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Abstract— We present an Alternating Direction Method of
Multipliers (ADMM) algorithm for solving optimization prob-
lems with an `1 regularized least-squares cost function subject
to recursive equality constraints. The considered optimization
problem has applications in control, for example in `1 reg-
ularized MPC. The ADMM algorithm is easy to implement,
converges fast to a solution of moderate accuracy, and enables
separation of the optimization problem into sub-problems that
may be solved in parallel. We show that the most costly step
of the proposed ADMM algorithm is equivalent to solving an
LQ regulator problem with an extra linear term in the cost
function, a problem that can be solved efficiently using a Riccati
recursion. We apply the ADMM algorithm to an example of
`1 regularized MPC. The numerical examples confirm fast
convergence to moderate accuracy and a linear complexity in
the MPC prediction horizon.

I. INTRODUCTION

In this paper we consider optimization problems with an
`1 regularized least-squares cost function subject to recursive
equality constraints. This has applications in control. The
least squares part is standard in this context and penalizes
deviations of the states from the set-point at the same time
as keeping the control signal small. The `1-norm regular-
ization of the cost function promotes sparse solutions, i.e.
a solution with many zero entries, [1]. The cost function is
known as LASSO, [2]. LASSO is a well-known method in
statistics and machine learning, and it has gained a lot of
interest in other research communities as well, e.g. system
identification, [3].

We propose to solve the optimization problem using an
algorithm called Alternating Direction Method of Multipliers
(ADMM). ADMM is a special case of Douglas-Rachford
splitting, [4], and it is related to other optimization algo-
rithms, e.g. method of multipliers and Bregman iterative
algorithms for `1 problems, [5], [6]. For an overview of
ADMM, we refer the reader to [7].

The most costly step in the proposed ADMM algorithm
is the projection of an iterate to a set describing a feasible
solution. We will show that this projection is equivalent to
solving a Linear Quadratic (LQ) regulator problem with an
additional linear term in the cost function. This problem can
be solved efficiently using a Riccati recursion just as in [8].

We will apply ADMM to the recently introduced `1
regularized Model Predictive Control (MPC), [9]. The `1
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regularized MPC has an `1 regularized least-squares cost
function. The motivation for `1 regularized MPC is the re-
duced actuator activity obtained when using `1-norm penalty
on changes of the input signal [9]. A detailed stability
analysis of the closed loop system with `1 regularized MPC,
and results confirming sparse solutions are given in [9]. In
`1 regularized MPC, an optimization problem such as the
one we consider is solved at each sampling instant. Hence,
the sampling time puts an upper bound on the time that
the optimization is allowed to take, and therefore efficient
algorithms are needed. It is believed that ADMM is a
preferred algorithm for this application based on the result for
LASSO, [7]. We will see that this expectation is confirmed
in numerical experiments.

Also for traditional MPC an optimization problem has
to be solved at each sampling instant, [10]. Because of
this many different tailored optimization schemes have been
developed to meet the real time requirements of MPC.
Typically the optimization problem is a Quadratic Program
(QP). There are mainly two different approaches that have
been taken. One approach is to compute an explicit off-
line solution to the QP which is stored in a look-up table,
[11]. This facilitates very fast sampling, but is only feasible
for small scale problems. The other approach is to com-
pute the solution on-line as we propose, which is feasible
also for medium- and large-scale problems. Among these
approaches one can distinguish three different classes of
methods: 1) Interior Point (IP) methods, [12], 2) Active-
Set (AS) methods, [8] and 3) Fast Gradient (FG) methods,
[13]. Riccati recursions play an important role also in IP
and AS methods for MPC, [12], [8], since they can be used
for these methods to efficiently factorize the matrix involved
in the linear system of equations for the search directions.
So far they have not been used for FG methods. For IP
methods the Riccati recursion has to be re-computed for each
iterate of the method. For AS methods it has to be updated,
i.e. parts of the old solution can be reused but has to be
modified. For ADMM it is possible to use the same Riccati
recursion for all iterates. Computing the Riccati recursion,
i.e. factorizing the matrix for the search directions, is the
most time-consuming task for all these methods. However,
the convergence performance is not the same for the different
methods, i.e. it takes a different amount of iterations to
reach a solution of satisfactory accuracy. For IP methods the
number of iterations is typically 20–50 to reach very high
accuracy. For active set methods the number of iterations are
typically higher, however by considering gradient projection
methods on the dual problem speed can be gained, [14],
and similar results as for IP methods can be obtained. For
fast gradient methods it has in [13] been shown how the
number of iterates can be upper bounded to achieve a desired



accuracy. Other recent relevant publications in relation to
efficient methods for MPC include among others [15], [16],
[17], [18] and the references therein.

