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Introduction

The experimental study was performed on a quadruple water tanks process at the

Department of Automatic Control, Lund University. More specifically, process S:005 was used.

The experimental set-up was introduced in [1]. A layout of the water tanks process is shown in

Figure 1. The main components are two lower tanks, two upper tanks and two pumps. Pump

1 delivers water into Tank 1 and Tank 4, while pump 2 delivers water to Tank 2 and Tank 3.

Pressure sensors are located at the bottom of each tank. The signals from the sensors in the

two lower tanks are the output signals of the process. They provide information about the water

levels. The input signals are the voltages applied to the two pumps.

The purpose of this study is to exemplify the applications oriented input design

framework. The purpose is not to investigate the water tanks process nor MPC control per

se. The considered water tanks process is well-studied, see [1]. A physical model can easily

be derived from first principles and its parameters are not difficult to identify. However, in this

study we want to identify the model parameters in an automated fashion and with the intended
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application in mind. We will see that the input design, without any meddling from the user,

suggests an input signal that is well-motivated from our knowledge of the plant. The designed

input signal highlights the process dynamics that are of importance for the application and hides

the unimportant one.

The theoretical background in this study is sparse. For more details on system identifi-

cation and applications oriented input design see for example [2], [3], [4], and the references

therein. For an introduction to MPC, see [5].

The softwares used are Matlab, Simulink and cvx. cvx is a package for specifying

and solving convex programs [6], [7]. The solver used in cvx is set to sdpt3 [8].

Pump 1 Pump 2

Valve 1 Valve 2

Tank 1 Tank 2

Tank 4Tank 3

Figure 1. Water tanks process. Water is pumped from the basin into the four tanks. The flow

from pump 1 fills Tanks 1 and 4 while the flow from pump 2 fills Tanks 2 and 3. The flow is

divided between the tanks according to the settings of the two valves.
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Water tanks model

Standard MPC uses a linear and discrete time model. The water tanks model used in this

study is

M(θ) : x(t+ 1) = A(θ)x(t) +B(θ)u(t), (1a)

y(t) = C(θ)x(t) + e(t), (1b)

with

A = eAc , B =

∫ 1

0

eAc(1−t)Bcdt,

and

Ac =



−τ1 0 τ3 0

0 −τ2 0 τ4

0 0 −τ3 0

0 0 0 −τ4


, Bc =



k1γ1

A
0

0 k2γ2

A

0 k2(1−γ2)
A

k1(1−γ1)
A

0


,

C =

l1 0 0 0

0 l2 0 0

 , τi =
ai
A

√
g

2xio
,

as given in [1]. The model is derived using zero order hold sampling and a sampling rate of 1

Hz. The state vector is x(t) = [x1(t) x2(t) x3(t) x4(t)]T. The component xi is the deviation of

the water level of Tank i from the operating point xoi expressed in centimeters. The input signal

is u(t) = [u1(t) u2(t)]T. The component uj is the deviation of the voltage of pump j from the

operating point expressed in volts. The output signal is y(t) = [y1(t) y2(t)]T, where yi is the

3



deviation of the pressure in volts of Tank i from the operating point yoi affected by noise. The

measurement noise e(t) = [e1(t) e2(t)]T is assumed to be zero mean white Gaussian noise with

covariance matrix Λ. The states at time t can be estimated from the measurement y(t) using a

Kalman filter.

The physical meaning and values of the parameters in model (1) are listed in Table I.

The parameters a1, a2, a3, a4, γ1, γ2, k1, k2, and covariance matrix Λ are estimated from a long

identification experiment using white noise with low power as excitation signal. The covariance

matrix of the excitation signal is 0.1I2×2. The number of data samples used are 3426, collected

at 1 Hz. That is, the identification experiment is almost an hour long. All other parameter values

in the model are taken from the process specification.

We denote the parameters θ, the true parameter values θ0, the initial estimate θinit and the

parameter values estimated using N data points θ̂N . They all lie in Rn. We refer to estimates

obtained using input design as optimal estimates and using white noise as white estimates.
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TABLE I

PHYSICAL PARAMETERS OF THE QUADRUPLE WATER TANKS PROCESS.

Parameter Description Value Standard

deviation

a1 cross sectional area of outlet of Tank 1 (cm2) 0.0649 0.0010

a2 cross sectional area of outlet of Tank 2 (cm2) 0.0594 0.0021

a3 cross sectional area of outlet of Tank 3 (cm2) 0.3211 0.0737

a4 cross sectional area of outlet of Tank 4 (cm2) 0.1353 0.0245

Ai cross sectional area of Tank i = 1, . . . , 4 (cm2) 4.9 -

γ1 fraction of flow from pump 1 to lower tank 0.7283 0.0094

γ2 fraction of flow from pump 2 to lower tank 0.7271 0.0079

k1 voltage to volumetric flow rate constant of pump 1 (cm3/s/V) 2.362 0.0370

k2 voltage to volumetric flow rate constant of pump 2 (cm3/s/V) 1.797 0.0377

li water level to voltage constant of sensor i = 1, 2 (V/cm) 0.5 -

Λ covariance matrix of measurement noise

0.0051 0.0010

0.0010 0.0142

 -

x0 steady-state values of water levels (cm) [13.5 13.2 0.6 1.2]T -

u0 steady-state values of input signals (V) [4.4 4.6]T -

Examples

In this study we describe and present results from five different examples of designed

identification experiments. The examples are briefly described in Table II.
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TABLE II

FIVE DIFFERENT TYPES OF DESIGNED IDENTIFICATION EXPERIMENTS.

Examples Description

Example 1

The parameters to be estimated are θ = [γ1 k1]T.

The intial estimate is θinit = [0.7 1.6]T.

The MPC is without integral action.

Example 2

The parameters to be estimated are θ = [a1 a2 a3 a4 γ1 γ2 k1 k2]T.

The intial estimate is θinit = [0.03 0.03 0.5 0.5 0.7 0.7 1.6 1.6]T.

The MPC is without integral action.

Example 3

The parameters to be estimated are θ = [a1 a2 a3 a4 γ1 γ2 k1 k2]T.

The intial estimate is θinit = [0.03 0.03 0.05 0.05 0.7 0.7 1.6 1.6]T.

The MPC is without integral action.

Example 4

The parameters to be estimated are θ = [γ1 k1]T.

The intial estimate is θinit = [0.7 1.6]T.

The MPC is with integral action.

Example 5

The parameters to be estimated are θ = [a1 a2 a3 a4 γ1 γ2 k1 k2]T.

The intial estimate is θinit = [0.03 0.03 0.05 0.05 0.7 0.7 1.6 1.6]T.

The MPC is with integral action.
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Application cost

For more details of the concepts introduced in this section, see for example [3] and [4].

We use MPC to control the water tanks process. The objective of the controller is to

perform reference tracking of the water levels in the two lower tanks. The reference signals

are shown in Figure 2. The signals are deviations from the steady state values measured in

centimeters.
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Figure 2. References for output signals. The reference signals r1/l1 and r2/l2 are shown.

The performance of the controller improves when the model is able to predict the true

output of the system more accurately. Thus, an application cost that punishes the output error is

chosen. That is,

Vapp(θ) =
1

Napp

Napp∑
t=1

1

2
‖y(t, θ)− y(t, θ0)‖2, (2)

with Napp = 150. Here, y(t, θ) is the closed-loop output signal at time t using an MPC model

with parameter values equal to the values of θ. Thus, y(t, θ0) is the closed-loop output signal at
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time t using an MPC model based on the true parameter values.

The application set is

Θapp(γ) =

{
θ |Vapp(θ) ≤ 1

γ

}
, (3)

and the ellipsoidal approximation of the application set is

Eapp(γ) =

{
θ |1

2
(θ − θ0)TV ′′app(θ0)(θ − θ0) ≤ 1

γ

}
. (4)

We refer to the inequality in (3) as the application requirement and to the inequality in (4) as

the second order approximation of the application requirement.

The upper bound on performance degradation, γ, is chosen as

γ =
100

V (θ0, r(t))
,

with

V (θ0, r(t)) =
1

Napp

Napp∑
t=1

1

2
‖r(t)− y(t, θ0)‖2,

where r(t) = [r1(t) r2(t)]T is the reference signal. Meaning, we allow a performance degradation

of 1% from the performance level obtained using the true parameters in the model. The value

of γ in the different experiments are shown in Table III. The value of γ varies since different

initial estimates of θ0 and different MPC controllers are used.

TABLE III

VALUE OF γ IN THE DIFFERENT EXAMPLES.

Examples Example 1 Example 2 Example 3 Example 4 Example 5

Value of γ 1.8× 104 V−2 1.6× 104 V−2 1.8× 104 V−2 2.2× 104 V−2 2.2× 104 V−2
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To summarize, the estimated model is to be used in an MPC that performs reference

tracking. We want the closed-loop output signal, when using the estimated model in the MPC,

to be close to the output signal obtained when using the true system as model in the MPC. How

close the signals should be to each other and what measure to use is set by the value of γ and

the definition of the application cost (2).

Control strategy

The controller implemented is an MPC. The input is calculated using the cost function

J(t)=

Ny∑
i=0

‖ŷ(t+i|t)−r(t+i)‖2
Qy

+
Nu∑
i=0

‖û(t+i|t)−ru(t+i)‖2
Qu

+
Nu∑
i=0

‖û(t+i+1|t)−û(t+i|t)‖2
Q∆u

,

and solving the optimization problem

minimize
u(t)

J(t),

subject to ŷ ∈ Y ,

û ∈ U ,

where ŷ and û are estimated using the model (1), measurements and state estimates. We set

Ny = Nu = 10, Qy = 100I2×2, Qu = 10I2×2,

U = {−3.9 ≤ u1 ≤ 5.62, −4.1 ≤ u2 ≤ 5.4,−2.0 ≤ ∆u1 ≤ 2.0, −2.0 ≤ ∆u2 ≤ 2.0}

and

Y = {−13.5 ≤ y1 ≤ 1.5, −13.2 ≤ y2 ≤ 1.9, −0.6 ≤ y3 ≤ 14.4, −1.2 ≤ y4 ≤ 13.8}.

Here, ∆ui denotes the difference between two consecutive values of ui. In Example 1-3, we set

Q∆u = 20I2×2 and we do not have integral action. In Example 4 and 5, we set Q∆u = 0I2×2

and we do have integral action.
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The constraints on û and ŷ correspond to the physical limitations of the process. The

maximum allowed pump voltage is 10 V. The minimum allowed voltage is 0.5 V. The minimum

voltage is nonzero so that the tubes are always filled with water. The maximum allowed water

level is to prevent overflow of the tanks. The allowed level is approximately five centimeters

lower than the water tank edges. The minimum allowed water tank level is zero, that is we allow

the tanks to be empty.

The input reference signal, ru, is set to the input signal that brings the system to r at

steady state, see [9].

