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Abstract— Model predictive control has become an increas-
ingly popular control strategy thanks to the ability to handle
constrained systems. Obtaining the required models through
system identification is often a time consuming and costly
process. Applications oriented experiment design is a means
of reducing this effort but is often formulated in terms of the
input’s spectral properties. Therefore, time domain constraints
are difficult to enforce. In this contribution we combine MPC
with experiment design to formulate a control problem where
excitation constraints are included. The benefits are that time
domain constraints are respected while the experiment design
criteria are fulfilled. The method is evaluated on a numerical
example.

I. INTRODUCTION

MODEL predictive control (MPC) has since its in-
troduction grown more and more popular in many

fields, in particular in process industry. MPC was adopted
early on by petrochemical industries and is now probably
used in all modern refineries [1]. The key properties that
have led to the success of MPC are the abilities to easily
handle multivariate systems and to incorporate constraints on
inputs, outputs and states. As the name indicates, a model is
used to predict the process response and a suitable input is
calculated accordingly. As a result, the performance of the
MPC strongly depends on how well the model reflects the
dominant plant dynamics.

It has been reported that the most expensive and time
consuming part of MPC commissioning is the process
modeling. Estimates of the part of the cost and time of
commissioning related to modeling range up to 90 % [2],
[3]. As the popularity of MPC increases, time and cost
efficient modeling becomes important. Most MPC solutions
used today, employ system identification with pseudo random
binary excitation signals to obtain process models [4], even
for multivariate processes.

Optimal input design is a tool that has been shown to
be able to significantly reduce the required experimental
effort in control applications [5]. In [6] the idea that the
excitation should enhance important process properties while
attenuating the less important properties is discussed and
formalized. A general framework for applications oriented
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experiment design is presented in [7], building on the least-
costly experiment design paradigm put forward in [8]. Build-
ing on this framework, [9] presented an initial idea for
optimal experiment design when the intended model use is
MPC. Some MPC related issues, relating to the fact that
constrained MPC is a nonlinear controller, were addressed.
This idea was further developed in [10], [11], where an
experiment design algorithm for open loop identification
of models for MPC is presented. In this formulation, the
experiment design is formulated in the frequency domain,
therefore time domain hard constraints on the input signals
are difficult to handle.

Two ways around this problem have been suggested. One
possibility is to disregard constraints in the design part and
only include them during signal generation. There are many
algorithms available for design of binary signals with a
prescribed spectrum, e.g., [12], [13]. Recently a receding
horizon algorithm for signal generation under input and
ouput constraints has been proposed [14]. Another possibility
is to do experiment design in the time domain. Two recent
works, which have inspired this work, are [15], [16].

In this contribution we present a method where the exper-
iment design is included in the MPC formulation as an extra
constraint. The purpose of this constraint is to ensure that
the applied input excites the system so that a high quality
model can be obtained from operational data. This allows for
online identification with the MPC in the loop. Our proposed
method has similarities with the persistently exciting MPC
proposed in [17], [18]; these works, however focus on ensur-
ing persistence of excitation rather than on obtaining an input
signal suitable for identification. A more recent contribution
along the same lines is [19] where several relaxations of a
persistently exciting MPC method are presented. This last
contribution, however, does not consider the final purpose of
the estimated model explicitly.

An advantage of having the MPC running during the
identification experiment is that time domain constraints
can be handled. This should be a desirable property for
constrained systems. The proposed MPC leads to a non-
convex optimization problem. However, through standard
techniques, a relaxed convex problem can be formulated.
Before closing we also point to the work of Zhu, e.g. [3],
related to identification for MPC, which relies on asymptotic
variance expressions (in both model order and sample size)
for input design; this work, however, does not take into
account the specific features of MPC (such as input and state
constraints).



A. Notation

The symbol E {·} denotes the expectation operator. S+
n

is the cone of symmetric, positive semi-definite matrices of
dimensions n × n. For two symmetric matrices X and Y ,
X � Y means X − Y ∈ S+

n . For vectors, inequalities
are interpreted element wisely, e.g., ξ ≥ 0 means that all
elements of ξ are non-negative. The trace of X is denoted
trX and diagX is the vector of the diagonal elements of
X . For vectors, xi denotes element i and for matrices, Xi,j

denotes element j of row i.

