,, is
a twist map of the form
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WEAK MIXING DISC AND ANNULUS DIFFEOMORPHISMS 343

(2.5) gn(0,7) = (6 + [ngZ]r,7),

for some) < o < 1 that will be fixed later. The role af,, is to introduce shear in the “horizontal”
direction (the direction of the circle action), whilg, is responsible for the “vertical” motion,
i.e. transversal to the circle action. The choice of the si&etor ng? will be explained in
Section 3.1.

In the real analytic casep, will be given by an explicit formula and convergence will
follow from an assumption on the rational approximationsxofin the smooth casej,, will
be constructed in Section 5.2 in such a way that its derieatbatisfy estimates of the type:

IDadnllo < c(n,a)gl?!,  ||Dadyt|], < c(n,a)gl!,

wherec(n, a) is independent of,, (cf. Sections 2.3 and 5.2.3 about the notations we adopig. Th
polynomial growth of the norms a$,, is crucial to insure the convergence of the construction
above and is the reason why it can be carried out for an anpitiauville number.

2.2. Analytic topology

Let us discuss the topology on the space of real-analytieatiiorphisms off2, homotopic
to the identity. All of them have a lift of type”(0,r) = (6 + f1(0,r),7 + f2(6,r)), where
fi :R? — R are real-analytic and?-periodic.

For anyp > 0, consider the set of real analyt&?-periodic functions oriR?, that can be
extended to holomorphic functions ot? = {|Imé@|, |Imr| < p}. For a functionf in this set, let
| fll, =sup 4, | f(8,7)]. We defineC;j(’IFQ) as a subset of the above set, defined by the condition:
£l < o0

Consider the spacBiff’, of those diffeomorphisms, for whose lift it holdg; € C%(T?),
i =1,2. For any two diffeomorphismsg’ andG in this space we can define the distance

dp(F,G) = mag{;gi% I fi — g +p\|p}-

=1,

For a diffeomorphisn?” with a lift 7'(0,r) = (T1(0,r),T>(6,r)) denote
J

Here we discuss the (standard) topology on the space of srdidtgomorphisms of\/ = T2,
which we shall use later. The annulus is endowed with theltayan the similar way.

We are interested in convergence in the space of smootloditfgphisms of\/, homotopic to
the identity, and hence having lift of tyg&(#,r) = (0+ f1(0,7), 7+ f2(0,7)), wheref; : R? — R
areZ?2-periodic. For a continuous functiofx: (0,1) x (0,1) — R, denote

or;
00

omi
or

o,
00

om,
or

b )

p

b

D71, = max{ |
p

2.3. C*°-topology

[fllo:= " sup )!f(Z)\-

2€(0,1)x(0,1
For conciseness we introduce the following notation fortiphderivatives of a function: for
a=(ay,az) € N?> we denotgal := a; + ay and

80.
Da = Ora1gfaz
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344 B. FAYAD AND M. SAPRYKINA

For F, G in the spaceDiff”(T2) of k-smooth diffeomorphisms of the torus, It and &
be their lifts. For mapping$ : R? — R? denote byF; the ith coordinate function. Define the
distances between two diffeomorphisifiandG as

Qo(F,G) = mare{ [ (F = G 9] .

du(F,G) = max{JO(F, G),||Da(Fi = G|, li=1,2, 1< al < k}
We shall use the metric, measuring the distance both betdifeamorphisms and their inverses:
di(F,G) = max{dy(F,G),dr (F~',G™1)}.

For M = D?, the Diff"’(M) topologies are defined in the natural way with the help of the
supremum norm of continuous functions over the disc.

For the smooth topology o/, a sequence abiff* (M) diffeomorphisms is said to be
convergent irDiff> (M), if it converges inDiff* (A1) for all k. The spac®iff>° (M), endowed
with the metric

_ > dk(F7G)
doo(FyG)—;%(Hd—k(RG))’

is a compact metric space, hence for any of its closed subspBaire theorem holds.
2.4. Reduction to the case of theannulus

Let (M, S, 1) denote a system of an-dimensional smooth manifold with an effective circle
action preserving a smooth volume We denote the action b§ = {S;}, g, Si41 =S and
assume it is effective, i.e. that n@ Z acts as the identity.

We denote byF' the set of fixed points of the actia$i. For ¢ > 1 we denote byF, the set
of fixed points of the magb; /,,. And by OM we denote the boundary df/. Finally we let
B:=0MUF, Fy.

Let A\ be the product of Lebesgue measuresSdnx D™~!. Denote byR the standard
“horizontal” action ofS! onS! x D™~1. We quote the following proposition of [4] that is similar
to corresponding statements in [1,11].

PROPOSITION 2.1 [4, Proposition 5.2]. £et M be anm-dimensional differentiable manifold
with a nontrivial (and effectivg circle actionS = {S},.g, Si+1 = S; preserving a smooth
volume . Let B := dM U F U (U, F,). There exists a continuous surjective mapS' x
D™~! — M with the following properties

(1) The restriction ofG to the interiorS! x D™~ is a C> diffeomorphic embedding

(2) 1(GO(S! x D™1)) =0;

(3) G(O(S* x D™~1)) o B;

(4) G.(N) =

(5) SoG=GoR.

We show now how this proposition allows to carry a constnrcas in the preceding section
from (S* x D™~1 R, \) to the general cas@\/, S, p).

Supposef: St x D™~ — St x D™~ is a weak mixing diffeomorphism given, as above,
by f =lim f,, f, = H, o R, o H, ! where, moreover, the mag$,, are equal to identity in a
neighborhood of the boundary, the size of which can be chtuseecay arbitrarily slowly. Then
if we define the diffeomorphism&,, : M — M
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WEAK MIXING DISC AND ANNULUS DIFFEOMORPHISMS 345

H,(x)=GoH,oG ' (z) forzeG(S'xD™ ), and
ﬁn/(l') = forz e G(Sl X 8(1[))7”_1))7

we will have thgtf]n 08,0 ﬁgl is convergent in the”>° topology to the weak mixing
diffeomorphismf : M — M defined by

g(x)=G(f(G7'(2))) forzeG(S'xD™ "), and
g(x) = Sa(x) forz e G(S' x o(D™1)).

In the sequel, to alleviate the notations, we will assume tha= 2 and will do the
constructions on the annulds= S* x [0, 1] or on the two torud?.