When running the MPC application on the process, we use the second order low pass

filter

Gfilter(s) =

 1
0.25s2+s+1

1
0.25s2+s+1


on the measured output signal. The filter is the same as the one used on process SN:005 in the

laboratory exercises in the engineering program at the Department of Automatic Control, Lund

University. When simulating the water tanks process, we have no noise so no filter is needed.

Identification experiments

The number of samples used in the identification experiments is denoted N . For a

sufficiently large N , the estimates θ̂N are contained inside

ESI =

{
θ | (θ − θ0)TĪF(θ − θ0) ≤ χ2

α(n)

N

}
,

with probability α. Here, χ2
α(n) is the α-percentile of the χ2-distribution with n degrees of

freedom and ĪF is the average information matrix. We call ESI the identification ellipsoid. We

10



choose α = 0.95 in the χ2-distribution and the experiment length to 300 samples (N = 300) in

all the examples. That is, the identification experiments are five minutes long. For more details

on system identification, see [2].

Spectrum of input signal

We define the spectrum of the input signal as an FIR spectrum. The spectrum is denoted

Φij(ω) for input signal j and output signal i. We use finite dimensional parametrization and the

KYP lemma to obtain tractable convex optimization problems in the applications oriented input

design framework. The objective of the optimization problems is to minimize the cost of the

identification experiment. The cost is defined as the power of the excitation signal in all five

examples. The decision variables of the optimization problems are the optimal input spectrum

parameters, denoted c0, . . . , cM for some user-specified M . If M = 1, the spectrum is forced

to be flat. That is, the input signal is white noise. For more details on the spectrum design, see

for example [3] and [4].

Validation of method

The applications oriented input design method is validated in several ways:

• We check that the initial estimates used in the design do not already fulfill the application

cost when evaluated in simulation using the true parameter values (the values obtained from

the long identification experiment and the process specification).

• We compare two types of application ellipsoids. The first type is designed based on the

initial estimates and the second type is designed based on the true parameter values.
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• We discuss which parameters that are important for the application. The importance of a

parameter is evaluated based on the possible range of its value. The range is defined as

both the absolute and relative deviation from the true parameter value. However, this only

gives a hint of the important directions in the parameter space. In general it is difficult to

rank the parameters in order of importance for n > 3.

• We compare two types of identification ellipsoids. The first type is designed using a system

based on the initial estimates. The second type is designed using a system based on the

true parameter values.

• We check if the optimal estimates fulfill the application cost in simulation. The application

cost is evaluated on the linearized system given by (1) based on the initial estimates and

based on the true parameter values.

• We check if the optimal estimates fulfill the second order approximation of the application

requirement. Also here, the application cost is evaluated on the linearized system based on

the initial estimates and the true parameter values.

• We check if the optimal estimates fulfill the application cost when evaluated on the process.

That is, we run the application with a model based on the true parameter values and with

a model based on the optimal estimates. We then calculate the application cost. Of course,

here we have noise present which we do not have in simulation and the noise realization

differs between the two runs. Consequently, we cannot expect the application requirement

to be fulfilled as stated. However, we can compare the result obtained from the optimal

estimates and from the white estimates.

• We do the same comparisons as above but for estimates using a white input signal. We use

the same experiment length as in the optimal experiments, that is N = 300. This length
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is, according to theory, much smaller than the experiment length required for the white

estimates to have the same statistical properties as the optimal estimates.

• We compare the performance of the optimal estimates and the white estimates. That is, we

compare the values of the different versions of application costs stated above.

• We compare four types of experiment lengths. The first experiment length is the user-defined

N on which the optimal input spectrum is based. The remaining experiments lengths are the

minimum lengths that, theoretically, give the same statistical properties of the estimates as

the first experiment length. The second experiment length is the minimum length obtained if

the input signal is defined as white noise of equal power to the optimal input signal and the

parameters are set to the initial estimates in the design. The third is the minimum experiment

length obtained when using the optimal spectrum parameters and the true parameter values

in the design. The fourth is the minimum experiment length obtained if the input signal is

defined as white noise of equal power to the optimal input signal and the parameters are

set to the true parameter values in the design.
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Example 1 - Estimating θ = [γ1 k1]
T with no integral action in the MPC

We want to estimate the values of γ1 and k1, that is θ = [γ1 k1]T. All other parameter

values are set as specified in Table I. We use an MPC with no integral action.

Check of initial estimates

We use as initial estimates the values from the process specification, that is θinit =

[0.7 1.6]T. From experience of this particular process, we know that these parameter values have

changed over time. Before performing the input design, we check if θinit fulfills the application

requirement. That is, we evaluate the application cost in simulation using a system based on θ0

and an MPC model based on θinit. In this check, we get that θinit does not fulfill the application

requirement. Meaning, we can continue with the example.

Application ellipsoid

We calculate two types of application ellipsoids. The first type is evaluated in simulation

using a system and MPC model based on θinit. The second type is evaluated in simulation using

a system and MPC model based on θ0. The ellipsoids are depicted in Figure 3. We see that, in

terms of allowed absolute deviation, it is more important to estimate γ1 accurately than k1 for

the considered application. That is, to fulfill the application requirement it is more important to

know the division of water between Tank 1 and Tank 4, than to know the voltage to volumetric

flow rate constant of pump 1. This is intuitive since the MPC can more easily compensate for an

error in k1 than an error in γ1. The parameter k1 is only present in the MPC model as a scaling
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factor of u1, while the presence of γ1 is a bit more delicate, see (1). If k1 is larger than the true

values we get less water in Tank 1 and Tank 4, and consequently also in Tank 2, than predicted

by the model, and the other way around. The MPC can, to a certain degree, compensate for this

model error by increasing or decreasing u1. However, if γ1 is larger than the true values we get

less water in Tank 1, more water in Tank 4 and also more water in Tank 2, than predicted by

the model, and vice versa. The MPC cannot compensate for this error by only using u1. It needs

to involve u2, which invokes the coupling of the system. In addition we note that, although the

two ellipsoids are different, they have approximately the same directions of and ratio between

the semi-axes. Meaning, they both yield the interpretation that γ1 is more important to know

with high accuracy than k1.

0 0.5 1 1.5

2

2.5

3

γ1

k
1

Figure 3. Example 1 – Application ellipsoids. The application ellipsoids based on θinit and θ0

are displayed as ( ) and ( ), respectively. The true parameter values are denoted ( ).

In Table IV, we give the range of each parameter value that may fulfill the second order

approximation of the application requirement based on and centered around θinit. In Table V, we

give the range of each parameter value that may fulfill the second order approximation of the
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application requirement when based on θinit and centered around θ0, and based on and centered

around θ0. That is, we show the largest possible offset to θinit (Table IV) or θ0 (Table V) when

projecting all of the eigenvectors of the properly scaled Hessian, V ′′app, onto each axis of the

parameter space. The offset is given in absolute values and as percentage of θinit (Table IV) or

θ0 (Table V). We see that it is more important to estimate γ1 than k1, both when considering

the absolute and relative measure, and both when centered at θinit and θ0.

TABLE IV

EXAMPLE 1 – POSSIBLE RANGE OF EACH PARAMETER VALUE IN THE INITIAL DESIGN.

θ θinit Possible range based on θinit

γ1 0.7 0.7± 0.1214 (±17%)

k1 1.6 1.6± 0.4880 (±31%)

TABLE V

EXAMPLE 1 – POSSIBLE RANGE OF EACH PARAMETER VALUE.

θ θ0 Possible range based on θinit Possible range based on θ0

γ1 0.7283 0.7283± 0.1214 (±17%) 0.7283± 0.1500 (±21%)

k1 2.362 2.362± 0.4880 (±21%) 2.362± 0.8550 (±36%)

Optimal spectrum

We calculate the optimal spectrum using 40 spectrum parameters, c0, . . . , c39, where

ci ∈ R2×2. The optimal spectrum is based on θinit. The spectrum turns out to give an optimal

u2 that remains at its steady state level. This makes sense since the only way for the output
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signals to be influenced by γ1 and k1 is by varying u1. Also, by not varying u2, the optimal

input signal effectively hides parts of the system that are unimportant for the identified model

to fulfill the application requirement. The optimal spectrum is shown in Figure 4, along with

the optimal spectrum based on θ0. We see that the two spectra are similar, although the design

based on θinit requires a higher power. The trace of c0 is 0.0030 when based on θinit and 0.0013

when based on θ0.
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Figure 4. Example 1 – Optimal spectrum. The optimal spectra based on θinit ( ) and θ0

( ) are shown. We see that u1 and u2 are uncorrelated and the variance of u2 is numerically

zero for both spectra.
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Identification ellipsoid

We calculate two kinds of identification ellipsoids. The first type is designed using a

system based on θinit. That is, it is based on the optimal spectrum shown in Figure 4. The

second type is designed using a system based on θ0. The ellipsoids are shown in Figure 5. Note

that the two ellipsoids are similar in shape and size, and that we have centered both around θ0

for a valid comparison.
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Figure 5. Example 1 – Identification ellipsoids. The identification ellipsoids based on θinit and

θ0 are displayed as ( ) and ( ), respectively. The true parameter values are denoted ( ).

Estimates

We estimate θ using the optimal input signal and a white input signal. The white input

signal has the same power as the optimal input signal, but divided equally between u1 and u2.

We perform fifteen identification experiments for each type of signal. A new realization of the

input signal is used in each experiment.
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The resulting white estimates are shown in Figure 6, along with the identification ellipsoid

based on the white spectrum and θ0. The application ellipsoids based on θinit and θ0 are also

shown for comparison. The white estimates are quite scattered, and only four estimates fulfill

the second order approximation of the application requirement based on θinit. The same four

estimates also fulfill the second order approximation of the application requirement based on θ0.

The resulting optimal estimates are shown in Figures 7 and 8. We see that the optimal

estimates are more gathered than the white ones. Note also that they are spread out more in

the k1-direction than in the γ1-direction. Meaning, the optimal estimates follow the shape of the

application ellipsoid. Nine of the optimal estimates fulfill the second order approximation of the

application requirement based on θinit, see Figure 7. All fifteen of the optimal estimates fulfill

the second order approximation of the application requirement based on θ0, see Figure 8.

