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Abstract— This contribution considers one central aspect of
experiment design in system identification, namely application
set approximation. When a control design is based on an
estimated model, the achievable performance is related to the
quality of the estimate. The degradation in control performance
due to plant-modeling missmatch is quantified by an application
cost function. A convex approximation of the set of models that
satisfy the control specification is typically required in optimal
input design. The standard approach is to use a quadratic
approximation of the application cost function, where the
main computational effort is to find the corresponding Hessian
matrix. Our main contribution is an alternative approach for
this problem, which uses the structure of the underlying opti-
mal control problem to considerably reduce the computations
needed to find the application set. This technique allows the use
of applications oriented input design for MPC on much more
complex plants. The approach is numerically evaluated on a
distillation control problem.

I. INTRODUCTION

System identification for control concerns the problem of
using experimental data from a dynamical system to identify
a model to be used for control design, see e.g. [1], [2], [3],
[4], [5], [6], [7], [8]. The opportunity to also design the
excitation input signal to be used in the experiment opens
up for the possibility to connect the system identification ex-
perimental conditions to required control performance. One
way is to formulate this as a convex optimization problem[9],
[10], [11], [12]. We will study one aspect of the so-called
applications oriented input design introduced in [13], specifi-
cally for model predictive control (MPC), namely application
set approximation. The objective is to guarantee, with a given
probability, that the estimated model belongs to the set of
models that satisfies the control specifications. This objective
can be stated mathematically as a set constraint where the set
of all identified models corresponding to a particular level
of confidence must lie inside the set of all models fulfilling
the control specifications [13]. To ensure that the obtained
optimization problem is convex, we generally must make
a convex approximation of the set constraint. Two known
approaches for doing this are the scenario approach, [14] and
[15], and the ellipsoidal approach, [16]. The main drawback
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of these methods is the computational effort necessary to
obtain a decent approximation. Both methods require several
simulations to be made of the closed loop system with MPC.
In this paper, we introduce a new method of approximating
the set constraint with a convex one. The method is based
on a perturbation analysis and only requires one simulation
of the closed loop system. Thus, it is expected to be much
faster than both the scenario and the ellipsoidal approach.

The outline of the paper is as follows. In Section II,
we go-through the mathematical background necessary. We
describe the scenario approach and the ellipsoidal approach
in Section III, followed by description of the proposed
new method in Section IV. In Section V, we illustrate the
method in two numerical examples and in Section VI, some
conclusions are stated.

II. PRELIMINARIES

A. System and model
We consider a linear, time-invariant system which is

described by an output error model

x(t +1) = Ax(t)+Bu(t),
y(t) =Cx(t)+ e(t).

(1)

Here, x ∈Rnx is the state vector, u ∈Rnu is the input vector,
y(k) ∈ Rny is the output vector, and e(t) is white Gaussian
measurement noise with covariance matrix E{e(t)2}=Λe. A,
B and C are the state space matrices of the system. In system
identification, we want to find a model of (1). Here the model
is parametrized with an unknown parameter θ ∈ Rn, that is,

x(t +1,θ) = A(θ)x(t,θ)+B(θ)u(t,θ),
y(t,θ) =C(θ)x(t,θ)+ e(t).

(2)

In addition, we assume that the true system can be described
by the model (2) exactly when θ = θo. We call θo the true
parameter vector. The objective of system identification is
to estimate the values of θ that best describes the system.
The estimated parameter vector, given N measurements in
the identification experiment, is denoted θ̂N .

B. Prediction error method
We use the prediction error method (PEM) with quadratic

cost to estimate the unknown parameters of the considered
system, θ ∈ Rn, from N available samples of input-output
data, see [17]. A key asymptotic (N→∞) property of PEM,
is that the estimated parameters lie in an identification set
with a certain probability [18]. This set is then defined as

ESI(α) =

{
θ : [θ −θo]

T IF(θo)[θ −θo]≤
χ2

α(n)
N

}
, (3)



where χ2
α(n) is the α-percentile of the χ2-distribution with n

degrees of freedom and IF is the Fisher information matrix.
We thus have that θ̂N ∈ ESI(α) with probability α when N→
∞. For more details, we refer the reader to [17].