3. Criterion for weak mixing

The goal of this section is to give a simple geometrical dote involving only the diffeo-
morphismsp,, o R, ., © ¢,;* and insuring the weak mixing property for the diffeomorphis
given by (2.1)—(2.5) in case of convergence. The criteridhlwe stated in Proposition 3.9 of
Section 3.6.

The following characterization of weak mixing will be usesg€, for example, [10])f is weak
mixing if there exists a sequenee, € N such that for any Borel set$ and B we have:

(3.1) lu(BN f="n(A)) — u(B)u(A)| — 0.

3.1. We will now give an overview of the criterion assuming tidtis the annuludl x [0, 1]
and denoting by horizontal intervals the séts- [01,62] x {r}. We say that a sequencg,
consisting for eacl of a collection of disjoint sets o/ (for example horizontal intervals),
converges to the decomposition into poiifteany measurable seB can be approximated as
n — oo by a union of atoms iw,, (cf. Section 3.2). We denote this by, — «.

n—oo

The first reduction is given by a Fubini Lemma 3.3. Here we dguaseB at each step into
a union of small codimension one sets for which a precisdamis (3.1) is assumed to hold,
see (3.2). For each these sets are images by a smooth migmf a collectiony,, of horizontal
intervals such thak’, (n,,) — ¢. Lemma 3.3 shows that (3.2) guarantees weak mixing.

The second step is Lemma 3.4 asserting that under an additiondition of proximity (3.3)
betweenf"~ and f'~, it is enough to check (3.2) fof,, .

Now, we takeF;, in the Fubini Lemma equal téf,,_; o g,,. SinceH,,_; in the construction
only depends om,,—1, ¢, can be chosen so thdDH, 1|0 < lng,. With our choice ofg,
(c < 1in (2.5)) this implies thatH,_1 o g,(n,) — ¢ if 1, — ¢ is a partial partition with
horizontal intervals of length less tharg,, (cf. Lemma 3.5). With the above observations, we
are reduced to finding a collectiop and a sequence,, with the property thatf,,_; o0 g,, 0 ¢, ©
Ry o ¢, 1 (I) is almost uniformly distributed id/ for I € 7,,.

The geometrical ingredient of the criterion appears in i8ec3.5 and merely states that if
a set (in particulag,, o Ry)", | o ¢, (1)) is almost a vertical line going from one boundary of
the annulus to the other, then the image of this seg,byefined in (2.5) is almost uniformly
distributed inM. “Almost vertical” is made precise and quantified in Defimiti3.6. Actually,
the choice ofg,, (¢ > 0 in 2.5) gives in addition thakl,,_; o g,, of an almost vertical segment
will be almost uniformly distributed i/, since we impose th&tDH,,—1||o < 1lng,.

In conclusion, the criterion for weak mixing (Propositior®Broughly states as follows: Let
f be given by (2.1)—(2.5). If for some sequeneg, satisfying the proximity condition (3.3)
betweenf"» and f™~, there exists a sequengg — ¢ consisting of horizontal intervals of
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346 B. FAYAD AND M. SAPRYKINA

length less than /¢, such that the image dfe 7, by ¢,, o R, ., o ¢, ! is increasingly almost
vertical asn — oo then the limit diffeomorphisny is weak mixing.

3.2. A Fubini Lemma

DEerFINITION 3.1.— A collection of disjoint sets o/ will be called partial decomposition
of M. We say that a sequence of partial decompositignsonverges to the decomposition into
points (notationy,, — ¢) if, given a measurable set, for anyn there exists a measurable set
A, which is a union of elements of,, such thatim,,_,, u(A A A4,,) =0 (hereA denotes the
symmetric difference).

In this section we work withM/ = T? or M = A. For these manifolds we formulate the
following definition.

DEFINITION 3.2.— Lets; be a partial decomposition @f into intervals, and consider al/
the decompositiom consisting of intervals inj times some- € [0, 1]. Decompositions of the
above type will be calledtandard partial decomposition§Ve shall say that is the image
under a diffeomorphisni’: M — M of a standard decomposition(notation:v = F'(n)), if

v={T=F()|I€n}.
Here we formulate a standard criterion for weak mixing. Thaopis based on the application
of Fubini Lemma.

LEmMmA 3.3 (Fubini Lemma). —Let f be a measurg: preserving diffeomorphism a¥/.
Suppose that there exists an increasing sequengeof natural numbers, and a sequence of
partial decompositions,, — ¢ of M, where, for each, v,, is the image under a measure-
preserving diffeomorphisth, : M — M of a standard partial decomposition, with the following
property for any fixed squared C M and anye > 0, for anyn large enough we have: for any
atoml’, € v,

(32) |/\n (Fn N f_mn (A)) - )\n (FH)M(A)‘ < 5)\71 (Fn)/u(A)v
where\,, = F(\).
Then the diffeomorphistfiis weak mixing.

Proof. —To prove thatf is weak mixing, it is enough to show that for any squdrand a Borel
setB

(B O (A)) — p(B)u(A)| — 0
whenn — oo. In the case of the annulus, it is even enough to show this rigrsguareA
that is strictly contained in the interior af. By assumption, for any. we have:\,(T',,) =
An(Fn(In)) = A(In). Then

A (Do N (A)) = A (Fu(In N o f77(A))) = AT, N E, o f77(A)).
By (3.2), this implies:
NI NF o f7m(A)) = AIn)p(A)| < eX(In)p(A).

Take any Borel seB C 1‘2. Sinceun — ¢, for anye, for fixed A and B, there exist: and a
measurable st = J,., I';, (I';, are elements aof,,, ando is an appropriate index set) such that

(B A B)| < ep(B)u(A).
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ConsiderB = Fn—l(ﬁ) (it is also measurable sindg, is continuous). Then
p=Jr'm)=UL=U U L x{y}
i€o i€o 0<y<lico(y)
We estimate:
(BN (A)) = u(B)u(A)|
p(EHB)YNE o f7m(A)) — u(B)u(A)|
p(BOE; o f7m(A)) — p(B)u(A)| + 2ep(B)u(A)

i€o(y)
<3eu(B)w(4). O

= / Y I @) x {yy N7 o i (A)) = A1) u(A) | dy + 2eu(B)u(A)

3.3. Reduction from f to f,,

LEMMA 3.4 (Reduction tg,). —If f is the limit diffeomorphism fror{2.1), and the sequence
m,, in the latter lemma satisfies

1
(3.3) do(f™ ) < 5
then we can replace the diffeomorphignn the criterion(3.2) by f,.:
(3.4) A (T 0 f ™ (A)) = A (Tr)p(A)| < eXn (D) u(A),

and the result of Lemma. 3 still holds.