For comparison, we also estimate θ using a white input signal with its covariance equal

to the optimal c0. That is, all the power is used to excite u1. The estimates are shown in Figures

9 and 10. We see that the estimates are still spread out. In fact, no improvement in terms of

fulfilling the second order approximation of the application requirement was found.
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Figure 6. Example 1 – White estimates. The white estimates, denoted ( ), ( ) and ( ) are shown,

along with the application ellipsoids based on θinit ( ) and θ0 ( ). Also, the identification

ellipsoid based on the white spectrum and θ0 is shown ( ). The true parameter values are

denoted ( ). The white estimate denoted ( ) corresponds to Experiment 5, and gives an extremely

bad application performance. The value of the application cost is more than 100 times the values

for all other estimates. The white estimates denoted ( ) correspond to Experiment 10 and 15 and

cannot be evaluated in simulation (they cause simulation break-down due to non-real state values)

nor on the process (they cause overflow).
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Figure 7. Example 1 – Optimal estimates

and ellipsoids based on θinit. The optimal

estimates ( ) are shown, along with the

application ellipsoid ( ) and identifica-

tion ellipsoid ( ) based on θinit. The true

parameter values are denoted ( ).
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Figure 8. Example 1 – Optimal estimates

and ellipsoids based on θ0. The optimal

estimates ( ) are shown, along with the

application ellipsoid ( ) and identifica-

tion ellipsoid ( ) based on θ0. The true

parameter values are denoted ( ).
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Figure 9. Example 1 – White estimates

using optimal power distribution and el-

lipsoids based θinit. The white estimates

( ) are shown, along with the application

ellipsoid ( ) and identification ellipsoid

( ) based on θinit. The true parameter

values are denoted ( ).
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Figure 10. Example 1 – White estimates

using optimal power distribution and ellip-

soids based on θ0. The white estimates ( )

are shown, along with the application ellip-

soid ( ) and identification ellipsoid ( )

based on θ0. The true parameter values are

denoted ( ).

22



Application cost

We check the application cost for all white and optimal estimates. We evaluate the

application cost on the process, see Figures 11 and 12. Note that the noise increases the level of

the application cost. We also evaluate the application cost in simulation based on both θinit and

θ0, see Figures 13–16. (NB! The optimal experiment i is not related to the white experiment i.)

We see in Figure 12 that none of the estimates fulfill the application requirement evaluated

on the process. However, the optimal estimates outperform the white estimates. In fact, two of

the white estimates cause overflow in Tank 1 and are not included in the evaluation. Five of

the optimal estimates and one of the white estimates fulfill the application requirement based

on θinit evaluated in simulation, see Figure 14. In Figure 16, we see that thirteen of the optimal

estimates and three of the white estimates fulfill the application requirement based on θ0 evaluated

in simulation. The result is better in the latter case since the application cost based on θ0 gives

a larger set of acceptable parameters than the cost based on θinit, see Figure 3. We conclude that

• evaluating the application cost using θinit,

• designing the input signal using the second order approximation of the application

requirement,

• having noise present,

affect the level of degradation. However, the input design still manage to excite the important

dynamics of the system and hide the unimportant dynamics. The optimal estimates in general

outperform the white estimates with respect to the value of the application cost, even if the

desired value is not obtained.
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Figure 11. Example 1 – Application cost

evaluated on process. The application cost

for optimal estimates ( ) and white esti-

mates ( ) are shown. Note the bad perfor-

mance of the estimate from Experiment 5,

also note that the application cost values

for the estimates from Experiment 10 and

15 are not included since the cost could not

be evaluated.

5 10 15
0

1

2

3

4

·10−3

experiment

va
lu

e
of

ap
pl

ic
at

io
n

co
st

Figure 12. Example 1 – Application

cost evaluated on process excluding white

Experiment 5, 10 and 15. We see that the

optimal estimates in general outperforms

the white estimates. However, none of the

estimates fulfill the requirement of an appli-

cation cost lower than 1/γ, denoted ( ).

24



5 10 15
0

0.1

0.2

0.3

experiment

va
lu

e
of

ap
pl

ic
at

io
n

co
st

Figure 13. Example 1 – Application cost

evaluated on system based on θinit. The

application cost for the optimal estimates

( ) and white estimates ( ) are shown. Note

the bad performance of the estimate from

Experiment 5, also note that the application

cost values for the estimates from Experi-

ment 10 and 15 are not included since the

cost could not be evaluated.
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Figure 14. Example 1 – Application cost

evaluated on system based on θinit exclud-

ing white Experiment 5, 10 and 15. We

see that the optimal estimates in general

outperforms the white estimates. Five of

the optimal estimates and one of the white

estimates fulfill the requirement of an appli-

cation cost lower than 1/γ, denoted ( ).
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Figure 15. Example 1 – Application

cost evaluated on system based on θ0. The

application cost for the optimal estimates

( ) and white estimates ( ) are shown. Note

the bad performance of the estimate from

Experiment 5, also note that the application

cost values for the estimates from Experi-

ment 10 and 15 are not included since the

cost could not be evaluated.
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Figure 16. Example 1 – Application cost

evaluated on system based on θ0 exclud-

ing white Experiment 5, 10 and 15. We

see that the optimal estimates in general

outperforms the white estimates. Thirteen

of the optimal estimates and three of the

white estimates fulfill the requirement of

an application cost lower than 1/γ, denoted

( ).
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Signals from process

The output signals from the process when evaluating the application cost are shown in

Figures 17 and 19 for the optimal estimates and Figures 18 and 20 for the white estimates. We

have excluded the results from the white Experiments 10 and 15 since they caused overflow

in the tanks. In Figures 21-24, we have excluded the white Experiment 5 and zoomed in for

comparison. The output signals when θ0 are used in the MPC model are shown in Figures 25

and 26. All outputs except those corresponding to the white Experiments 5, 10 and 15 fulfill

the constraints imposed on the water tank levels. Note that the outputs have been scaled to

centimeters instead of volt.
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Figure 17. Example 1 – Optimal y1/l1

from application evaluation. The optimal

output y1/l1 ( ) from fifteen application

evaluations on the process are shown. The

reference signal is denoted ( ).
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Figure 18. Example 1 – White y1/l1

from application evaluation. The white out-

put y1/l1 ( ) from thirteen application

evaluations on the process are shown. The

reference signal is denoted ( ).
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Figure 19. Example 1 – Optimal y2/l2

from application evaluation. The optimal

output y2/l2 ( ) from fifteen application

evaluations on the process are shown. The

reference signal is denoted ( ).

0 50 100 150
−2

−1

0

1

2

time (s)

y 2
/l

2
(c

m
)

Figure 20. Example 1 – White y2/l2

from application evaluation. The white out-

put y2/l2 ( ) from thirteen application

evaluations on the process are shown. The

reference signal is denoted ( ).
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Figure 21. Example 1 – Optimal y1/l1

from application evaluation zoomed in. The

optimal output y1/l1 ( ) from fifteen

application evaluations on the process are

shown. The reference signal is denoted

( ).
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Figure 22. Example 1 – White y1/l1

from application evaluation excluding Ex-

periment 5. The white output y1/l1 ( )

from twelve application evaluations on the

process are shown .The reference signal is

denoted ( ).
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Figure 23. Example 1 – Optimal y2/l2

from application evaluation zoomed in. The

optimal output y2/l2 ( ) from fifteen

application evaluations on the process are

shown. The reference signal is denoted

( ).
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Figure 24. Example 1 – White y2/l2

from application evaluation excluding Ex-

periment 5. The white output y2/l2 ( )

from twelve application evaluations on the

process are shown. The reference signal is

denoted ( ).
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Figure 25. Example 1 – True y1/l1 used

in application evaluation. The output y1/l1

( ) is obtained from the process using θ0

in the MPC model. The reference signal is

denoted ( ).
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Figure 26. True y2/l2 used in appli-

cation evaluation. The output y2/l2 ( )

is obtained from the process using θ0 in

the MPC model. The reference signal is

denoted ( ).
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Experiment length

We evaluate four different experiment lengths. The first length, N , is defined by the user.

We set it to correspond to a five minutes long identification experiment (300 samples). This is

the length used to calculate the optimal spectrum. The second length is the minimum experiment

length necessary for the optimal input signal to achieve the desired statistical properties of the

resulting estimates when using a system based on θ0 instead in the optimization problem. We

denote the second length N true. The third length is the minimum experiment length necessary for

the white input signal to achieve the same statistical properties of the resulting estimates as with

the optimal input signal. We calculate the length using a system based on θinit in the optimization

problem and denote it N initial
white . The fourth length is the same as N initial

white but the system is based

on θ0 instead in the optimization problem and it is denoted N true
white.

The values of the experiment lengths are shown in Table VI. The identification ellipsoids

corresponding to the different experimental lengths are shown in Figure 27 and 28.

TABLE VI

EXAMPLE 1 – EXPERIMENT LENGTHS.

Experiment length Value in samples Value in minutes

N 300 5

N true 131 2

N initial
white 12678 211

N true
white 5513 92
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Figure 27. Example 1 – Identification

ellipsoids based on N and N initial
white . The iden-

tification ellipsoids for the optimal ( )

and white ( ) spectrum are shown. The

two ellipsoids are approximately the same.

We achieve the same statistical properties

of the white estimates as for the optimal

estimates if we elongate the experiment

length to N initial
white .
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Figure 28. Example 1 – Identification el-

lipsoids based on N true and N true
white. The iden-

tification ellipsoids for the optimal spec-

trum ( ) and white spectrum ( ) are

shown. Also here the two ellipsoids are

approximately the same. The ellipsoids are

larger than the ones in Figure 27 due to a

larger applications ellipsoid, see Figure 3.

We see that the white input signal requires, according to theory, a longer experiment

length to achieve the same performance as the optimal input signal. The white input signal is

approximately 42 times longer than the optimal input signal in both cases. It is reasonable that

the white input signal requires a longer experiment than the optimal input signal. We divide

the input power equally between u1 and u2. Meaning, only half of the power is used to excite
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the input that matters, u1. The other half is wasted on u2. We must elongate the experiment to

compensate for using less power in u1 and for exciting unimportant dynamics of the system.

Note also that N initial
white and N are larger than N true

white and N true, respectively, which relates to the

fact that the application ellipsoid based on θ0 is larger than the application ellipsoid based on

θinit, see Figure 3.
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Example 2 - Estimating θ = [a1 a2 a3 a4 γ1 γ2 k1 k2]
T with no integral

action in the MPC

In Example 2, we estimate θ = [a1 a2 a3 a4 γ1 γ2 k1 k2]T. All other parameter values

are set as specified in Table I. We use an MPC with no integral action. We estimate 20 spectrum

parameters instead of 40 as in Example 1. This is to avoid numerical issues when solving the

optimization problem that determines the spectrum parameters. For 40 parameters cvx returns

an inaccurate solution that only satisfies a relaxed tolerance level. This is not the case for 20

parameters.

Check of initial estimates

We use as initial estimates the values from the process specification slightly modified,

that is θinit = [0.03 0.03 0.5 0.5 0.7 0.7 1.6 1.6]T. The original process specification sets a3 =

a4 = 0.03. We modify θinit to circumvent numerical issues when constructing the information

matrix in the optimization problem that determines the spectrum parameters. More specifically,

Matlab fails to solve a discrete-time Lyapunov equation. Before performing the input design,

we check if θinit fulfills the application requirement. In this check, we get that θinit does not fulfill

the application requirement.

Application ellipsoid

As in Example 1, we calculate two types of application ellipsoids. The first type is

evaluated in simulation using a system and MPC model based on θinit. The second type is
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evaluated in simulation using a system and MPC model based on θ0.

In Tables VII and VIII, we give the range of each parameter value that may fulfill the

second order approximation of the application requirement centered at θinit and θ0, respectively.