B. Structure of paper

The paper has the following structure. In Section II we go
through the relevant system identification and MPC back-
ground. In Section III we present the applications oriented
experiment design formulation. Section IV introduces our
proposed model predictive controller with experiment design
constraints together with a convex relaxation thereof. The
controller is tested on a numerical example in Section V.
Finally, in Section VI conclusions are drawn and future
research directions outlined.

II. PRELIMINARIES

A. System identification

Consider a discrete time, linear time-invariant dynamic
system described by an output error model of the form

x(t+ 1) = A(θ)x(t) +B(θ)u(t), (1a)
y(t) = C(θ)x(t) + e(t), (1b)

where θ ∈ Rnθ is an unknown parameter vector, x(t) ∈
Rd is the state vector, u(t) ∈ Rm is the input, y(t) ∈ Rp
the output, and e(t) the innovations; a zero-mean, random
process with covariance matrix E

{
e(t)eT (s)

}
= Λeδt,s. We

assume that there exists a vector θo which corresponds to the
true system parameters. We use the prediction error method
with quadratic cost for system identification and θ̂N denotes
the estimate resulting from N samples of input–output data,
ZN = {u(t), y(t)}Nt=1, see [20].

For an unbiased estimator the Cramér-Rao inequality
provides a lower bound on the covariance matrix for the
parameter estimation error. Given data from time m to time
n, this bound is given by the inverse of the Fisher information
matrix Inm(θo), where the latter is defined by

Inm(θ) =
n∑

t=m

E
{
ψ(t, θ)Λ−1

e ψT (t, θ)
}
, (2)

ψi(t, θ) =
dŷ(t)

dθi
, (3)

ψ(t, θ) =
[
ψ1(t, θ) · · · ψnθ (t, θ)

]T
. (4)

The reason that we start the sum in (2) at m is that we will
later consider the parts of the information matrix related to
past and future data. For a given data record, ZN , the Fisher
information matrix can be estimated by

Inm(θ) =

n∑
t=m

ψ(t, θ)Λ−1
e ψT (t, θ). (5)

In fact, it holds under fairly mild conditions that

lim
n→∞

1

n
Inm(θ) = lim

n→∞

1

n
Inm(θ), almost surely. (6)

Now, under very general conditions [21], it holds that

IN1 (θo)
1/2(θ̂N − θo) ∈ AsN (0, I). (7)

This implies that

θ̂N ∈ U(α) =
{
θ : [θ − θo]T IN1 (θo) [θ − θo] ≤ χ2

α(nθ)
}
,

(8)

with probability α. Here χ2
α(n) is the α-percentile of the

χ2-distribution with n degrees of freedom. We call U(α)
the identification ellipsoid.

The dependence of A,B,C and ψ on θ will henceforth
be omitted to simplify notation.

B. Model predictive control

In MPC, the input is determined by solving an optimiza-
tion problem where the impact of the control signal on the
plant is predicted using a system model. A common cost
function used in the MPC is given by

J =

Ny∑
k=1

‖y(k)− r(k)‖2Q +

Nu∑
k=1

‖∆u(k)‖2R, (9)

where r(k) is a reference trajectory, ∆u(k) = u(k)−u(k−1)
is the control update, Ny and Nu are the prediction and
control horizons, respectively, and Q and R are two tunable
matrix weights. The model in the MPC is augmented with
constant disturbances on each output to compensate for
wrong model gains. At time instant t, a sequence of inputs
is found by solving the optimization problem

minimize
{u(k)}Nuk=1

J

subject to x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k), k = 1, . . . , Ny,

x(1) = x̂(t),

∆u(1) = u(1)− u?(t− 1),

umin ≤ u(k) ≤ umax, k = 1, . . . , Nu,

ymin ≤ y(k + 1) ≤ ymax k = 1, . . . , Ny.
(10)

Here x̂(t) is the estimated system state at time t, obtained
either from direct measurements or an observer, and u?(t−1)
is the input signal applied to the system at time t− 1. Even
though the solution to (10) is a sequence of inputs, only
the first input is applied to the system and the optimization
is performed again in the next time step, according to
the receding horizon principle. The MPC formulation is
presented in further detail in [22].