Proof. —Let us show that the assumptions of this lemma imply (3.2).dFi arbitrary square
A C M ande > 0.
Consider two squares}; and A,, such that

A1 CACA, p(ALA) < Zu(A).

w| m

Moreover, ifn is sufficiently large, we can guarantee that

dist(9A,04;) > 2%

(where distA, B) = infca,yeB |z — y|, andO A denotes the boundary &f), and
|>‘n (Fn nfm (Az)) - )‘n(rn)N(Ai)| < A (Tn)p(As).

By (3.3), for anyz the following holds:f*~ (x) € A; implies f™"(z) € A, andf™" (z) € A
implies f]"~ (x) € As. Therefore,

AT N ™ (A1) A (Lo N FT(A)) < X (Do 0 f7 ™ (A2)),
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which gives the estimate:

3

(15 )0 < an(mn 7)< (145 ) A u4e),

implying (3.2). O

oh- !

An 41 n

3.4. Reduction from f,, to h,, o R,

The following is a technical lemma that will allow us to fodaghe sequel only on the action
of h, o Rm» o h, 1 (more specifically omy,, o ¢,, o R™» o ¢.-1) in order to get (3.4):

Qn+t1 Qp41
LeEmMA 3.5.-Letn, be a sequence of standard partial decomposition&/dhto horizontal

intervals of length less or equal ig/q,,, let g,, be defined by2.5) with some) < o < 1, and let
H,, be a sequence of area-preserving diffeomorphisnid afuch that for alin

(3.5) |DH,1llo < Inga.

Consider partitions/,, ={T',, = H,—19n (1) | In € M0 }-
Thenn,, — ¢ impliesy,, — ¢.

Proof. —Leto < ¢’ < 1, and consider a partition of the annulus into squatesof side length
between;;"' anqu;"'. Sincen,, — ¢, we have for > 0 arbitrarily small, ifn is large enough,
1(Ure,, I) = 1—¢, sothat for a collection of atomswith total measure greater thar- /= we
haveu(Ure,, 1NS) = (1—+/€)u(S). Sinces’ < 1 and any!l € n,, has length at most/q,,, we
have for the same atontsas aboveu(U;¢,, 1cs) = (1 —2v/€)u(S) if nis sufficiently large.

Consider now the setS), ; = H,_19,(S»,;). In the same way as the squaigs,, a large
proportion of these sets can be well approximated by unibetements of,,. But by (3.5), we
have:

diam(Cy, ;) < [[DHp—1llo[|Dgn lo diam(Sy ;)

which goes td) asn — oo. Therefore, any Borel sé can be approximated by a union of such
setsC), ; with any ahead given accuracyriis sufficiently large, hencB gets well approximated
by unions of elements of,. O

3.5. Horizontal stretch under g,

We shall call byhorizontal intervakny line segment of the forthx {r}, where[ is an interval
on thef-axis. Vertical intervalshave the form{¢} x J whereJ is an interval on the-axis. Let
7, andmy denote the projection operators omtandé coordinate axes, respectively.

The following definition formalizes the notion of “almostitorm distribution” of a horizontal
interval in the vertical direction.

DEFINITION 3.6 ((7, d,¢)-distributior). — We say that a diffeomorphisin: M — M (~,6,¢)-
distributes a horizontal intervdl (or ® (1) is (v, d, ¢)-distributed, if

— m(®(I)) is aninterval7 with 1 — § < A(J) < 1;

— ®(I) is contained in a “vertical strip” of typg:, ¢ + ] x J for somec;

— for any interval/ C J we have:

AIN® YT xJ)) M| _ )
(36 XD A ST
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We shall more often write the latter relation in the form

NI N@™(T x N)AT) = MDAT)| < eMDA().

LEMMA 3.7.-Let g,, be a diffeomorphism of the forig2.5) with some fixed) < o < 1.
Suppose that a diffeomorphisin: M — M (v, 6, ¢)-distributes a horizontal interval with
v=1/(ng%), 6 =1/n,e=1/n. Denoter, (®(I)) by J.

Then for any squarg of side lengthy,, 7, lying in T x J it holds

(3.7) ININD 0 (S))A) — AD)(S)| < 8/nA(Iu(S).

Lemma 3.7 asserts that, if a diffeomorphidnialmost uniformly” distributed in the vertical
direction, then the composition @f and the affine map,, “almost uniformly” distributes/ on
the whole of M.

To prove Lemma 3.7, we shall need the following preliminatgtement: it says thag,,
“almost uniformly” distributes on\/ any sufficiently thin vertical strip.

LEMMA 3.8. —Suppose thag: M — M has a lift
g(0,r)=(0+br,r) forsomebeZ, |bl>2.
For an interval K on ther-axes \(K) < 1, denote by ., a strip
K. :=[c,c+7] x K.
Let L = [I1,(2] be an interval on thé-axes. IfbA(K') > 2, then for
Q= (K. Ng (L x K)),

it holds

IN@Q) = MEOA(L)| <yAK) + %EL) N 2%

Proof. —By definition,Q = {r€ K | 30 € [c,c+]: 0 +br € [I1,12]}. Then
Q:{TEK“)TG (14 —'y,lg]—c}.

To estimate\ (@), note that the interval X' (seen as an interval on the real line) intersects not
more tharb\(K) + 2 intervals of typ€fi, i + 1], ¢ € Z, on the line, and not less than (K) — 2
such intervals. Hence,

(12—l1)+7:)\

; (KAL) + yA(K) + 2248 | 27,

MQ) < (bA(K) +2)

The lower bound is obtained in the same wap

Proof of Lemma 3.7. £et S be a square il x J of sizeq,“ x ¢,,?. Denoteny(S) by Sy,
7,(8) by S,.. In these notations\(S,.) = A(Sp) = ¢, 7, andA(Sg)A(S,) = u(S) = ¢, .