We see that the ranges of a3, a4 and γ1 are larger based on θinit than on θ0, both in terms

of absolute and relative deviation. Consequently, the input design might not give estimates of

these values that are accurate enough for the application in mind.

In terms of absolute deviation, we conclude that we can rank the parameters in order of

increasing importance as a3, a4, k1, k2, γ2, γ1, a2 and a1, when the design is based on θinit. The

ranking based on θ0 is a3, k1, k2, a4,γ2, γ1, a2 and a1. The possible ranges based on θ0 confirm

the least and most important parameters.

The order of increasing importance is different in terms of relative deviation than

absolute deviation. The ranking based on relative deviation and the initial design centered at

θinit (Table VII) is a3, a4, a2, k1, k2, a1, γ2 and γ1. The ranking based on relative deviation, θinit

and centered at θ0 (Table VIII) is a4, a3, k2, k1, a2, a1, γ2 and γ1. The ranking based on relative

deviation, θ0 and centered at θ0 (Table VIII) is a3, a4, a2, k1, k2, a1, γ2 and γ1.

Despite the different rankings, they all state that a1 and a2 are more important than a3

and a4, and γ1 and γ2 are more important than k1 and k2 to estimate with higher accuracy. As

in Example 1, the MPC can compensate for an error in k1 using u1, and by the same reasoning

it can compensate for an error in k2 using u2. All other parameters require both input signals to

compensate for the errors. The outlet areas a1 and a2 are crucial for the application requirement.

Tank 1 and Tank 2 have the highest water levels of the tanks and consequently give the largest
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outflow of water. An error in these areas affects the tracking capability of the MPC.

TABLE VII

EXAMPLE 2 – POSSIBLE RANGE OF EACH PARAMETER VALUE IN THE INITIAL DESIGN.

θ θinit Possible range based on θinit

a1 0.03 0.03± 0.0240 (±80%)

a2 0.03 0.03± 0.0330 (±110%)

a3 0.5 0.5± 7.7117 (±1542%)

a4 0.5 0.5± 4.6647 (±933%)

γ1 0.7 0.7± 0.2200 (±31%)

γ2 0.7 0.7± 0.2271 (±32%)

k1 1.6 1.6± 1.4212 (±89%)

k2 1.6 1.6± 1.3383 (±84% )

TABLE VIII

EXAMPLE 2 – POSSIBLE RANGE OF EACH PARAMETER VALUE.

θ θ0 Possible range based on θinit Possible range based on θ0

a1 0.0649 0.0649± 0.0240 (±37%) 0.0649± 0.0447 (±69%)

a2 0.0594 0.0594± 0.0330 (±56%) 0.0594± 0.0565 (±95%)

a3 0.3211 0.3211± 7.7117 (±2401%) 0.3211± 3.5924 (±1119%)

a4 0.1353 0.1353± 4.6647 (±3447%) 0.1353± 0.3261 (±241%)

γ1 0.7283 0.7283± 0.2200 (±30%) 0.7283± 0.1436 (±20%)

γ2 0.7271 0.7271± 0.2271 (±31%) 0.7271± 0.2776 (±38%)

k1 2.362 2.362± 1.4212 (±60%) 2.362± 2.1284 (±90%)

k2 1.797 1.797± 1.3383 (±74% ) 1.797± 1.4238 (±79%)
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Optimal spectrum

We calculate the optimal spectrum using 20 parameters c0, . . . , c19, where ci ∈ R2×2. The

optimal spectrum is shown in Figure 29, along with the optimal spectrum based on θ0. We see

that the spectra differ from each other at lower frequencies. The design based on θinit requires a

higher power, trace(c0) = 0.0639, than the design based on θ0, trace(c0) = 0.0368.
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Figure 29. Example 2 – Optimal spectrum. The optimal spectrum based on θinit ( ) and θ0

( ) are shown. We see that u1 and u2 are correlated.
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Identification ellipsoid

We calculate two kinds of identification ellipsoids. The first is based on the optimal

spectrum and θ0. The second is based on a white spectrum and θ0. The white spectrum

corresponds to a white excitation signal of equal power to the optimal input signal.

In Table IX, we give the possible ranges of each estimated parameter value according to

the identification ellipsoids. That is, we show the largest possible offset to θ0 when projecting

all of the eigenvectors of the properly scaled information matrix onto each axis of the parameter

space.

We can rank the parameters in order of increasing importance. In terms of absolute

deviation both spectra give the same ranking, that is, a3, k2, k1, a4, γ2, γ1, a2 and a1.

In terms of relative deviation the optimal spectrum gives a3, a4, a2, k2, k1/a1, γ2 and

γ1, that is k1 and a1 are allowed equal relative deviation. The white spectrum gives a3, a4, a2,

k2, k1, a1, γ2 and γ1.

The rankings differ from those obtained from the application ellipsoids. However, they

all state that a1 and a2 are more important than a3 and a4, and γ1 and γ2 are more important

than k1 and k2 to estimate with higher accuracy. We also note that the range of a3 is larger based

on the optimal spectrum than on the white spectrum, but the volume of the white identification

ellipsoid is 357 times larger than the volume of the optimal identification ellipsoid. Suggesting

that the white estimates will be more scattered than the optimal ones.
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TABLE IX

EXAMPLE 2 – POSSIBLE RANGE OF EACH ESTIMATED PARAMETER VALUE.

θ θ0 Possible range based on θ0

and optimal spectrum

Possible range based on θ0

and white spectrum

a1 0.0649 0.0649± 0.0086 (±13%) 0.0649± 0.0179 (±28%)

a2 0.0594 0.0594± 0.0172 (±29%) 0.0594± 0.0327 (±55%)

a3 0.3211 0.3211± 1.876 (±584%) 0.3211± 1.755 (±547%)

a4 0.1353 0.1353± 0.1930 (±143%) 0.1353± 0.5357 (±396%)

γ1 0.7283 0.7283± 0.0602 (±8%) 0.7283± 0.1361 (±19%)

γ2 0.7271 0.7271± 0.0789 (±11%) 0.7271± 0.1649 (±23%)

k1 2.362 2.362± 0.3064 (±13%) 2.362± 0.7065 (±30%)

k2 1.797 1.797± 0.4600 (±26%) 1.797± 0.7152 (±40%)

Estimates

As in Example 1, we estimate θ using the optimal input signal and a white input signal.

We perform ten identification experiments for each type of signal.

It turns out that it is difficult to estimate reasonable values of a3 using the optimal signal.

In six of the ten estimates, a3 is larger than 105. We believe that this is due to the small water

tank level in steady state of Tank 3. The water flow out of Tank 3 is not limited by the outlet

area as it would have been had the water level been higher. Three of the optimal estimates fulfill

the second order approximation of the application requirement based on θ0 and none based on

θinit. Two of the white estimates have a3 larger than 105. Three of the white estimates fulfill the

second order approximation of the application requirement based on θ0 and one based on θinit.
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The white estimate from Experiment 3 gives extremely bad performance.

All ten optimal estimates are displayed in Table X.

TABLE X

EXAMPLE 2 – ESTIMATED PARAMETERS USING OPTIMAL INPUT SIGNAL.

θ Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp. 10

a1 0.0586 0.0597 0.0460 0.0502 0.0464 0.0514 0.0633 0.0621 0.0594 0.0782

a2 0.0567 0.0371 0.0473 0.0898 0.0680 0.0806 0.0539 0.1025 0.0631 0.0866

a3 7×105 8×103 0.0234 4×105 0.0159 2×107 0.2372 0.2343 1×106 3×106

a4 0.0420 0.0623 0.0400 0.0542 0.0525 0.0257 0.1869 0.0933 0.0992 0.0957

γ1 0.6877 0.7615 0.6963 0.6311 0.7256 0.6981 0.8117 0.6409 0.7022 0.7436

γ2 0.6133 0.6379 0.5997 0.9405 0.6764 0.7791 0.5739 0.9140 0.6398 0.7506

k1 2.381 2.085 2.6784 2.5100 2.1749 2.5741 2.5631 2.5870 2.4390 2.3307

k2 1.901 1.537 1.8474 1.8177 2.0980 2.2888 2.0938 1.8615 1.8574 2.0337

Application cost

We check the application cost for all white and optimal estimates. We evaluate the

application cost on the process, see Figure 30 and 31. We also evaluate the application cost

in simulation based on both θinit and θ0, see Figures 32 and 35.

In addition, only one of the white models and none of the optimal models fulfill the

second order approximation of the application requirement when based on θinit, but three of the

white and optimal models fulfill it when based on θ0.
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Figure 30. Example 2 – Application cost

evaluated on process. The application cost

for optimal estimates ( ) and white esti-

mates ( ) are shown. Note the bad perfor-

mance of the estimate from Experiment 3.
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Figure 31. Example 2 – Application

cost evaluated on process excluding Experi-

ment 3. The optimal estimates outperforms

the white estimates on average. However,

there is no significant difference and none

of the estimates fulfill the requirement of

an application cost lower than 1/γ, denoted

( ).
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Figure 32. Example 2 – Application cost

evaluated in simulation on system based on

θinit. The application cost for the optimal

estimates ( ) and white estimates ( ) are

shown. Note the bad performance of the

estimate from Experiment 3.
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Figure 33. Example 2 – Application cost

evaluated in simulation on system based on

θinit excluding Experiment 3. The optimal

estimates outperforms the white estimates

in general, but none of the estimates fulfill

the requirement of an application cost lower

than 1/γ, denoted ( ).
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Figure 34. Example 2 – Application cost

evaluated in simulation on system based

on θ0. The application cost for the optimal

estimates ( ) and white estimates ( ) are

shown. Note the bad performance of the

estimate from Experiment 3.
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Figure 35. Example 2 – Application cost

evaluated on system based on θ0 excluding

Experiment 3. We see that the optimal

estimates outperforms the white estimates

in general, but none of the estimates fulfill

the requirement of an application cost lower

than 1/γ, denoted ( ).

44



Signals from process

The output signals from the process when evaluating the application cost are shown in

Figures 36-38 for the optimal estimates and Figures 37-39 for the white estimates. Based on

these plots, it is not evident that the MPC models based on optimal estimates perform better

than MPC models based on white estimates. When excluding the estimate from Experiment 3,

it is difficult to differentiate between the optimal output signals and the white output signals.