II. CONTROL PROBLEM

We consider an open-loop control problem of finding an
input sequence that minimizes a finite-horizon cost function,
given a model and an initial state. The problem is formulated
as follows

minimize ‖xH‖2
2,Q +∑

H
i=1 ‖yi−1‖2

2 +λ ∑
H
i=1 ‖zi−1‖1,

subject to xi = Axi−1 +Bui−1, i = 1, . . . ,H,
yi−1 =Cxi−1 +Dui−1, i = 1, . . . ,H,
zi−1 = Exi−1 +Fui−1, i = 1, . . . ,H,

(1)
where xi ∈Rn is the state vector, ui ∈Rl is the input vector,
yi ∈ Rm and zi ∈ Rp are auxiliary variables, and where
‖x‖2

2,A = xT Ax. Formulation (1) captures the optimization
problems that may occur in `1 regularized MPC. For ex-
ample, we can replace the input vector with the change of
the input by augmenting the state vector and modifying the
system matrices accordingly, see [10].

III. ALTERNATING DIRECTION METHOD OF MULTIPLIERS
(ADMM)

In this section, we provide a description of the key
elements of ADMM. The description is a condensed version
of the ones found in [19] and [7]. For a more rigorous
overview, we refer the reader to [7].

A. Optimization problem

ADMM is a numerical algorithm for solving optimization
problems such as

minimize f (x),
subject to x ∈ C ,

(2)

for some vector variable x ∈ Rn, where f (x) is a convex
function and C is a convex set. An equivalent problem to
(2) is

minimize f (x)+ IC (xc),
subject to x = xc,

(3)

where IC (xc) is the indicator function of C , [1].

B. Augmented Lagrangian

The augmented Lagrangian of optimization problem (3) is
defined as

Lρ(x,xc,xd) = f (x)+ IC (xc)+(ρ/2)‖x− xc + xd‖2
2, (4)

where xd is the dual variable corresponding to the equality
constraint x = xc scaled by 1/ρ , and ρ > 0 is a tunable
parameter. There is no simple way of finding the optimal
ρ , however there are guidelines in [7].

C. ADMM steps
The ADMM algorithm consists of three main steps at each

iteration k. The three steps are

xk+1 := argmin
x
{ f (x)+(ρ/2)‖x− xk

c + xk
d‖2

2} (5)

xk+1
c := ΠC (xk+1 + xk

d), (6)

xk+1
d := xk

d +(xk+1− xk+1
c ), (7)

where ΠC (x) denotes the Euclidean projection of a vector x
onto a set C . In the first step (5), we minimize the augmented
Lagrangian (4) with respect to x, keeping xc and xd fixed. In
the second step (6), we minimize the augmented Lagrangian
(4) with respect to xc, keeping x and xd fixed. In the third and
last step (7), we update the scaled dual variable xd . We then
repeat all three steps until convergence. For more details and
a complete convergence analysis, we refer the reader to [7].

D. Stopping criteria
The ADMM algorithm is iterated until some stopping

criteria are fulfilled. We use criteria based on the primal and
dual residuals of the optimization problem. The primal and
dual residuals of (3) are

ek
p = (xk− xk

c), ek
d =−ρ(xk

c− xk−1
c ).

We terminate the algorithm when

‖ek
p‖2 ≤

√
nεabs + ε rel max{‖xk‖2,‖xk

c‖2},
‖ek

d‖2 ≤
√

nεabs + ε relρ‖xk
d‖2,

(8)

where εabs > 0 and ε rel > 0 are absolute and relative toler-
ances, respectively. For more details, see [7].

E. Over-relaxation
We may use over-relaxation to improve convergence of

the ADMM algorithm, [4], [20], [21]. When using over-
relaxation we modify the update xk+1 with

x̂k+1 = αxk+1 +(1−α)xk
c,

where 1.5 ≤ α ≤ 1.8, in the second and the third ADMM
steps, (6) and (7). For more details, see [7].