Let us study what part ofo(I) is sent byg,, into S. Since®(I) is contained in a strip
[c,c + ~] x J for somec¢, by assumption, and,, preserves horizontals, this part lies in
K. :=[c,c+ ] x S,. Denoting.Sy by [s1,s2], define a “smaller” rectangl&; C S: S; =
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[s1+ 7,82 — 7] x S, (in our assumptiony is much less than(Sy), so this rectangle is non-
empty). Consider two sets:

Q:= WT(KC,Vﬂggl(S)), Q1:= m(Kwﬂg;l(Sl)).
Then we have:
(3.8) O N(Tx Q) C®(I)Ng, (S)Cc®I)N(T x Q).

The second inclusion is evident, the first one comes fromdhethatg,, preserves lengths of
horizontal intervals.

Lemma 3.8 permits us to estimatéR)) and\(Q1). Indeed, to estimate the former one, apply
Lemma 3.8 withh = [ng], v = (ng%)~ !, K = S,, andL = S,. We get:

AS:)  2MSo) 2 4

ngg  [ngg]  ngglngg] " n

IMQ) — n(s)| <

In the same way, applying Lemma 3.8 with the sabpey, K as above and. = mp.5; =
[s1 4+ 7,52 — 7], we get the same estimate (for langke

A@) — (S| < (S

In particular, this implies\(Q) < 2u(S), andA(Q1) < 2u(S).
Both @ and@; are finite unions of disjoint intervals. Then, using (3.6)wi = % (which was
the assumption of the present lemma), we have:

AIN® (T x QA — ADANQ)] < ADAQ) <

and the same estimate holds @t instead ofQ). The last preliminary estimates are:

ININ@ (T x Q))A(JS) — AI)u(S)|

<MIN@TH(T x Q)A) ~ ADNQ)] + AAQ) — u(S)]

< 2ADIS) + ADp(S) = TADu(S);

and, in the same way (noting thatS) — 11(S1) = 2 u(5)), one estimates

AN ® (T x Qu)A) = AD(S)] < AT u(S).

Now relation (3.8), together with the preliminary estinsmatbove, gives the desired conclu-
sion:

IAIN@™ o g, (S)AJ) = A(ID)u(S)]
<max{|A(IN®~ (T x Q))A(J) — AI)u(S)],

NI ST x Q)M — ADu(S) [} <

%/\(I)M(S). 0
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3.6. Criterion for weak mixing

We can now state the following

PROPOSITION 3.9 (Criterion for weak mixing). Assume tha{f,, = H, o R, ,, o H, ' is
a sequence of diffeomorphisms constructed followhg), (2.3), (2.4)and (2.5) with some
0 < o < 1/2, and that for alln (3.5) holds.

Suppose that the limitm,, .. f,, = f exists. If there exist a sequenes, satisfying(3.3)and
a sequence of standard partial decompositigpsof M into horizontal intervals of length less
than1/q,, such that

(1) nn —e,

(2) for any intervall,, € n,, the diffeomorphism

Py = 0 R, 067

A1

(-1, 1, L)-distributes the interval,,

ngg’n’

then the limit diffeomorphisrfi is weak mixing.

Proof. —~We use Lemma 3.4 to prove weak mixing. Consider partitigns- {T",, = H,,_1 ©
gn(Ip) | I, € m,}, and let )\, = (H,_1 o g,)*\. By Lemma 3.5,v, converges to the
decomposition into points.

Let an arbitrary squard ande > 0 be fixed. In order to be able to apply Lemma 3.4, itis left to
check condition (3.4) for any,, € v,,, with f/"» = H,, 0 S;”;H oH '=H, 10g,0®P,0g, 0
H ' . Byassumption (2) of the present lemma, forilic 1,,, . (®,,(1,,)) D [~1/n,1 —1/n].

Let S,, be a square of side lengity, S, C T x [-1/n,1 — 1/n]. Consider

Cp:=H,_1(Sn).
Assumption (2) permits to apply Lemma 3.7. Then we haver(&ﬁthgﬁ <2):

A (D 0 7 (Cn)) = (D) (€|
=|A(L. N @, 09, (Sn)) — MIn)u(Sn)|

< 5 A 1 0 g 8N = M) + S A (s
< QSA(IH)M(STL) + %A(In)u(sn) = L:An(Fn)ﬂ(Cn)-

By (3.5), we have forn sufficiently largediam(C,,) < ||D(Hp—1)llo diam(S,) < 1/2™.
Hence, fom large enough, one can approximatéy such setg’, lying in T x [1/n,1+ 1/n].
More precisely, forn large enough, there exist two sets, which are unions of GgtsA; =
Uy, Cn, A2 =, Cy such that

A; CTx[1/n,1—1/n], A1 CANT x [1/n,1—1/n] C Aa,
[1(A) = u(40)] < Su(A).

Taken so thatln—8 <3 Then we can estimate:
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An (T 0 f7 ™ (A)) = A (D) u(A)

< (T N 177 (A2)) = Au(Ca)ia(Aa) + ZAn(Da)(A)

< A (Cn)a(Az) + SAa(Da)p(A) < An(Ta)(A).

The lower estimate for this difference is obtained in the sawmay (using4;). We have shown
that, if n is sufficiently large, for an arbitrary/,, € v,,, (3.4) holds. Then, by Lemma 3.4,is
weak mixing. O

4. Analytic case on thetorus T?

This section is devoted to the analytic construction on onestT?2. We recall the notations of
the Theorem 1.5 that we want to prove. For an arbitrary fixed0, for anyn € N:

(4.1) dn(0,7) = (0,7 + g cos(27qn0)),
gn(0,1) = (0 + [ng7]r,7),
hn:gno¢n7 Hn:hlo"’ohna
fn=HpoR,, oH

Qln 41

4.1. Proof of convergence

Let o, 6 ando be as in the statement of Theorem 1.5, anghlet0 be fixed. Letw,, = p,./qn
be a sequence such that— «,,| is decreasing and
(P1) Foralln € N,

o — | < eXP(—qvlL+3ﬂ)'

By eventually extracting fromy,, we can assume that this sequence also has the following
properties:
(P2) Denote the lift of the inverse of the diffeomorphigfy from (4.1) by((H, 1)1, (H, 1)2),
and set
o : -1 .
pri= max inf || (1), +pll,,  poi=p.

