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Abstract

We study a scenario for the disappearance of hyperbolicity of invariant tori in a

class of quasi-periodic systems. In this scenario, the system loses hyperbolicity

because two invariant directions come close to each other, losing their regularity.

In a recent paper, based on numerical results, Haro and de la Llave (2006 Chaos

16 013120) discovered a quantitative universality in this scenario, namely,

that the minimal angle between the two invariant directions has a power law

dependence on the parameters and the exponents of the power law are universal.

We present an analytic proof of this result.

Mathematics Subject Classification: 37C55, 37C60, 37D20, 37D25

1. Introduction

In a recent publication [4], Haro and de la Llave have found spectacular asymptotics when

numerically investigating the disappearance of normally hyperbolic invariant tori in quasi-

periodically forced systems (see also [5] for a more detailed exposition). The purpose of

this paper is to provide analytic proofs of the existence of these asymptotics in a class of

systems. We will focus on one concrete model, but our method should be applicable to other

systems also.

The model we consider in this paper is a quasi-periodically forced Hénon map

H : T × R2 → T × R2 (T = R/Z) of the form

θ �→ θ + ω,

(x, y) �→ h(x, y) + ε(x − x0)V (θ),

where h(x, y) = (1 + y − ax2, bx) is the Hénon map. Here V is a function V : T → R

which is at least continuous and ω is an irrational number. The map h(x, y) has a fixed point

(x0, bx0) where x0 = (b − 1 +
√

(b − 1)2 + 4a)/(2a). Note that the perturbation in our case

is chosen so that the torus (θ, x0, bx0) is H -invariant for all ε.
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We shall study the linearization of the above map along the invariant torus (θ, x0, bx0).

This dynamics is given by the cocycle

T × R2 ∋ (θ, u) �→ (θ + ω, Mε(θ)u) ∈ T × R2, (1.1)

where Mε is the matrix

Mε(θ) =
(

−2ax0 + εV (θ) 1

b 0

)

. (1.2)

The time evolution of this linearized map shall be denoted by

Mn
ε (θ) =







Mε(θ + (n − 1)ω) · · · Mε(θ), n > 0,

Id, n = 0,

Mε(θ + nω)−1 · · · M(θ − ω)−1, n < 0.

We say that the cocycle (ω, Mε) is uniformly hyperbolic if there are constants C > 0 and

δ− < 0 < δ+ and a splitting R2 = E−
ε (θ) ⊕ E+

ε (θ) such that

|Mn
ε (θ)u| � Ceδ−n|u| for all u ∈ E−

ε (θ), n > 0,

|M−n
ε (θ)u| � Ce−δ+n|u| for all u ∈ E+

ε (θ), n > 0.
(1.3)

It is well known that such a splitting, if it exists, is invariant, Mε(θ)E±
ε (θ) = E±

ε (θ + ω), and

that the subspaces E±
ε (θ), as functions of θ , are as smooth as M (see [7,8]). That the subspaces

vary smoothly with θ implies that the angles between them are uniformly bounded away from

zero. We define

�(ε) = min
θ∈T

� (E+
ε (θ), E−

ε (θ)). (1.4)

This quantity is the main object of interest in this paper. It is related to the constant C in (1.3).

Roughly speaking, if the angle between E±
ε (θ) is very small for some θ , then, by continuity,

the two vectors Mn
ε (θ)u± (u± ∈ E±

ε (θ), |u±| = 1) will be close for a long time and hence the

constant C must be large.

Furthermore, we define the Lyapunov exponents as

�+(ε) = lim
n→∞

1

n

∫

T

log ‖Mn
ε (θ)‖ dθ,

�−(ε) = lim
n→−∞

1

n

∫

T

log ‖Mn
ε (θ)‖ dθ.

It is a general fact that, for systems of the form (1.2), �+ + �− = log |b| = log |det(Mε(θ))|.
In the situation when the cocycle (ω, Mε) is uniformly hyperbolic, it is well known that

lim
n→±∞

1

n
log |Mn

ε (θ)v| = �+ for all θ ∈ T, v ∈ E+
ε (θ) \ {0},

lim
n→±∞

1

n
log |Mn

ε (θ)v| = �− for all θ ∈ T, v ∈ E−
ε (θ) \ {0}.

Moreover, the convergence is uniform in θ [3]. This implies that �± are the optimal values

for δ± in (1.3). We also recall that we can have �−(ε) < 0 < �+(ε) but the cocycle (1.1)

fails to be uniformly hyperbolic. In this case it follows from the Oseledets theorem that the

subspaces E±(θ) exist for a.e. θ and that they vary measurably. They cannot be continuous,

since it is a classical fact that non-zero Lyapunov exponents and continuous subspaces E±(θ)

imply uniform hyperbolicity.

In [4] it was studied numerically how the uniform hyperbolicity breaks down as ε is

increased (it is assumed that M0 is hyperbolic). The scenario studied there was that �(ε) → 0,
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Figure 1. The curves γ ±(θ) when ω = (
√

5 − 1)/4, b = 1, 2ax0 = 10, ε = 10.256 785 and V as

in (1.5), with λ = 5.

but the Lyapunov exponents �±(ε) are uniformly separated from each other. The striking

asymptotics observed in [4] are the following. Denoting by εc > 0 the smallest ε > 0 for

which the cocycle (ω, Mε) fails to be uniformly hyperbolic (note that uniform hyperbolicity

is an open condition), it was found that there are constants α, β such that

�(ε) ∼ α(εc − ε)β

for all ε < εc close to εc. Moreover,

�+(ε) ∼ �+(εc) + A(εc − ε)B,

for some A, B. In both models they had �+(εc) > 0, and it was found that β = 1. We will

establish the same asymptotic rate in our model (see the main theorem)

In figure 1 we have plotted the graphs of the projections of the subspaces E±
ε (θ) in the case

when ω = (
√

5 − 1)/4, b = 1, 2ax0 = 10, ε = 10.256 785 and V is as in (1.5), with λ = 5.

In our model, for any fixed θ, ε, each E±
ε (θ) is a line in R2, passing through the origin. In

the figure it is represented by the corresponding angle in (−π/2, π/2]. For a fixed ε < εc we

get two smooth curves γ ±
ε corresponding to E+

ε and E−
ε , respectively. When ε approaches εc

from below, the smallest distance between the two curves goes to zero. Still, if the Lyapunov

exponent �+(εc) is positive, then the curves γ ±(θ) for ε must be well separated for ‘most’

θ , each curve supporting its Lyapunov exponent. This forces the curves to ‘fractalize’ as

ε → εc. The presence of this fractalization process is one of the difficulties in estimating the

asymptotics of �(ε).

Results. In order to make the presentation of our proof as transparent as possible, we have

chosen b = 1 and a such that 2ax0 = 10. The only thing we actually need is that the

unperturbed matrix M0 is of saddle type. What is important, though, is the shape of the forcing
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function V . It has to be ‘flat’ with a single sharp ‘spike’. We have taken it to be

V (θ) =
1

1 + λ sin2(πθ)
. (1.5)

Here the constant λ should be extremely large. For our method it is enough that V is C2; it is

the spike shape that is important. We also need that the frequency ω satisfies the Diophantine

condition

(DC)κ,τ inf
p∈Z

|qω − p| >
κ

|q|τ
for all q ∈ Z \ {0} (1.6)

for some constants κ > 0, τ � 1.

Main theorem. Let

Mε(θ) =
(

εV (θ) − 10 1

1 0

)

, where V (θ) =
1

1 + λ sin2(πθ)
,

and assume that ω ∈ T satisfies the Diophantine condition (DC)κ,τ for some κ > 0, τ � 1.

For all λ > 0 sufficiently large (depending on κ and τ ) there is an εc > 0 (close to 10) such

that the cocycle (ω, Mε) is uniformly hyperbolic for all 0 � ε < εc and the minimal angle

�(ε), defined in (1.4), satisfies

lim
ε→ε−

c

�(ε)

εc − ε
= α

for some constant α > 0. Moreover, the Lyapunov exponent �+(εc) > 0.5 log 5 for all

ε ∈ [0, εc].

Remark 1.

(i) Since b = 1, we get that �−(ε) = −�+(ε).

(ii) Note that the asymptotics does not depend on the Diophantine class; we always get β = 1.

(iii) One can use Herman’s subharmonic trick [6] to show that for all sufficiently large λ > 0,

the following holds: �+(ε) > log 10 for all ε and any irrational ω. See the appendix for

the details.

(iv) The methods of proof of the main theorem permit us to obtain the same result in the

‘multi-frequency case’, i.e. in the case when V (θ) is a flat function with a single sharp

spike, defined on Td , and ω ∈ Td is a Diophantine vector, see [1].

(v) In this paper we were unable to estimate the asymptotics of the Lyapunov exponent when

ε → εc. We believe that �+(ε) ∼ �+(εc) + A(εc − ε)1/2.

The proof of the main theorem is based on a technique developed in [1]. The general

strategy follows the same lines, but the details differ almost everywhere. Therefore we have

chosen to present all the details in this paper, without referring to analogous parts in [1].

The rest of this paper is organized as follows. In section 2 we describe the projective

coordinates and the projectivization of the cocycle which we shall work with, and in section 3

we introduce some notation and important definitions. Section 4 includes basic estimates. In

section 5 we give a brief explanation of the key ideas behind the proof of the main theorem.

To control the geometry of the projective curves γ ±
ε , which we shall construct, we will need

certain formulae. These formulae are derived in section 6. Section 7 contains abstract help

lemmas which are included in order to keep the proof of the main inductive lemma (section 8)

to a reasonable size. In section 8 we prove the inductive lemma, which is the heart of the proof

of the main theorem. Finally, in the last section, section 9, we put everything together and
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derive the statements of the main theorem. In the appendix we show how to apply Herman’s

subharmonic trick to our model.

We close this section with a discussion of the Schrödinger cocycle:

(θ, u) �→ (θ + ω, S(θ)u), S(θ) =
(

εV (θ) − E −1

1 0

)

.

This cocycle has been widely studied in the literature (see, e.g., [1] and references therein).

The same result as in the main theorem also holds in this case when V is as above and E = 10.

We believe that the asymptotic of �(ε) depends on whether �+(εc) is positive or not. We

have performed computer simulations in the case when E = 2.1 and V (θ) = cos(2πθ). In

this case it is well known that if ε ∈ [0, 2] and the cocycle is not uniformly hyperbolic, then

�+(ε) = 0 (see, e.g., [2]). The numerical results we got are that the cocycle is uniformly

hyperbolic for 0 � ε < εc (εc is close to 0.7455), �+(εc) = 0 and �(ε) ∼ α(εc − ε)1/2. Thus,

in this case β = 1/2. The same asymptotic is also found in the following (highly degenerate)

example. Let E = 3 and V (θ) = 1. Then an easy computation shows that the cocycle is

uniformly hyperbolic for 0 � ε < 1, �+(1) = 0 and �(ε) = arctan(ψ+) − arctan(ψ−) ∼√
1 − ε, where ψ± = (ε − 3 ±

√
(ε − 1)(ε − 5))/2.

2. Projective dynamics

The way we are going to investigate cocycle (1.1) is to study its action on the projective space

(the space of lines in R2 passing through (0, 0)). We will think of the projective space as

R ∪ {∞}. Since
(

εV (θ) − 10 1

1 0

) (

r

1

)

= r

(

εV (θ) − 10 + 1/r

1

)

we see that the projective map can be expressed as

�ε(θ, r) = (θ + ω, εV (θ) − 10 + 1/r), (2.1)

where θ ∈ T and r ∈ R ∪ {∞}.
We will use the notation

(θk, rk) = �k
ε(θ0, r0).

