Institutionen för Matematik - KTH

Maria Saprykina

Univ.lektor, Docent

Rum 3551, Lindstedtsvägen 25
Tel: 08-790 7164
email: masha at kth dot se

Maria Saprykina

Undervisning / Teaching:

Höst 2015:
Matematik Baskurs, SF1659, Examinator.
Vår 2016:
Flervariabelanalys SF16326 för COPEN

Publikationer / Publications:

[1.] Yu. S. Ilyashenko, M. Saprykina, Embedding theorems for local families and oscillatory slow-fast systems , Progress in nonlinear science, Vol. 1 (Nizhny Novgorod, 2001), 389--410, RAS, Inst. Appl. Phys., Nizhny Novgorod, 2002.

[2.] M. Saprykina, Analytic non-linearizable uniquely ergodic diffeomorphisms on the two-torus, Ergodic Theory Dynam. Systems 23 (2003), no. 3, 935--955. pdf

[3.] B. Fayad, M. Saprykina, Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary, Annales de l'Ecole Normale Sup.38 (2005) no.3, 339--364, pdf.

[4.] V. Kaloshin, M. Saprykina, Generic volume-preserving diffeomorphisms with superexponential growth of number of periodic orbits, Discrete and Cont. Dyn. Syst., 15, (2006) no. 2, 611 -- 640; pdf.

[5.] M. Saprykina, Domains of analyticity of normalizing transformations, Nonlinearity, 19 (2006), no. 7, 1581--1599;

[6.] B. Fayad, M. Saprykina, A. Windsor, Smooth realizations of Liouvillean rotations of the circle, Ergodic Theory and Dynamical Systems, vol. 27, Issue 06, (2007), pp 1803-1818; pdf.

[7.] K. Bjerklöv and M. Saprykina, Universal asymptotics in hyperbolicity breakdown, Nonlinearity, 21 (2008), no 3, 557-586; pdf.

[8.] V. Kaloshin, M. Saprykina, An example of a nearly integrable Hamiltonian system with a trajectory dense in a set of almost maximal Hausdorff dimension, Comm. Math. Phys. 315 (2012), no. 3, 643--697; pdf.

[9.] V. Kaloshin, M. Levi, M. Saprykina, Arnold diffusion in a pendulum lattice, Comm. Pure Appl. Math. 67 (2014), no. 5, 748--775.; pdf.

[10.] B. Fayad, M. Saprykina, Isolated elliptic fixed points for smooth Hamiltonians, 2016, submitted.