IV. PROBLEM FORMULATION AND METHOD

In this section, we describe how the considered optimiza-
tion problem in (1) can be solved using ADMM.

A. ADMM formulation
The optimization problem in (1) is on the same form as

the optimization problem in (2). The vector variables are

x = (x0, . . . ,xH), y = (y0, . . . ,yH−1),
u = (u0, . . . ,uH−1), z = (z0, . . . ,zH−1),

the objective function is

f (x,y,u,z) =‖xH‖2
2,Q +

H

∑
i=1
‖yi−1‖2

2 +λ

H

∑
i=1
‖zi−1‖1,

and the constraint set is given by

C = {(x,y,u,z)| xi = Axi−1 +Bui−1, i = 1, . . . ,H
yi−1 =Cxi−1 +Dui−1, i = 1, . . . ,H,
zi−1 = Exi−1 +Fui−1, i = 1, . . . ,H}.



Thus, the ADMM formulation of optimization problem in
(1) is

minimize f (x,y,u,z)+ IC (xc,yc,uc,zc),
subject to x = xc, y = yc, u = uc, z = zc.

(9)

B. Step 1 of ADMM

The first ADMM step, (5), is almost the same as the
one for `1 mean filtering in [19]. We solve 4H +1 separate
minimization problems because f (x,y,u,z) is separable in
its arguments. For the vector variables x, y and u the
minimization problems have a quadratic cost function and
no constraints. The solutions are

xk+1
i = xk

c,i− xk
d,i, i = 0, . . . ,H−1,

xk+1
H = (2Q+ρIn)

−1
ρ(xk

c,H − xk
d,H),

yk+1
i = (2+ρ)−1

ρ(yk
c,i− yk

d,i), i = 0, . . . ,H−1,

uk+1
i = uk

c,i−uk
d,i, i = 0, . . . ,H−1,

where Ia denotes the identity matrix in Ra×a. For the vector
variable z, the minimization problems are

zk+1
i = argmin

zi

{λ‖zi‖1 +(ρ/2)‖zi− zk
c,i + zk

d,i‖2
2}, (10)

with component-wise solutions (zk+1
i ) j =Sλ/ρ((zk

c,i−zk
d,i) j),

for i = 0, . . . ,H− 1, and j = 1, . . . , p, where Sλ/ρ denotes
the soft thresholder operator, see [7].

C. Step 2 of ADMM

The second step of ADMM, (6), consists of a projection
of the vector

(xk
p,y

k
p,u

k
p,z

k
p) = (xk+1 + xk

d ,y
k+1 + yk

d ,u
k+1 +uk

d ,z
k+1 + zk

d)

onto the constraint set C , i.e.

(xk+1
c ,yk+1

c ,uk+1
c ,zk+1

c ) = ΠC ((xk
p,y

k
p,u

k
p,z

k
p)).

The projection can be formulated as the optimization prob-
lem

minimize ‖(xk+1
c ,yk+1

c ,uk+1
c ,zk+1

c )− (xk
p,y

k
p,u

k
p,z

k
p)‖2

2,

subject to (xk+1
c ,yk+1

c ,uk+1
c ,zk+1

c ) ∈ C .
(11)

To simplify notation in the rest of this section, we will drop
the use of super script k and k+1. An equivalent optimization
problem to the one in (11) is

minimize vT Qv+qT v
subject to F v = g, (12)

where

v = (xc,0,uc,0, . . . ,xc,H−1,uc,H−1,xc,H),

g = (xc,0,0, . . . ,0),
q = (r0,s0, . . . ,rH−1,sH−1,0),

ri =−2(xT
p,i + zT

p,iE + yT
p,iC),

si =−2(uT
p,i + zT

p,iF + yT
p,iD),

Q =

[
T 0
0 Q

]
, T = IH ⊗

[
P S
ST R

]
,

P = In +CTC+ET E,

R = Il +DT D+FT F,

S =CT D+ET F,

F =


In 0 0 0 . . . 0
−A −B In 0 . . . 0
...

. . . . . . . . . . . .
...