In our estimates we will often use expressions such as r0r1 · · · rk . This can be well defined

if r0 �= ∞. Indeed, if rj = ∞ for some j > 0, then we must have rj−1 = 0, and we get

rj−1rj = rj−1(εV (θ) − 10 + 1/rj−1) = 1. Note that

Mn
ε (θ)

(

r0

1

)

= r0 · · · rn−1

(

rn

1

)

.

Thus the product r0 · · · rn−1 is directly related to the Lyapunov exponents.

3. Notation and basic definitions.

• For an interval I ∈ T, let |I | denote its length.

• We fix ω satisfying the Diophantine condition (DC)κ,τ for some κ > 0, τ � 1 (we shall

also express this as ω ∈ (DC)κ,τ ):

inf
p∈Z

|qω − p| > κ/|q|τ for all q ∈ Z \ {0}.
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• For our construction to go through we need V (θ) to have a special form: we want it to

be ‘close’ to zero outside a ‘small’ interval I0, on this interval V (θ) will have a unique

non-degenerate maximum equal to 1. To be precise, we fix

V (θ) = V (θ, λ) =
1

1 + λ sin2(πθ)
,

where λ should be thought of as a sufficiently large constant. We have the bounds

‖V ‖C1 � (5π/2)
√

λ; ‖V ‖C2 = |V ′′(0)| = 2π2λ. (3.1)

• Define the first critical interval

I0 = [−λ−1/6, λ−1/6]. (3.2)

By this choice |V |, |V ′| and |V ′′| are small outside I0 for large λ:

max
θ∈T\I0

|V (θ)| � λ−1/2, max
θ∈T\I0

|V ′(θ)| � λ−1/3, max
θ∈T\I0

|V ′′(θ)| � λ−1/4. (3.3)

• Let

I ′
0 = {θ : V (θ) � 0.88}. (3.4)

Then

|I ′
0| = c2λ

−1/2, 1/20 < c2 < 1/8,

and I ′
0 ⊂ I0. This interval is introduced because |V ′′(θ)| is large on it:

max
I ′

0

V ′′(θ) < − 1
3
‖V ‖C2 . (3.5)

• We shall consider the values of ε lying in the interval

E−1 =
[

10 2
100

, 10 2
5

]

.

Inductively we will show that the critical value εc mentioned in the main theorem lies in

this interval.

• The diffeomorphism �ε(θ, r) is defined in (2.1). Note that

�−1
ε (θ, r) =

(

θ − ω,
1

r − εV (θ − ω) + 10

)

.

• If I ⊂ T is an interval centred at c, we denote by kI the interval centred at c of length k|I |.
• Define the projections

πθ (θ, r) = θ, πr(θ, r) = r.

• Given θ0 and r0, denote

(θk, rk) = �k
ε(θ0, r0), k ∈ Z.

• Let

Ru = [−100, −5], Rs = [1/100, 1/5].

The notation reflects the fact that the strip T×Ru is contracted by the forward (and T×Rs

by the backward) iterates of � while iterating outside I0 (respectively, outside I0 + ω).



Universal asymptotics in hyperbolicity breakdown 563

• Given integers 0 < M0 < . . . < Mn and intervals I0 ⊃ I1 ⊃ . . . ⊃ In, define the

following sets:

�F
n =

n
⋃

j=0

Mj +1
⋃

m=1

(Ij + mω), �B
n =

n
⋃

j=0

Mj +1
⋃

m=0

(Ij − mω)

and

�n = T \ (�F
n ∪ �B

n ).

On each scale, �F
j and �B

j are the sets of θ , for which the behaviour of the system is

‘irregular’; these sets should be thought of as ‘small’. �n are the sets of ‘good’ parameters

θ . Note that �0 ⊃ �2 ⊃ . . . ⊃ �n. Actually, later in the proof the sets �B
n and �F

n will

be seen to be disjoint. This will be assured by the Diophantine condition on ω and the

choice of Mj . The fact that these sets are disjoint will be very important for controlling

where the minimum angle can be located.

• The building blocks of our construction are the following ‘boxes’:

Ãj (ε) = �
Mj +1
ε (Aj ), where Aj = {(θ, r) | θ ∈ Ij − Mjω, r ∈ Ru}, (3.6)

B̃j (ε) = �
−Mj +1
ε (Bj ), where Bj = {(θ, r) | θ ∈ Ij + Mjω, r ∈ Rs}, (3.7)

for j = 0, . . . n. We shall see that the sets Ãj and B̃j are very thin curvilinear rectangles

placed over Ij + ω. By construction, they contain pieces of stable and unstable manifolds

of �, respectively. These sets should be thought of as j th approximations to the stable

and unstable manifolds.

4. Preparatory lemmas

This section contains the necessary estimates for the mappings V and �. The first two lemmas

assert that the sets Ru × T and Rs × T, defined above, attract forward and backward iterates,

respectively.

Lemma 4.1. Let ε ∈ E−1 and assume that λ > 0 is large. Suppose r0 ∈ [−101, −4] and

θ0 /∈ I0. Then r1 ∈ Ru. Moreover, if r0 /∈ Rs , and θ0 /∈ I0, θ0 + ω /∈ I0, then r2 ∈ Ru.

The proof is an easy verification, using estimates (3.3). The corresponding lemma, with Ru

replaced by Rs , is true for backward iterations.

Lemma 4.2. Let ε ∈ E−1 and assume that λ > 0 is large. Suppose r0 ∈ [1/1000, 1/4] and

θ0 − ω /∈ I0. Then r−1 ∈ Rs . Moreover, if r0 /∈ Ru, θ0 − ω /∈ I0 and θ0 − 2ω /∈ I0, then

r−2 ∈ Rs .

Lemma 4.3. For any θ ∈ T and ε ∈ E−1 we have

|r0| �
1

11
⇒ |r−k . . . r0| �

(

1

11

)k+1

for all k � 0 (4.1)

and

|r0| � 11 ⇒ |r0 . . . rk| � 11k+1 for all k � 0. (4.2)
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Proof. We shall prove the first of these statements; the second one can be verified in the same

way. Suppose that |rl| < 1/11. Then l < 0 by assumption, and we have

|rlrl+1| =
∣

∣

∣

∣

rl

(

εV − 10 +
1

rl

)∣

∣

∣

∣

> 1 −
10

11
=

1

11
>

1

112
,

since |εV − 10| < 10 for ε ∈ E−1. The result follows by induction using the fact

that |r0| � 1
11

. �

Since the frequency vector ω ∈ T satisfies the Diophantine condition (DC)κ,τ , one can

get a lower bound for the return time into a small ball under the rotation by ω.

Lemma 4.4. Suppose ω ∈ DC(κ, τ), and let I be an interval of length �. Then for any

N � [κ/�]1/τ all the intervals I + jω, |j | = 0, 1, . . . , N , are disjoint.

Proof. If x ∈ I and x + mω ∈ I , then
κ

|m|τ
� inf

p∈Z

|mω − p| < �.

Therefore, |m| >
[

(κ/�)1/τ
]

. �

5. A brief sketch of the proof

Since the proof of the main theorem is a quite lengthy inductive argument, we will briefly

discuss the idea behind it, at least on the first scale. There will be some overlap here with

results of the following sections, but we hope that this discussion will help the reader to

better understand the inductive assumptions in section 8 and to have an idea of where we are

heading.

We stress that the parameter λ in V should always be thought of as being extremely large.

What we are going to do is construct the invariant curves Ŵ±
ε (θ), which are the

projectivizations of the subspaces E±
ε (θ). In figure 1 the subspaces were represented by angles

in (−π/2, π/2]; here they are represented by their slopes, i.e. by the tangent of the angle. Our

construction will give us such good estimates that we will know where the minimal angle

between the subspaces is located and how the minimum changes with ε.

The interval I0 defined in section 3 is of length 2λ−1/6. Thus, by lemma 4.4, we know that

a point θ starting in I0 will not return to I0 (under forward and backward translation by ω) for

at least N0 = const λ1/(6τ) steps. We let M0 =
√

N0 and define A0, Ã0, B0, B̃0 as in (3.2) and

(3.3). The sets Ã0 and B̃0 will be the first approximations of Ŵ+
ε (θ) and Ŵ−

ε (θ) over I0 + ω,

respectively. We will show that the minimal angle is attained for θ ∈ I0 + ω.

Using lemmas (4.1) and (4.2) repeatedly we get the following statements, provided

that ε ∈ E−1

(a) If θ0 ∈ T and r0 ∈ Ru, let N � 0 be the smallest integer such that θN ∈ I0. Then rk ∈ Ru

for k = 0, 1, . . . , N .

(b) If θ0 ∈ T and r0 ∈ Rs , let N � 0 be the smallest integer such that θ−N ∈ I0 + ω. Then

r−k ∈ Ru for k = 0, 1, . . . , N .

From the definition of M0, we in particular have that

(I0 + mω) ∩ I0 = ∅
for 0 < |m| � M0. Thus the above statements imply

B̃0 ⊂ (I0 + ω) × Rs
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Figure 2. Approximating the curves Ŵ±.

and

�M0(A0) ⊂ I0 × Ru.

Given (θ0, r0) and (θ0, s0) (that is, r0 and s0 are both over θ0), then a trivial computation shows

that

|r1 − s1| =
|r0 − s0|
|r0s0|

and |r−1 − s−1| = |r−1s−1(r0 − s0)|.

Thus points in Ru (Rs) are contracted by at least a factor of 25 when iterated forwards

(backwards). Therefore the sets B̃0 and �M0(A0) will be very thin (the thickness is smaller than

25−M0 ). We will also show that they are almost horizontal (using the formulae in section 7)

and vary very little with ε. The reason why they are flat is that we have iterated outside I0, and

there V is as flat as we like (by taking λ huge).

To get Ã0, we have to apply � to �M0(A0). Since �M0(A0) lies over I0, and is almost

horizontal, we will get

Ã0 = {(θ, r) : θ ∈ I0 + ω, ϕ−(θ) � r � ϕ+(θ)},
where

ϕ±(θ) = εV (θ − ω) − 10 + error±,

so Ã0 looks almost like εV −10 over I0, that is, it looks like the peak of εV , see figure 2. Since

V (0) = 1, we see that the ‘peak’ of Ã0 moves linearly with ε. The set B̃0 remains (almost)

constant, as we will show. Writing E−1 = [ε−
−1, ε

+
−1], we will see that there is an ε−

0 ∈ E−1

such that B̃0 ∩ Ã0 = ∅ for ε ∈ [ε−
−1, ε

−
0 ) and B̃0 ∩ Ã0 �= ∅ for ε ∈ [ε−

0 , ε+
−1]. The reason is

just that Ã0 moves up linearly with ε and B̃0 is almost still.

If Ã0 ∩ B̃0 = ∅, the cocycle (ω, Mε) is uniformly hyperbolic. To see this, we proceed as

follows.

Let �F
0 , �B

0 and �0 be as in section 3. Take a θ0 ∈ �0, and let N > 0 be the smallest

integer such that θN ∈ I0. Then N > M0 by the definition of �0. By (a) above we get

θk ∈ Ru for all k ∈ [0, N ].

In particular we have rN−M0
∈ Ru, i.e. (θN−M0

, rN−M0
) ∈ A0. Thus (θN+1, rN+1) ∈ Ã0. From

the assumption Ã0 ∩ B̃0 = ∅, we know that rN+M0
/∈ B0, i.e. rN+M0

/∈ Rs . Since θN ∈ I0,
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we know that θk /∈ I0 for k ∈ [N + 1, N + N0]. Recall that N0 ≈ M2
0 , so in particular

θN+M0
, θN+M0+1 /∈ I0, and by lemma 4.2 we thus have rN+M0+2 ∈ Ru, i.e. we are back in the

‘good’ region. We now let N ′ � 0 be the smallest integer such that θN+M0+1+N ′ ∈ I0. Then,

since θN ∈ I0, we must have N ′ � N0 − M0. Hence, using condition (a) above, we have

rk ∈ Ru for k ∈ [N + M0 + 1, N + M0 + 1 + N ′]. During the passage from k = N + 1 to

k = N +M0 +1, we can use lemma 4.4 to get a worst estimate for the product |rN+1 · · · rN+1+M0
|.