C. Model predictive control

Model predictive control (MPC) is an optimization based
control technique where a model is used to predict the
behavior of the plant. At each control instant, MPC computes
a sequence of optimal inputs by solving an optimization
problem based on the predictions. The first input value is
applied to the plant and the procedure is repeated at the next
time step. A common formulation of the MPC procedure is

min
{u(k,θ)}Nu

k=1

J=
Ny

∑
k=0
‖y(k+1,θ)−r(k+1)‖2

Q+
Nu

∑
k=1
‖∆u(k,θ)‖2

R

s. t. x(k+1,θ) = A(θ)x(k,θ)+B(θ)u(k,θ),
y(k+1,θ) =C(θ)x(k+1,θ),
x(1,θ) = x∗(t,θ),
∆u(1,θ) = u(1,θ)−u∗(t−1,θ),
umin ≤ u(k,θ)≤ umax,k = 1, ...,Nu,

ymin ≤ y(k+1,θ)≤ ymax,k = 0, ...,Ny.

(4)

Here r(k) is the reference trajectory, Q and R are weight
matrices, Nu and Ny are control and prediction horizons, and
∆u(k,θ) = u(k,θ)− u(k− 1,θ). Note that ∆u(k,θ) = 0 for
k >Nu, u∗(t−1,θ) is the optimal input applied to the system
at time t−1, and x∗(t,θ) is the estimated system state at time
t, obtained by direct measurement or observer. This and other
MPC formulations are discussed in more detail in [19].

D. Applications oriented input design

Since MPC uses a model in order to control a system, the
control performance is potentially affected by plant–model
mismatch. We use the concept of an application cost function
to relate the plant–model mismatch to the performance
degradation. We use a scalar function of θ as the application
cost and denote it Vapp(θ). The cost function is chosen such
that its minimum value occurs at θ = θo. In particular, we
assume without loss of generality that Vapp(θo)= 0. Note that
if Vapp(θ) is twice differentiable in a neighborhood of θo, this
implies that Vapp(θo) = 0 , V ′app(θo) = 0 and V ′′app(θo) � 0,
see [16]. There are many different possible choices for the
application cost function with the above mentioned proper-
ties and the proper choice is highly application dependent.

We note that the constructed application cost in most
cases requires knowledge of the true parameter values which
seems to contrast our aim of designing an input signal to
be used for identification of unknown parameters. This is a
problem which appears in almost any optimal input design
formulation and is typically solved in one of two ways.
One possibility is to do an input design which is robust
with respect to the unknown parameters, e.g., [20]. Another
possibility is to use iterative input design and use the best
available estimate of the parameters to update the input
design, e.g., [21]. We believe that the ideas presented here
are extendable to an iterative input design scheme.

For a given application, there is a limit on the maximum
value of allowed performance degradation, that is, Vapp(θ)≤
1
γ
, where γ is a user-defined positive constant. Every param-

eter vector θ for which the performance degradation is less
than 1/γ can be considered as an acceptable parameter from
an application’s point of view. Thus, we define the set of all
acceptable parameters, the application set, as

Θ(γ) =

{
θ : Vapp(θ)≤

1
γ

}
. (5)

The application set (5) has been extensively used in applica-
tions oriented input design for system identification (see [16],
[22] and [13]). The main objective of applications oriented
input design is to provide a tool for designing the input
signal to be used in the identification experiment such that the
estimated model guarantees acceptable control performance
when used in the control design, that is, we want θ̂N ∈Θ(γ)
with high probability. This requirement can be formulated
mathematically as the inclusion

ESI(α)⊆Θ(γ). (6)

Therefore, the input design problem can be formulated as
an optimization problem, where (6) plays the role of a
constraint. However, one crucial issue is that while ESI is
an ellipsoidal set, the application set can be of any shape.
Thus, the set constraint (6) may not be convex. Two known
approaches to make a convex approximation of the constraint
are discussed in the next section. Alternatives to constraint
(6) can be found in [23].

III. APPLICATION SET APPROXIMATION

Two methods of approximating the set constraint with a
convex one are the scenario approach, see [14], [15], and the
ellipsoidal approach, see [16].

In the scenario approach, the application set is described
by a number, Nk, of samples (or scenarios) which are
randomly chosen from the set. The constraint (6) is then
replaced by a set of inequalities,

[θ−θ0]
T IF(θ0)[θ−θ0]≥

γχ2
α(n)
N

Vapp(θk),k = 1, . . . ,Nk. (7)

However, in order to have a good approximation of the appli-
cation set, the number of scenarios must be large enough (see
e.g. [24] for the minimum required number of scenarios). For
high dimensional and complex plants using controllers where
it is not possible to find analytic expressions for Vapp, which
is the case for MPC, this requires a large number of often
highly time-consuming and costly simulations.