III. APPLICATIONS ORIENTED INPUT DESIGN

The quality of a model will influence the performance
of a control application where the model is used. The
applications oriented experiment design formulation relies on
an application cost as a measure of performance degradation
due to mismatch between model and system. We denote the



application cost by Vapp. We can assume without loss of
generality that Vapp(θ) ≥ 0 and that Vapp(θo) = 0 is a
minimum. In the case of parameterized models such as (1),
Vapp is a function of the model parameters θ. A model is
considered acceptable if the degradation is sufficiently small.
This gives a set of acceptable models or parameters

Θapp(γ) =

{
θ : Vapp(θ) ≤

1

γ

}
, (11)

where γ is an application specific constant which determines
the accuracy of the model. We can make a convex approx-
imation of Θapp using a second order Taylor expansion
of Vapp, using Vapp(θo) = V ′app(θo) = 0. Hence, the set
of acceptable parameters (11) can be approximated by the
ellipsoidal set

Eapp =

{
θ : [θ − θo]TV ′′app(θo)[θ − θo] ≤ 2

γ

}
. (12)

We call this the application ellipsoid.
The aim of the applications oriented input design is to find

an input that with high probability, α, results in acceptable
parameter estimates while at the same time minimizing the
cost of the identification experiment, i.e.,

minimize
input

Experimental cost

subject to P
{
θ̂N ∈ Θapp(γ)

}
≥ α.

(13)

The problem (13) is, however, in general non convex and not
computationally tractable. In [7], approximating the chance
constraint in (13) by

U(α) ⊆ Eapp, (14)

is suggested. The approximation (14) is equivalent to

IN1 �
γχ2

α(nθ)

2
V ′′app(θ0), (15)

which is a linear matrix inequality (LMI) in the elements of
IN1 . There are other choices for the approximation of the
chance constraint in (13), a discussion on chance constraints
in input design is found in [23].

The choice of the application cost and the corresponding γ
is highly application specific. Some general ideas for suitable
choices in the case of MPC are discussed in [11] and not
further elaborated on here. We will refer to (15) as the
experiment design constraint.

IV. MPC WITH EXPERIMENT DESIGN CONSTRAINTS

In this section we present an MPC formulation which in-
cludes input constraints that arise in the application oriented
input design formulation. The idea is to let the MPC compute
an input that minimizes the control cost while at the same
time excites the system enough for a system identification
experiment of length N to produce an acceptable model.
To achieve this, we include constraint (15) into the MPC
formulation (10).

We propose the following MPC formulation to be solved
at time t:

minimize
{u(k)}Nuk=1

J

subject to x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k), k = 1, . . . , Ny,

x(1) = x̂(t),

∆u(1) = u(1)− u?(t− 1),

umin ≤ u(k) ≤ umax, k = 1, . . . , Nu,

ymin ≤ y(k + 1) ≤ ymax k = 1, . . . , Ny.

It+Ny1 (θo) � κ(t)
γχ2

α(n)

2
V ′′app(θ0).

(16)
The last constraint of (16) is added to ensure that the result-
ing information matrix, over the MPC prediction horizon,
fulfills the application specifications. κ(t) is a scaling factor
which we set to

κ(t) =
min(N, t+Ny)

N
. (17)

This choice of scaling ensures that at time N , the constraint
(15) is fulfilled. The implication is that after N samples, the
information matrix is such that the application constraint is
satisfied with probability α.

A. Information matrix

To incorporate the constraint (15) in the MPC formulation,
we need to relate IN1 (θo) to the input u(t). Assume that we
are at time instant t and want to run the MPC optimization.
It+Ny1 (θo) can then be split into

It+Ny1 (θo) = It1(θo) + It+Nyt+1 (θo) (18)

where It1(θo) depends on available data while It+Nyt+1 (θo)
will be the predicted addition to the information matrix by
the control input. Since we have data up to time t−1, Zt−1,
and an estimate θ̂ available, we make the approximation

It+Ny1 (θo) ≈ It1(θ̂) + I
t+Ny
t+1 (θ̂) (19)

Remark: Here we use the estimated parameter θ̂ in lieu of
the true parameter values. Such estimates can, for instance,
be available from the commisioning of the MPC. We assume
that the estimates are sufficiently good for the experiment
design. Our approach can easily be extended to a genuine
adaptive experiment design, but this is considered future
work.