It is only during this passage that the rk can be outside Ru. Note also that θN+1+N ′ ∈ I0 − M0ω

and rN+1+N ′ ∈ Ru, i.e. the point (θN+1+N ′ , rN+1+N ′) ∈ A0. Therefore we can repeat the argument

forever. Since N0 is so much larger than M0, we can obtain the following.

Take θ0 ∈ �0 and r0 ∈ Ru, and let 0 < T1 < T2 < · · · be the times when θTi
∈ I0. Then

for all i � 1

|rk · · · rTi
| > 5(Ti+1−k)/2 for all k ∈ [0, Ti].

Moreover, for all k � 0

rk /∈ Ru ⇒ θk ∈ �F
0 .

The first condition shows that the Lyapunov exponent �+(ε) � 0.5 log 5, since the measure

of �0 is positive (recall the discussion in section 2). Note also that if θ0 ∈ �0 and r0, s0 ∈ Ru,

and if the Ti are as above, then we get, using the formulae for contraction,

|rTi+1 − sTi+1| � 5−(Ti+1)|r0 − s0|. (5.1)

The second condition gives us good control when iterates can be outside the ‘cone’ Ru. This

will be important several times, for example, when we control the location of the minimal

angle.

Analogously, when we consider the backward iterations, we get the following.

Take θ0 ∈ �0 and r0 ∈ Rs , and let 0 < T1 < T2 < · · · be the times when θ−Ti
∈ I0 + ω.

Then for all i � 1

|r−Ti
· · · r−k| > 5−(Ti+1−k)/2 for all k ∈ [0, Ti].

Moreover, for all k � 0

r−k /∈ Rs ⇒ θ−k ∈ �B
0 .

By taking bigger and bigger N such that I0 − Nω ⊂ �0, and studying the set

�N+1((I0 − Nω) × Ru) ⊂ Ã0, we can use the above estimates to obtain better and better

approximations of the curve Ŵ+(θ) over I0 + ω (recall expression (5.1)). In the limit we get

a piece of the curve Ŵ+ lying over I0 + ω, which will be continuous by uniform convergence.

By iterating this piece under �, we get the whole invariant curve Ŵ+. Similarly we obtain Ŵ−.

This shows that the cocycle (ω, Mε) is uniformly hyperbolic. Thus, by general results (see,

e.g., [7, 8]), the curves Ŵ± must be as smooth as Mε.

The curves will have the following properties.

Ŵ+(θ) /∈ Ru ⇒ θ ∈ �F
0 , Ŵ−(θ) /∈ Rs ⇒ θ ∈ �B

0 . (5.2)

Moreover, Ŵ+(θ) = εV (θ − ω) − 10 + error over I0 + ω and Ŵ−(θ) will be almost horizontal.

We now explain why the minimal distance between the two curves must be attained over

I0 + ω. Note that the sets �F
0 and �B

0 are disjoint (this is important). This means that if

Ŵ+(θ) and Ŵ−(θ) are very close for some θ , then either Ŵ+(θ) ∈ Ru and Ŵ−(θ) is in (or very

close to) Ru or Ŵ−(θ) ∈ Rs and Ŵ+(θ) is in (or very close to) Rs . Assume that the minimum

distance between Ŵ+ and Ŵ− was attained for a θ∗ outside I0 and I0 + ω. If Ŵ+(θ∗), Ŵ−(θ∗)
is close to Ru, iterate the points (θ∗, Ŵ±(θ∗)) one step forward. Then they are contracted at
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least by a factor of 20, contradicting the assumption on θ∗. Similarly, if Ŵ+(θ∗) and Ŵ−(θ∗)
are close to Rs , iterate one step backward. If the minimal distance was located over θ0 ∈ I0,

then, since Ŵ+(θ) ∈ Ru for θ ∈ I0, we would have Ŵ±(θ0) < −4. By iterating the two points

(θ0, Ŵ
±(θ0)) one step forward, using the above formula for contraction, we would get an even

smaller distance between (θ0 + ω, Ŵ±(θ0 + ω)), which is a contradiction.

In the proof later on, we should be able to treat the case Ã0 ∩ B̃0 �= ∅. Then we have to

use a multi-scale analysis to ‘zoom in’ near I0 + ω. The philosophy is the same as in this first

step, but the technicality becomes a bit more involved.

6. Important formulae

This section contains important expressions that will be used throughout the proofs. The

formulae below give us control of the derivatives, once we have a control on products |r0 · · · rk|
of the iterates. This is what we will do in this paper: estimate these products.

Let r±
0 = r±

0 (θ, ε) be given and define

r±
k = πr(�

k
ε(θ, r±

0 )), k ∈ Z.

Forward (k > 0). In particular, skipping the ±,

r1(θ, ε) = εV (θ) − 10 +
1

r0(θ, ε)
.

We shall write ri instead of ri(θ, ε). Calculating the different derivatives, we get

∂θ r1 = εV ′(θ) −
∂θ r0

r2
0

, ∂εr1 = V (θ) −
∂εr0

r2
0

,

∂θθ r1 = εV ′′(θ) −
∂θθ r0

r2
0

+ 2
(∂θ r0)

2

r3
0

, ∂εεr1 = −
∂εεr0

r2
0

+ 2
(∂εr0)

2

r3
0

.

For the contraction/expansion we have the formula

|r+
1 − r−

1 | �
|r+

0 − r−
0 |

|r+
0 r−

0 |
. (6.1)

Hence, by induction, we get the expressions

∂θ rk = εV ′(θ + (k − 1)ω) + ε

k−1
∑

j=1

(−1)k−j V ′(θ + (j − 1)ω)

r2
k−1 . . . r2

j

+ (−1)k
∂θ r0

r2
0 . . . r2

k−1

, (6.2)

∂εrk = V (θ + (k − 1)ω) +

k−1
∑

j=1

(−1)k−j V (θ + (j − 1)ω)

r2
k−1 . . . r2

j

+ (−1)k
∂εr0

r2
0 . . . r2

k−1

, (6.3)

∂θθ rk = εV ′′(θ + (k − 1)ω) + ε

k−1
∑

j=1

(−1)k−j V ′′(θ + (j − 1)ω)

r2
k−1 . . . r2

j

+ (−1)k
∂θθ r0

r2
0 . . . r2

k−1

− 2

k−1
∑

j=1

(−1)k−j (∂θ rj )
2

r2
k−1 . . . r2

j rj

, (6.4)

∂εεrk = (−1)k
∂εεr0

r2
0 . . . r2

k−1

− 2

k−1
∑

j=1

(−1)k−j (∂εrj )
2

r2
k−1 . . . r2

j rj

(6.5)
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and

|r+
k − r−

k | �
|r+

0 − r−
0 |

|(r+
0 . . . r+

k−1)(r
−
0 . . . r−

k−1)|
. (6.6)

Backward (k < 0). Similarly,

r−1(θ, ε) =
1

r0 − εV (θ − ω) + 10

and

∂θ r−1 = (εV ′(θ − ω) − ∂θ r0)r
2
−1, ∂εr−1 = (V (θ − ω) − ∂εr0)r

2
−1,

∂θθ r−1 = (εV ′′(θ − ω) − ∂θθ r0)r
2
−1 + 2

(∂θ r−1)
2

r−1

, ∂εεr−1 = −∂θθ r0r
2
−1 + 2

(∂θ r−1)
2

r−1

.

By induction, we prove

∂θ r−k = ε

k
∑

j=1

(−1)k−jV ′(θ − jω)r2
−k . . . r2

−j + (−1)k(∂θ r0)r
2
−k . . . r2

−1,

∂εr−k =
k

∑

j=1

(−1)k−jV (θ − jω)r2
−k . . . r2

−j + (−1)k(∂εr0)r
2
−k . . . r2

−1,

∂θθ r−k = ε

k
∑

j=1

(−1)k−jV (θ − jω)r2
−k . . . r2

−j + (−1)k(∂θθ r0)r
2
−k . . . r2

−1

+ 2

k−1
∑

j=1

(−1)k−j (∂θ r−j )
2

r−j

r2
−k . . . r2

−j+1 + 2
(∂θ r−k)

2

r−k

,

∂εεr−k = (−1)k(∂εεr0)r
2
−k . . . r2

−1 + 2

k−1
∑

j=1

(−1)k−j (∂εr−j )
2

r−j

r2
−k . . . r2

−j+1 + 2
(∂εr−k)

2

r−k

,

|r+
−k − r−

−k| � (r+
0 − r−

0 )(r+
−k . . . r+

−1)(r
−
−k . . . r−

−1). (6.7)

7. Basic lemmas

Here we show how to derive geometry control by using the formulae in the previous section,

together with certain estimates on products r0r1 · · · rk . The setting in this section is abstract

and self-contained, but it is exactly this setting we will have in the inductive construction in

section 8.

The geometric picture behind the first lemma is that a box A = (I − Mω) × Ru (I ⊂ I0)

is mapped by �M+1 into a very thin strip �M+1(A), which looks like the graph of the function

(εV (θ − ω) − 10) over I0 + ω. The second lemma shows that a box B = (I + Mω) × Rs is

mapped by �−M+1 into a very thin, almost horizontal strip over I0 + ω. Recall the picture in

figure 2.

Lemma 7.1. There exists λ0 such that for λ > λ0 the following holds. Let ε ∈ E−1 and suppose

that an interval I ⊂ I0 and an integer M > 100 satisfy the following properties: for any point

(θ0, r0) ∈ (I − Mω) × Ru we have for all k = 0, . . . M

|rk . . . rM | � 5(M−k)/2+1 and

|r2
k · · · r2

p−1rp · · · rM | � 5(M−k)/2+1 for k � p − 1 � M, if |rp−1| � 1/11. (7.1)
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Denote

A = {(θ, r) | θ ∈ I − Mω, r ∈ Ru}.
Then we have

Ã = �M+1
ε (A) = {(θ, r) | θ ∈ I + ω, ϕ−(θ, ε) � r � ϕ+(θ, ε)},

where

ϕ±(θ, ε) = εV (θ − ω) − 10 + φ±(θ, ε), (7.2)

and the functions φ± satisfy the following estimates:

|φ±(θ, ε)| � 1
5
, (7.3)

0 < φ+(θ, ε) − φ−(θ, ε) �
1

5M−1
, (7.4)

|∂θφ
±(θ, ε)| � 2λ−1/3, (7.5)

|∂εφ
±(θ, ε)| � 1

20
, (7.6)

|∂θθφ
±(θ, ε)| � ‖V ‖C2 , (7.7)

|∂εεφ
±(θ, ε)| � 1. (7.8)

Proof. Here, as before, we use the notation

rk(θ, ε) = πr(�
k
ε(θ, r0(θ, ε))) for θ ∈ (In − Mω), ε ∈ En−1.

Let r−
0 (θ, ε) and r+

0 (θ, ε), defined for θ ∈ In −Mω and ε ∈ En−1, be the horizontal boundaries

of the set A. The signs ‘+’ and ‘−’ are chosen so that the horizontal boundaries of the set Ã

satisfy

ϕ−(θ, ε) < ϕ+(θ, ε), ϕ±(θ, ε) = r±
M+1(θ − (M + 1)ω, ε), θ ∈ In + ω, ε ∈ En−1.

One of r+
0 and r−

0 equals identically −100, the other one equals −5.

Since rM+1 = εV − 10 + 1/rM , we can write

ϕ±(θ, ε) = εV (θ) − 10 + φ±(θ, ε),

where

φ±(θ, ε) =
1

r±
M(θ − (M + 1)ω, ε)

, θ ∈ In + ω, ε ∈ En−1.

From (7.1) with k = M we get (7.3).