The ellipsoidal approach is based on a second order Taylor
expansion of Vapp(θ) around θo, that is,

Vapp(θ)≈Vapp(θo)+V ′app(θo)[θ −θo]

+
1
2
[θ −θo]

TV ′′app(θo)[θ −θo]

= 0+0+
1
2
[θ −θo]

TV ′′app(θo)[θ −θo].

(8)

The application set can thus be approximated by

Eapp(γ) =

{
θ : [θ −θo]

TV
′′
app(θo)[θ −θo]≤

2
γ

}
. (9)



The quality of the approximation not only depends on the
application cost but also on the value of γ . For sufficiently
large values of γ , Eapp gives an acceptable approxima-
tion. However, the calculation of the Hessian matrix is a
challenging task. In many problems it is not possible to
analytically determine the Hessian of the application function
due to nonlinearities in the controllers that are being used.
Therefore, numerical approximations are used. Numerical
methods, such as finite difference approximation, are not
applicable in many cases because of the large number of
variables involved. In the rest of this paper, we propose a
method for convex approximation of the application set (5)
for constrained MPC, where the main focus is to find an
analytic method to calculate the Hessian.

IV. APPLICATION SET APPROXIMATION FOR MPC
MPC has drawn much attention in control fields, thanks

to its ability to cope with system constraints. Using MPC,
we can deal with both input and output constraints explicitly
during the controller design and implementation. However,
the resulting explicit solutions for MPC are difficult to deal
with due to these constraints, which makes it unavoidable
to use numerical calculations for the approximation of the
application cost [22]. In this section we present a new
approach based on analytical methods for the application
cost approximation for MPC. The proposed approach leads
to faster convex estimations of the application sets for MPC.

A. Application Cost Function for MPC
The application cost function measures the amount of

performance degradation that stems from plant–model mis-
match. One reasonable choice of this function for MPC is the
difference between the measured output when the controller
is based on the true parameters, θo, and when it is based on
perturbed parameters θ , that is,

Vapp(θ) =
1
M

M

∑
t=1
‖y(t,θo)− y(t,θ)‖2, (10)

where M is the number of measurements used, t is time, and
the second argument of y is the parameters used in the MPC.

The application cost (10) is one of the common cost
functions that has been used in the literature, see e.g. [14],
[16]. Therefore, in this paper we focus on an application set
approximation for (10), however, the proposed approach is
applicable for other choices of application costs.

B. The Unknown True System
As noted before, the application cost may depend on

the true parameter values, and for the case (10), it does.
Therefore, the following simulation based approximation of
the application cost is suggested

V̂app(θ) =
1
M

M

∑
t=1
‖y(t, θ̂ , θ̂)− y(t,θ , θ̂)‖2, (11)

where θ̂ is the best available estimate of θo and the values
of y come from simulations; the second argument of y is the
parameter used in the MPC formulation (4) while the third
argument of y is the parameter used in lieu of θo. The values
of θ̂ may be updated as better estimates are available.

C. Application Function Approximation
In order to obtain a convex approximation of the appli-

cation set, we start by estimating y(t,θ , θ̂) in (11). Using a
Taylor expansion of y(t,θ , θ̂), we can write

y(θ) = y(θ̂)+
n

∑
i=1

∂y(θ̂)
∂θi

δθi

+
1
2

n

∑
i=1

n

∑
j=1

∂ 2y(θ̂)
∂θi∂θ j

δθiδθ j +H.O.T.,
(12)

where θi are the elements of θ and by H.O.T. we mean
higher order terms in the Taylor expansion. Here, the first
and third arguments of y(t,θ , θ̂), are omitted for the sake of
simplicity. In order to find the derivatives in (12), we need
to find the derivatives of the input signal generated by MPC
with respect to θ . However, this is a challenging problem
since the solution of MPC is not simple enough when there
are inequality constraints on input and output signals. The
proposed solution here is to notice that, when θ is a small
perturbation of θ̂ , the active constraints are the same as when
the MPC is based on θ̂ . Thus, the main idea is to let MPC
run based on θ̂ at each time instance t, and determine the
optimal value of the input signal u(t, θ̂). We assume that
the active constraints remain the same for small enough
perturbations of θ̂ , see [25]. This fact holds whenever the
dual variables associated with the last two set of constraints
in (4), which are active, are all non-zero. This in turn hold
with the probability 1. In addition, under this condition y is
differentiable with respect to its second argument.