Then for alln € N,

U+4>'

n

(P3) With the definition of| DH ||, of Section 2.2, we have for all € N, and for allt such
that|t — a| < |y, — @,

qp = 4mnpp_1 + 1n(87'mq

G > | D(H, 1) R0 HL

(P4) ForallneN
HD(H7L*1)HO < IHQrw

Properties (P2)—(P4) are possible to guarantee by choggsisgfficiently large becaus#,,
does not depend ap,.

The first three properties are used to prove the convergandehe latter one is estimate (3.5),
needed for the proof of weak mixing of the limit diffeomorpii, which will be done with the
help of Proposition 3.9.
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The following statement implies the convergence of the sagelf,,.

LEMMA 4.1.-Supposey,, = {;—: satisfies(P1)—(P3)for some fixedr > 0 and p > 0. Then,
for anyn large enough, we have
(a) the diffeomorphisms defined @1) satisfy

dp(fna fn—l) < eXp(_Qn)§
(b) for anym < g,+1 it holds

do( ;nvfm)gi

Proof. —With the notations above, using the Mean value theorem aB)j & have (for some
t betweeny,, anda,,+1):

(4.2) dy(fus fu1) <|[(DHo-1)Re o H 2y || [ (B © Rayy 0 byt = Ra) 0 H |
g anhn © Ran_H © hnl - Ran

Pr—1"

Denote(cos 2mqy, (z + an11) — cos 2mwgyz) by R(z). For an arbitrary > 0, we can write:

(4.3) IR]|s < ||62mq”2||s‘1 — eQ”iq"a”+1| < 27rqn’|62”iq"z||s|an+1 — Q|
< 2Tiqn 2z
~

47rane |S|a—an|,

(we used the estimate,,+1 — a,| < 2|a — «y,|). By the definition ofh,,,
hy o Ran+1 o h7_Ll - R, = ([nqﬁ]qiR(@ - [nQ;ﬂ T) + (nt1 — an), qZR(Q - [nqg]r»'
Then

1fon 0 Ry 0 by = Ra, ||, < 20777 || R(6 = [na7] ) [,
By (4.3), itis less than

(4.4) 8mngte Hexp(qun(H — [nqn} ))||S|a — Q-

Applying (4.2), (4.4), (P2) and (P1) in sequence, we get:

dp(fs 1) < anl[hn o Rayy 0 byt = Ra ||
< 8mngp ™7 exp(4mngy T pn_1) o — an| < exp(gy ) |
<exp(gh™(1—¢7)) <exp(—gpt?7) < exp(—gn).
The second part of the claim is proved in the same way. One damote thatf)" =
hpoS™ oh,'=h,oRua,., oh,t and

An 41

—Oén|

n+1
m rrL § m
f do i + 1 ]
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4.2. Proof of weak mixing

For the proof of weak mixing, we shall use Proposition 3.9 thas proved in the previous
section. In order to apply the lemma, we choose a sequengg (n,, < ¢.+1 (in this case, by
Lemma 4.1(b), (3.3) holds), and a sequence of standarchpdeittompositionsrf,) consisting
of horizontal intervals with length less tharig,,, n,, — ¢, such that the diffeomorphism

(4.5) Qi =¢po Ry o ¢71

Qnt1 n

(=-,0, 1)-distributes any interval,, € 7,,.

ngn’

4.2.1. Choice of the mixing sequence m,,
We shall assume that

Gn+1 = q777,'

Define

mQ71p71+1 _ } + k’ < dn }
An+1 2 dn+1

Note that the set of numbers above is non-empty. Indeed, singg,; andq, 1 are relatively

; cqnPntl | 5 _ i i dnt1 ichi
prime, Fhe se{; - |]_ __0, e qn+‘1} on the circle contamgm, which is at least
M different equally distributed points.

We shall use the following estimate, which follows from thmeae assumption on the growth
of ¢,

My, =ming m < g1 | inf
kez

1 n _
(46) ‘annan+1 — 2‘ (mOdl) < 4 < q 6,

n
n+1

4.2.2. Stretching of the diffeomorphisms ®,,
Consider the set

2qn
k 1 k 1
4.7) Bn:U[_7+-
0 2¢,, 2qi/2 2¢y, 2q§1/2

We shall see tha®,, displays strong stretching in the vertical direction on Brharizontal
intervals, lying outsideB,,. To do this, we shall use the notion of uniform stretch frorfy [3
which we recall here.

DEFINITION 4.2 (Uniform stretch. — Givene > 0 andk > 0, we say that a real functiofion
an intervall is (g, k)-uniformly stretching on if for J = [inf; f,sup; f]

A(J) = k,
and for any intervall C J we have:

AMINfLT) M) )

A1) A | STA0)

The following criterion, that is easy to verify, gives a nggary and sufficient condition for a
real function (of class at leaét?) to be uniformly stretching. The proof can be found in [3].
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LEMMA 4.3 (Criterion for uniform stretch). ¥ f satisfies
. / >
inf | f'(@)|A(I) = k,

sup| () M) < inf|f'(2),
zel

then f is (g, k)-uniformly stretching or.

LEMMA 4.4. —Under the conditions of Theorein5, the transformationb,, has a lift of the
form:

CI)n(Q, ’I") = (0 + mnan+17 T + 1/171(9))7
wherey),, satisfies

(4.8) inf [vn|>q)/%  sup [l <9ngh.
T\B» T\B,

Proof. —By definition, ®,, has the desired form with

Un=¢2 (cos (27r(qn0 + mnqnan+1)) — cos(27rqn0)) = —2¢2 cos(27qn0) + o,
where

on=q> (cos (27 (g8 + MnGnom+1)) — cos(2m(gnb + 1/2))).

With the help of the Mean value theorem and estimate (4.8 easily verifies thalp!, | < 1,
and|o’| < 1.
Note thatB,, are chosen in such a way that

inf [sin(27q,0)| > g, '/%.
TI\I}BJNH( 7¢n9)| = ¢,

The statement follows by calculationO

4.2.3. Choice of the decompositions 7,

Let us define a standard partial decompositiops of T2, meeting the conditions of
Proposition 3.9.

Let7), = {I,,} be the partial decomposition @\ B,,, containing all the intervalg, such that

Yn(I) =1[0,1) mod 1.