To calculate (19), we proceed along the lines of [24]. First,
we find ψ(t) by differentiating (1).

dx(t+ 1)

dθi
=

dA

dθi
x(t) +A

dx(t)

dθi
+

dB

dθi
u(t), (20)

dy(t)

dθi
=

dC

dθi
x(t) + C

dx(t)

dθi
. (21)



Second, by introducing

A ,


A 0 0 0
dA
dθ1

A 0 0
... 0

. . . 0
dA

dθnθ
0 0 A

 ,B ,


B
dB
dθ1
...

dB
dθnθ

 ,

C ,


dC
dθ1

C 0 0
... 0

. . . 0
dC

dθnθ
0 0 C

 ,
ξ(t) ,

[
x(t) dx(t)

dθ1
· · · dx(t)

dθnθ

]T
,

ψ̄(t) ,
[
ψT1 (t) · · · ψTnθ (t)

]T
,

we can form the augmented state space

ξ(t+ 1) = Aξ(t) + Bu(t), (22)
ψ̄(t) = Cξ(t). (23)

This in turn gives us

ψ̄(t)ψ̄T (t) = Cξ(t)ξT (t)CT . (24)

The elements of Itt = ψ(t)Λ−1
e ψT (t) can now be found from(

ψ(t)Λ−1
e ψT (t)

)
i,j

= ψTi (t)Λ−1
e ψj(t)

= trψj(t)ψ
T
i (t)Λ−1

e .
(25)

Remark: These calculations were simplified because of
our choice to work with output error models. For more
general model structures, one would have to consider the
expectation of the expression (24) which is involved due to
the correlation between u and e in closed loop and the non
linear nature of the MPC.

B. Quadratic formulation
Now we seek to write the MPC with excitation constraints

formulation as a quadratic program. Firstly, the MPC cost
function (9) can be written as

J(t) = ‖ȳ − r̄‖Q + ‖Γū− ū?(t)‖R, (26)

where ū ,
[
uT (Nu), . . . , uT (1)

]T
, ȳ and r̄ are defined

analogously, ū?(t) , [0, . . . , 0, u?(t− 1)]
T , Q and R are

block diagonal matrices with Q and R on the diagonals,
respectively, and dimensions commensurate with ȳ and ū
and

Γ ,


1 −1 · · · 0
...

. . . . . .
...

0 · · · 1 −1
0 · · · 0 1

 . (27)

The constraints of (10) give that ȳ = Ψx̂(t) + Υū, with

Ψ ,


CANy

CANy−1

...
CA

 ,Υ ,


CB CAB · · · CANy−1B
0 CB · · · CANy−2B
...

... · · ·
...

0 0 · · · CB

 .
(28)

By defining

H , ΥTQΥ + ΓTRΓ, (29)

G(t) , 2 [Ψx̂(t)− r̄]T QΥ− 2ū?T (t)RΓ, (30)

the cost function (26) can be written as

J(t) = ūTHū+ G(t)ū+ constant. (31)

The constant term does not influence the optimization. Even
though the cost function is a scalar quadratic function of
the decision variables, the MPC problem (16) is not a
quadratic program. This is due to the added experiment
design constraint which is quadratic in ū, and typically makes
the problem non-convex and computationally difficult. We
therefore consider a convex relaxation of the formulation.