0 . . . . . . −A −B In

 .
The optimization problem in (12) is an equality constrained
minimization problem. As such, its solution is equivalent to
the solution of its Karush-Kuhn-Tucker (KKT) conditions,
[1]. The KKT conditions of the optimization problem in (12)
are [

2Q F T

F 0

]
w−

[
−q
g

]
= 0, (13)

with w = (v,vd), where vd is the Lagrange multiplier cor-
responding to the equality constraint F v = g. The KKT
conditions in (13) are a system of linear equations and can be
efficiently solved using a Riccati recursion as described in the
Appendix. The solution to the optimization problem in (11)
is obtained by extracting xc and uc from v, and calculating
yc and zc from the equations defining the constraint set C .

D. Step 3 of ADMM

In the third ADMM step in (7), we update the scaled dual
variables, i.e.

xk+1
d,i = xk

d,i +(xk+1
i − xk+1

c,i ), i = 0, . . . ,H,

yk+1
d,i = yk

d,i +(yk+1
i − ỹk+1

c,i ), i = 0, . . . ,H−1,

uk+1
d,i = uk

d,i +(uk+1
i −uk+1

c,i ), i = 0, . . . ,H−1,

zk+1
d,i = zk

d,i +(zk+1
i − zk+1

c,i ), i = 0, . . . ,H−1.

V. EXAMPLE

In this section, we describe how the ADMM algorithm,
proposed in IV, can be used to solve an `1 regularized MPC
problem without inequality constraints.

A. Model

We consider a linear and discrete model of the plant. The
model is given by

x(t +1) = Ax(t)+Bu(t),
y(t) =Cx(t), (14)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rl is the input
vector and y(t) ∈ Rm is the output vector.



B. Cost function

The control objective is to drive the output vector to zero,
namely the regulator problem [10], while using a piece-
wise constant input signal. Such a control objective can be
described by the cost function

V (t) = ‖x̂(t +Hp|t)‖2
2,Q̄ +∑

Hp
i=1 ‖ŷ(t + i−1|t)‖2

2,Q+

λ ∑
Hu
i=1‖∆û(t + i−1|t)‖1.

(15)

The cost function penalizes the terminal state, output de-
viation from zero and non-constant input signals. In (15),
x̂(t + i|t) and ŷ(t + i|t) are the predicted state and output
vectors, respectively, at time t + i given measurements up to
time t and the model in (14). Moreover,

∆û(t + i|t) = û(t + i|t)− û(t + i−1|t),

where û(t + i|t) is the predicted input vector given measure-
ments up to time t and the model in (14). The prediction
and control horizons are denoted Hp and Hu respectively, and
we assume that ∆û(t + i|t) = 0 for all i ≥ Hu. The matrices
Q, Q̄∈Rm×m and the scalar λ are weights. We require that Q
and Q̄ are positive semidefinite, and that λ is non-negative.

C. Optimization problem

The control objective can be achieved by minimizing the
cost function in (15) given the model in (14) in each time
step t, in accordance with the receding horizon idea, [10].
We can formulate the optimization problem as

minimize V (t),
subject to x̂(t + i|t) = Ax̂(t + i−1|t)+Bû(t + i−1|t),

i = 1, . . . ,Hp,
x̂(t|t) = x(t),
ŷ(t + i−1|t) =Cx̂(t + i−1|t), i = 1, . . . ,Hp.

(16)
The optimization problem in (16) is similar to standard for-
mulations as the one found in [10]. The significant difference
is the use of the `1-norm of ∆û(t + i|t) instead of the `2-
norm in the cost function in (15). The former typically
promotes sparse ∆û(t + i|t) for i = 0, . . . ,Hu− 1, while the
latter promotes small but non-zero elements of ∆û(t+ i|t) for
i = 0, . . . ,Hu−1, [1]. To simplify notation in the rest of the
paper, we denote x̂(t+ i|t) as xi, ŷ(t+ i|t) as yi, and so forth.

D. Receding horizon

The optimization problem in (16) is solved with respect to
the input vector ui for i = 0, . . . ,Hu−1. The input vector at
the first time step, u0, is applied to the plant. The state vector
is updated according to measurements and, if necessary, an
observer. The optimization problem in (16) is updated and
solved again. The described procedure is repeated until some
final time step. Note that closed loop stability cannot be
guaranteed for all values of λ , see [9]. Typically, a terminal
cost penalty is used to obtain closed loop stability, if possible.