We definen,, = {I x {r}| I € 7,, r € T}. Note that, for anyl,, € n,,, we haver,(®(I,,)) =T.
LEMMA 4.5.—Letn, be defined as above. Then, for ahye 7,

andn,, — ¢.

Proof. -By Lemma 4.4jnfr\ 5, [l ] = qf,,/Q. Therefore\(Z,,) < q,,75/2 foranyl, € n,.
Since the diameter of the atomsipf goes to zero when grows, it is enough to show that the
total measure of the decompositions goes to 1 whgrows. The total measure ¢f, equals:

D> M) <1=\(By) —4g, max (L)
€

e nCMNn

<1-2¢,(g,%% +24,°?) <1-3¢,'? - 1. O
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4.2.4. Proof of weak mixing

To prove weak mixing off, we shall apply Proposition 3.9. Since (3.3) holds by Lemmia 4
estimate (3.5) holds by Property (P4), the sequence of deasitionsn, — ¢ by the lemma
above, it is left to verify condition (2) of Proposition 3Which we pass to.

LEMMA 4.6.-LetI, € n,, ®, be as in(4.5). Thend,,(1,,) is (ﬁ, 0, 1 )-distributed.

Proof. —By the choice of,,, ,.(®,(I,)) = T, and hencey in the definition of ¢, 0, <)-
distribution can be taken equal to 0.
We have seen thdt,, has a lift®,,(r,0) = (6 + m,a,r + 1, (0)). Hence®,,(I,,) is contained
)

in the vertical strip(Z,, + m,«) x T. By the lemma above\(I,,) < < < -+ forany1,, € n,.

qn dn
Hence, we can take = ——.

ng

Our fixed I,, has the forml x {r} for somer € T andI € #,,. For anyJ C T, the fact that
,(0,r) € T x J is equivalent tap,,(6) € J — r. Lemma 4.4 implies the estimate:

o1

Supy €n |¢Z‘
vy In) < & n

infr, e,

Then, by Lemma 4.3 (Criterion for uniform stretch), is (%, 1)-uniformly stretching. Hence,
for any intervalJ C T, the following holds:

ML N @, (T x J)) = AI)AW) | = AT Napy ' (T =7)) = AIn)A(J)]
UANE

and we take = % in the definition of ¢, 0, €)-distribution. O

We have shown thab,, and,, verify the conditions of Proposition 3.9. It implies thAtis
weak mixing.
5. C*°-case on thetorus, annulusand disc

Sections 5.1-5.4 are devotedd = A and M = T2. The case of the disB? is studied in
Section 5.5.

5.1. Statement of theresult

Take any0 < o < 1. On M = A, consider the following transformations:

(5.1) gn(z,y) = (z+ [na7 ]y, y),
hn:gno¢n7 Hn:hlo"'oh'ru
fn = Hn o Ran_H o H;l;

where the sequenes, = p,,/q,, converging tax, and the diffeomorphisms,,, satisfying
(52) Rl/qn O¢n:¢noRl/qn7
will be constructed in Section 5.2 below so that
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THEOREM 5.1. —For any Liouville numberq, there exist a sequence, of rationals
and a sequence,, of measure preserving diffeomorphisms satisfy{6@) such that the
diffeomorphismg’,,, constructed as iif5.1), converge in the sense of the{f* (A7) topology,
the limit diffeomorphisny = lim,, ., f, being weak mixing ang € A, (M ). Moreover, for
anye > 0, the parameters can be chosen so that

doo(f, Ra) < €.

Remark5.2. — This result implies Theorem 1.1. Indeed, it followsdtly from Theorem 5.1,
that weak mixing diffeomorphisms are densedn(M). Itis a general fact (see [5]) that, in this
case, weak mixing diffeomorphisms are generiglin(M) with our topology.

5.2. Construction of ¢,

We begin by constructing a “standard diffeomorphism” on sae@are[—1,1] x [—1,1] =
[—1,1]2, from which¢,, will be obtained by a rescaling of the domain of definition.

5.2.1. Preliminary construction.
For a fixeds < 1/2, consider the squares = [—1,1]%, A(e) = [-1+¢,1 — ¢]? and A(2¢).

LEMMA 5.3.—For any e < 1/2 there exists a smooth measure-preserving diffeomorphism
© = p(e) of R?, equal to the identity outsid& () and rotating the squaré\ (2¢) by /2.

Proof. —Let i) = ¢ (¢) be a smooth transformation satisfying
0,r onR2 — A(e),
w((%v'):{( ) ()
(0/5,r/5) onA(2e),
andn be a smooth transformation, such that

(r,—0) on{6?+r2<1/3},

n(0,7) = { (0,r)  on{6?+r2>2/3}.

Then the composition
G=9 "y
provides the desired geometry. Moreover, it preserves giesgue measure on the set

U= (R*—-A(e)) UA(2e).

However, it does not have to preserve the area on the wholA.ofVe describe now a
deformation argument following Moser [8] that provides anea-preservingdiffeomorphism
@ on A, coinciding withg onU.

Let Qo denote the usual volume form d&?, and consider); := $*y. We shall find a
diffeomorphisnmv equal to the identity on the s&t, and such that*Q; = Q.

Let Q' = Q; — Qp, and note thaQ)’ = d(wy — $*wp), Wherewy is the standard 1-form
3(6dr — rd). Consider the volume form

Q= Qo + 1.
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Since it is non-degenerate, there exists a unique vectdrXiebuch that
(5.3) (X, ) = (wo — §"wo) ().

One can integrate the obtained vector field to get the oneapeter family of diffeomorphisms
{Vi}iep0), e = Xi(v1), vo = id. Thenv = v is the desired coordinate change. Indeed, one
verifies by calculation that

%V?Qt =0.
Hence{Q; = v§Qo = Q.

By an explicit verification, one obtained that preserves the fornag on U (for this note that
@ onU is an explicit linear transformation). Then &hEq. (5.3) writes a$);(X;,-) = 0. Since
Q, is non-degenerate, this implies th&t = 0 on U, hencev = vy = id on U, as claimed. The

desired area-preserving diffeomorphism is

p=ve. O

5.2.2. Construction of ¢,

Let us first definep,, on the fundamental domail,, = [0,1/¢,] x [0,1]. The lined =1/2q,
divides D,, into halves:D} = [0,1/(2¢,)] x [0,1] and D2 = (1/(2¢x),1/q,) x [0,1]. On D},
consider the affine transformatiaf, (¢, ) = (44,0 — 1,2r — 1), sendingD}., onto the square
A =[-1,1]2. Letp,, be the diffeomorphism given by Lemma 5.3 witk= 1/(3n), and set

(54) On = Cn_l O Pn © Ch.

