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An ADMM Algorithm for Solving `1 Regularized MPC
Mariette Annergren∗, Anders Hansson∗∗, and Bo Wahlberg∗

We present an Alternating Direction Method of Multipliers
(ADMM) algorithm for solving optimization problems with
an `1 regularized least-squares cost function subject to re-
cursive equality constraints. The optimization problem has
applications in control, such as `1 regularized MPC, [1].

l1 Regularized MPC
Control objective: Drive the output y to zero, using few
changes of the input u.

MPC idea: A cost function is minimized with respect to
u(t + i) for some time horizon i = 0, . . . ,Hu− 1. Only u(t)
is applied to the system. The cost function is minimized
again in an iterative manner for each time step t.

Cost function:

V (t) =
Hp

∑
i=1
‖y(t + i−1)‖2

2 +λ

Hu

∑
i=1
‖∆u(t + i−1)‖1,

where ∆u(t + i) = u(t + i)− u(t + i− 1). The `1-norm of ∆u
promotes sparse ∆u.

Optimization problem solved in each time step t:

minimize V (t),
subject to x(t + i) = Ax(t + i−1)+Bu(t + i−1),

y(t + i−1) =Cx(t + i−1), i = 1, . . . ,Hp.
(1)

ADMM
Optimization problem: ADMM is an algorithm for solving

minimize f (x), ⇔ minimize f (x)+ IC (xc),
subject to x ∈ C , subject to x = xc,

(2)

where f (x) is a convex function, C is a convex set and
IC (xc) is the indicator function of C .

ADMM at iteration k:

Step 1 xk+1 := argmin
x
{ f (x)+(ρ/2)‖x− xk

c + xk
d‖2

2}.

Step 2 xk+1
c := argmin

xc

{IC (xc)+(ρ/2)‖xk+1− xc + xk
d‖2

2}.

Step 3 xk+1
d := xk

d +(xk+1− xk+1
c ).

Here xd is the dual variable of (2) scaled by 1/ρ, ρ > 0.

Stopping criteria: ADMM is iterated until stopping criteria
based on the norms of the primal and dual residuals of (2)
are fulfilled. The residuals are

ek
p = (xk− xk

c), ek
d =−ρ(xk

c− xk−1
c ).

l1 Regularized MPC and ADMM: The optimization prob-
lem (1) can be formulated as (2), and solved using ADMM.
Step 1 and Step 3 are straightforward to perform. Step 2 is
a projection, which we solve using a Riccati recursion.

Control of Tank Process
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Figure 1: Tank process.

A tank process is con-
trolled using l1 regularized
MPC. The MPC controls
the pump voltages, u1 and
u2. The water levels of the
two lower tanks, y1 and y2,
are the outputs.

The control objective is to
drive y1 and y2 to the equi-
librium points, using few
changes of u1 and u2.
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Figure 2: Inputs (u1 and u2) and outputs (y1 and y2). The
sequences ( ), ( ), ( ) and ( ) correspond to
λ equal to 0.05, 0.1, 2 and 5 respectively. The sequence
( ) shows the equilibrium point of the water levels.

Conclusion
� l1 Regularized MPC.
� ADMM is easy to implement.
� ADMM converges fast to moderate accuracy.
� ADMM enables parallel execution.
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