E. MPC formulation

We consider the optimization problem in (16). We set the
predicted output vector to be the predicted state vector, and
the prediction horizon equal to the control horizon, that is,

minimize ‖xH‖2
2,Q̄ +∑

H
i=1 ‖xi−1‖2

2,Q +λ ∑
H
i=1 ‖∆ui−1‖1,

subject to xi = Axi−1 +Bui−1, i = 1, . . . ,H.
(17)

The optimization problem in (17) can be reformulated by
replacing ui with ∆ui in a similar way as in [10]. We
introduce three new vector variables x̃i ∈ Rn+l , ỹi ∈ Rn and
zi ∈ Rl in the following way

minimize ‖x̃H‖2
2,Q̃ +∑

H
i=1 ‖ỹi−1‖2

2 +λ ∑
H
i=1 ‖zi−1‖1,

subject to x̃i = Ãx̃i−1 + B̃∆ui−1, i = 1, . . . ,H,
ỹi−1 = C̃x̃i−1 +D∆ui−1, i = 1, . . . ,H,
zi−1 = Ex̃i−1 +F∆ui−1, i = 1, . . . ,H.

(18)
Here, x̃i is the state vector augmented with the input vector
at the previous time step, i.e. x̃i = (xi,ui−1). The matrices Ã,
B̃ and C̃ are given by

Ã =

[
A B
0 Il

]
, B̃ =

[
B
Il

]
, C̃ =

[
c 0

]
,

where c is chosen such that Q = cT c, and the matrices D, E,
F and Q̃ are given by

D = 0, E = 0, F = Il , Q̃ =

[
Q̄ 0
0 0

]
.

The optimization problem in (18) is of the same form as the
one in (1), with ∆ui acting as the input. Therefore, we can
solve (18) efficiently using ADMM and a Riccati recursion as
described in Section IV. Note that we in this particular case
can pre-calculate Fi, Hi, Gi, and Si in the Riccati recursion,
before we start the MPC iterations.

VI. NUMERICAL EXAMPLES

In this section, we apply the ADMM algorithm on an `1
regularized MPC problem. All the examples are performed
with ρ = 1. To improve convergence we use over-relaxation
with α = 1.8 and we warm-start each ADMM iteration with
the variable values obtained in the previous MPC iteration.
We use stopping criteria (8) with εabs = 10−5 and εrel =
10−4.

A. Example 1: Quadruple water tank process

1) Plant: The plant is the quadruple water tank process
presented in [22]. The process is shown in Figure 1, where
x = (x1,x2,x3,x4) are the water levels, u = (u1,u2) are the
pump voltages, and γ1 = γ2 = 0.625 are the parameters asso-
ciated with the valves. The area of the cross-sections of the
outlets of each tank are (a1,a2,a3,a4) =(0.17,0.15,0.11,0.08)
cm2, the area of the cross-sections of each tank are A = 15.5
cm2 and the parameters associated with the pumps are k1 =
k2 = 4.14 cm3/(sV).



u1

x1 x2

x3

x4

u2

γ1 γ2

Fig. 1. Quadruple water tank process.

2) Model: We obtain a linear model of the process by
linearizing the nonlinear plant description given in [22]
around its equilibrium points. The linearized model is

dx̄
dt

=


−1
τ1

0 1
τ3

0
0 −1

τ2
0 1

τ4
0 0 −1

τ3
0

0 0 0 −1
τ4

 x̄t +


γ1k1

A 0
0 γ2k2

A
0 (1−γ2)k2

A
(1−γ1)k1

A 0

 ūt ,

y =
[

1 0 0 0
0 1 0 0

]
x̄t ,

where x̄ = x− x0, ū = u− u0 and τi =
A
ai

√
2x0

i
g . The equi-

librium points of the plant are x0 = (15,15,3,12) cm and
u0 = (7.8,5.25) V. The linear model is discretized assuming
zero-order hold sampling at a sampling rate of 1 Hz.

3) Simulation: We set H = 5, Q= I2, and Q̃= 0. The plant
is initialized with x(0) = (16,16,4,13) cm and u(0) = u0. A
Kalman filter is used to estimate the complete state vector
during simulation. The MPC iterates for 10 time steps. We
perform the same MPC simulation for λ equal to 0.05, 0.1,
2 and 5. The applied input sequences are shown in Figure
2 and the output sequences are shown in Figure 3. We see
that the applied input signal varies over time for low values
of λ . As λ gets larger, the input signal becomes piece-wise
constant, and eventually completely constant. We also see
that a more restrictive control strategy, i.e. a high value of
λ , gives worse control performance in terms of response time
and static error.