C. Convex relaxation
We introduce the lifting variable U ∈ S+

Ny
and add the

constraint U = ūūT , which can be written as[
U ū
ūT 1

]
� 0, rank

[
U ū
ūT 1

]
= 1. (32)

We reformulate the MPC optimization problem in the vari-
ables U and ū. First, we rewrite the cost function as

J(t) = trHU + G(t)ū, (33)

due to the cyclic property of the trace.
Second, we reformulate the constraints in the variables U

and ū. We need to consider the It+Nyt term in the experiment
design constraint. Consider first

ξ(t+ 1)ξT (t+ 1) = Aξ(t)ξT (t)AT + Bu(t)uT (t)BT

+Aξ(t)uT (t)BT + Bu(t)ξT (t)AT , (34)

where, at time t, the only decision variable is u(t) = ūNu
since ξ(t) depends on past data. Hence (34) can be written
as

ξ(t+ 1)ξT (t+ 1) = Aξ(t)ξT (t)AT + BUNu,NuBT

+Aξ(t)ūTNuB
T + BūNuξT (t)AT , (35)

which is linear in U and ū. Now consider

ξ(t+ k)ξT (t+ k) = Aξ(t+ k − 1)ξT (t+ k − 1)AT

+ Bu(t+ k − 1)uT (t+ k − 1)BT

+Aξ(t+ k − 1)uT (t+ k − 1)BT

+ Bu(t+ k − 1)ξT (t+ k − 1)AT .
(36)

Since ξ(t+ k − 1)ξT (t+ k − 1) is linear in U , so is

Aξ(t+ k − 1)ξT (t+ k − 1)AT .

The second term,

Bu(t+ k − 1)uT (t+ k − 1)BT = BUNy−k+1,Ny−k+1BT

is also linear in U . Only the two last terms of (36) remain
to be analyzed. Iterating (22) gives

ξ(t+ k) = Akξ(t) +

k−1∑
i=0

AiBu(t+ k − i− 1). (37)



Hence

Aξ(t+k−1)uT (t+k−1)BT = Akξ(t)uT (t+k−1)BT

+

k−1∑
i=0

AiBu(t+ k − i− 1)uT (t+ k − 1)BT =

Akξ(t)ūTNy−k+1BT +

k−1∑
i=0

AiBUNy−k+i+1,Ny−k+1BT ,

(38)

which is linear in U and ū. Therefore, ξ(t+ k)ξT (t+ k) is
linear in U and ū and hence, ψ̄(t)ψ̄T (t) = Cξ(t)ξT (t)CT is
also linear in U and ū. As a result, the experiment design
constraint is an LMI in the decision variables U and ū and
therefore a convex constraint.

The input and output constraints are also reformulated and
the relaxed MPC formulation becomes

minimize
U,ū

trHU +G(t)ū

subject to
diagU − ūumax − ūumin ≤ −umaxumin,
diag ΥUΥT −Υūỹmax −Υūỹmin ≤ ỹmaxỹmin,
ỹmin,max = ymin,max −Ψx̂(t),

It−1
1 + I

t+Ny
t � κ(t)

γχ2
α(n)

2
V ′′app(θ0)[

U ū
ūT 1

]
� 0,

where the rank constraint which forces U = ūūT has been
dropped. The solution to this relaxed problem is the matrix
U and the vector ū. An input can be found by drawing a
sample of the random variable

ũ = ū+DT ζ, DDT = U, ζ ∈ N (0, I), (39)

as suggested in [15], [25]. The input applied to the process
can then be extracted from the last elements of ũ.

V. NUMERICAL EXAMPLE

In this example we illustrate the algorithm on a simulation
example. We consider a system consisting of two intercon-
nected tanks. An upper tank is connected to a pump with
input u(t). The tank has a hole in the bottom with free flow
into a lower tank, which also has a hole with free flow out
of the tank. The level in the lower tank is the output, y(t).
The system is modelled using the output error model

x(t+ 1) =

[
θ3 θ4

1 0

]
x(t) +

[
1
0

]
u(t)

y(t) =
[
θ1 θ2

]
x(t) + e(t).

(40)

The true system is given by the parameter values[
0.12 0.059 −0.74 0.14

]T
and the noise variance

E
{
e2(t)

}
= 0.01. The goal is to control the level in the

lower tank using MPC with the following settings: Ny =
Nu = 5, Qy = I , Qu = 0.001I . The considered scenario is
such that the identification is started at steady state operating
conditions of the plant.