Therefore, at time step t, we are able to find an explicit
solution of the optimization problem in MPC for θ = θ̂ +δθ

by considering active constraints as equality constraints. We
can analyze the effects of perturbing the parameters when δθ

is small enough. In the rest of this section, we briefly describe
the explicit solution of MPC when we are considering
only active constraints, then we provide insights into the
perturbation analysis for the MPC solution. Finally, we show
how these concepts can be used to find the derivatives in (12)
and compute the application cost function.

1) Explicit Solution of constrained MPC: Consider the
MPC formulation (4) at time instant t. For simplicity it is
assumed that Nu = Ny. Now we seek to rewrite the MPC
formulation as a quadratic program where we are considering
only active constraints obtained by solving MPC for θ̂ , which
are equality constraints. Introducing

X(t,θ) =

[x(t +Nu,θ)
T , . . . ,x(t,θ)T ,u(t +Nu−1,θ)T , . . . ,u(t,θ)T ]T ,

H= [r(Nu + t)T , . . . ,r(t)T ,0, . . . ,0,u∗(t−1,θ)T ]T ,

Q=

[
INu+1⊗Q 0

0 INu ⊗R

]
,

∆ =


I −I · 0
...

. . . . . .
...

0 · I −I
0 · 0 I

 ,ϒ(θ) =
[

INu+1⊗C(θ) 0
0 INu ⊗∆

]
,



where by Im⊗M, we mean the Kronecker products of Im and
M [26], we can rewrite the cost function J in (4) as:

J = (ϒ(θ)X(t,θ)−H)Q(ϒ(θ)X(t,θ)−H)T . (13)

Moreover, the system dynamics and the first equality con-
straint in (4), give that C(θ)X(t,θ) =D(θ), with

C=


I −A(θ) . . . 0 0 −B(θ) . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . I −A(θ) 0 . . .−B(θ)
0 0 . . . 0 I 0 . . . 0

 ,D=


0
...
0

x̂(t,θ)

 .
Consider the inequality constraints in (4). They can be
rewritten as

INu+1⊗C(θ) 0
−INu+1⊗C(θ) 0

0 I
0 −I

X(θ)≤


INu+1⊗ ymax
−INu+1⊗ ymin

INu ⊗umax
−INu ⊗umin

 . (14)

Let Ξ be a diagonal matrix, where each diagonal element
corresponds to one of the inequality constraints in (14). A
diagonal element is zero if its corresponding constraint is
inactive when the problem is solved for θ̂ and it is one for
active constraints. Multiplying (14) by Ξ and introducing

Ξa = Ξ


INu+1⊗C(θ) 0
−INu+1⊗C(θ) 0

0 I
0 −I

 ,ρ = Ξ


INu+1⊗ ymax
−INu+1⊗ ymin

INu ⊗umax
−INu ⊗umin

 ,
we obtain Ξa = ρ , which represents those inequality con-
straints that are active at time instance t. Then we can rewrite
the entire set of constraints as A(θ)X(t,θ) = B(θ), where

A(θ) =
[
C(θ)
Ξa

]
, B(θ) =

[
D(θ)

ρ

]
.

Finally, the following optimization problem is obtained:

min
X(t,θ)

(ϒ(θ)X(t,θ)−H)Q(ϒ(θ)X(t,θ)−H)T ,

s.t. A(θ)X(t,θ) = B(θ).
(15)

Problem (15) is a quadratic optimization problem with equal-
ity constraints. The KKT conditions [27] for this problem are

2ϒ(θ)TQ(ϒ(θ)X(t,θ)−H)+AT (θ)λ = 0,
A(θ)X(t,θ) = B(θ),

where λ are Lagrange multipliers. This can be written as[
2ϒ(θ)TQϒ(θ) A(θ)T

A(θ) 0

][
X(t,θ)

λ

]
=

[
2ϒ(θ)TQH(θ)

B(θ)

]
, (16)

or equivalently

Ψ(θ)

[
X(t,θ)

λ

]
= Λ(θ). (17)

Since the block matrices inside Ψ(θ) are not invertible, (17)
can be explicitly solved using the pseudoinverse and Schur
complement of the resulting block matrix[

X(t,θ)
λ

]
= (Ψ(θ)T

Ψ(θ))−1
Ψ(θ)T

Λ(θ). (18)

Solving (18), we can obtain an explicit solution for X(t,θ).
Notice that Ψ(θ) is usually invertible, however, its inverse

does not have an explicit simple expression, since the block
matrices inside Ψ(θ) are not necessarily invertible. In order
to compute an explicit solution for ∂X(t,θ)

∂θ
, we use the

pseudoinverse of Ψ(θ) in (18) instead of its inverse, since
Ψ(θ)T Ψ(θ) does have a simple expression for its inverse.