All outputs fulfill the constraints imposed on the water tank levels. Note that the outputs have

been scaled to centimeters instead of volt.
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Figure 36. Example 2 – Optimal y1 from

application evaluation. The optimal output

y1/l1 ( ) from ten application evaluations

on the process are shown. The reference

signal is denoted ( ).
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Figure 37. Example 2 – White y1 from

application evaluation. The white output

y1/l1 ( ) from ten application evaluations

on the process are shown. The reference

signal is denoted ( ).
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Figure 38. Example 2 – Optimal y2 from

application evaluation. The optimal output

y2/l2 ( ) from ten application evaluations

on the process are shown. The reference

signal is denoted ( ).
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Figure 39. Example 2 – White y2 from

application evaluation. The white output

y2/l2 ( ) from ten application evaluations

on the process are shown. The reference

signal is denoted ( ).
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Figure 40. Example 2 – Optimal y1 from

application evaluation zoomed in. The opti-

mal output y1/l1 ( ) from ten application

evaluations on the process are shown. The

reference signal is denoted ( ).
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Figure 41. Example 2 – White y1 from

application evaluation excluding Experi-

ment 3. The white output y1/l1 ( ) from

nine application evaluations on the process

are shown. The reference signal is denoted

( ).
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Figure 42. Example 2 – Optimal y2 from

application evaluation zoomed in. The opti-

mal output y2/l2 ( ) from ten application

evaluations on the process are shown. The

reference signal is denoted ( ).
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Figure 43. Example 2 – White y2 from ap-

plication evaluation excluding Experiment

3. The white output y2/l2 ( ) from nine

application evaluations on the process are

shown. The reference signal is denoted

( ).
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We redo the white identification experiments but with twice as long experiment time, 600

samples. The resulting output signals from the process in the application evaluations are shown

in Figures 44 and 45. When comparing the outputs with those in Figures 36-39, we see that it is

difficult to differentiate between them. It is also difficult to differentiate between outputs based

on estimated models in the MPC and outputs based on the true model in the MPC, see Figures

25 and 26. We conclude that for the θinit used here, we do not gain much, in terms of reference

tracking on the real process, from designing the spectrum of the input signal. Even though we

double the experiment length we do not see much improvement in the outputs.

0 50 100 150
−1

−0.5

0

0.5

1

time (s)

y 1
/l

1
(c

m
)

Figure 44. Example 2 – White y1 from

application evaluation using twice as long

experiment time. The white output y1/l1

( ) from ten application evaluations on

the process are shown. The reference signal

is denoted ( ).
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Figure 45. Example 2 - White y2 from

application evaluation using twice as long

experiment time. The white output y2/l2

( ) from ten application evaluations on

the process are shown. The reference signal

is denoted ( ).
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Experiment length

As in Example 1, we evaluate four different experiment lengths. The values of the

experiment lengths are shown in Table XVI. We see that the white input signal requires, according

to theory, a longer experiment length to achieve the same performance as the optimal input signal.

The white input signal is approximately 3.4 times longer than the optimal input signal when

based on the initial estimates and 4.5 times longer when based on the true parameter values.

TABLE XI

EXAMPLE 2 – EXPERIMENTAL LENGTHS.

Experiment length Value in samples Value in minutes

N 300 5

N initial
white 1015 17

N true
white 1182 20

N true 216 4
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Example 3 - Estimating θ = [a1 a2 a3 a4 γ1 γ2 k1 k2]
T with no integral

action in the MPC

In Example 3, we once again estimate θ = [a1 a2 a3 a4 γ1 γ2 k1 k2]T, but we change

θinit. The reason for this is to see how the values of θinit affect the performance of the method.

Check of initial estimates

We use as initial estimates the values from the process specification slightly modified,

that is θinit = [0.03 0.03 0.05 0.05 0.7 0.7 1.6 1.6]T. in Example 2, a3 = a4 = 0.5.

However, with these initial estimates cvx returns an inaccurate solution when calculating

the optimal spectrum. As suggested in the cvx-manual, we check that the estimates are accurate

enough for our purpose. We do so by checking that the linear matrix inequality constraint is

approximately active, and it is. The smallest eigenvalue of the matrix should be zero and it is

of the order of 10−7.

Before performing the input design, we check if θinit fulfill the application requirement.

In this check, we get that θinit do not fulfill the application requirement.

Application ellipsoid

As in Example 1 and 2, we calculate two types of application ellipsoids. The first type

is evaluated in simulation using a system and MPC model based on θinit. The second type is

evaluated in simulation using a system and MPC model based on θ0.
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In Tables XII and XIII, we give the range of each parameter value that may fulfill the

second order approximation of the application requirement centered at θinit and θ0, respectively.

We see that the range of γ1 is larger based on θinit than on θ0. Consequently, the input

design might not give estimates of these values that are accurate enough for the application in

mind.

In terms of absolute deviation, we conclude that we can rank the parameters in order of

increasing importance as k2, k1, γ2, γ1, a3, a4, a2 and a1, when the design is based on θinit. The

ranking based onθ0 is, as in Example 2, a3, k1, k2, a4,γ2, γ1, a2 and a1.

The order of increasing importance is different in terms of relative deviation than

absolute deviation. The ranking based on relative deviation and the initial design centered at

θinit (Table XII) is a3, a4, a2, a1, k2, k1, γ2 and γ1. The ranking based on relative deviation, θinit

and centered at θ0 (Table XIII) is k2, a2, a4, k1, a1, γ2, a3 and γ1. The ranking based on relative

deviation, θ0 and centered at θ0 (Table XIII) is, as in Example 2, a3, a4, a2, k1, k2, a1, γ2 and

γ1.

Despite the different rankings, they all state that a1 and a2 are more important than a3

and a4, and γ1 and γ2 are more important than k1 and k2 to estimate with higher accuracy.

Except the ranking based on relative deviation, θinit and centered at θ0 (Table XIII). That is, the

ranking that is based on the design that is actually used in the identification experiments. Here,

a3 is deemed more important than a1, and a4 is deemed more important than a2. However, the

possible range of these parameters are smaller than the ones obtained based on θ0. The input

design can still give estimates of these values that are accurate enough for the application.
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TABLE XII

EXAMPLE 3 – POSSIBLE RANGE OF EACH PARAMETER VALUE IN THE INITIAL DESIGN.

θ θinit Possible range based on θinit

a1 0.03 0.03± 0.0233 (±78%)

a2 0.03 0.03± 0.0310 (±103%)

a3 0.05 0.05± 0.1031 (±206%)

a4 0.05 0.05± 0.0693 (±139%)

γ1 0.7 0.7± 0.1802 (±26%)

γ2 0.7 0.7± 0.2385 (±34%)

k1 1.6 1.6± 1.0168 (±64%)

k2 1.6 1.6± 1.0865 (±68% )

TABLE XIII

EXAMPLE 3 – POSSIBLE RANGE OF EACH PARAMETER VALUE.

θ θ0 Possible range based on θinit Possible range based on θ0

a1 0.0649 0.0649± 0.0233 (±36%) 0.0649± 0.0422 (±65%)

a2 0.0594 0.0594± 0.0310 (±52%) 0.0594± 0.0534 (±90%)

a3 0.3211 0.3211± 0.1031 (±32%) 0.3211± 3.3951 (±1057%)

a4 0.1353 0.1353± 0.0693 (±51%) 0.1353± 0.3082 (±228%)

γ1 0.7283 0.7283± 0.1802 (±25%) 0.7283± 0.1357 (±19%)

γ2 0.7271 0.7271± 0.2385 (±33%) 0.7271± 0.2624 (±36%)

k1 2.362 2.362± 1.0168 (±43%) 2.362± 2.0115 (±85%)

k2 1.797 1.797± 1.0865 (±60% ) 1.797± 1.3456 (±75%)

Optimal spectrum

We calculate the optimal spectrum using 20 parameters c0, . . . , c19, where ci ∈ R2×2. The

optimal spectrum is shown in Figure 46, along with the optimal spectrum based on θ0. We see
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that the spectrum differs from the one obtained in Example 2. The design based on θinit requires

a smaller power, trace(c0) = 0.0234, than the design based on θ0, trace(c0) = 0.0412.
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Figure 46. Example 3 – Optimal spectrum. The optimal spectrum based on θinit ( ) and θ0

( ) are shown. We see that u1 and u2 are correlated.

Identification ellipsoid

As in Example 2, we calculate two kinds of identification ellipsoids. The first is based

on the optimal spectrum and θ0. The second is based on a white spectrum and θ0. The white
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spectrum corresponds to a white excitation signal of equal power to the optimal input signal.

In Table XIV, we give the possible range of each estimated parameter value according

to the identification ellipsoid.

We can rank the parameters in order of increasing importance. In terms of absolute

deviation both spectra give the same ranking, that is, a3, k2, k1, a4, γ2, γ1, a2 and a1. In terms

of relative deviation the optimal spectrum gives a3, a4, a2, k2, k1/γ2, a1 and γ1, that is k1 and

γ2 are allowed equal relative deviation. The white spectrum gives a3, a4, a2, k2, k1, a1, γ2 and

γ1.

The rankings differ from those obtained from the application ellipsoids. However, they

all state that a1 and a2 are more important than a3 and a4, and γ1 and γ2 are more important

than (or equally important to) k1 and k2 to estimate with higher accuracy. We also see that

the identification ellipsoid based on the optimal spectrum has a smaller possible range of each

parameter than the ellipsoid based on the white spectrum, except for a3. The volume of the

white identification ellipsoid is 1123 times larger than the volume of the optimal identification

ellipsoid. The optimal ellipsoid is in turn 18 times larger than the optimal ellipsoid obtained in

Example 2.
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TABLE XIV

EXAMPLE 3 – POSSIBLE RANGE OF EACH ESTIMATED PARAMETER VALUE.

θ θ0 Possible range based on θ0

and optimal spectrum

Possible range based on θ0

and white spectrum

a1 0.0649 0.0649± 0.0072 (±15%) 0.0649± 0.0295 (±45%)

a2 0.0594 0.0594± 0.0308 (±46%) 0.0594± 0.0540 (±91%)

a3 0.3211 0.3211± 3.523 (±1097%) 0.3211± 2.898 (±903%)

a4 0.1353 0.1353± 0.3734 (±276%) 0.1353± 0.8845 (±654%)

γ1 0.7283 0.7283± 0.0947 (±13%) 0.7283± 0.2247 (±31%)

γ2 0.7271 0.7271± 0.1368 (±19%) 0.7271± 0.2723 (±37%)

k1 2.362 2.362± 0.4429 (±19%) 2.362± 1.1665 (±49%)

k2 1.797 1.797± 0.8084 (±45%) 1.797± 1.1810 (±66%)

Estimates

We estimate θ using the optimal input signal and the white input signal. We perform ten

identification experiments for each type of signal. A new realization of the input signal is used

in each experiment.

It is difficult to estimate reasonable values of a4 using the optimal signal. In four of the

ten estimates it is larger than 103. We believe that this is due to the small water tank level in

steady state of Tank 4 (as in Tank 3 in Example 2). Four of the optimal estimates fulfill the

second order approximation of the application requirement based on θ0 and three on θinit. None

of the white estimates fulfill the second order approximation of the application requirement based

on θ0 nor based on θinit.
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All ten optimal estimates are displayed in Table XV.

TABLE XV

EXAMPLE 3 – ESTIMATED PARAMETERS USING OPTIMAL INPUT SIGNAL.

