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We present an Alternating Direction Method of Multipliers
(ADMM) algorithm for solving optimization problems with
an ¢, regularized least-squares cost function subject to re-
cursive equality constraints. The optimization problem has
applications in control, such as ¢; regularized MPC, [1].

[, Regularized MPC

Control objective: Drive the output y to zero, using few
changes of the input u.

MPC idea: A cost function is minimized with respect to
u(t + i) for some time horizon i =0,...,H,— 1. Only u(z)
is applied to the system. The cost function is minimized
again in an iterative manner for each time step ¢.

Cost function:
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where Au(t+i) = u(t +i) —u(t +i—1). The £;-norm of Au
promotes sparse Au.

Optimization problem solved in each time step t:

minimize  V(¢),
subjectto x(r+i)=Ax(r+i—1)+Bu(t+i—1), (1)
yit+i—1)=Cx(t+i—1),i=1,...,H,.

ADMM
Optimization problem: ADMM is an algorithm for solving

& minimize  f(x)+Ig(xe),
subjectto x=ux,

minimize  f(x),

subjectto x €, 2)

where f(x) is a convex function, % is a convex set and
I4(x.) is the indicator function of %"

ADMM at iteration &:
Step1 X' := argmin{f(x) + (p/2)llx — x4 x5}
Step2 xi' = argmin{ly (x.) + (p/2) X! —xc + x|}
Step3 x5 =k 4 (KT Ak,

Here x, is the dual variable of (2) scaled by 1/p, p > 0.

Stopping criteria: ADMM is iterated until stopping criteria
based on the norms of the primal and dual residuals of (2)
are fulfilled. The residuals are

ep=("—x0), eg=—pli—x").

[; Regularized MPC and ADMM: The optimization prob-
lem (1) can be formulated as (2), and solved using ADMM.
Step 1 and Step 3 are straightforward to perform. Step 2 is
a projection, which we solve using a Riccati recursion.

Control of Tank Process

A tank process is con-
trolled using [, regularized
MPC. The MPC controls
the pump voltages, u; and
up. The water levels of the
two lower tanks, y; and y»,
are the outputs.

up + Y1 y2 u
| Tﬁ L QT The control objective is to

drive y; and y; to the equi-
librium points, using few
changes of u; and u,.

Figure 1: Tank process.
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Figure 2: Inputs (u#; and u;) and outputs (y; and y;). The
sequences (—), (—), (—) and ( ) correspond to
A equal to 0.05, 0.1, 2 and 5 respectively. The sequence
(—) shows the equilibrium point of the water levels.

Conclusion

[; Regularized MPC.

ADMM is easy to implement.

ADMM converges fast to moderate accuracy.
ADMM enables parallel execution.
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