2) Perturbation Analysis: The analysis in this section is
based on the analysis techniques in [28] and [29]. Having
the MPC solution at time step t, i.e. X(t,θ), our aim is to
compute its derivatives with respect to θ , based on which the
derivatives in (12) will be calculated. This can be obtained by
linearizing X(t,θ) around θ̂ , invoking the Taylor expansion

X(t,θ) = X(t, θ̂)+
n

∑
i=1

∂X(t, θ̂)
∂θi

δθi

+
1
2

n

∑
i=1

n

∑
j=1

∂ 2X(t, θ̂)
∂θi∂θ j

δθiδθ j +H.O.T ,

(19)

where θ = θ̂ +δθ . The Taylor expansion of X(t,θ), i.e. (19),
can be computed writing the Taylor expansions of A(θ),
B(θ), ϒ(θ), and H(θ), which in turn are derived by having
the derivatives of A(θ), B(θ), C(θ)1, x̂(t,θ), and u∗(t−1,θ).
Note that the derivatives of x̂(t,θ), and u∗(t − 1,θ) are
available from the Taylor expansion of X(t − 1,θ) in the
previous time instants 2. Now, recall the plant linear model

x(t +1,θ) = A(θ)x(t,θ)+B(θ)u∗(t,θ),
y(t,θ) =C(θ)x(t,θ),

(20)

where u∗(t,θ) is the optimal input designed by MPC. We
aim to find the coefficients in (12). They can be calculated
in a recursive manner by differentiating (20) with respect to
θ , using the derivatives of u(t,θ), exploiting (19).

3) Application Cost Function: For the application func-
tion (11), we can calculate the Hessian matrix in terms of
the obtained derivatives of y as follows:

V̂
′′
app(θ)=

2
M

M

∑
t=1

{
∂y(t, θ̂)

∂θ

}T{∂y(t, θ̂)
∂θ

}
+

2
M

M

∑
t=1

{
∂ 2y(t, θ̂)

∂θ 2

}T{
y(t, θ̂ , θ̂)− y(t, θ̂ , θ̂)

}
.

(21)

Note that the second term is zero. Substituting (21) into (9),
we get a convex approximation of the application set.

The method provides a fast tool for convex approximation
of application cost function. Many calculations in different
time instants are the same and can be pre-computed. More-
over, the active constraints may not change often, thus, at
each time instant a large number of the calculations can be
skipped by re-using the results from previous time instants.
Thus, the proposed approach is often faster than both the
scenario-based and the ellipsoidal approximation method.

1The structure of the matrices A(θ), B(θ) and C(θ) may be either known
a priori due to physical properties of the considered system (grey-box system
identification), or unknown (black-box system identification). For the latter
case, each element in these matrices is considered as an unknown parameter.

2The derivatives of x̂(t,θ) depend on the observed states by the observer.



V. NUMERICAL EXAMPLES

In this section we evaluate the proposed method in Sec-
tion IV with two numerical examples.

A. Example 1

Consider the following system:

x(t +1) = θ2x(t)+u(t),
y(t) = θ1x(t)+ e(t).

(22)

The true system is given by the parameter values θ0 =
[0.6 0.9]T and the measurement noise has the variance
λ 2

e = 0.01. The objective is to find the application set Θ,
when MPC is used for reference tracking. We use the MPC
formulation in (4), with the following settings: Nu = Ny = 5,
Q = 10, R = 1, umax = −umin = 1, ymax = −ymin = 2. We
set the length of the experiment to N = 10 samples and the
reference trajectory is a series of unit steps over the samples.
Note that we use the application cost function defined in
(10). Now using the proposed approach, we can obtain the
application ellipsoid. The level curves for the application
set together with the approximation of the set based on the
proposed approach and the uniformly distributed scenarios
are in shown in Fig. 1. The results are studied for different
values of accuracy, i.e γ .