θ Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp. 10

a1 0.0580 0.0678 0.0713 0.0592 0.0696 0.0685 0.0551 0.0434 0.1171 0.0423

a2 0.0667 0.0840 0.0508 0.0614 0.0863 0.0678 0.0579 0.0604 0.0600 0.0532

a3 0.1779 1.7553 0.0337 0.0047 0.0271 0.0003 0.0980 0.1217 0.0286 0.0235

a4 0.0990 1.4637 0.0522 2×105 2×105 7×103 0.0547 0.0359 7×103 0.0284

γ1 0.7128 0.6955 0.6947 0.7247 0.7006 0.6994 0.6704 0.6754 0.7771 0.6233

γ2 0.7760 0.6165 0.6822 0.5234 0.7245 1.9012 0.7133 0.6621 0.4249 0.7256

k1 1.9743 2.5614 1.7458 1.9282 2.0216 2.1272 2.2686 2.4342 1.8671 1.5674

k2 1.7399 2.2983 1.6126 2.2392 2.0662 0.5208 1.7740 2.0622 3.2981 1.7347

Application cost

We check the application cost for all white and optimal estimates. We evaluate the

application cost on the process, see Figures 47 and 48. We also evaluate the application cost in

simulation based on both θinit and θ0, see Figures 49–52.

In addition, none of the white models fulfill the second order approximation of the

application requirement when based on the initial estimate or the true parameter values, but

three of the optimal models fulfills it when based on the initial estimate and four of them when

based on the true parameter values.
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Figure 47. Example 3 – Application cost

evaluated on process. The application cost

for optimal estimates ( ) and white esti-

mates ( ) are shown.
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Figure 48. Example 3 – Application

cost evaluated on process zoomed in. We

see that the optimal estimates on average

outperforms the white estimates. However,

none of the estimates fulfill the requirement

of an application cost lower than 1/γ, de-

noted ( ).
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Figure 49. Example 3 – Application cost

evaluated on system based on initial esti-

mates. The application cost for the optimal

estimates ( ) and white estimates ( ) are

shown.
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Figure 50. Example 3 – Application cost

evaluated on system based on initial esti-

mates zoomed in. We see that the optimal

estimates in general outperforms the white

estimates, but none of the estimates fulfill

the requirement of an application cost lower

than 1/γ, denoted ( ).
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Figure 51. Example 3 – Application cost

evaluated on system based on true param-

eter values. The application cost for the

optimal estimates ( ) and white estimates

( ) are shown.
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Figure 52. Example 3 – Application cost

evaluated on system based on true param-

eter values zoomed in. We see that the

optimal estimates in general outperforms

the white estimates, but only two of the

optimal estimates fulfills the requirement of

an application cost lower than 1/γ, denoted

( ).
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Signals from process

The output signals from the process when evaluating the application cost are shown in

Figures 53-55 for the optimal estimates and Figures 54-56 for the white estimates. We see that

the MPC models based on optimal estimates performs better than MPC models based on white

estimates. All outputs fulfill the constraints imposed on the water tank levels.
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Figure 53. Example 3 – Optimal y1 from

application evaluation. The optimal output

y1/l1 ( ) from ten application evaluations

on the process are shown. The reference

signal is denoted ( ).
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Figure 54. Example 3 – White y1 from

application evaluation. The white output

y1/l1 ( ) from ten application evaluations

on the process are shown. The reference

signal is denoted ( ).
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Figure 55. Example 3 – Optimal y2 from

application evaluation. The optimal output

y2/l2 ( ) from ten application evaluations

on the process are shown. The reference

signal is denoted ( ).

0 50 100 150

−1

0

1

time (s)

y 2

Figure 56. Example 3 – White y2 from ap-

plication evaluation. The white output sig-

nal y2/l2 ( ) ten application evaluations

on the process are shown. The reference

signal is denoted ( ).
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Experiment length

As in Example 1 and 2, we evaluate four different experiment lengths. The values of

the experiment lengths are shown in Table XVI. We see that the white input signal requires,

according to theory, a longer experiment length to achieve the same performance as the optimal

input signal. The white input signal is approximately 16.3 times longer than the optimal input

signal when based on the initial estimates and 4.3 times longer when based on the true parameter

values.

TABLE XVI

EXAMPLE 3 – EXPERIMENTAL LENGTHS.

Experiment length Value in samples Value in minutes

N 300 5

N initial
white 4878 81

N true
white 3606 60

N true 846 14

We perform a long identification experiment using the white input signal. The experiment

length is set to N initial
white , that is 4878 samples. We identify four different estimates of the parameter

θ. The estimates are based on 25 %, 50 %, 75 % and 100 % of the collected data. That is, 1219,

2439, 3658 and 4878 samples. The four estimates are shown in Table XVII.
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TABLE XVII

EXAMPLE 3 – ESTIMATED PARAMETERS USING OPTIMAL INPUT SIGNAL.

θ Exp. 1: N = 1219 Exp. 2: N = 2439 Exp. 3: N = 3658 Exp. 4: N = 4878

a1 0.1318 0.1083 0.0887 0.0940

a2 0.0544 0.0845 0.1040 0.0881

a3 0.0131 0.0179 0.0277 0.0171

a4 0.0043 0.1664 0.0432 0.0749

γ1 3.3486 0.7749 0.7444 0.8019

γ2 0.5261 0.7981 0.9393 0.8266

k1 0.4185 1.8340 1.8864 1.7465

k2 2.0627 1.1150 0.9227 1.0977

In Figures 57 and 58, we see the values of the second order approximation of the

application requirement based on the θ0 for each estimate. We see that the fourth estimate,

corresponding to N initial
white samples, almost fulfills the application requirement. The value of the

cost for the fourth estimate is 5.52 × 10−5 and the value of 1/γ is 5.45 × 10−5. In Figures 59

and 60, we see the output signals y1 and y2 from the process when using an MPC model based

on the first and fourth estimates, respectively. We see that the output signals corresponding to

the fourth estimate are on average closer to the reference than the output signals corresponding

to the first estimate.
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Figure 57. Example 3 – Application

requirement evaluated in simulation on sys-

tem based on θ0. The second order ap-

proximation of the application cost for the

different white estimates ( ) are shown.
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Figure 58. Example 3 – Application

requirement evaluated in simulation on sys-

tem based on θ0 zoomed in. The fourth

estimate almost fulfills the degradation limit

1/γ ( ).

65



0 50 100 150
−1

−0.5

0

0.5

1

time (s)

y 1
/l

1
(c

m
)

Figure 59. Example 3 – Process output y1.

The output signal y1/l1 for the first ( )

and fourth ( ) estimates are shown. The

reference signal is denoted ( ).
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Figure 60. Example 3 – Process output y2.

The output signal y2/l2 for the first ( )

and fourth ( ) estimates are shown. The

reference signal is denoted ( ).
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Example 4 - Estimating θ = [γ1 k1]
T with integral action in the MPC

We redo Example 1 but with Qu = 0I2×2. The MPC has integral action.

Check of initial estimates

We use as initial estimates the values from the process specification, that is θinit =

[0.7 1.6]T. The initial estimates do not fulfill the application requirement when evaluated in

simulation.

Application ellipsoid

We calculate the same type of application ellipsoids as in Example 1. The ellipsoids are

depicted in Figure 61. In Table XVIII, we give the range of each parameter value that may fulfill

the second order approximation of the application requirement based on and centered around

θinit. In Table XIX, we give the range of each parameter value that may fulfill the second order

approximation of the application requirement when based on θinit and centered around θ0, and

based on and centered around θ0.

We get the same important directions in terms of absolute measure as in Example 1.

Meaning, they both yield the interpretation that γ1 is more important to know with high accuracy

than k1.

However, in terms of relative measure, the result vary if the ellipsoids are based on θinit

centered around θ0 or θinit. This highlights an issue with using the application ellipsoid in an
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absolute sense and simply shifting the application ellipsoid based on θinit from being centered at

θinit to θ0. The relative ranges based on θinit and centered at θinit are 24 % for γ1 and 28 % for

k1. That is, γ1 is more important to estimate correctly than k1, but the relative ranges based on

θinit and centered at θ0 are 23 % for γ1 and 19 % for k1. We see that the important directions

in the former case coincide with those in the true design, while the important directions in the

latter case do not coincide with those in the true design.
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Figure 61. Example 4 – Application ellipsoids. The application ellipsoids based on θinit and θ0

are displayed as ( ) and ( ), respectively. The true parameter values are denoted ( ).
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TABLE XVIII

EXAMPLE 4 – POSSIBLE RANGE OF EACH PARAMETER VALUE IN THE INITIAL DESIGN.

θ θinit Possible range based on θinit

γ1 0.7 0.7± 0.1678 (±24%)

k1 1.6 1.6± 0.4450 (±28%)

TABLE XIX

EXAMPLE 4 – POSSIBLE RANGE OF EACH PARAMETER VALUE.

θ θ0 Possible range based on θinit Possible range based on θ0

γ1 0.7283 0.7283± 0.1678 (±23%) 0.7283± 0.1704 (±25%)

k1 2.362 2.362± 0.4450 (±19%) 2.362± 0.6850 (±29%)

Optimal spectrum

We calculate the optimal spectrum using 40 parameters, c0, . . . , c39, where ci ∈ R2×2. The

optimal spectrum is based on θinit. We get approximately the same spectrum as in Example 1,

see Figure 62. The design based on θinit requires a higher power, trace(c0) = 0.0031, than the

design based on θ0, where trace(c0) = 0.0013.

69



−2 −1.5 −1 −0.5 0
−250

−200

−150

−100

−50

0

frequency (log(rad/s))

m
ag

ni
tu

de
(d

B
)

Φ11

−2 −1.5 −1 −0.5 0
−250

−200

−150

−100

−50

0

frequency (log(rad/s))

m
ag

ni
tu

de
(d

B
)

Φ12

−2 −1.5 −1 −0.5 0
−250

−200

−150

−100

−50

0

frequency (log(rad/s))

m
ag

ni
tu

de
(d

B
)

Φ21

−2 −1.5 −1 −0.5 0
−250

−200

−150

−100

−50

0

frequency (log(rad/s))

m
ag

ni
tu

de
(d

B
)

Φ22

Figure 62. Example 4 – Optimal spectrum. The optimal spectrum based on θinit ( ) and θ0

( ) are shown. We see that u1 and u2 are uncorrelated and the variance of u2 is numerically

zero for both spectra, as in Example 1.
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Identification ellipsoid

We calculate the same kind of identification ellipsoids as in Example 1. The ellipsoids

are shown in Figure 63. Note that the two ellipsoids are similar in shape and size, and that we

have centered them around θ0.
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Figure 63. Example 4 – Identification ellipsoids. The identification ellipsoids based on θinit and

θ0 are displayed as ( ) and ( ), respectively. The true parameter values are denoted ( ).

Estimates

We estimate θ using the optimal input signal and a white input signal. The white input

signal has the same power as the optimal input signal, but divided equally between u1 and u2.

We perform ten identification experiments for each type of signal. A new realization of the input

signal is used in each experiment.

