Distributed Attitude Control of Multi-Agent Formations

L. Wang^{1,2}, J. Markdahl¹, and X. Hu¹

¹Division of Optimization and Systems Theory Royal Institute of Technology (Sweden)

²Department of Automation Shanghai Jiao Tong University (China)

30 August, 2011 · IFAC World Congress · Milano

ヘロト ヘアト ヘビト ヘビ

Problem Statement Previous Work

Cooperative Manipulation

Cooperative manipulation

- Perform a manipulation task using multiple manipulators.
- Carry heavier loads, use several tools simultaneously.
- Centralized or decentralized control.

Problem Statement Previous Work

Multi-Agent Model

Every manipulator corresponds to an agent. The agent state is given by the end-effector position.

Manipulator model

- Manipulator kinematics, $\dot{\mathbf{p}}_i = \mathbf{J}_i(\mathbf{q}_i)\dot{\mathbf{q}}_i, \, \dot{\mathbf{q}}_i = \mathbf{u}_i$
- Bilateral constraints at the grasp points

Multi-agent model

- Single integrator kinematics, p
 i = u
 i
- Formation of agents should be maintained, *i.e.* distances between agents should be constant

イロト イポト イヨト イヨト

Problem Statement Previous Work

Geometry of the Model

Aim: rotate the object to a desired orientation.

 $\mathbf{p}_{ij} = \mathbf{p}_i - \mathbf{p}_j,$ $\mathbf{p}_c = \frac{1}{3} \sum_{i=1}^{3} \mathbf{p}_i,$ $\mathbf{n} = \mathbf{p}_{12} \times \mathbf{p}_{23}.$

L. Wang, J. Markdahl, and X. Hu

 < □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ >
 ⊇

 Distributed Attitude Control of Multi-Agent Formations

Problem Statement Previous Work

Parametrization of Orientation

Commonly used parametrizations of orienation:

- Rotation matrices, SO(3)
- Unit quaternions
- Euler angles

We use three vectors: \mathbf{p}_{12} , \mathbf{p}_{23} , and $\mathbf{n} = \mathbf{p}_{12} \times \mathbf{p}_{23}$.

• Gram-Schmidt mapping onto SO(3)

$$(\bm{p}_{12},\bm{p}_{23},\bm{n}) \to \begin{bmatrix} \frac{\bm{p}_{12}}{\|\bm{p}_{12}\|} & \frac{\|\bm{p}_{12}\|\bm{p}_{23}}{\|\bm{n}\|} - \frac{(\bm{p}_{12}\cdot\bm{p}_{23})\bm{p}_{12}}{\|\bm{p}_{12}\|\|\bm{n}\|} & \frac{\bm{n}}{\|\bm{n}\|} \end{bmatrix}.$$

Formalize goal as lim_{t→∞} n = n_d. This leaves one degree of rotational freedom.

イロト イポト イヨト イヨト

-

Problem Statement Previous Work

Theory of rigid graphs

Total number of constraints n(n-1)/2, requires a complete communications graph?

Theory of rigid graphs

- If there is no set of three collinear points, then 3n 6 constraints of the type $\|\mathbf{p}_{ij}\| = c_{ij}$ ensure rigidity.
- Rigidity is preserved if p
 _{ij} belongs to the nullspace of a |E| × 3n matrix R(G). E is the edge set in a constraint graph G.

イロト イポト イヨト イヨト

Main Results Simulation

Control Law

The control law

$$\mathbf{u}_i = \mathbf{v} + \mathbf{w} \times \mathbf{p}_{ic},$$
$$\mathbf{w} = \alpha \, \mathbf{n} \times \mathbf{n}_d,$$

and requires agent *i* to know \mathbf{p}_{ic} , \mathbf{n} , and \mathbf{n}_d . For example, all agents know \mathbf{n}_d (global information) and are neighbors of the special agents 1, 2, and 3.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Main Results Simulation

Stability Analysis

We prove ...

 the equilibrium n = n_d is almost global asymptotically stable, n = -n_d is unstable,

• the convergence rate is locally exponential.

The proof is by Lyapunov theory methods.

Main Results Simulation

An example

Set up

- Six agents forming an equilateral triangle.
- All agents can sense their relative position with respect to the three special agents 1, 2, and 3.

Communications graph

Simulation

Summary Questions?

Summary

A distributed control law for rotating a multi-agent formation to any desired orientation.

Future work

- The 2D case.
- Control all three degrees of rotational freedom.

ヘロト 人間 ト ヘヨト ヘヨト

3

Summary Questions?

Questions?

