Main Results:

* An l_{1}, Total Variation (TV), regularized Maximum Likelihood (ML) method to segment a time series with respect to changes in the mean or in the variance.
\star We show that, in this setting, variance estimation of $\left\{y_{t}\right\}$ is equivalent to mean estimation of $\left\{y_{t}^{2}\right\}$.

Why?

* Estimating means, trends and variances in time series data are of fundamental importance in a variety of areas. Typically done to pre-process data before estimation of, for example, parametric models.
* For non-stationary data it is important to detect changes in the mean and the variance in order to segment the data into stationary subsets.

How?

Traditionally: Moving window sample mean and variance estimation. Hypothesis test based change detection.

Here: The l_{1} sparseness approach. Penalize the difference between consecutive variables.

Mean Estimation

Data: $\left\{y_{1}, \ldots y_{N}\right\}$
Model: $\quad y_{t} \sim \mathcal{N}\left(m_{t}, 1\right), \quad$ where $m_{t+1}=m_{t}$ often
Method: $\quad \min _{m_{t}}\left[\frac{1}{2} \sum_{t=1}^{N}\left(y_{t}-m_{t}\right)^{2}+\lambda \sum_{t=1}^{N}\left|m_{t}-m_{t-1}\right|\right]$
ML+TV: Related to fused lasso, l_{1} trend filtering and total variation denoising

Variance Estimation

Data: $\left\{y_{1}, \ldots y_{N}\right\}$
Model: $\quad y_{t} \sim \mathcal{N}\left(0, \sigma_{t}^{2}\right), \quad$ where $\sigma_{t+1}=\sigma_{t}$ often
ML: $\min _{\sigma_{t}>0} \frac{1}{2}\left[\sum_{t=1}^{N} \ln \left(\sigma_{t}^{2}\right)+\sum_{t=1}^{N} \frac{y_{t}^{2}}{\sigma_{t}^{2}}\right]$
Concave + Convex! Standard trick: $\eta_{t}=-1 /\left(2 \sigma_{t}^{2}\right)$
Method: $\min _{\eta_{t}<0}\left[\frac{1}{2}\left(\sum_{t=1}^{N}-\ln \left(-\eta_{t}\right)-\sum_{t=1}^{N} 2 \eta_{t} y_{t}^{2}\right)+\lambda \sum_{t=1}^{N}\left|\eta_{t}-\eta_{t-1}\right|\right]$

ML+TV: Convex optimization problem related to graphical lasso.

Equivalence

The variance estimation problem for $\left\{y_{t}\right\}$ has same subgradient (first order) optimality conditions as the mean estimation problem for $\left\{y_{t}^{2}\right\}$.
Proof idea:

$$
\begin{aligned}
\frac{d}{d \eta_{t}}\left[\sum_{t=1}^{N}-\ln \left(-\eta_{t}\right)-\sum_{t=1}^{N} 2 \eta_{t} y_{t}^{2}\right] & =\frac{-1}{\eta_{t}}-2 y_{t}^{2}=2\left(\sigma_{t}^{2}-y_{t}^{2}\right) \\
& =\frac{d}{d \sigma_{t}^{2}}\left[\sum_{t=1}^{N}\left[y_{t}^{2}-\sigma_{t}^{2}\right]^{2}\right]
\end{aligned}
$$

$\eta_{t}-\eta_{t-1}=\frac{\sigma_{t}^{2}-\sigma_{t-1}^{2}}{2 \sigma_{t}^{2} \sigma_{t-1}^{2}} \quad \Rightarrow$ Ordering is preserved $\quad \Rightarrow$
$\frac{d}{d \eta_{t}}\left[\sum_{t=2}^{N}\left|\eta_{t}-\eta_{t-1}\right|\right]=\frac{d}{d \eta_{t}}\left[\left|\eta_{t}-\eta_{t-1}\right|+\left|\eta_{t+1}-\eta_{t}\right|\right]$
\{depends only on the signs of $\left(\eta_{t}-\eta_{t-1}\right)$ and $\left(\eta_{t+1}-\eta_{t}\right)$, which equal the signs of $\left(\sigma_{t}^{2}-\sigma_{t-1}^{2}\right)$ and $\left.\left(\sigma_{t+1}^{2}-\sigma_{t}^{2}\right)\right\}$

$$
=\frac{d}{d \sigma_{t}^{2}}\left[\left|\sigma_{t}^{2}-\sigma_{t-1}^{2}\right|+\left|\sigma_{t+1}^{2}-\sigma_{t}^{2}\right|\right]=\frac{d}{d \sigma_{t}^{2}}\left[\sum_{t=2}^{N}\left|\sigma_{t}^{2}-\sigma_{t-1}^{2}\right|\right]
$$

Ongoing and Future Work

* The vector valued covariance matrix case:
$(n+1) n / 2$ variables per n-dimensional sample.
* Alternating Direction Method of Multipliers (ADMM) convex optimization algorithm with linear complexity.
* Statistical analysis and applications.

Estimated variance (black line), true variance (blue line) and measurements (red crosses).