B. Example 2: Number of iterations in ADMM
Figure 4 shows the number of iterations required in

ADMM for fulfilling the stopping criteria in Example 1. We
also investigated the number of iterations required without
warm-starting the algorithm. The conclusion is that a warm-
start improves the convergence of ADMM when the plant
inputs are close to constant and no rapid changes in the
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u 1
(t
)

0 2 4 6 8 10
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4
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6

t
u 2
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)

Fig. 2. Applied input sequences. The applied input sequence denoted
( ), ( ), ( ) and ( ) corresponds to λ equal to 0.05, 0.1, 2
and 5 respectively.
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t
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Fig. 3. Measured output sequences. The measured output sequence denoted
( ), ( ), ( ) and ( ) corresponds to λ equal to 0.05, 0.1, 2
and 5 respectively. The sequence ( ) corresponds to the equilibrium point
of the water levels.

plant states occur. When this is not the case, we get similar



performance with and without warm-start. It is natural that
the benefit of warm-starting is greater the less the states
move.

0 2 4 6 8 10
0

200

400

t

ite
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tio
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A

D
M

M

Fig. 4. Number of iterations in ADMM required for fulfilling the stopping
criteria. The iteration sequence denoted ( ), ( ), ( ) and ( )
corresponds to λ equal to 0.05, 0.1, 2 and 5 respectively. The number of
iterations required drops when no rapid changes in plant inputs or states
occur.

C. Example 3: Convergence of ADMM

Here we investigate the same set-up as in Example 1. We
only consider λ = 0.1 and the first optimization problem
solved in the MPC iterations. We calculate the error of the
cost function in (15) for each iteration in ADMM. The error
is defined as ek = V ∗ −V k, where V ∗ is the true optimal
value of the cost and V k is the value obtained in ADMM
iteration k. The true optimal value is approximated with the
solution obtained by running ADMM for 1000 iterations. The
optimal value is verified using CVX, a package for specifying
and solving convex optimization problems, [23]. CVX calls
the generic SDP solvers SeDuMi [24] or SDPT3 [25] to
solve the problem. We choose to use SDPT3. The resulting
error is shown in Figure 5. The true optimal value is V ∗ =
4.58108, and the final value obtained from ADMM is V 264 =
4.58105, where 264 is the number of iterations required to
fulfill the stopping criteria. A rapid drop in the error occur in
the first iterations in ADMM. The ADMM algorithm iterates
until the stopping criteria are fulfilled, however, for improved
visibility of the drop we only show the first 50 iterates. Note
that since the ADMM solution is not necessarily feasible it is
possible to achieve a value of the cost function at iteration k
that is lower than the optimal one. The corresponding primal
and dual residuals are shown in Figure 6. We see a rapid drop
in error and residuals for the first 20 iterations in ADMM
(e20 = −0.03, e20

p = 0.11 and e20
d = 0.06), confirming that

ADMM converges fast to a moderate accuracy.

D. Example 4: Time of iterations in ADMM

We consider the set-up in Example 1 with λ = 0.1 and a
prediction horizon H varying from 5 to 100 in steps of 5.
We only consider the first optimization problem solved in
the MPC iterations and we fix the iterations in ADMM to
1000. We calculate the mean value of the time required for
an iteration in ADMM. Figure 7 shows the resulting means
with respect to the prediction horizon. We see that the mean

0 10 20 30 40 50

0

2

4

k

ek

Fig. 5. Error of cost function. The error for each iteration k in ADMM is
shown.
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Fig. 6. Primal and dual residuals. The primal ( ) and dual ( )
residuals are calculated for each iteration in ADMM in the first iteration of
MPC. The vertical line shows where the stopping criteria are fulfilled. A
rapid drop in the residuals occur in the first 20 iterations in ADMM.

time of the iterations in ADMM is linear in the prediction
horizon. This is expected since the computational cost of the
Riccati recursion is linear in H, [26].
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Fig. 7. Mean value of time required for an iteration in ADMM. The
mean values are calculated over 1000 iterations in ADMM, for a prediction
horizon H varying from 5 to 100 in steps of 5. The mean time is linear in
the prediction horizon.