Using (7.1), (6.3) and the fact that r±
0 (θ, ε) is a constant, we obtain (7.6):

|∂εφ(θ, ε)| =
M

∑

k=1

1

|r2
M · · · r2

k |
�

∞
∑

k=0

1

5k+2
=

1

20
. (7.9)

In order to estimate |∂θφ(θ, ε)|, we write (using (6.2) and the fact that r0 is a constant):

|∂θφ(θ, ε)| = ε

M
∑

k=1

|V ′(θ − (k − 1)ω)|
|r2

M · · · r2
k |

. (7.10)

Estimating this sum needs a certain care, because |V ′(θ)| can become large (of order λ1/2)

when θ ∈ I0.
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Recall the definition of I0 from (3.2). Let λ be so large that −ω /∈ I0 and take θ ∈ I0.

Then, by lemma 4.4, θ − jω /∈ I0 for j = 1, 2, . . . N , where N = c1λ
1/(6τ) and c1 = c1(κ, τ ).

Let Ni , i = 0, . . . , m, be such that 0 = N0, Ni < Ni+1 and

(θ − (M − Ni)ω) ∈ I0, i = 0, . . . , m.

Then

Ni � λ1/(6τ) for i = 1, . . . , m. (7.11)

We shall split the sum in (7.10) into sub-sums corresponding to the following ‘periods’: let the

ith period be k = (M − Ni+1 + 1), . . . , (M − Ni) for i = 0, . . . , m − 1, and the mth period be

k = 1, . . . , (M − Nm). The periods are characterized by the fact that in each period there is

at most one value of k such that (θ + (k − 1)ω) ∈ I0. Namely, for the first element of periods

with number i = 0, . . . , m − 1 we have (θ + (k − 1)ω) = (θ + (M − Ni+1)ω) ∈ I0, so the best

estimate for |V ′| is ‖V ‖C1 � (5π/2)
√

λ.

For all the other elements we have

|V ′(θ + (k − 1)ω)| � λ−1/3.

In the mth period all the elements satisfy the latter estimate. Therefore, the part of sum (7.10)

over all k from the ith period can be estimated as

ε

M−Ni
∑

k=M−Ni+1

|V ′(θ − (k − 1)ω)|
|r2

M · · · r2
k |

+ ε
|V ′(θ − (M − Ni+1)ω)|

|r2
M · · · r2

M−Ni+1+1|

� 2ελ−1/35−Ni−2 +
5π

2

√
λ5−Ni+1−1 < λ−1/35−i .

The last inequality follows from (7.11). Therefore,

|∂θφ(θ, ε)| � λ−1/3

m
∑

k=0

5−i < 2λ−1/3. (7.12)

From formulae (7.1) and (6.6) we obtain

0 < |φ+ − φ−| = |ϕ+ − ϕ−| =
|r+

0 − r−
0 |

|r+
0 · · · r+

M ||r−
0 · · · r−

M |
<

100

5M+2
<

1

5M−1
. (7.13)

Now let us estimate the second derivative in θ . The argument in this part of the proof

is rather technical. The complications are due to our choice of coordinates: we are working

with the tangents of angles, whose range includes infinity. The general form of the second

derivative is given by (6.4). Since r0 is a constant,

∂θθφ = ε

M
∑

k=1

(−1)M−k+1 V ′′(θ + (k − 1)ω)

r2
M . . . r2

k

− 2

M
∑

k=1

(−1)M−k+1 (∂θ rk)
2

r2
M . . . r2

k rk

:= I + II.

First estimate a part of I corresponding to k = 1, . . . M − 10:

ε

M−10
∑

k=1

|V ′′(θ + (k − 1)ω)|
r2
M · · · r2

k

� ε

∞
∑

k=10

‖V ‖C2

5k+2
� ε5−12‖V ‖C2

∞
∑

k=0

1

5k
� 5−10‖V ‖C2 . (7.14)

Now consider k = M − 9, . . . , M . Since θ + Mω ∈ I0, and the return time to I0 is large, we

know that θ + (M − j)ω /∈ I0 (at least) for j = 1, . . . , 20. Hence, (θ + (k − 1)ω) /∈ I0 for all

k = M − 9, . . . , M , and therefore |V ′′(θ − (k − 1)ω)| < λ−1/4 by (3.3). Hence,

|I | = ε

M−10
∑

k=1

|V ′′|
r2
M · · · r2

k

+ ε

M
∑

k=M−9

|V ′′|
r2
M · · · r2

k

� 5−10‖V ‖C2 + ελ−1/4

M
∑

k=M−9

1

r2
M · · · r2

k

� 5−10‖V ‖C2 + 10ελ−1/4 <
1

2
‖V ‖C2 . (7.15)
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The latter inequality holds since λ is assumed to be large. The above argument will be used

several times during the proof of this lemma.

Estimating II requires more work. Denote the kth term of II by Ak . Let ji be a subset

of indices, 1 � ji � M such that

|rji
| < 1/11, i = 1, . . . I.

Note that, by (7.1), |rM | � 5, hence in our case 1 � ji < M . By definition of �ε(θ, r),

|rji+1| � 1. Now we have two cases

(a) If k �= ji and k �= ji + 1 for all i = 1, . . . I , then we estimate |Ak| separately.

(b) If k = ji for some i = 1, . . . I , then we shall estimate the corresponding pair of terms, i.e.

|Ak + Ak+1| =
∣

∣

∣

∣

(∂θ rk)
2

r2
M · · · r2

k+1r
2
k rk

−
(∂θ rk+1)

2

r2
M · · · r2

k+1rk+1

∣

∣

∣

∣

. (7.16)

First consider case (a). By using (6.2), and the fact that ∂θ r0 = 0, we can rewrite |Ak| in

the following way:

|Ak| =
(∂θ rk)

2

r2
M · · · r2

k |rk|
=

(

εV ′(θ + (k − 1)ω) + ε
∑k−1

p=1(−1)k−p
V ′(θ + (p − 1)ω)

r2
k−1 . . . r2

p

)2

r2
M · · · r2

k |rk|

= ε2





V ′(θ + (k − 1)ω)

rM · · · rk · |rk|1/2
+

k−1
∑

p=1

(−1)k−pV ′(θ + (p − 1)ω)

rM · · · rk|rk|1/2r2
k−1 · · · r2

p





2

. (7.17)

The assumption of this case says that both |rk| > 1/11 and |rk−1| > 1/11. This permits us to

estimate |rk|−1/2 < 4 and apply (7.1) for the denominators. Now we use the same argument

as in estimating I . For 1 � k � M − 10,

|Ak| � 16ε2‖V ‖2
C1





1

rM · · · rk

+

k−1
∑

p=1

1

rM · · · rkr
2
k−1 · · · r2

p





2

=
16ε2‖V ‖2

C1

5(M−k)+2

∞
∑

j=0

1

5j
�

2ε2‖V ‖2
C1

5(M−k)
.

For each k = M − 9, . . . , M , we split the estimate in the same way as above: for p =
1, . . . , k−10, we estimate |V ′| � ‖V ‖C1 ; for p = k−9, . . . , k−1 the point (θ+(p−1)ω) /∈ I0,

and, hence, V ′(θ + (p − 1)ω) � λ−1/3. Thus,

|Ak| � 16ε2





λ−1/3

rM · · · rk

+

k−1
∑

p=k−9

λ−1/3

rM · · · rkr
2
k−1 · · · r2

p

+

k−10
∑

p=1

‖V ‖C1

rM · · · rkr
2
k−1 · · · r2

p





2

�
‖V ‖2

C1

57
.

Consider case (b). Here we assumed that k = ji for some i = 1, . . . , I , so that |rk| < 1/11.

Recall that in this case k < M . An easy calculation with the definition of �ε(θ, r) shows that

in this case

|rk+1| � 1 and 1/11 � |rkrk+1| � 2.

Using the formula ∂θ rk+1 = εV ′(θ + kω) − ∂θ rk

r2
k

, we estimate the value in (7.16) by

|Ak − Ak+1| �

∣

∣

∣

∣

(εV ′(θ + kω))2

r2
M · · · r2

k+1rk+1

∣

∣

∣

∣

+

∣

∣

∣

∣

2εV ′(θ + kω)∂θ rk

r2
M · · · r2

k+1rk+1r
2
k

∣

∣

∣

∣

+

∣

∣

∣

∣

(∂θ rk)
2

r2
M · · · r2

k+2

(

1

r3
k+1r

4
k

−
1

r2
k+1r

3
k

)∣

∣

∣

∣

:= E1
k + E2

k + E3
k .
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Since |rk+1| � 1, we can write

E1
k �

∣

∣

∣

∣

(εV ′)2

r2
M · · · r2

k+1

∣

∣

∣

∣

�
ε2‖V ‖2

C1

5M−k+2
for k = 1, . . . M − 10 and

E1
k � ε2λ−1/3 for k = M − 9, . . . , M − 1.

Using |rk+1| > 1, (6.2) and the fact that ∂θ r0 = 0, we estimate

E2
k � 2ε2|V ′(θ + kω)|

∣

∣

∣

∣

∣

∣

V ′(θ + (k − 1)ω)

r2
M · · · r2

k

+

k−1
∑

p=1

(−1)k−pV ′(θ + (p − 1)ω)

r2
M · · · r2

p

∣

∣

∣

∣

∣

∣

.

The latter is estimated in the same way as in (a):

E2
k �

ε2‖V ‖2
C1

5M−k
for k = 1, . . . M − 10, and

E2
k �

‖V ‖2
C1

57
for k = M − 9, . . . , M − 1.

Note that 1−rk+1rk = rk(εV −10). The reason for distinguishing case (b) is the following

cancellation:

E3
k =

(∂θ rk)
2

|r2
M · · · r2

k+2|
|εV − 10|
|r3

k+1r
3
k |

� 20
(∂θ rk)

2

|r2
M · · · r2

k+2r
4
k+1r

4
k |

Again, by (6.2) and ∂θ r0 = 0, we get

E3
k � 20ε2





V ′(θ + (k − 1)ω)

rM · · · rk+2r
2
k+1r

2
k

+

k−1
∑

p=1

(−1)k−pV ′(θ + (p − 1)ω)

rM · · · rk+2r
2
k+1r

2
k · · · r2

p





2

Since |rk+1| � 1, we can use (7.1) for the denominators. Then

E3
k �

2ε2‖V ‖2
C1

5M−k
for k = 1, . . . M − 10 and

E3
k �

‖V ‖2
C1

57
for k = M − 9, . . . , M − 1.

We have obtained that, for k as in (b).

|Ak + Ak+1| �
6ε2‖V ‖2

C1

5M−k
for k = 1, . . . M − 10 and

|Ak + Ak+1| �
3‖V ‖2

C1

57
for k = M − 9, . . . , M − 1.

Since we have ε < 11,

II �

∞
∑

k=10

6ε2‖V ‖2
C1

5M−k
+ 30

‖V ‖2
C1

57
<

1

2
‖V ‖C2 .

Collecting the above estimates,

|∂θθφ(θ, ε)| < ‖V ‖C2 . (7.18)

The second derivative in ε is estimated by 1 in a similar way. This finishes the proof of

the lemma. �
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The next lemma gives analogous estimates for the backward iterates.

