On Optimal Input Design in System Identification for Model Predictive Control

Mariette Annergren
Joint work with Christian A. Larsson and Håkan Hjalmarsson
ACCESS and Automatic Control Lab
KTH Royal Institute of Technology, Stockholm, Sweden
Outline

1. Theory
2. Identification Algorithm
3. MPC Example
4. Conclusions
5. Future Work
Introduction

Framework for experiment design in system identification for control, specifically MPC.

- **Objective:**

 Find an input signal that minimizes the cost related to the system identification experiment.

- **Constraint:**

 A specified control performance is guaranteed when using the estimated model in the control design.
The model structure is parametrized by θ.

- True system is given by θ_0.
- Estimated model is given by $\hat{\theta}$.
Application Set

- Application cost: \(V_{\text{app}}(\theta, \theta_0) \), for example
 \[
 V_{\text{app}}(\theta, \theta_0) = \frac{1}{T} \sum_{t=1}^{T} \| y_t(\theta_0) - y_t(\theta) \|_2^2.
 \]

- Application specification:
 \[
 V_{\text{app}}(\theta, \theta_0) \leq \frac{1}{\gamma}, \quad \gamma > 0.
 \]

- Acceptable parameter set:
 \[
 \Theta_{\text{app}}(\gamma) = \left\{ \theta \mid V_{\text{app}}(\theta, \theta_0) \leq \frac{1}{\gamma} \right\}.
 \]
Ellipsoidal approximation:

\[\Theta_{app}(\gamma) \approx \mathcal{E}_{app}(\gamma) = \left\{ \theta \mid (\theta - \theta_0)^T V''_{app}(\theta_0, \theta_0)(\theta - \theta_0) \leq \frac{2}{\gamma} \right\}. \]
Scenario approach:

$$\Theta_{app}(\gamma) \approx \left\{ \theta_i, \ i = 1 \ldots M < \infty \mid V_{app}(\theta_i, \theta_0) \leq \frac{1}{\gamma} \right\}.$$
Asymptotic quality property:

$$\hat{\theta} \in \mathcal{E}_{SI}(\alpha) = \left\{ \theta \mid (\theta - \theta_0)^T I_F (\theta - \theta_0) \leq \frac{\chi^2_{\alpha}(n)}{N} \right\}.$$ (Key result from prediction error/maximum likelihood system identification.)
Optimal Input Signal Design

- Estimated parameters:
 \[
 \hat{\theta} \in \mathcal{E}_{SI}(\alpha) = \left\{ \theta \mid (\theta - \theta_0)^T I_F(\theta - \theta_0) \leq \frac{\chi^2_\alpha(n)}{N} \right\}.
 \]

- Acceptable parameters in application:
 \[
 \hat{\theta} \in \Theta_{app}(\gamma) = \left\{ \theta \mid V_{app}(\theta, \theta_0) \leq \frac{1}{\gamma} \right\}.
 \]

- Experiment cost:
 \[
 f_{cost}(\Phi_u).
 \]
Optimal Input Signal Design (cont.)

Optimization Problem

\[
\begin{align*}
\text{minimize} & \quad f_{\text{cost}}(\Phi_u) \\
\text{subject to} & \quad \mathcal{E}_{SI}(\alpha) \subseteq \Theta_{app}(\gamma) \\
& \quad 0 \leq \Phi_u(\omega), \quad \forall \omega
\end{align*}
\]

Can be approximated as a convex problem! Using:

- ellipsoidal approximation \(\Rightarrow \) LMI,
- scenario approach \(\Rightarrow \) scalar linear inequalities,
- finite dimensional parametrization \(\Rightarrow \) LMI.
Optimization Problem

\[
\begin{align*}
\text{minimize} & \quad f_{\text{cost}}(\Phi_u) \\
\text{subject to} & \quad \mathcal{E}_{SI}(\alpha) \subseteq \Theta_{\text{app}}(\gamma) \\
& \quad 0 \leq \Phi_u(\omega), \quad \forall \omega
\end{align*}
\]

Can be approximated as a convex problem!

Using:

- ellipsoidal approximation \(\Rightarrow \) LMI,
- scenario approach \(\Rightarrow \) scalar linear inequalities,
- finite dimensional parametrization \(\Rightarrow \) LMI.
Identification Algorithm

Issues:

- θ_0 is unknown.
- Evaluation of $V_{app}(\theta, \theta_0)$.
Identification Algorithm

Issues:

• θ_0 is unknown.
• Evaluation of $V_{app}(\theta, \theta_0)$.

Solutions:

• Use estimates instead of θ_0.
• Evaluate $V_{app}(\theta, \theta_0)$ in simulation.
Proposed algorithm:

1. Find an initial estimate of θ_0.
2. Evaluate $V_{app}(\theta, \theta_0)$ in simulation.
3. Design the optimal input signal.
4. Find a new estimate of θ_0.

Discussion on iterative approach:
MPC Example

Control objective:
Reference tracking of the lower tank levels using MPC.
MPC Example (cont)

- Application cost:

\[V_{\text{app}}(\theta, \theta_0) = \frac{1}{T} \sum_{t=1}^{T} \| y_t(\theta_0) - y_t(\theta) \|_2^2. \]

- Experiment cost: Input power,

\[f_{\text{cost}}(\Phi_u) = \text{trace} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \phi_u(\omega) d\omega \right). \]
\[V_{\text{app}}(\theta, \theta_0) \approx V_{\text{app}}(\theta, \hat{\theta}) = \frac{1}{T} \sum_{t=1}^{T} \| y_t(\hat{\theta}, \hat{\theta}) - y_t(\theta, \hat{\theta}) \|^2 \]
• Optimal: 91% success.

• White: 15% success.

White: $8 \times N$ gives same success rate as optimal.
Conclusions

- Identification algorithm for MPC.
- Increased control performance.
- Linear framework applicable on nonlinear systems.
Future Work

• How to choose V_{app}.
• Realistic MPC applications.
• Closed-loop identification.
• Toolbox for optimal input design, MOOSE.
MOOSE is a model based optimal input design toolbox developed for Matlab.

It features

- optimal input design,
- easy-to-use text interface,
- compatibility with Matlab Control System Toolbox.
Thank you!
Additional slides
Real Water Process

For details:

Real Water Process (cont)

White:

For details:

- High power: 0 % success.

- Low power: 85 % success.
Optimal Input Signal Design (cont.)

Geometric interpretation

- Cost function:
 minimize input energy ⇔
 maximize \mathcal{E}_{SI}.

- Region constraint:
 $\mathcal{E}_{SI}(\alpha) \subseteq \Theta_{app}(\gamma) \rightarrow$
 $\mathcal{E}_{SI}(\alpha) \subseteq \mathcal{E}_{app}(\gamma)$.

Figure: \mathcal{E}_{SI} (blue) and \mathcal{E}_{app} (black).