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Abstract. First order errors downstream of shocks have been detected in computa-
tions with higher order shock capturing schemes in one and two dimensions. We use
matched asymptotic expansions to analyze the phenomenon for one dimensional time
dependent hyperbolic systems and show how to design the arti�cial viscosity term in
order to avoid the �rst order error. Numerical computations verify that second order
accurate solutions are obtained.

1 Introduction

In many cases, solutions of hyperbolic conservation laws obtained by formally
higher order methods are only �rst order accurate downstream of shocks, see
e.g. [1], [4] and [3]. Basically, errors from the shock region follow outgoing charac-
teristics and pollute the solution downstream. Examples in one space dimension
where this e�ect can be seen are steady state calculations for systems with a
source term and time dependent calculations for systems with non-constant so-
lution. The e�ect can not be seen in one dimensional Riemann problems, because
the exact global conservation determines the post shock states.

The degeneration in accuracy is troublesome, even though the �rst order term
for reasonable mesh-sizes seems to be small in many cases. In some applications,
as e.g. aeroacoustics where small amplitude waves need to be computed accu-
rately, it is however important to achieve very high accuracy. It is also important
to understand the phenomenon more deeply in order to be able to design new
methods which do not su�er from this de�ciency.

The aim of this paper is to show that the �rst order error can be understood
by matched asymptotic analysis of the modi�ed equation and that the analysis
can be used to construct methods that yield second order accurate solutions.

We consider the case of a system with time dependent solution. We assume
that the numerical solution can be modeled by a slightly viscous equation, a so
called modi�ed equation. In the shock layer, the coeÆcient of the viscous term is
O(h), where h is the grid size. We analyze the solution of the modi�ed equation
using matched asymptotic expansions. It is assumed that an inner solution is
valid in the shock region, and an outer solution is valid elsewhere. The two
solutions are matched in a so called matching zone. From the analysis, we see
that generally, the outer solution contains a term of O(h) downstream of the
shock. We also see that if the inner solution satis�es a certain condition, the
O(h) term would be eliminated. Based on this observation, we design a matrix
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valued viscosity coeÆcient which gives the inner solution the right shape to
eliminate the O(h) downstream term. We construct a numerical scheme, using
this matrix viscosity coeÆcient, and show in numerical experiments that the
�rst order downstream error really is eliminated. However, we do not claim to
have constructed an eÆcient and robust numerical method which can be used
in realistic computations.

Similar analysis and construction of a matrix viscosity coeÆcient is done
for the case of a steady state solution of a system with a source term in [6].
In [2], matched asymptotic expansions for a problem which is very similar to the
problem we study in this paper is analyzed for other purposes. The phenomenon
has also been studied by other methods in [4] and [1].

2 Model of the First Order Down-Stream Error

We will now introduce a model that explains how the �rst order down-stream
error arises. Exactly how this error behaves depends both on which numerical
method that is used, and on what mathematical problem that is solved.

2.1 The Inviscid Problem

The mathematical problem under consideration is

ut + f(u)x = 0; 0 � x � xend; (1)

u(x; 0) = g(x);

where u(x; t) 2 Rn. We assume that the eigenvalues of the Jacobian f 0(u),
denoted �i(u); i = 1; 2; : : : ; n, are real and ordered in increasing order and that
the eigenvectors span Rn. The initial and boundary conditions are chosen such
that a shock forms at some inner point s(t). At the shock the solution satis�es
the Rankine-Hugoniot condition. We assume that the shock is a classical Lax
1-shock i.e. _s < ��1 ; �+1 < _s < �+2 , where ��1 = limÆ!0+ �(u(s(t) � Æ; t)).
Corresponding notation for other quantities will also be used. The problem is
closed by suitable boundary conditions at x = 0 and x = xend, e.g. prescribing
ingoing characteristic variables.