We definep,, = Id on D2. Note thaip,, is smooth and area-preserving by, and equals identity
on the boundary oD. We extend it periodically to the wholg? by the formula:

¢n o Rl/qn = Rl/qn 0 ¢, ¢n(977' + ]-) = ¢n(9,r) + (O, 1)

The transformatior,,, defined in this way, becomes a diffeomorphism botlTérand onA in
a natural way.

For a fixedn, let us denote by, ; andem, (fori=1,2, j € Z) the shifts of the fundamental
domainD,, of ¢,,:

Dy jtq, =Dnj=Rjq,(Dn), and Dj ;.. =D} =R, (D).

5.2.3. Notation
For a diffeomorphisni’ of M (not necessarily homotopic to the identity), we shall derimt
the same letter its lift of the form:

F(z,y) = (az+ by + fi(z,y),cx + dy + fa2(z,y)),

where f;:R? — R are, in the case of the torug?-periodic with the property|f;|lo =
inf,ez || fi + pllo; and for the case of the annulug, are Z-periodic in the first component,
and such thaf| f1]|o = inf,ez || f1 + pllo- Note that the diffeomorphisms in our constructions
are defined by their lifts, satisfying this property. Fesmooth diffeomorphism# : R? — R?

we define byF; theith coordinate function, and denote

IF ] = max{ | DaFillo. [ Da(F), | |1 = 1.2, 0< |a] < k}.

illeo
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1 2
Dn.j D j

On (1)
¢n =1d

Fig. 1. Action of¢,,.

5.2.4. Discussion of the propertiesof ¢,
We have constructed,, so thatg,, equals identity onD,%)j, j€Z,and onD}w- the image of
any intervall,, ; x {r}, wherer € [1/(3n),1—1/(3n)], and
j 1 1 1
5.5 I,,=|— S+ — = ,
( ) 7 qn * 6ng, Gn 2qn 6ng,

with j =0,...,q, — 1, both undew,, and¢,, !, is an interval of typg 6} x [1/(3n),1 —1/(3n)]
for somed € I, ; (see Fig. 1).
Moreover, the following holds:

LEmMMA 5.4. —For all k € N the diffeomorphismeg,, constructed above satisfy

llgnlls < e(n,k)qr,

wherec(n, k) is independent aof,, .

Proof. —The desired estimate follows from (5.4) by the product ritless jmportant thatp,, is
independent of,,). O

Remark5.5. — For anyh, the construction implies that, (6, r) = Id in the domaing < r <
1/(6n) and1 — 1/(6n) < r < 1. It is easy to verify that in the same domains diffeomorplsism
fn from (5.1) equalR,,, . , .

5.3. Proof of convergence

In the proof we shall use the following lemma:

LEMMA 5.6.-Letk € N, andh be a diffeomorphism aof/. Then for alla, 6 € R we obtain
(5.6) di, (hRoah™ ' hRsh™) < Cil|RIE11]a — B,

whereC, only depends ok, andCy = 1.

Proof. ~We give the proof for the cas& = T?; for the annulus, the proof is obtained by
minor modifications. Note thab, h; for |a| > 1 is Z2-periodic. Hence, for any: R? — R?, we

have:sup,, , <1 [(Dahi)(g(z,y))| < [[2]]a)-
For k = 0, the statement of the lemma follows directly from the Mealu@aheorem.
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We claim that forj with |j| = k the partial derivativeD, (h; Roh~ — h; Rzh~1) will consist
of a sum of terms with each term being the product of a singtegpaerivative

(5.7) (Dohi)(Rah™) = (Dohs) (Rgh™")
with |a| < k, and at mosk partial derivatives of the form
(5.8) Dyh}!

with |b| < k. This clearly holds fok = 1. We proceed by induction.
By the product rule we need only consider the effect of déffeiating (5.7) and (5.8). Applying
D, with |¢| =1to (5.7) we get:

> ((DyDahi)(Rah™") = (DyDahi) (Rgh™ ")) Dehy
[b]=1

which increases the number of terms of the form (5.8) in tleelpet by 1. Differentiating (5.8)
we get another term of the form (5.8) but with < k + 1.
Now we estimate:

[(Daks) (Rah™) = (Dahi) (Roh ™)
1D,

WAl a1l — B1,
WAle-
Taking the inverse maps and applying the result we just prgiees (5.6). O

<
<

LEmMMA 5.7. —For an arbitrarye > 0, let k,, be a growing sequence of natural numbers, such
that)" ° , 1/k, <e. Suppose that, in constructi¢f.1), we have|a — a4 | < e and for anyn

1
(5.9 o — | < y——
2k Cre, | Hu s 1
whereCy,, are the constants from Lemrbie6. Then the diffeomorphisnfs = H,,o R, ., o H, !

converge in thdiff > topology to a measure preserving diffeomorphignand
doo (f, Ra) < 3e.

Moreover, the sequence of diffeomorphisms
(5.10) frni=H,oRaoH; ‘e A,

also converges tg in the Diff*° topology, hence € A,,.

Furthermore, if for a sequence of positive integers we have for alln:
1

2r by, || Hpl)”

(5.11) o — | <
then for anym < m,, we have
(5.12) Ao (F™, 1) < g
Proof. —By construction we havéi,, o R, = R, o h,. Hence,
foo1=H, 10Ry, oH, ', =H,0R,, oH;".

n—
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By Lemma 5.6, for alk andn,
dk(fnv fn—l) =dy (Hn © Roén+1 © Hn_l’ Hy o Rﬂtn o H’r:1>
< CullHalliftloms1 = cnl.