Lemma 7.2. There exists λ0 such that for λ > λ0 the following hold. Let ε ∈ E−1 and suppose

that an interval I ⊂ I0 and an integer M > 100 satisfy the following properties: for any point

(θ0, r0) ∈ (I + Mω) × Rs we have for all k = 0, . . . M

|r−M . . . r−k| � 5−(M−k)/2−1 and |r−M · · · r−pr2
−p+1 · · · r2

−k| � 5−(N−k)/2−1

for − M � −p + 1 � −k, if |r−p+1| � 11. (7.19)

Denote

B = {(θ, r) | θ ∈ I + Mω, r ∈ Rs}.
Then we have

B̃ = �−M+1
ε (B) = {(θ, r) | θ ∈ I + ω, ψ−(θ, ε) � r � ψ+(θ, ε)},

where the functions ψ± satisfy the following estimates:

|ψ±(θ, ε)| � 1
5
,

0 < ψ+(θ, ε) − ψ−(θ, ε) �
1

5M−1
,

|∂εψ
±(θ, ε)| � 1

20
, (7.20)

|∂θψ
±(θ, ε)| � 2λ−1/3,

|∂θθψ
±(θ, ε)| � ‖V ‖C2 , |∂εεψ

±(θ, ε)| � 1.

8. Induction

This section contains the inductive procedure on which the proof of the main theorem is based.

8.1. Conditions (C1)0, (C2)0 and (C3)0.

In order to keep the formulation of the inductive lemma below (lemma 8.2) more compact, we

introduce the following notation.

Suppose that integers M0 < . . . < Mn, non-empty closed intervals I0 ⊃ I1 ⊃ . . . ⊃ In

and E−1 ⊃ E0 ⊃ . . . ⊃ En are chosen. Let the sets �j , �j , Ãj (ε) and B̃j (ε) be defined as in

section 3.

Condition (C1)Fn . Assume that θ0 ∈ �n−1, r0 ∈ Ru and ε ∈ En−1. Let N > 0 be the smallest

natural number such that θN ∈ In. Then for any k = 0, . . . , N

|rk . . . rN | � 5(1/2+1/2n+1)(N−k)+1, and |r2
k · · · r2

p−1rp · · · rN | � 5(1/2+1/2n+1)(N−k)+1

for k � p − 1 � N, if |rp−1| � 1/11; (8.1)

rk /∈ Ru ⇒ θk ∈ �F
n−1 =

n−1
⋃

i=0

Mi+1
⋃

m=1

(Ii + mω). (8.2)

Condition (C1)Bn . Assume that θ0 ∈ �n−1, r0 ∈ Rs and ε ∈ En−1. Let N > 0 be the smallest

natural number such that θ−N ∈ In. Then for any k = 0, . . . , N

|r−N . . . r−k| � 5−(1/2+1/2n+1)(N−k)−1, and |r−N · · · r−pr2
−p+1 · · · r2

−k| � 5−(1/2+1/2n+1)(N−k)−1

for − N � −p + 1 � −k, if |r−p+1| � 11; (8.3)

rk /∈ Rs ⇒ θk ∈ �B
n−1 =

n−1
⋃

i=0

Mi+1
⋃

m=0

(Ii − mω). (8.4)
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Condition (C2)n. For j = 0, 1, 2, 3, In ± (Mn + j)ω lie in �n−1.

Condition (C3)n. Define the functions ϕ±
n (θ, ε), ψ±

n (θ, ε) : (In + ω) × En−1 → R:

Ãn(ε) = {(θ, r) | θ ∈ In + ω, ϕ−
n (θ, ε) � r � ϕ+

n (θ, ε)},
B̃n(ε) = {(θ, r) | θ ∈ In + ω, ψ−

n (θ, ε) � r � ψ+
n (θ, ε)}.

(8.5)

Then these functions are C2, and for all (θ, ε) they satisfy the following conditions:

ϕ±
n (θ, ε) = εV (θ − ω) + 10 + φ±

n (θ, ε), (8.6)

where φ±
n : (In + ω) × En−1 → R, and

0 < φ+
n − φ−

n < 5−Mn+1, 0 < ψ+
n − ψ−

n < 5−Mn+1, (8.7)

|∂θφ
±
n (θ, ε)| � 2λ−1/3, |∂θψ

±
n (θ, ε)| � 2λ−1/3, (8.8)

|∂εφ
±
n (θ, ε)| � 1

20
, |∂εψ

±
n (θ, ε)| � 1

20
, (8.9)

|∂θθφ
±
n (θ, ε)| � ‖V ‖C2 , |∂θθψ

±
n (θ, ε)| � ‖V ‖C2 , (8.10)

|∂εεφ
±
n (θ, ε)| � 1, |∂εεψ

±
n (θ, ε)| � 1. (8.11)

Moreover,

ϕ+
n (θ, ε) < ψ−

n (θ, ε) for all θ ∈ (In + ω) \
(

1
3
In + ω

)

, ε ∈ En−1. (8.12)

Finally, writing En = [ε−
n , ε+

n] we have

Ãn ∩ B̃n = ∅ for ε ∈ [ε−
n−1, ε

−
n ), (8.13)

there is a unique point θ∗ ∈ 1
3
In + ω s.t. ϕ+

n (θ∗, ε−
n ) = ψ−

n (θ∗, ε−
n ), (8.14)

there is a unique point θ∗∗ ∈ 1
3
In + ω s.t. ϕ−

n (θ∗∗, ε+
n) = ψ+

n (θ∗∗, ε+
n).

(8.15)

8.2. Basic step

Recall that |I0| = 2λ−1/6. By lemma 4.4, we know that for any θ0 ∈ I0 we have θk /∈ I0 for all

|k| = 1, 2, . . . N , where N = [c1λ
1/(6τ)], c1 = (κ/2)1/τ . We define

M0 = [λ1/(12τ)]. (8.16)

Then M0 is of order
√

N .

Lemma 8.1 (Basic step). Let λ in the definition of V be sufficiently large. Then there exists

an interval E0 = [ε−
0 , ε+

0 ] ⊂ E−1 such that conditions (C1)0, (C2)0 and (C3)0 hold.

Proof. Assume that λ is sufficiently large depending on κ , τ and V . Condition (C1)0 follows

from lemmas 4.1 and 4.2. Condition (C2)0 is trivial, since �−1 = T.

Now we shall choose E0 = [ε−
0 , ε+

0 ] ⊂ E−1 in such a way that (C3)0 holds. Define Ã0 and

B̃0 as in (3.6)0, (3.7)0, and let ϕ±
0 (θ, ε) and ψ±

0 (θ, ε) be as in (8.5)0.

Estimates (8.7)0–(8.11)0 for the functions ϕ±
0 and ψ±

0 follow from lemmas 7.1 and 7.2.

It can be verified by a calculation that (8.12)0 holds for all ε ∈ E−1. In fact, it is easy to

prove a stronger estimate (recall that V (θ) < 0.88 outside I ′
0):

ϕ+
0 (θ, ε) < −1 for all θ ∈ (I0 + ω) \ (I ′

0 + ω), ε ∈ E−1.
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Let us verify (8.14)0 and (8.15)0. Note that B̃0(ε) ⊂ (I0 + ω) × Rs and �−1
ε (Ã0(ε)) ⊂

(I0 ×Ru). Let Ã(ε) = �ε(I0 ×Ru) and denote its ‘upper’ and ‘lower’ boundaries by ϕ+(θ, ε)

and ϕ−(θ, ε), respectively:

Ã(ε) = {(θ, r) | θ ∈ I0 + ω, ϕ−(θ, ε) � r � ϕ+(θ, ε)}.
Then Ã0(ε) ⊂ Ã(ε) or, in other words,

ϕ−(θ, ε) � ϕ−
0 (θ, ε) < ϕ+

0 (θ, ε) � ϕ+(θ, ε).

One can verify by computation the following two statements. For ε < ε−
−1 = 10 2

100
,

Ã(ε)∩ (I0 + ω)×Rs = ∅, which implies that ϕ+
0 (θ, ε−

−1) � ψ−
0 (θ, ε−

−1) for θ ∈ I0 + ω. On the

other hand, for ε+
−1 = 10 2

5
, ϕ−(0, ε+

−1) = 1/5, which implies that ϕ−
0 (0, ε+

−1) � ψ+
0 (0, ε+

−1).

By (7.2), (7.6) and (7.20), for θ ∈ I ′
0 + ω and all ε ∈ E−1 we have

∂ε(ϕ
±
0 (θ, ε) − ψ±

0 (θ, ε)) > 0.88 − 1/10 > 1/2.

In particular, this implies that in the interval E−1 = [ε−
−1, ε

+
−1] there is ε−

0 such that

ϕ+
0 (θ, ε) < ψ−

0 (θ, ε) for all θ ∈ I0 + ω and ε < ε−
0 , and for any ε > ε−

0 there is θ ∈ (I ′
0 + ω)

such that ϕ+
0 (θ, ε) = ψ−

0 (θ, ε). This gives (8.13)0. To see that there is a unique point θ∗ such

that ϕ+
0 (θ∗, ε−

0 ) = ψ−
0 (θ∗

0 , ε−
0 ), it is enough to show that the function

h(θ, ε) = ϕ+
0 (θ, ε) − ψ−

0 (θ, ε)

has a unique non-degenerate maximum. Recall the definition of I ′
0 from (3.4). For any fixed

θ ∈ (I0 + ω) \ (I ′
0 + ω) and all ε ∈ E−1, we have h(θ, ε) < −1. Therefore, it is enough to

verify that ∂θθh(θ, ε) is negative for all θ ∈ I ′
0. By (3.5) and (8.10)0,

∂θθh(θ) < ε−
0 (− 1

3
‖V ‖C2) + 2‖V ‖C2 < 0.

This proves (8.14)0. Similarly we find ε+
0 and θ∗∗ such that (8.15)0 holds. Finally, define

E0 = [ε−
0 , ε+

0 ]. �

8.3. Induction step

The following lemma contains the induction step as well as some extra information that is

needed for the proof of the main theorem.

Lemma 8.2. There exists λ0 > 0 such that for all λ > λ0 the following holds. Suppose that

M0, E0 and I0 are as above, and we have chosen integers 0 < M0 < . . . Mn, non-empty closed

intervals I ′
0 ⊃ I1 ⊃ . . . ⊃ In and E0 ⊃ E1 ⊃ . . . ⊃ En (n � 0) with the following properties:

M0 = [λ1/12τ ], 5Mj−1/4τ
� Mj � 2 · 5Mj−1/4τ , j = 1, . . . , n, (8.17)

|I0| = l0 = 2λ−1/6, |Ij | = l05−Mj−1/2, j = 1, . . . , n, (8.18)

and (C1)n, (C2)n and (C3)n hold.

Then there exists an integer Mn+1 satisfying (8.17) with j = (n + 1), a non-empty closed

interval In+1 ⊂ In (I1 ⊂ I ′
0 if n = 0) satisfying (8.18) and a non-empty closed interval

∅ �= En+1 = [ε−
n+1, ε

+
n+1] ⊂ En such that (C1)n+1, (C2)n+1 and (C3)n+1 hold. Moreover,

if θ ∈ (In \ In+1) + ω and (θ, r) ∈ Ãn, (θ, s) ∈ B̃n, then |r − s| > 4 · 5−Mn+1, (8.19)

Ãn+1 ⊂ Ãn, B̃n+1 ⊂ B̃n (8.20)

and

Ãn+1 ∩ B̃n+1 �= ∅ for ε ∈ En+1, Ãn+1 ∩ B̃n+1 = ∅ for ε ∈ [ε−
n , ε−

n+1). (8.21)

Furthermore, suppose that Ãn ∩ B̃n = ∅ for some ε ∈ En−1. Then the following extension

of (C1)n+1, call it condition ˜(C1)n+1, holds: assume that θ0 ∈ �n, r0 ∈ Ru. Let N > 0 be any
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integer such that θN ∈ In. Then for any k = 0, . . . , N

|rk . . . rN | � 5(1/2+1/2n+2)(N−k)+1 and

|r2
k · · · r2

p−1rp · · · rN | � 5(1/2+1/2n+2)(N−k)+1 for k � p − 1 � N, if |rp−1| � 1/11;
(8.22)

rk /∈ Ru ⇒ θk ∈ �F
n =

n
⋃

i=0

Mi+1
⋃

m=1

(Ii + mω). (8.23)

Let N1 > 0 be any integer such that θ−N1
∈ In. Then for any k = 0, . . . , N1

|r−N1
. . . r−k| � 5−(1/2+1/2n+2)(N1−k)−1, and |r−N1

· · · r−pr2
−p+1 · · · r2

−k| � 5−(1/2+1/2n+2)(N1−k)−1

for − N1 � −(p − 1) � −k, if |r−p+1| � 11;

rk /∈ Rs ⇒ θk ∈ �B
n =

n
⋃

i=0

Mi+1
⋃

m=0

(Ii − mω).

