Distributed Attitude Control of Multi-Agent Formations

L. Wang1,2, J. Markdahl1, and X. Hu1

1Division of Optimization and Systems Theory
Royal Institute of Technology (Sweden)

2Department of Automation
Shanghai Jiao Tong University (China)

30 August, 2011 · IFAC World Congress · Milano
Cooperative manipulation

- Perform a manipulation task using multiple manipulators.
- Carry heavier loads, use several tools simultaneously.
- Centralized or decentralized control.
Multi-Agent Model

Every manipulator corresponds to an agent. The agent state is given by the end-effector position.

Manipulator model
- Manipulator kinematics, $\dot{\mathbf{p}}_i = J_i(q_i)\dot{q}_i$, $\dot{q}_i = u_i$
- Bilateral constraints at the grasp points

Multi-agent model
- Single integrator kinematics, $\dot{\mathbf{p}}_i = u_i$
- Formation of agents should be maintained, *i.e.* distances between agents should be constant
Geometry of the Model

Aim: rotate the object to a desired orientation.

Let

\[p_{ij} = p_i - p_j, \]
\[p_c = \frac{1}{3} \sum_{i=1}^{3} p_i, \]
\[n = p_{12} \times p_{23}. \]
Commonly used parametrizations of orientation:

- Rotation matrices, $SO(3)$
- Unit quaternions
- Euler angles

We use three vectors: p_{12}, p_{23}, and $n = p_{12} \times p_{23}$.

- Gram-Schmidt mapping onto $SO(3)$

\[
(p_{12}, p_{23}, n) \rightarrow \left[\frac{p_{12}}{\|p_{12}\|} \frac{p_{12} \cdot p_{23}}{\|p_{12}\| \|n\|} - \frac{(p_{12} \cdot p_{23})p_{12}}{\|p_{12}\| \|n\|}, \frac{n}{\|n\|} \right].
\]

- Formalize goal as $\lim_{t \to \infty} n = n_d$. This leaves one degree of rotational freedom.
Theory of rigid graphs

Total number of constraints $n(n - 1)/2$, requires a complete communications graph?

Theory of rigid graphs

- If there is no set of three collinear points, then $3n - 6$ constraints of the type $\|p_{ij}\| = c_{ij}$ ensure rigidity.
- Rigidity is preserved if \dot{p}_{ij} belongs to the nullspace of a $|E| \times 3n$ matrix $R(G)$. E is the edge set in a constraint graph G.
The control law

\[u_i = v + w \times p_{ic}, \]
\[w = \alpha n \times n_d, \]

and requires agent \(i \) to know \(p_{ic}, \) \(n, \) and \(n_d. \) For example, all agents know \(n_d \) (global information) and are neighbors of the special agents 1, 2, and 3.
We prove . . .

- the equilibrium \(n = n_d \) is almost global asymptotically stable, \(n = -n_d \) is unstable,

- the convergence rate is locally exponential.

The proof is by Lyapunov theory methods.
An example

Set up

- Six agents forming an equilateral triangle.
- All agents can sense their relative position with respect to the three special agents 1, 2, and 3.

Communications graph

Simulation
A distributed control law for rotating a multi-agent formation to any desired orientation.

Future work

- Include manipulator kinematics, $\dot{p}_i = J_i(q_i)\dot{q}_i$, with rank deficient Jacobian matrix.
- The 2D case.
- Control all three degrees of rotational freedom.
Questions?

Thank you