In order to check the accuracy of the proposed method,
we perform a number of scenarios with different values of θ

which are generated randomly with a uniform distribution.
The experiment has been done for different values of γ . The
results show that from 400 generated points for γ = 1000,
122 points are satisfying the condition Vapp(θ)<

1
γ
. Among

all accepted values of θ , 90% are completely inside or on
the border of the approximated ellipsoid, which means that
the estimated ellipsoid covers at least 90% of the acceptable
points. This value increases to 100% when γ = 10000. This
mainly stems from the fact that the Taylor approximation of
application cost function around θo is more accurate when
we are closer to θo.

Furthermore, the Hessian matrix is computed employing
numerical methods, provided by DERIVESTsuite. The appli-
cation set is then approximated using the ellipsoidal approach
(9). As expected, the result is the same as when the proposed
method is used. However, in the proposed method, we need
only one complete simulation of the closed loop system with
MPC, while in the numerical approximation of the Hessian,
which is based on finite difference approximation, O(6n2)
simulations are required depending on the selected accuracy.
Therefore, the new approach is expected to be faster. While
it takes 94 seconds for the numerical method to calculate the
Hessian matrix in this example, the new method needs only
12 seconds to give the same approximation, which means
that 87% of time is saved.

B. Example 2

In this example we illustrate the algorithm on a distil-
lation column simulation example. The nonlinear system
representation is taken from a benchmark process proposed
by the Autoprofit project [30]. For a general description of
distillation columns, we refer the reader to [31].

The plant is linearized around the steady state operating
conditions and then, using model order reduction methods,
the second order model

x(t +1) =
[

θ1 θ2
θ3 θ4

]
x(t)+

[
θ5 θ6
θ7 θ8

]
u(t)

y(t) =
[
−0.8954 0.1421
−0.2118 −0.1360

]
x(t)+ e(t)

(23)

is obtained, where e(t) is a white measurement noise with
variance E{e(t)T e(t)} = 0.001. We assume that 1% per-
formance degradation from the case when MPC is using
the true parameters is allowed, that is, γ = 100

V (θ0)
, where

V (θ0) =
1
M ∑

M
t=1 ‖y(t,θ0,θ0)− r(t)‖2, see [22]. Since MPC

is used for tracking, the model is augmented with a constant
output disturbance on each output to get integral action. This
technique is presented in further detail in [19]. The proposed
method has been employed to calculate the approximate
application cost in (8). In order to evaluate the capability
of the method, we run the process for 100 different values
of θ , taken from a uniform distribution. Fig. 2 shows the real
and approximated values of the application cost function for
different values of θ .

Fig. 2. Approximated (’o –’) and real (’. - -’) values of Vapp(θ) for 100
different samples of θ taken form a uniform distribution.

Fig. 3. Approximated (’o –’) and real (’. - -’) values of Vapp(θ) inside
the application set. 92% of the samples inside the region are classified as
acceptable ones by the proposed method.

In order to have a better insight, the samples which are
located inside the application set are illustrated in Fig. 3.
It can be easily seen that the proposed method has a good
performance inside the application set. Among 85 scenarios
which result in an acceptable application cost, 83 scenarios
are approximated as acceptable ones using the proposed
method. The method classifies 6 points outside the region



Fig. 1. Level curves (’ ’) for the application set defined in (10). The innermost curve corresponds to the required accuracy (’ ’). The approximated
εapp (’ ’) is shown. The approximation is much better for larger values of γ . The accepted scenarios, i.e. Vapp(θ)≤ 1

γ
, for all cases are shown (’∗’) .

as acceptable ones. Therefore, the obtained accuracy of the
proposed method is around 92%.

VI. CONCLUSIONS

In this paper we have introduced a general technique for
the approximation of the application set, a structure required
for the implementation of optimal input design schemes. In
particular, we have focused on MPC, a control technique for
which it is not possible to obtain the application set explicitly.
Some simulation examples have been presented, which show
the advantages of the new method with respect to previous
techniques,in terms of speed.

The method is general enough to be applied to other
controller strategies and application areas where it is not
possible to derive the application set explicitly. Specifically,
the method can be extended to MPC for nonlinear plants,
with more complicated noise structures, and the derivation of
expressions for higher order derivatives of the cost function
could be used, in principle, to obtain better approximations of
the application set using techniques such as the one in [32].
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