
On l1 Mean and Variance Filtering
Bo Wahlberg, Cristian Rojas, Mariette Annergren

Main Results:
F An l1, Total Variation (TV), regularized Maximum

Likelihood (ML) method to segment a time series
with respect to changes in the mean or in the vari-
ance.

F We show that, in this setting, variance estimation
of {yt} is equivalent to mean estimation of {y2t }.

Why?
F Estimating means, trends and variances in time se-

ries data are of fundamental importance in a variety
of areas. Typically done to pre-process data before
estimation of, for example, parametric models.

F For non-stationary data it is important to detect
changes in the mean and the variance in order to
segment the data into stationary subsets.

How?
Traditionally: Moving window sample mean and variance

estimation. Hypothesis test based change detection.

Here: The l1 sparseness approach. Penalize the diffe-
rence between consecutive variables.

Mean Estimation
Data: {y1, . . . yN}

Model: yt ∼ N (mt, 1), wheremt+1 = mt often

Method: min
mt
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]
ML+TV: Related to fused lasso, l1 trend filtering and total
variation denoising

Variance Estimation
Data: {y1, . . . yN}

Model: yt ∼ N (0, σ2
t ), whereσt+1 = σt often

ML: min
σt>0

1

2

[
N∑
t=1

ln(σ2
t ) +

N∑
t=1

y2t
σ2
t

]
Concave + Convex! Standard trick: ηt = −1/(2σ2

t )

Method: min
ηt<0
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]

ML+TV: Convex optimization problem related to graphical lasso.

Equivalence
The variance estimation problem for {yt} has same sub-
gradient (first order) optimality conditions as the mean
estimation problem for {y2t }.
Proof idea:
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⇒ Ordering is preserved ⇒
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Ongoing and Future Work
F The vector valued covariance matrix case:

(n+ 1)n/2 variables per n-dimensional sample.

F Alternating Direction Method of Multipliers (ADMM)
convex optimization algorithm with linear complexity.

F Statistical analysis and applications.
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