E. Example 5: Required accuracy

Example 3 shows how close the ADMM solution is to
the optimal one for εabs = 10−5 and εrel = 10−4 in stopping



criteria (8). However, the stopping criteria used may be to
conservative with respect to required control performance.
For example, if we in Example 1 with λ = 0.1 restrict
the number of iterations in ADMM to 10, we can have a
sampling rate of 100 Hz in the MPC, see Figure 7. The input
signals obtained with both 10 and 1000 iterations in ADMM
are shown in Figure 8. The corresponding output signals are
shown in Figure 9. We see that, although the signals differ
from each other, they still have the same over-all behavior.
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Fig. 8. Applied input sequences. The applied input sequence denoted
( ) and ( ) corresponds to 10 and 1000 iterations in ADMM
respectively. The sequences differ, however the over-all behavior is the same.

VII. CONCLUSION

We have derived a method for solving optimization prob-
lems with an `1 regularized cost function subject to recursive
equality constraints. The optimization problem occurs in
control applications, e.g. `1 regularized MPC. The method
is based on the ADMM algorithm. We have showed that
the costly projection step in ADMM is equivalent to solving
an LQ regulator problem with an additional linear term in
the cost function. Such problems can be efficiently solved
using Riccati recursion. Future work consists of expanding
the proposed method to `1 regularized cost functions subject
to both recursive equality and inequality constraints.

APPENDIX
RICCATI RECURSION

We use a Riccati recursion to solve the projection problem
(6), as in [8]. We showed in Section IV-C that the solution
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Fig. 9. Measured output sequences. The measured output sequence denoted
( ) and ( ) corresponds to 10 and 1000 iterations in ADMM
respectively. The sequences differ, however the over-all behavior is the same.

to (6) is equivalent to the solution of a system of linear
equations, [

Q A T

A 0

][
ξ

λ

]
=

[
rξ

rλ

]
, (19)

where Q and A are block-diagonal matrices defined as

Q =

[
Q 0
0 Q̃

]
, Q = IH ⊗

[
Q11 Q12
QT

12 Q22

]
,

and

A =


I 0 0 0 . . . 0
−A −B I 0 . . . 0
...

. . . . . . . . . . . .
...

0 . . . . . . −A −B I

 .
The symbol ⊗ denotes the Kronecker product. The vectors
ξ , λ , rξ and rλ can be divided into sub-vectors

ξ = (x0,u0, . . . ,uH−1,xH), λ = (λ0, . . . ,λH),
rξ = (rx,0,ru,0, . . . ,ru,H−1,rx,H), rλ = (rλ ,0, . . . ,rλ ,H),

where xi is given by the system equations

xi+1 = Axi +Bui + rλ ,i+1.

It is shown in [26], that there exists a matrix Si and a vector
Ψi such that

λi +Sixi = Ψi, i = 0 . . .H,

where SH = Q̃, ΨH = rx,H , and x0 = rλ ,0. The matrices Si and
vectors Ψi for i = 0, . . . ,H can be found through backward



recursion. We then obtain ξ and λ through forward recursion.
The algorithm is as follows [26]:
Backward recursion: Update Si and Ψi,

Fi+1 = Q11 +AT Si+1A, Hi+1 = Q12 +AT Si+1B,
Gi+1 = Q22 +BT Si+1B, ψi+1 = Ψi+1−Si+1rλ ,i+1,

Si = Fi+1−Hi+1G−1
i+1HT

i+1,

Ψi = rx,i +AT
ψi+1−Hi+1G−1

i+1(ru,i +BT
ψi+1).

Forward recursion: Update λi, ui+1 and xi+1,

λi =−Sixi +Ψi,

ui+1 = G−1
i+1(ru,i +BT

ψi+1−HT
i+1xi),

xi+1 = Axi +Bui + rλ ,i+1.

A. Unstable model

If A is unstable, the Riccati recursion might not provide
the correct solution to (19). To avoid this, we pre-stabilize
the state-space equations using state feedback control, see
[26], [27], [28]. That is, we let

xi+1 = Axi +Bui,
ui =−Lxi + vk,

(20)

where L is the feedback vector. We can reformulate (20) as

xi+1 = (A−BL)xi +Bvi,

and treat vi as the unknown input signal. The solution
obtained from the Riccati recursion will be the values of
xi and vi. The solution in terms of the original parameters xi
and ui, can be obtained as[

xi
ui

]
=

[
I 0
−L I

][
xi
vi

]
.
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