Estimating|a,, 11 — | < 2|a — o], and using assumption (5.9), we get for &ny k,,:

2Ck, | Hallz iy _ 1

dk(fnvfnfl) <dkn(fnafn71) < ko 1 < -
2k7LCkn |HHn |H§Zﬁ K

Hence, for any fixed:, the sequencef(,) converges iDiff*, and therefore, iiff>. Moreover,
one easily computes (using the definition of the-metric) that

doc(fa Ra) < |04 - 041| + Zdoo(fnafn—l) < 35;

n=1

(here we denotedy = R, ).
To prove thatf € A,, we show that the sequence of functigfise A, converges tqgf. For
this it is enough to note that, for amyandk < k,,, Lemma 5.6 and assumption (5.9) imply:

d(fo, fr) = di(Hp o Ra,yy o Hy ' Hy o R o Hy )

1

Hn”|kn+1|an+1 —al<—.

< Ckn kn+1 S
n

To prove the third statement of the lemma, note that forranyg m,,_1,

dO( U ) =dy (Hn o Rm,(xn,+1 oH, ! H, o Rman °© H;l)

Jn rJn—1 n

1
SlHnll2mla - an| < o7 -

Thend, (f™, ﬁ1)<2findo(f?»fi”ll)=2%- o

Let a Liouville number be fixed. Here we show that, for any given sequéggahe sequence
of convergentsy,, of o can be chosen so that (5.9) holds, and forany | < ¢,, (5.11) holds.

LEMMA 5.8. —Fix an increasing sequendg, of natural numbers, satisfyiny_~ , 1/k, <
oo, and let the constant§’,, be as in Lemm&.6. For any Liouville numbeky, there exists a
sequence of convergents = p,,/q., such that the diffeomorphisns,, constructed as if5.1)
with theser,, and with¢,, given by(5.4), satisfy(5.9)and (5.11)with anym,,_; < ¢,. Further,
we can choose,, so that in addition(3.5) holds.

Proof. -By Lemma 5.4, we havé|é, || < c1(n,k)qk. Then forh,, asin (5.1), we get:
Ialli < ea(n,k)ar".

With the help of the Faa di Bruno’s formula (that gives an @tpéquation for theath derivative
of the composition), we estimate:

2
I Halle < WHn-10 hulle < es(n k)az*
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wherecs(n, k) depends on the derivatives éF,_; up to orderk, which do not depend og, .
Suppose that, for eact g, is chosen so that

qn = cs(n,mn+1).

2 2
Then ||H, [, +1 < 2™ < 5% 7 We choose the sequence of convergentsy of
satisfying

1
2n+1knckn qz(kn+1)3+l )

‘OZ - anl = |Oé 7pn/Qn| <
the latter is possible sineeis Liouville. Then

1

o —ap| <
2n+1annckn

kn+17
kn+1

H,

which implies both (5.9) and (5.11). As for (3.5), i|EDH,,_1|lo < Ing,, it is possible to have
it just by choosingy,, large enough. O

5.4. Proof of weak mixing

5.4.1. Choice of the mixing sequence m,,
We shall assume that for all we have:

(5.13) Gnt1 > 10n%g,,.

Define, as in the analytic case

anpn-&-l 1+k"< dn }

my, = min{m < @1 | Inf <
k dn+1 2 n+1

€L

Leta, = (Mponi1 — ﬁ) mod q% Then the choice ofn,, and the growth condition (5.13)
imply:

(5.14) lan| <

Hence, if we use the notation

—1
nJ

I,; % [0,1] C D;

n,g>
we have
My, -1 2
(5.15) Ry (Dy ;) C Dy

for somej’ € Z.

5.4.2. Choice of the decompositions 7,

We definen,, to be the partial decomposition @ff consisting of the horizontal intervals
Inj; x {r} c D} ;, wherer € [1/(3n),1 — 1/(3n)], defined by (5.5) and of the intervals
I, ; x {r}withr €[1/(3n),1—1/(3n)] and

AU VA SRS S £ SR |
" g 2¢n 6ngn Y gn 6ng,

— anp |-
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2 2 L.
D1 . Dn.j Dn,]' DTL,J+1

n,J

()

Fig. 2. Action of®,,.

It follows from (5.14) that the intervalg, ; x {r} are inD2 ;.

LEMMA 5.9. —The mappingb,, = ¢, o Rl o ¢, transforms the atoms of the decomposi-
tion 7,, into vertical intervals of the forrdé} x [1/(3n),1 — 1/(3n)] for somed.

The proofis illustrated on Fig. 2.

Proof. —Consider first an interval,, of the typel,, = I,,; x {r}, r € [1/(3n),1 — 1/(3n)].
By construction of,, (see Section 5.2.4), we have thgt! (I,,) is a vertical segment of the form
{0} x [1/(3n),1 —1/(3n)] for somed € I, ;. From (5.15) we deduce thﬂaﬂ‘l o 1(I,) =
{0’} x[1/(3n),1-1/(3n)] C D} ,, for somed’ € T and;’ € Z and we conclude using that,
acts as the identity oP?, ;.

Similarly, forr € [1/(3n),1 — 1/(3n)] and aninterval,, = I,, ; x {r} € D? ., we have that

n,5?

¢ © RZZL o (b;l(ln) =¢n o0 RZL,:LH (1) = én (In,j’ X {T}) = {0} x [1/(3n): 1- 1/(3n)],
forsomej’ e ZandfeT. O

5.4.3. Proof of Theorem 5.1

Let the diffeomorphismg;,, be constructed as in (5.1), following Lemmas 5.7 and 5.8hab t
convergence of,,, closeness to identity of their limj, as well as (3.3) and (3.5), hold. We want
to apply Proposition 3.9 to get weak mixing. Since the seqeeri decompositions,, — ¢ by
construction, and since it consists of intervals with Iérgss thari /g, to finish it is enough to
show that for any interval,, of the decomposition,,, and for®,, = ¢,, o Rg?&l o, 1, we have:
®,,(1,) is (0,2/(3n),0)-distributed. The conditions of the definition follow immately from
the construction and Lemma 5.9. Indeed, the projectiof®,qfl,,) to ther-axis is the interval
[1/(3n),1—1/(3n)], hence, in the definition ofy 4, £)-distribution (Definition 3.6) we can take
0 = 2/(3n). Furthermore, since the image of any interyalis vertical,y can be taken equal
to 0. Finally, the restriction ob,, to I,, being affine, one verifies that for any interVEJ C Jn:

AIN®H(T))AT) = AMIAT).
Hence, we take = 0.
We have verified the conditions of Proposition 3.9. This ieplweak mixing of the limit

diffeomorphismf. O
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