The ‘Furthermore...’ part of the lemma differs from (C1)n+1 by the fact that in the former

we do not assume N > 0 to be the smallest natural number such that θN ∈ In+1; we only need

that θN ∈ In.

Proof. We assume that λ0 is sufficiently large, depending on κ , τ and V , to make sure that

the statements below hold true. Since the proof of this lemma is quite long, we split it into a

number of steps.

Basics. It follows from the choice of |In| and Mn by lemma 4.4 that

(In − Mnω) ∩
Mn
⋃

m=0

(In + mω) = ∅ and (In + Mnω) ∩
Mn
⋃

m=0

(In − mω) = ∅, (8.24)

if θ ∈ In − Mnω, then k = Mn is the smallest positive integer such that θ + kω ∈ In, (8.25)

if θ ∈ (In + Mnω),

then k = Mn − 1 is the smallest positive integer such that θ − kω ∈ (In + ω). (8.26)

Step 1. Here we define the critical set In+1. The idea is that the projection onto the base T of

the intersection Ãn(ε) ∩ B̃n(ε) should be in (In+1 + ω) for all ε ∈ En. For θ ∈ In + ω consider

the functions

ϕ±
n (θ, ε) = εV (θ − ω) − 10 + φ±

n (θ, ε), and ψ±
n (θ, ε),

defined in (8.5).

If n = 0 we note the following. By definition we have V (θ) < 0.88 for θ /∈ I ′
0. Since

|φ±
0 | � 1/5 and |ψ±

0 | � 1/5, it thus follows that

ψ−
0 (θ, ε) − ϕ+

0 (θ, ε) > 1 for θ ∈ I0 \ I ′
0, ε ∈ E−1. (8.27)

In other words, Ã0(ε) and B̃n(ε) are ‘far away’ outside I ′
0 + ω.

For ε ∈ En, we need to estimate the length of the sets:

K(ε) = {θ ∈ In + ω | ϕ+
n (θ, ε) � ψ−

n (θ, ε)}.
Recall that, by (8.7), φ+

n (θ, ε) − φ−
n (θ, ε) � 5−Mn+1 and ψ+

n (θ, ε) − ψ−
n (θ, ε) � 5−Mn+1. It is

easier to estimate the length of slightly larger sets:

K(ε) ⊂ K ′(ε) = {θ ∈ In + ω | ϕ−
n (θ, ε) + 5−Mn+1

� ψ−
n (θ, ε) − 5−Mn+1}.
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By the above argument we must have K ′(ε) ⊂ I ′
0 + ω if n = 0. If n > 0 we have this by

assumption, since In ⊂ I ′
0. In order to estimate the length of K ′(ε), consider

h(θ, ε) = ϕ−
n (θ, ε) + 5−Mn+1 − (ψ+

n (θ, ε) − 5−Mn+1).

If n = 0, we think of h as being defined for θ ∈ I ′
0 + ω. By (8.9), for each fixed θ ∈ In + ω we

have

∂εh(θ, ε) � min
θ∈I ′

0

|V (θ)| − ‖φn‖C1
− ‖ψn‖C1

= 0.88 − 1/10 > 1/2,

i.e. h(θ, ε) grows with ε for each fixed θ . Therefore, K ′(ε) ⊂ K ′(ε+
n) for all ε ∈ En. It is left

to estimate the length of K ′(ε+
n). Let us fix ε = ε+

n and omit the dependence on ε.

By (8.12), (8.15) and by the choice of En, h(θ) � 2 · 5−Mn+1 for all θ ∈ In + ω with the

equality only for θ = θ∗∗. Therefore, h(θ) has a maximum at the point θ∗∗ (this is the reason

why we estimate K ′(ε) rather than K(ε)). Recall that θ∗∗ is in (1/3)In + ω, so it lies well

inside In + ω (when n = 0, it is clear from (8.27) that θ∗∗ must be in I ′
0 + ω). In order to show

that this maximum is non-degenerate (quadratic), as well as to estimate the length of K ′, we

shall verify that the maximum of ∂θθh(θ) over θ ∈ K ′ is negative and large in absolute value

if λ is large. By (8.10), (3.5) and (3.1),

∂θθh(θ) < ε+
n(− 1

3
‖V ‖C2) + 2‖V ‖C2) < −4λ.

Hence, h(θ) has a unique quadratic maximum at θ∗∗. The above estimate also permits us to

prove that K ′(ε+
n) is contained in an interval Jn+1 + ω, centred at θ∗∗, of length l0

10
5−Mn/2 (we

estimate the set of θ for which h(θ) � 0). Recall that l0 = 2λ−1/6. Moreover, by estimating

the set of θ for which h(θ, ε) � −4 · 5−Mn+1, we get

ψ−
n (θ, ε) − ϕ+

n (θ, ε) > 4 · 5−Mn+1 for θ ∈ (In \ Jn+1) + ω, ε ∈ En. (8.28)

Recall (8.27) in the case when n = 0. In particular we have

πθ (Ãn(ε) ∩ B̃n(ε)) ∈ Jn+1 + ω for all ε ∈ En.

Let In+1 be an interval of length l05−Mn/2 centred at θ∗∗. Since Jn+1 ⊂ In+1, we see that (8.28)

gives (8.19)n+1. For later use we stress that we have

ϕ+
n < ψ−

n for all θ ∈ (In+1 + ω) \ (Jn+1 + ω), ε ∈ En, (8.29)

and

Jn+1 = (1/10)In+1. (8.30)

Step 2. Here we verify that condition (C1)n+1 holds. We shall start by considering forward

iterations. Let θ0 ∈ �n, r0 ∈ Ru, ε ∈ En, and let N > 0 be the smallest positive integer such

that θN ∈ In. For an integer T denote (C1)[T ] the condition that for any k = 0, . . . , T

|rk . . . rT | � 5(1/2+1/2n+2)(T −k)+1 and |r2
k . . . r2

p−1rp · · · rT | � 5(1/2+1/2n+2)(T −k)+1,

for k � p − 1 � T if |rp−1| � 1/11; (8.31)

rk /∈ Ru ⇒ θk ∈ �F
n . (8.32)

If In+1 is defined, then (C1)[N ] coincides with (C1)Fn+1.

Let 0 < T0 < T1 < · · · < Tp = N be the times such that θTj
∈ In. Since |In| = l05−Mn−1/2

(by assumption) and since (DC)κ,τ holds, it follows from lemma 4.4 that

Tj+1 − Tj � c5Mn−1/(2τ), c = c(κ, τ, l0). (8.33)

Moreover, since θ0 ∈ �n we also have

T0 > Mn. (8.34)
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Condition (C1)[T0] follows from the assumed (C1)Fn , which we can apply because

�n ⊂ �n−1 and En ⊂ En−1.

Assume now that we have proved that (C1)[Tj ] holds for some j < p. We shall prove

(C1)[Tj+1]. First we show that (θTj +1, rTj +1) ∈ Ãn. By the definition of Tj we have

(θTj −Mn
, rTj −Mn

) ∈ In − Mnω.

By (C2)n, In − Mnω ⊂ �n−1. Moreover, from (8.24),

(In − Mnω) ∩
Mn
⋃

n=1

(In + mω) = ∅.

Hence,

(In − Mnω) ∩
n

⋃

j=0

Mj
⋃

m=1

(Ij + mω) = ∅.

By (8.34), Tj − Mn > 0. Hence, we can apply (8.32), which gives us rTj −Mn
∈ Ru. Then

(θTj −Mn
, rTj −Mn

) ∈ An and

(θTj +1, rTj +1) ∈ Ãn. (8.35)

Since θTj
/∈ In+1 (by assumption),

(θTj +1, rTj +1) /∈ B̃n. (8.36)

Therefore, (θTj +Mn
, rTj +Mn

) /∈ Bn, i.e. rTj +Mn
/∈ Rs . By (C2)n, neither θTj +Mn

nor θTj +Mn+1 lie in

I0. By lemma 4.1 we get

rTj +Mn+2 ∈ Ru.

Then we can apply lemma 4.3, which gives that for any k ∈ [Tj + 1, Tj + Mn + 2] (note that

112 < 53)

|rk . . . rTj +Mn+2| � (1/11)Tj +Mn−k+3 > (1/5)3(Tj +Mn−k+3) and

|r2
k . . . r2

p−1rp · · · rTj +Mn+2| = |r2
k . . . r2

p−1||rp · · · rTj +Mn+2| � (1/11)2(p−k)(1/11)Tj +Mn+3−p

� (1/5)3(Tj +Mn−k+3) for k � p − 1 � Tj + Mn + 2, if |rp−1| � 1/11.

From (C2)n we have θTj +Mn+3 ∈ In + (Mn + 3)ω ⊂ �n−1. Now we apply inductive assumption

(C1)Fn to the point (θTj +Mn+3, rTj +Mn+3) and conclude that for each k = Tj + Mn + 3, . . . , Tj+1

we have the following estimate (here N = Tj+1 − (Tj + Mn + 3) is the smallest positive integer

such that θ(Tj +Mn+3)+N ∈ In):

|rk . . . rTj+1
| � 5(1/2+1/2n+1)(Tj+1−k)+1; and

|r2
k · · · r2

p−1rp · · · rTj+1
| � 5(1/2+1/2n+1)(Tj+1−k)+1 for k � p − 1 � Tj+1, if |rp−1| � 1/11;

(8.37)

rk /∈ Ru ⇒ θk ∈ �F
n−1 =

n−1
⋃

j=0

Mj +1
⋃

m=1

(Ij + mω). (8.38)

Combining the above estimates, we get for any k ∈ [Tj + 1, Tj + Mn + 2]

|rk · · · rTj+1
| =

∣

∣rk · · · rTj +Mn+2

∣

∣

∣

∣rTj +Mn+3 · · · rTj+1

∣

∣ > 5−3(Tj +Mn−k+3)5

(

1
2

+ 1

2n+1

)

(Tj+1−Tj −Mn−3))+1

and

|r2
k · · · r2

p−1rp · · · rTj+1
| � 5−3(Tj +Mn−k+3)5

(

1
2

+ 1

2n+1

)

(Tj+1−Tj −Mn−3))+1
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for k � p − 1 � Tj+1, if |rp−1| � 1/11. One can verify that
(

1

2
+

1

2n+1

)

(Tj+1 − Tj − Mn − 3)) + 1 − 3(Tj + Mn − k + 3)

>

(

1

2
+

1

2n+2

)

(Tj+1 − k)) + 1.

Indeed, this inequality follows from a stronger one:

Tj+1 − Tj

2n+2
− 5Mn > 0.

The latter follows from (8.33) and (8.17) for any n, provided that λ is sufficiently large. Thus,

for any k = Tj + 1, . . . Tj + Mn + 2 we have

|rk · · · rTj+1
| � λ

(

1
2

+ 1

2n+2

)

(Tj+1−k)+1
, and

|r2
k · · · r2

p−1rp · · · rTj+1
| � λ

(

1
2

+ 1

2n+2

)

(Tj+1−k)+1
for k � p − 1 � Tj+1, if |rp−1| � 1/11.

(8.39)

Now (8.31)Tj+1
follows from (8.31)Tj

, (8.37) and (8.39). Thus (C1)[Tj+1] holds. By induction

we see that (C1)[N ], i.e., (C1)Fn+1, holds.