The resulting white estimates are shown in Figure 64, along with the identification

ellipsoid based on the white spectrum and θ0. The application ellipsoids based on θinit and θ0
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are also shown for comparison. The white estimates are quite scattered, and only two estimates

fulfill the second order approximation of the application requirement based on θinit. The same

two estimates along with one more fulfill the second order approximation of the application

requirement based on θ0.
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Figure 64. Example 4 – White estimates. The white estimates, denoted ( ) and ( ) are shown,

along with the application ellipsoid based on θinit ( ) and on θ0 ( ). Also, the identification

ellipsoid based on the white spectrum and θ0 is shown ( ). The true parameter values are

denoted ( ).

The estimate denoted ( ) in Figure 64 corresponds to Experiment 4 and gives a particularly

high application cost.

The resulting optimal estimates are shown in Figures 65 and 66. We see that the optimal

estimates are more gathered than the white ones. Note also that they are spread out more in

the k1-direction than in the γ1-direction. Meaning, the optimal estimates follow the shape of the

application ellipsoid. Eight of the optimal estimates fulfill the second order approximation of the

application requirement based on θinit, see Figure 65. The same eight optimal estimates fulfill
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the second order approximation of the application requirement based on θ0, see Figure 66.
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Figure 65. Example 4 – Optimal estimates

and ellipsoids based on θinit. The optimal

estimates ( ) are shown, along with the

application ellipsoid ( ) and identifica-

tion ellipsoid ( ) based on θinit. The true

parameter values are denoted ( ).
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Figure 66. Example 4 – Optimal estimates

and ellipsoids based on θ0. The optimal

estimates ( ) are shown, along with the

application ellipsoid ( ) and identifica-

tion ellipsoid ( ) based on θ0. The true

parameter values are denoted ( ).

As in Example 1, we also estimate θ using a white input signal with its covariance equal

to the optimal c0. The estimates are shown in Figure 67. We see that the estimates are still spread

out. In fact, only two of the estimates fulfill the application requirement, both when based on

θinit and when based on θ0.

73



−2 0 2 4

1

2

3

4

5

γ1

k
1

Figure 67. Example 4 – White estimates using optimal power distribution and ellipsoids based

on θinit. The white estimates ( ) are shown, along with the application ellipsoid based on θinit

( ) and on θ0 ( ). Also, the identification ellipsoid based on the white spectrum and θ0 is

shown ( ). The true parameter values are denoted ( )).

Application cost

We check the application cost for all white and optimal estimates. We evaluate the

application cost on the process, see Figure 68 and 69. We also evaluate the application cost

in simulation based on both θinit and θ0, see Figures 70–73.

We see in Figure 69 that none of the estimates fulfill the application cost evaluated on

the process. However, the optimal estimates in general outperform the white estimates. One of

the optimal estimates and none of the white estimates fulfill the application cost evaluated in

simulation based on θinit, see Figure 71. In Figure 73, we see that seven of the optimal estimates

and one of the white estimates fulfill the application cost evaluated in simulation based on θ0.

The result is better in the latter case since the application cost based on θ0 gives a larger set
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of acceptable parameters than the cost based on θinit does, see the ellipsoidal approximations in

Figure 61.
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Figure 68. Example 4 – Application cost

evaluated on process. The application cost

for optimal estimates ( ) and white esti-

mates ( ) are shown.
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Figure 69. Example 4 – Application

cost evaluated on process excluding white

Experiment 4. We see that the optimal

estimates in general outperforms the white

estimates. However, none of the estimates

fulfill the requirement of an application cost

lower than 1/γ, denoted ( ).
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Figure 70. Example 4 – Application cost

evaluated in simulation on system based on

θinit. The application cost for the optimal

estimates ( ) and white estimates ( ) are

shown.
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Figure 71. Example 4 – Application cost

evaluated in simulation on system based

on θinit excluding white Experiment 4. We

see that the optimal estimates in general

outperforms the white estimates. One of the

optimal estimates and none of the white

estimates fulfill the requirement of an appli-

cation cost lower than 1/γ, denoted ( ).
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Figure 72. Example 4 – Application cost

evaluated in simulation on system based

on θ0. The application cost for the optimal

estimates ( ) and white estimates ( ) are

shown.
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Figure 73. Example 4 – Application cost

evaluated on system based on θ0 excluding

white Experiment 4. We see that the optimal

estimates in general outperforms the white

estimates. Seven of the optimal estimates

and one of the white estimates fulfill the

requirement of an application cost lower

than 1/γ, denoted ( ).
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Signals from process

The output signals from the process when evaluating the application cost are shown in

Figures 74 and 75 for the optimal estimates and Figures 76 and 77 for the white estimates. The

output signals when θ0 are used in the MPC model are shown in Figures 78 and 79. All outputs

fulfill the constraints imposed on the water tank levels.
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Figure 74. Example 4 – Optimal y1/l1

from application evaluation. The optimal

y1/l1 ( ) from ten application evaluations

on the process are shown. The reference

signal is denoted ( ).
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Figure 75. Example 4 – White y1/l1 from

application evaluation. The white y1/l1

( ) from ten application evaluations on

the process are shown. The reference signal

is denoted ( ).
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Figure 76. Example 4 – Optimal y2/l2

from application evaluation. The optimal

y2/l2 ( ) from ten application evaluations

on the process are shown. The reference

signal is denoted ( ).
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Figure 77. Example 4 – White y2/l2 from

application evaluation. The white y2/l2

( ) from ten application evaluations on

the process are shown. The reference signal

is denoted ( ).
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Figure 78. Example 4 – True y1/l1 used

in application evaluation. The output y1/l1

( ) is obtained from the process using θ0

in the MPC model. The reference signal is

denoted ( ).
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Figure 79. True y2/l2 used in appli-

cation evaluation. The output y2/l2 ( )

is obtained from the process using θ0 in

the MPC model. The reference signal is

denoted ( ).
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For comparison, we also checked the output signals from the process when using models

obtained with the white noise with optimal covariance matrix c0. That is, the models based on

the estimates in Figure 67. The output signals when evaluating the application cost are shown in

Figures 80 and 81. We see that, as with the other white noise experiments, the resulting control

performance is worse than for the optimal models.
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Figure 80. Example 4 – White y2/l2 from

application evaluation (based on estimates

using optimal c0). The white y2/l2 ( )

from ten application evaluations on the

process are shown. The reference signal is

denoted ( ).
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Figure 81. Example 4 – White y2/l2 from

application evaluation (based on estimates

using optimal c0). The white y2/l2 ( )

from ten application evaluations on the

process are shown. The reference signal is

denoted ( ).
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Experiment length

We evaluate the four different experiment lengths as in the previous examples. The values

of the experiment lengths are shown in Table XX. The white input signal requires, according to

theory, a longer experiment length to achieve the same performance as the optimal input signal.

The white input signal is approximately 42 times longer than the optimal input signal in both

cases. Note also that N initial
white and N are larger than N true

white and N true, respectively, which relates to

the fact that the application ellipsoid based on θ0 is larger than the application ellipsoid based

on θinit, see Figure 61.

TABLE XX

EXAMPLE 4 – EXPERIMENT LENGTHS.

Experiment length Value in samples Value in minutes

N 300 5

N true 125 2

N initial
white 12550 209

N true
white 5194 87
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Example 5 - Estimating θ = [a1 a2 a3 a4 γ1 γ2 k1 k2]
T with integral action in

the MPC

We redo Example 2 but with Qu = 0I2×2. The MPC has integral action.

Check of initial estimates

We use the same intial estimates as in Example 3, that is, θinit =

[0.03 0.03 0.05 0.05 0.7 0.7 1.6 1.6]T. However, with these values of θinit cvx returns

an inaccurate solution when calculating the optimal spectrum. As suggested in the cvx-manual,

we check that the estimates are accurate enough for our purpose. We do so by checking that the

linear matrix inequality constraint is approximately active, and it is. The smallest eigenvalue of

the matrix should be zero and it is of the order of 10−7. Before performing the input design,

we check if the initial estimates fulfill the application requirement. In this check, we get that

θinit do not fulfill the application requirement.

Application ellipsoid

As in the other examples, we calculate two types of application ellipsoids. The first type

is evaluated in simulation using a system and MPC model based on θinit. The second type is

evaluated in simulation using a system and MPC model based on θ0.

In Tables XXI and XXII, we give the range of each parameter value that may fulfill the

second order approximation of the application requirement centered at θinit and θ0, respectively.
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As in Example 3, we get that the range of γ1 is larger based on θinit than based on θ0.

Consequently, the input design might not give estimates of these values that are accurate enough

for the application in mind.

We can rank the parameters in terms of increasing importance based on absolute deviation

and θinit as k2, k1, γ2, γ1, a3, a4, a2 and a1, which is the same ranking as in Example 3. The

ranking based on θ0 is a3, k2, k1, γ2, a4, γ1, a2 and a1.

The order of increasing importance is different in terms of relative deviation than

absolute deviation. The ranking based on relative deviation and the initial design centered at

θinit (Table XXI) is a3, a4, a2, a1, k2, γ2, k1 and γ1. The ranking based on relative deviation,

θinit and centered at θ0 (Table XXII) is k2, a4, γ2, a2, a3, a1, γ1 and k1. The ranking based on

relative deviation, θ0 and centered at θ0 (Table XIII) is a3, a4, k2, a2, a1, k1, γ2 and γ1.

Despite the different rankings, they all state that a1 and a2 are more important than a3

and a4, and γ1 and γ2 are more important than k1 and k2 to estimate with higher accuracy.

Except the ranking based on relative deviation, θinit and centered at θinit (Table XXII). Here, a3

is deemed more important than a2.
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TABLE XXI

EXAMPLE 5 – POSSIBLE RANGE OF EACH PARAMETER VALUE IN THE INITIAL DESIGN.

θ θinit Possible range based on θinit

a1 0.03 0.03± 0.0201 (±67%)

a2 0.03 0.03± 0.0256 (±85%)

a3 0.05 0.05± 0.1002 (±200%)

a4 0.05 0.05± 0.0643 (±129%)

γ1 0.7 0.7± 0.2207 (±32%)

γ2 0.7 0.7± 0.3147 (±45%)

k1 1.6 1.6± 0.6553 (±41%)

k2 1.6 1.6± 1.0428 (±65% )

TABLE XXII

EXAMPLE 5 – POSSIBLE RANGE OF EACH PARAMETER VALUE.

θ θ0 Possible range based on θinit Possible range based on θ0

a1 0.0649 0.0649± 0.0201 (±31%) 0.0649± 0.0346 (±53%)

a2 0.0594 0.0594± 0.0256 (±43%) 0.0594± 0.0422 (±71%)

a3 0.3211 0.3211± 0.1002 (±31%) 0.3211± 3.2994 (±1028%)

a4 0.1353 0.1353± 0.0643 (±48%) 0.1353± 0.2423 (±179%)

γ1 0.7283 0.7283± 0.2207 (±30%) 0.7283± 0.1771 (±24%)

γ2 0.7271 0.7271± 0.3147 (±43%) 0.7271± 0.3049 (±42%)

k1 2.362 2.362± 0.6553 (±28%) 2.362± 1.0093 (±43%)

k2 1.797 1.797± 1.0428 (±58% ) 1.797± 1.2946 (±72%)
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Optimal spectrum

We calculate the optimal spectrum using 20 parameters c0, . . . , c19, where ci ∈ R2×2.