We use the true parameter values to get the initial model.
As the application cost we choose

Vapp(θ) =

T∑
t=1

‖y(t, θo)− y(t, θ)‖22, (41)

over a step response of the system with the MPC running.
Hence, we want the identified model to give the step response
close to what we would get had the true system parameters
been available.

A. Identification Experiment
We set the length of each individual experiment to N =

100 samples, the accuracy γ = 200 and a probability of
α = 99% for the confidence ellipsoid U(α).

We consider the situation that the system is in a state
of steady operations during the identification experiment.
In other words we only try to control the system output
around the steady state level while satisfying constraints.
The identification is performed around this equilibrium level
with maximum input and output deviations of 2 and 1 units,
respectively, i.e., −umin = umax = 2 and −ymin = ymax =
1.

We perform a Monte Carlo trial with 500 simulations.
The gathered data is used to identify a second order output
error model using the System Identification Toolbox in
Matlab [26]. For comparison we also run the MPC without
the experiment design constraint and try to identify the
system from operational data. The application cost is then
evaluated for the resulting model.

B. Results
The Monte Carlo trial resulted in models which fulfill the

performance specifications in 98.8 % of the cases while iden-
tifying a model from normal operating data gave acceptable
models in 69.6 % of the cases.

Input data generated by MPC with experiment design con-
straint together with the resulting output of the system, from
one Monte Carlo simulation, are shown in Figure 1. Both
signals lie within the white area of the plots which shows
that the input and output constraints have been satisfied.
The noisy input is required to satisfy the experiment design
constraint. To reduce the variance of u(t), a lower value
of γ or longer experiment time would be needed. We also
show the input–output data from a simulation without the
experiment design constraint active to illustrate the price of
adding the extra excitation in Figure 2.

It is interesting to compare the closed loop MPC with
experiment design constraint to experiment design techniques
where the input spectrum is designed and a signal generated
by filtering noise through a spectral factor, see e.g. [27],
[7], [11]. The optimal input spectrum for an open loop
experiment gives the minimal input variance, 0.28, which
guarantees the performance specifications. This should be
compared to the average input variance of 0.36 for the
proposed method. The resulting output variance was on
average 0.043. This comparison is straight forward since for
output error models, the open loop experiment is optimal and
we cannot reduce the required variance of the input signal
by closing the loop. Under normal operating conditions,
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Fig. 1. The output and input of the system (40) using MPC with the
experiment design constraint as described in the example. Both signals
satisfy the constraint. The price to be paid to be able to identify the model
is the variance of both input and output signals.
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Fig. 2. The output and input of the system (40) using regular MPC without
any constraint for excitation. The variance of the signals are around 2–3
times smaller than what can be seen in Figure 2.

when no extra excitation is added, the input and output
variances were 0.12 and 0.020, respectively. It is clear that
this input variance is not sufficient to meet the performance
specifications.

In Figure 3 we show the Bode diagram of one resulting
model together with 3 standard deviations of the estimate.
The experiment design constraint has resulted in an input that
gives a model with low uncertainty in the frequency range
1.5 to 2.5 rad/s. The frequency response at lower frequencies
is estimated with lower accuracy. This can be explained by
the fact that the MPC can compensate for a missmatch of
the model and system gains.

VI. CONCLUSIONS

We have presented an MPC formulation with integrated
experiment design for output error models. Ideas from appli-
cations oriented experiment design have been used to add a
constraint in the MPC. The constraints relates to the informa-
tion matrix of the estimated model parameters. This added
constraint ensures that the input signal excites the system
sufficiently to identify a model that gives desired application
performance. The price to be paid is that the signals become
“noisy” compared to when no extra excitation is needed.

Future research directions include extending the results to
more general model classes where the correlation between
input and noise has to be considered. We also believe that the
method, with suitable changes, will work well for iterative
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100
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A
m
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Fig. 3. Bode diagram of the model of (40) estimated from N = 100
samples of data generated by the MPC with experiment design constraints.
The light gray area shows 3 standard deviations of the estimate.

identification where also the experiment design constraint
can be updated. This will be further investigated.
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