Note that if Ãn ∩ B̃n = ∅ for some ε ∈ En−1, then (8.35) implies (8.36) directly. In this

case, to make the proof work we do not need to know that θTj
/∈ In+1. Therefore, we can

prove estimates (8.31) and (8.32) for any N > 0 such that θN ∈ In. This is the content of the

‘Furthermore..’ part of lemma 8.2.

Note that (8.35) implies the first assertion of (8.20): Ãn+1 ⊂ Ãn.

The verification of (C1)Bn+1, as well as the second assertion of (8.20), B̃n+1 ⊂ B̃n, is very

similar.

Step 3. Here we chose the number Mn+1 and verify that (C2)n+1 holds. The argument at this

step is an exact repetition of the corresponding argument in [1], but we decided to include

it here for completeness. For each j = 0, 1, . . . , n, let Nj be the positive integer given by

lemma 4.4 when it is applied to I = 3Ij . By the inductive estimates (8.18), and the definition

of I0, we get

Nj =
[

(

κ

3|Ij |

)1/τ
]

=
[

(

κ

3l0

)1/τ

5Mj−1/(2τ)

]

, j = 1, . . . , n. (8.40)

We thus have

(3Ij ) ∩
⋃

0<|m|�Nj

((3Ij ) + mω) = ∅, for j = 0, 1, . . . , n,

Note that Mj , given by (8.17), is of the size
√

Nj . From this it is easy to deduce that the

following is true for each j = 0, . . . , n: Given any k ∈ Z, we can have

(Ij + pω) ∩
2Mj
⋃

m=−2Mj

(Ij + mω) �= ∅

for at most 4Mj + 1 integers p in the interval [k, k + Nj ]. Similarly,

(Ij − qω) ∩
2Mj
⋃

m=−2Mj

(Ij + mω) �= ∅
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for at most 4Mj + 1 integers q in [k, k + Nj ]. Using this, we see that in the interval [k, k + Nn],

there are at most

s := 2

(

(4Mn + 1) + (4Mn−1 + 1)

([

Nn

Nn−1

]

+ 1

)

+ · · · + (4M0 + 1)

([

Nn

N0

]

+ 1

))

integers p such that

(In ± pω) ∩
n

⋃

j=0

2Mj
⋃

m=−2Mj

(Ij + mω) �= ∅.

Since

s < 100

(

Mn + Mn−1

Nn

Nn−1

+ . . . + M0

Nn

N0

)

= 100Nn

(

Mn

Nn

+
Mn−1

Nn−1

+ . . . +
M0

N0

)

,

it follows from estimates (8.17) and (8.40) that s ≪ Nn for all large λ, independently of n.

Hence we have proved that for any k there is an integer a in the interval [k, k + Nn] such that

(In ± (a + p)ω) ∩
n

⋃

j=0

2Mj
⋃

m=−2Mj

(Ij + mω) = ∅ for p = 0, 1, 2, 3.

By definition of �n, the latter implies that

(In ± (a + p)ω) ⊂ �n for p = 0, 1, 2, 3.

Take k = 5Mn/(4τ), and take an integer with the above property in the interval

[5Mn/(4τ), 5Mn/(4τ) + Nn]. Call this integer Mn+1. Since In+1 ⊂ In, the above expression of

course implies the weaker condition

In+1 ± (Mn+1 + p)ω ⊂ �n for j = 0, 1, 2, 3. (8.41)

Hence (C2)n+1 holds. Moreover, since Nn ≪ 5Mn/(4τ), we have

5Mn/(4τ)
� Mn+1 � 2 × 5Mn/(4τ), (8.42)

as required.

From now on Mn+1 is fixed (this is the Mn+1 in the statement of lemma 8.2).

Step 4. Here we choose the interval En+1 and verify that (C3)n+1 and (8.21) hold true.

Since (C1)n+1 holds, it follows from lemmas 7.1 and 7.2 that the functions ϕ±
n+1 and ψ±

n+1

satisfy ((8.7)–(8.11))n+1. Recall that we have

In+1 ∩
⋃

0<|m|�Mn+1

(In+1 + mω) = ∅,

so we can indeed apply lemmas 7.1 and 7.2. Moreover, (8.20) implies the inequalities

ϕ−
n (θ, ε) � ϕ−

n+1(θ, ε) < ϕ+
n+1(θ, ε) � ϕ+

n (θ, ε), θ ∈ In+1 + ω, (8.43)

and

ψ−
n (θ, ε) � ψ−

n+1(θ, ε) < ψ+
n+1(θ, ε) � ψ+

n (θ, ε), θ ∈ In+1 + ω, (8.44)

for all ε ∈ En. Recall the definition of the interval Jn+1 in step 1. The above two inequalities,

combined with (8.29), give

ϕ+
n+1(θ) < ψ−

n+1(θ) for all θ ∈ (In+1 + ω) \ (Jn+1 + ω). (8.45)

By (8.30), this gives (8.12)n+1.
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Since ((8.14)–(8.15))n hold, and since we have the inclusions (8.43) and (8.44) and the

derivative estimates on ϕn+1, ψn+1, we can proceed as in the proof of lemma 8.1 to find a

non-degenerate interval En+1 ⊂ En such that ((8.14)–(8.15))n+1 and (8.21) hold.

The induction step is complete.

9. Proof of the main theorem

We are now ready to prove the main theorem. As before, assume that λ is sufficiently large.

From the inductive construction in the previous section, we get a nested sequence of intervals

En = [ε−
n , ε+

n]. Since ε−
n � ε−

n+1 for each n, there is an ε∞ such that ε−
n → ε∞ as n → ∞.

From the estimates in section 8 it follows that the cocycle (ω, Mε) is uniformly hyperbolic on

each interval [ε−
n−1, ε

−
n ) and therefore on [0, ε∞). Indeed, if Ãn ∩ B̃n = ∅ for some n, then the

cocycle is uniformly hyperbolic as we shall see below. We shall also see that the cocycle is

not uniformly hyperbolic for ε = ε∞, and thus ε∞ is the value εc in the statement of the main

theorem.

Fix an arbitrary n > 0, and take any ε ∈ [ε−
n−1, ε

−
n ). For this ε, we shall construct the stable

and unstable invariant curves, Ŵ+(θ, ε) and Ŵ−(θ, ε), and prove that the minimal pointwise

distance between these curves is attained for θ in the interval (In + ω). We shall also estimate

the derivative in ε of the minimal distance between Ŵ+(θ, ε) and Ŵ−(θ, ε). Finally, we shall

derive the statement of the main theorem. We begin by constructing a piece Ŵ+
0 (θ, ε) of the

unstable invariant curve for θ ∈ In + ω.

9.1. Construction of the invariant curves Ŵ+ and Ŵ−

For an arbitrary n > 0, fix an ε ∈ [ε−
n−1, ε

−
n ), and let us omit the dependence on ε. From the

inductive construction in the previous section we know that hypotheses (C1)n–(C3)n hold true.

By (8.13), for our fixed ε we have Ãn(ε) ∩ B̃n(ε) = ∅.

The last part of lemma 8.2 implies condition (̃C1)n+1. This condition will be used several

times during the proof. Choose a sequence of positive integers Tk > Tk−1, k � 0, satisfying

In − Tkω ⊂ �n for k � 0.

The possibility of such a choice was proved in step 3 of the inductive procedure above. Denote

Jk = In − Tkω, Ck = Jk × Ru, C̃k = �Tk+1(Ck), k � 0.

Each curvilinear rectangle C̃k can be thought of as the kth approximation to Ŵ+
0 . Since

Jk, Jk−1 ⊂ �n, condition (8.23) implies

�Tk−Tk−1(Ck) ⊂ Jk−1 × Ru = Ck−1.

Therefore, the curvilinear rectangles C̃k form a nested sequence. Let

Ŵ+
0 =

∞
⋂

k=0

C̃k.

Then Ŵ+
0 is defined for all θ ∈ In + ω. Moreover, the horizontal widths of C̃k decay very fast

with k. Indeed, estimate (8.22), together with the fact that (In − Tkω) ⊂ �n ⊂ �n−1, permits

us to apply lemma 7.1 with M = Tk . Denote by c±
k (θ) the upper and lower boundaries of C̃k .

Then (7.2) and (7.4) imply

max
θ∈In+ω

|c+
k (θ) − c−

k (θ)| � 5−Tk+1.
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Hence, Ŵ+
0 is the graph of a continuous function, defined for all θ ∈ In + ω. Let

Ŵ+ =
∞
⋃

j=0

�j (Ŵ+
0 ).

Note that every point of the curve (θ, Ŵ+(θ)) is a point of an orbit that starts in �n × Ru.

Therefore, by (8.23),

Ŵ+(θ) /∈ Ru ⇒ θ ∈ �F
n . (9.1)

We have to verify that this curve is a graph of a function over T. Suppose the contrary: there

exist an integer p, points θ0, θ1 ∈ In and r �= s, such that

r = Ŵ+
0 (θ0), (θ0, s) = �p(θ1, Ŵ

+
0 (θ1)).

Take k such that �p(C̃k) does not intersect C̃k . By the definition of C̃k ,

�−Tk−1(C̃k) = Ck = Jk × Ru.

Therefore, the point

�−Tk−1+p(θ1, Ŵ
+
0 (θ1)) = �−Tk−1(θ0, s)

lies in Jk × (T \ Ru). But this point belongs to an orbit that starts in �n × Ru. Therefore, by

(8.23), it has to be in Jk × Ru. This contradiction proves that Ŵ+ is a continuous curve. It is

forward invariant by definition and backward invariant since � is a diffeomorphism. It is a

general fact that this curve is smooth in both θ and ε, see, e.g., [7, 8].

Recall that Ŵ+
0 is the pointwise limit of c+

k . By lemma 7.1 with M = Tk and ϕ± = c±
k , and,

in particular, (7.6) and (7.8), c±
k (θ) satisfy the estimates 1/5 � ∂εc

±
k (θ) � 2 and |∂εεc

±
k (θ)| � 1

for all θ ∈ In + ω. Since Ŵ+
0 is smooth, this implies the same estimates for Ŵ+

0 :

1/5 � ∂εŴ
+
0 (θ) � 2, |∂εεŴ

+
0 (θ)| � 1, θ ∈ In + ω. (9.2)

The curve Ŵ− can be constructed in the same way. By lemma 7.2 we get the estimates

|∂εŴ
−
0 (θ)| � 1/20, |∂εεŴ

−
0 (θ)| � 1, θ ∈ In + ω. (9.3)

We want to stress the following property, arising from (C1)Bn+1:

Ŵ−(θ) /∈ Rs ⇒ θ ∈ �B
n . (9.4)

Recall that, by construction, �F
n ∩ �B

n = ∅ (see the definition of �F
n and �F

n in section 3

and remember that the intervals Ij − (Mj + 1)ω, . . . , Ij + (Mj + 1)ω are disjoint due to the

estimates on Mj and |Ij |, j ∈ [0, n]). This fact, together with (9.1) and (9.4), implies the

following important property:

Ŵ−(θ) /∈ Rs ⇒ Ŵ+(θ) ∈ Ru and Ŵ+(θ) /∈ Ru ⇒ Ŵ−(θ) ∈ Rs . (9.5)

In other words, one of the curves is always in its ‘good’ region.

9.2. The minimal distance, δ(ε) = δ, between Ŵ+ and Ŵ− is attained at a point θ0 ∈ (In + ω)

Note that, by construction,

Ŵ+(θ) ⊂ Ãn ⊂ Ãn−1, Ŵ−(θ) ⊂ B̃n ⊂ B̃n−1 for θ ∈ In + ω,

so, by (8.7)n−1, we have the following a priori estimate for δ:

δ � min
θ∈(I0+ω)

|Ŵ+(θ) − Ŵ−(θ)| � 2 × 5−Mn−1+1 < 1/1000. (9.6)

Indeed, since ε ∈ [ε−
n−1, ε

−
n ) ⊂ En−1 we have from (8.21)n−1 that Ãn−1 ∩ B̃n−1 �= ∅, and

therefore δ is smaller than the sum of widths of Ãn−1 and B̃n−1, which is estimated as above.
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Let the minimal distance between Ŵ+ and Ŵ− be attained at the point θ0. Denote

u0 = Ŵ+(θ0), s0 = Ŵ−(θ0).