The optimal spectrum is shown in Figure 82, along with the optimal spectrum based on θ0. The

design based on θinit requires a smaller power, trace(c0) = 0.027, than the design based on θ0,

where trace(c0) = 0.0513.

−2 −1.5 −1 −0.5 0
−200

−150

−100

−50

0

frequency (log(rad/s))

m
ag

ni
tu

de
(d

B
)

Φ11

−2 −1.5 −1 −0.5 0
−200

−150

−100

−50

0

frequency (log(rad/s))

m
ag

ni
tu

de
(d

B
)

Φ12

−2 −1.5 −1 −0.5 0
−200

−150

−100

−50

0

frequency (log(rad/s))

m
ag

ni
tu

de
(d

B
)

Φ21

−2 −1.5 −1 −0.5 0
−200

−150

−100

−50

0

frequency (log(rad/s))

m
ag

ni
tu

de
(d

B
)

Φ22

Figure 82. Example 5 – Optimal spectrum. The optimal spectrum based on θinit ( ) and θ0

( ) are shown. We see that u1 and u2 are correlated.
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Identification ellipsoid

We calculate the same two kinds of identification ellipsoids as in the other examples.

In Table XXIII, we give the possible range of each estimated parameter value according

to the identification ellipsoid.

We can rank the parameters in order of increasing importance. In terms of absolute

deviation both spectra give the same ranking, that is, a3, k2, k1, a4, γ2, γ1, a2 and a1, which is

the same ranking as in Example 3. In terms of relative deviation the optimal spectrum gives a4,

a3, a2, k2, a1, γ2, k1 and γ1. The white spectrum gives a3, a4, a2, k2, k1, a1, γ2 and γ1.

The rankings differ from those obtained from the application ellipsoids. However, they

all state that a1 and a2 are more important than a3 and a4, and γ1 and γ2 are more important

than k1 and k2 to estimate with higher accuracy. Except for the optimal spectra where k1 is

deemed slightly more important than γ2. We also see that the identification ellipsoid based on

the optimal spectrum has a smaller possible range of each parameter than the ellipsoid based on

the white spectrum. The volume of the white identification ellipsoid is 10617 times larger than

the volume of the optimal identification ellipsoid.
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TABLE XXIII

EXAMPLE 5 – POSSIBLE RANGE OF EACH ESTIMATED PARAMETER VALUE.

θ θ0 Possible range based on θ0

and optimal spectrum

Possible range based on θ0

and white spectrum

a1 0.0649 0.0649± 0.0128 (±20%) 0.0649± 0.0275 (±42%)

a2 0.0594 0.0594± 0.0238 (±40%) 0.0594± 0.0503 (±85%)

a3 0.3211 0.3211± 1.5253 (±48%) 0.3211± 2.6996 (±841%)

a4 0.1353 0.1353± 0.2317 (±171%) 0.1353± 0.8238 (±609%)

γ1 0.7283 0.7283± 0.0659 (±9%) 0.7283± 0.2092 (±29%)

γ2 0.7271 0.7271± 0.1127 (±16%) 0.7271± 0.2536 (±35%)

k1 2.362 2.362± 0.3540 (±15%) 2.362± 1.0865 (±46%)

k2 1.797 1.797± 0.5278 (±29%) 1.797± 1.1000 (±61%)

Estimates

We estimate θ using the optimal input signal and the white input signal. We perform ten

identification experiments for each type of signal. A new realization of the input signal is used

in each experiment.

As in Example 2, it is difficult to estimate reasonable values of a3 using the optimal

signal. In five of the optimal estimates and three of the white estimates it is larger than 103. We

believe that this is due to the small water tank level in steady state of Tank 3.

All ten optimal estimates are displayed in Table XXIV.
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TABLE XXIV

EXAMPLE 5 – ESTIMATED PARAMETERS USING OPTIMAL INPUT SIGNAL.

θ Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp. 10

a1 0.0712 0.0504 0.0790 0.0736 0.0512 0.0450 0.0627 0.0496 0.0799 0.0431

a2 0.0403 0.0395 0.0640 0.0551 0.0654 0.0622 0.0448 0.1252 0.1100 0.0372

a3 0.0037 0.0151 5×106 7×106 2×105 0.0019 0.0300 3×105 9×103 0.0026

a4 0.0945 0.0231 0.0441 0.0454 0.0666 0.0342 0.0560 0.0379 0.0415 0.0903

γ1 0.7657 0.7287 0.6939 0.7221 0.7094 0.6048 0.6790 0.5794 0.7160 0.7110

γ2 0.5060 0.3980 0.7576 0.6801 0.8279 0.5780 0.9082 0.7953 0.6665 0.4096

k1 1.9743 1.7920 2.7837 2.4012 2.4329 2.0632 2.0718 2.5144 2.9544 2.1190

k2 1.7799 2.4986 1.6727 2.0309 1.6630 2.5898 1.4053 2.4632 2.6151 3.3532

Application cost

We check the application cost for all white and optimal estimates. We evaluate the

application cost on the process, see Figures 83. We also evaluate the application cost in simulation

based on both θinit and θ0, see Figures 84 and 85. The requirement on the application cost is not

fulfilled in any of the experiments, but the optimal models generally get a lower application cost

than the white models do. In addition, none of the models fulfill the second order approximation

of the application requirement when based on θinit, but one of the optimal models fulfills it when

based on θ0.
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Figure 83. Example 5 – Application cost evaluated on process. The application cost for optimal

estimates ( ) and white estimates ( ) are shown.
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Figure 84. Example 5 – Application cost evaluated in simulation on system based on θinit. The

application cost for the optimal estimates ( ) and white estimates ( ) are shown.
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Figure 85. Example 5 – Application cost evaluated in simulation on system based on θ0. The

application cost for the optimal estimates ( ) and white estimates ( ) are shown.

Signals from process

The output signals from the process when evaluating the application cost are shown in

Figures 86 and 88 for the optimal estimates and Figures 87and 89 for the white estimates. The

output signals from the process when using θ0 in the MPC model are shown in Figures 90 and

91. We see that the MPC models based on optimal estimates performs better than MPC models

based on white estimates, especially when considering y2. All outputs fulfill the constraints

imposed on the water tank levels.
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Figure 86. Example 5– Optimal y1 from

application evaluation. The optimal output

y1/l1 ( ) from ten application evaluations

on the process are shown. The reference

signal is denoted ( ).
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Figure 87. Example 5 – White y1 from

application evaluation. The white output

y1/l1 ( ) from ten application evaluations

on the process are shown. The reference

signal is denoted ( ).
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Figure 88. Example 5 – Optimal y2 from

application evaluation. The optimal output

y2/l2 ( ) from ten application evaluations

on the process are shown. The reference

signal is denoted ( ).
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Figure 89. Example 5 – White y2 from

application evaluation. The white output

y2/l2 ( ) ten application evaluations on

the process are shown. The reference signal

is denoted ( ).
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Figure 90. Example 5 – True y1 used

in application evaluation. The true output

y2/l2 ( ) from the process is shown. The

reference signal is denoted ( ).
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Figure 91. Example 5 – True y2 used

in application evaluation. The true output

y2/l2 ( ) from the process is shown. The

reference signal is denoted ( ).
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Experiment length

As in the previous examples, we evaluate four different experiment lengths. The values

of the experiment lengths are shown in Table XXV. We see that the white input signal requires,

according to theory, a longer experiment length to achieve the same performance as the optimal

input signal. The white input signal is approximately 15 times longer than the optimal input signal

when based on the initial estimates and 3.5 times longer when based on the true parameter values.

TABLE XXV

EXAMPLE 5 – EXPERIMENTAL LENGTHS.

Experiment length Value in samples Value in minutes

N 300 5

N initial
white 4486 75

N true
white 3205 53

N true 927 15
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Comments

We give some comments and reflections regarding the result obtained.

Important directions

In applications oriented input design we only consider parameter directions in an absolute

sense. As seen in the examples, the important parameters can change when considering relative

measure instead of absolute measure. Consequently, one should have models with parameter

values of the same order of magnitude.

The initial estimate used in the design might have parameter values of wrong magnitude.

This could lead to a design based on important directions that are different from the actual

important directions. A remedy for this scenario is to use adaptive applications oriented input

design. That is, to do the design and the identification experiment based on the initial estimate,

and then to redo the whole procedure but with the new estimate as initial estimate. As we use

more and more data in the identification experiment, we expect the parameter estimate to get

better and better.

Initial estimate

The initial estimate greatly affect the input design, as seen in Example 2 and Example 3.

In Example 2, we do not gain much from designing the input spectrum compared to using

white noise of equal power. However, in all the experiments made we never got a worse control

performance from designing the spectra compared to using white noise.
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As suggested in the previous section, we can compensate for the input design’s

dependency on the accuracy of the initial estimate by using adaptive input design.

Approximative design

Applications oriented input design is based on a second order approximation of the

application requirement. Depending on the shape of the application cost, the application ellipsoid

might be much bigger or much smaller than the actual region that gives acceptable application

cost. One could increase the value of γ to get a better second order approximation, but that also

puts higher demand on the application performance. One could also use the scenario approach

instead of the ellipsoidal approximation, see [10].

Application oriented input design is also based on a particular linear model structure. Of

course, there are no true parameter values that ensures that the model captures the real nonlinear

system. Consequently, this will also lead to an approximative design.

Noise

Applications oriented input design does not take noise into account. As seen in the plots

of the application costs evaluated on the process, the noise increases the value of the application

cost. It is not evident how to compensate for this increase in the design.
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Stability

We have not taken closed-loop stability into account. However, this could be done

(implicitly and approximately) when defining the application ellipsoid. That is, that one ensures

that all values inside the application ellipsoid gives a closed-loop stable system for the given

controller.

Completely wrong estimates

In Examples 2, 3 and 5, we have problems estimating either a3 or a4. Even though some

of the estimates are completely wrong and the second order approximation of the application

requirement for those estimates are several magnitudes larger than the acceptable level, they

still give good performance when considering the output signals of the process. Meaning, the

accuracy of the model is not important – the actual performance of the model is!

Application cost

In theory the application cost is a formal measure of the important quality of the

considered system, and γ is a formal upper limit on the degradation of the quality. However,

this is not the case when used in practice. All the issues stated above ensure that the application

requirement is most likely not fulfilled when evaluated in practice (that is, not in simulation on

a simulated process). Therefore, when applying applications oriented input design in practice,

one should think of the application cost and γ as tunable parameters in an identification method.

They are part of a tool that helps the user find models with good application performance, not
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necessarily models that fulfill Vapp(θ) ≤ 1
γ

.
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