Then δ = |u0 − s0|. Let us study different possibilities for the location of θ0.

(a) Suppose θ0 /∈ �F
n ∪ �B

n . Then u0 ∈ Ru and s0 ∈ Rs , see (9.1), (9.4). Thus, the distance

between the two curves is larger than 5, and the minimal distance cannot be attained for

this value of θ .

(b) Suppose that θ0 ∈ (�B
n \ I0) ∪ (�F

n \ (I0 + ω)). Consider first θ0 ∈ �F
n \ (I0 + ω).

Then s0 ∈ Rs = [1/100, 1/5]. Since, by assumption, |s0 − u0| < 1/1000, we have

u0 ∈ [1/1000, 1/4]. By lemma 4.2, both u−1 and s−1 ∈ Rs . Then, by (6.1)

|u−1 − s−1| = |u0 − s0||u−1s−1| � δ/25 < δ,

which contradicts δ being the minimal distance. Hence, the minimal distance cannot be

attained at θ0 ∈ �F
n \ (I0 + ω). Assuming that θ0 ∈ �B

n \ I0, we arrive at the contradiction

in a similar way.

Combination of (a) and (b) shows that the only possible location of θ0 is

θ0 ∈ (�B
n ∩ I0) ∪ (�F

n ∩ (I0 + ω)).

Now we shall restrict this possibility to

θ0 ∈ (�B
n ∩ In) ∪ (�F

n ∩ (In + ω)).

(c) Suppose that θ0 ∈ (�F
n ∩(Ik +ω))\(Ik+1 +ω)) for some k = 0, . . . , n−1. We shall derive

a contradiction with δ being the minimal distance between the invariant curves. Consider

three cases. First, let

(θ0, u0) ∈ Ãk, (θ0, s0) ∈ B̃k.

Since k � n − 1, hypotheses (C1)k–(C3)k hold true. By (8.19), |u0 − s0| � 4 × 5−Mk+1.

This contradicts the a priori estimate (9.6) for the minimal distance δ.

Second, let

(θ0, u0) /∈ Ãk.

Consider the point θ0 − Mkω ∈ �k−1. Since �−Mk (Ãk) = Ak = Ik × Ru, we have

that u−Mk
= Ŵ+(θ0 − Mkω) /∈ Ru. Then, by (9.5), s−Mk

∈ Rs . By lemma 4.2, both

s−(Mk+2) ∈ Rs and u−(Mk+2) ∈ Rs . By (4.2) and (6.6), |s−(Mk+2) − u−(Mk+2)| � 112(Mk+2)δ.

Moreover, θ0 − (Mk + 2)ω ∈ �k−1. Let N be the minimal positive integer number such

that θ0 − (Mk + 2 + N) ∈ Ik . Then N > const|Ik|−1/τ − Mk ≫ 10Mk . By (C1)n,

|s−(Mk+2+N) − u−(Mk+2+N)| � 112(Mk+2) · 5−Nδ ≪ δ.

This contradicts δ being the minimal distance.

Finally, assuming that (θ0, s0) /∈ B̃k , we arrive at a contradiction by the same argument.

A similar analysis proves that θ0 cannot lie in (�B
n ∩ I0)\In.

(d) To finish the proof we note the following. Suppose that θ0 ∈ In. Since In ∩ �F
n = ∅, it

follows from (9.1) that Ŵ+(θ) ∈ Ru for θ ∈ In. Hence u0 ∈ Ru, and s0 must be very close

to u0. Therefore |Ŵ+(θ0 + ω) − Ŵ+(θ0 + ω)| = |u1 − s1| = |u0 − s0|/|u0s0| < |u0 − s0|,
which is a contradiction.

9.3. Estimation of the rate of change of δ(ε).

Let

ε∞ = lim
n→∞

ε−
n .

Note that the construction of the hyperbolic invariant curves of �ε was done for an arbitrary

n and an arbitrary fixed ε in the interval [ε−
n , ε−

n+1), i.e. for any ε < ε∞. By (9.6), the

minimal distance δ = δ(ε) between the invariant curves goes to zero when ε → ε∞. Define
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by continuity δ(ε∞) = 0. Let us show that, for θ ∈ (In + ω), there exists a constant

−3 � α � −1/10, such that

δ(ε) = δ(ε) − δ(ε∞) = α(ε − ε∞) + o(ε − ε∞) as ε ր ε∞. (9.7)

Since δ(ε) − δ(ε∞) = ∂εδ(ε̃)(ε − ε∞) by the mean value theorem, it is enough to show

that ∂εδ(ε) converges to a finite constant when ε goes to ε∞. Let (εn), n = 1, 2, . . .,

be any increasing sequence such that εn ∈ [ε−
n−1, e

−
n ), i.e. converging to ε∞ from below.

Since, by (9.2),

|∂εεδ(εn)| � max
θ∈In+ω

|∂εεŴ
+(θ, εn)| + max

θ∈In+ω
|∂εεŴ

−(θ, εn)| � 2

for all n, the numbers (∂εδ(εn)) form a Cauchy sequence and, therefore, converge. It is evident

that the limit does not depend on the choice of the sequence (εn). Since −3 � ∂εδ(ε) � −1/10

by (9.2) and (9.3), the same is true for the limit.

9.4. Estimation of the rate of change of �(ε).

Recall that we have been working in the coordinates which are tangents of the angles. Let

us return to the angular coordinates. Consider again ε ∈ [ε−
n , ε−

n+1) for some n > 0. From

section 9.1 we get the invariant curves Ŵ± (in tangent coordinates). Thus, in angular coordinates

we have the two invariant curves,

γ +(θ) = arctan(Ŵ+(θ)), γ −(θ) = arctan(Ŵ−(θ)).

Define the distance between these curves in the following way:

d(θ) = min
k∈Z

|γ̃ +(θ) − γ̃ −(θ) + kπ |.

From (9.5) it follows that there is no θ ∈ T such that both |Ŵ+(θ)| > 100 and |Ŵ−(θ)| > 100.

Thus the coordinate change can scale the minimum by at most a factor of 1/(1 + (200)2)

(d arctan(x)/dx = 1/(1 + x2)). By the same analysis as in parts (a)–(c) of section 9.2, we

can prove (using the fact just mentioned) that the minimal distance has to be attained over

In ∪ (In + ω). Now we can proceed as in section 9.3 to get

�(ε) = α(ε − ε∞) + o(ε − ε∞) as ε ր ε∞, (9.8)

for some positive constant α.

Remark 2. If the function V (θ) is even (which it is in our model case), then the minimal

distance �(ε) is attained twice: at some θ̃ ∈ I0 + ω and at (−θ̃ − ω) ∈ I0.

Note that if V (θ) is even, then Ŵ−(θ) can be given by a simple formula. One can verify

that the function

Ŵ−(θ) = −
1

Ŵ+(−θ + ω)
(9.9)

is invariant under �ε, i.e. Ŵ−(θ + ω) = εV (θ) − 10 + 1/Ŵ−(θ). This function is different

from Ŵu(θ)—this can be verified by comparing the integrals over T of the logarithm of the

absolute value of these two functions. Since in this case we can have at most two invariant

curves, Ŵ−(θ), given by this formula, is indeed the stable invariant curve. Expression (9.9)

implies that

γ −(θ) = γ +(−θ + ω) − π/2 for all θ ∈ T.
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Therefore,

d(θ + ω/2) = d(−θ + ω/2),

which implies the desired result.

9.5. Estimation of the Lyapunov exponent �+(ε).

Let

�∞ =
∞
⋃

j=0

Mj +1
⋃

m=−Mj −1

(Ij + mω).

Then �∞ ⊂ �n for all n. Moreover, by the estimates on |Ij | and Mj (j � 0) it follows that

|�∞| → 1 as λ → ∞. In particular, �∞ has a positive measure for large λ > 0.

Consider now ε ∈ [0, ε∞]. If ε < ε∞, then there is an n � 0 such that Ãn(ε)∩ B̃n(ε) = ∅.

Take θ0 ∈ �∞ and r0 ∈ Ru, and let 0 < T1 < T2 < T3 < · · · be the times when θTi
∈ In. By

the estimates in the ‘Furthermore . . . ’ part of lemma 8.2 we get

lim sup
k→∞

1

k
log |r0r1 · · · rk| � lim sup

i→∞

1

Ti

log |r0r1 · · · rTi
| � 0.5 log 5.

If ε = ε∞ we do as follows. Take θ0 ∈ �∞ and r0 ∈ Ru, and for each n � 0, let Tn > 0 be

such that θTn
∈ In. Then Tn > Mn → ∞ as n → ∞. By condition (C1)n, which holds for

each n, we again get

lim sup
k→∞

1

k
log |r0r1 · · · rk| � lim sup

i→∞

1

Ti

log |r0r1 · · · rTi
| � 0.5 log 5.

Since �∞ has a positive measure, this implies that �+(ε) � 0.5 log 5 for all ε ∈ [0, ε∞].

Appendix

In this appendix we show how to use Herman’s subharmonic trick [6] to establish a positive

Lyapunov exponent for all ε and any irrational ω. Note that in the proof of the main theorem,

we get the bound �+(ε) > log(5)/2 for all ε ∈ [0, εc] (but we only needed C2 assumptions

on V ). Here we will get a better lower estimate, which holds for all ε.

Fix ε and ω, and let

M(θ) =
(

εV (θ) − 10 1

1 0

)

,

where V (θ) = 1/(1 + 4λ cos2(πθ)). Since 4 cos2(πθ) = e2π iθ + e−2π iθ + 2, we see that if

F(z) =
( ε

1 + λ(z + z−1 + 2)
− 10 1

1 0

)

then we have M(θ) = F(e2π iθ ). The expression ε
1+λ(z+z−1+2)

can be written as zε
λ(z−z0)(z−z1)

with

z0 =
−2λ − 1 +

√
4λ + 1

2λ
, z1 =

−2λ − 1 −
√

4λ + 1

2λ
.

Note that |z0| < 1 < |z1| and that z0, z1 → −1 as λ → ∞. We now let

G(z) = (z − z0)F (z) =





εz

λ(z − z1)
− 10(z − z0) (z − z0)

(z − z0) 0




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Then G(z) is analytic in the disc |z| < |z1|, which contains the disc |z| � 1. Next we introduce

the notation en = ei2πnω. Using this, we now get

�+(ε) = inf
n

1

n

∫ 1

0

log ‖Mn(θ)‖ dθ

= inf
n

1

n

∫ 1

0

log ‖F(en−1e2π iθ ) · · · F(e0e2π iθ )‖ dθ

= inf
n

1

n

(

−
n−1
∑

k=0

∫ 1

0

log |ekei2πθ − z0| dθ

+

∫ 1

0

log ‖G(en−1e2π iθ ) · · · G(e0e2π iθ )‖ dθ

)

.

By an application of Jensen’s formula, for example, the first sum vanishes (|z0| < 1). Moreover,

the function log ‖G(zen−1) · · · G(ze0)‖ is subharmonic in |z| < |z1|, so the second integral is

greater or equal to log ‖G(0)n‖. Thus, we have

�+(ε) � inf
n

1

n
log

∥

∥

∥

∥

(

10z0 −z0

−z0 0

)n∥
∥

∥

∥

= log |z0| + log

(

spectral radius of

(

10 −1

−1 0

))

= log |z0| + log(5 +
√

26) > log 10

if λ is sufficiently large. Recall that |z0| → 1 as λ → ∞.
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