2.2 The Slightly Viscous Model

We intend to study the behavior of numerical solutions of (1), i.e. we want to
study the behavior of discrete functions which are the solutions of di�erence
equations. A useful technique for studying the behavior of solutions to di�erence
equations is to model the di�erence equation by a di�erential equation. Such a
di�erential equation is often called a modi�ed equation, see e.g. [7], [5]. In this
paper we consider methods which can be modeled by

u"

t + f(u")x = "(�u"

x)x + c2"
2u"

xx; (2)
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where " = c1h and c1 and c2 a scalar constants. Here � is a smooth function of
(x�s(t))=" which is equal to one in the vicinity of the shock and zero away from
the shock. We consider the same boundary conditions for u" as for u augmented
by numerical boundary condition, e.g. extrapolation of outgoing characteristic
variables.

2.3 Asymptotic Expansions

We assume the following: The solution of (2) can be described by an inner
solution, valid in the shock layer, and an outer solution, valid elsewhere. These
solutions can be expanded in powers of " and matched in a region of overlap.
Also the position of the shock layer can be expanded in ". To leading order, the
outer solution is equal to the solution of the corresponding inviscid problem.

The inner solution is expressed using the variables (~x; ~t) where

~x =
x� s(t)

"
; ~t = t:

Thus we have expansions of the form

Outer: u" � u(x; t) + "u1(x; t) + "2u2(x; t) + � � � ;

Inner: u" � U0(~x; ~t) + "U1(~x; ~t) + "2U2(~x; ~t) + � � � ;

Position: x" � s(t) + "x1(t) + "2x2(t) + � � � :

The viscous problem (2) models a method which is a second order accurate
approximation of (1) away from the shock region. We claim that the solution
will be second order accurate upstream of the shock but in general only �rst
order downstream. Hence we must show that u1 = 0 upstream and u1 6= 0
downstream. We obtain equations for u1 by substituting the expansions into (2)
and collect terms multiplying the same power of ". In the upstream region it
is clear that u1 = 0, since equation, initial data and boundary condition for
u1 are homogeneous. Also in the downstream region equation and initial data
and boundary conditions at x = xend are homogeneous. However, in order to
close the problem, one boundary condition is needed at the downstream side of
the shock. Such a boundary condition can be derived by integrating (2) over the
shock region. We can conclude that in the general case u1 6= 0 in the downstream
region, since the boundary condition in general not is homogeneous. The term
which make the boundary condition non-homogeneous is @

@~t
I3(~t), where

I3(~t) =

Z 0

�1

(U0(~x; ~t)� u�) d~x+

Z 1

0

(U0(~x; ~t)� u+) d~x:

We see that the �rst order downstream error is related to the shape of the
solution in the shock layer.

We also consider a method which has the modi�ed equation

u"

t + f(u")x = "(�E(u")u"

x)x + c2"
2u"

xx; (3)

where E(u") is a matrix valued function. Analysis as above reveals that it is
possible to chose E(u") such that the �rst order downstream error is eliminated.
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3 Numerical Experiments

In this section we consider the Euler equations with Riemann initial data con-
nected by a 1-shock. In Figure 1 we see the solution at t = 1:25.
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Fig. 1. The solution at t = 1:25 computed numerically by the standard method.

We solve the problem using two di�erent methods. The methods are obtained
by discretizing (2) and (3) using second order �nite di�erences in space and
fourth order Runge-Kutta in time. We refer to them as the standard method and
the matrix viscosity method, respectively. The shock position s(t) is numerically
determined in both methods. To determine E(u") also the quantities _s, u� and
u+ must be numerically determined.

We have numerically investigated the speed of convergence of the standard
method and the matrix viscosity method by solving the test problem with suc-
cessively re�ned space and time step. In Figure 2 we see how the solutions
converge. In Table 1 and 2 we have estimated the convergence order for the
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(a) Standard method
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(b) Matrix viscosity method

Fig. 2. The � component of the solution computed successively using successively
halved space and time step step.
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standard method and the matrix method respectively. It is clear that the solu-
tions computed by the standard method is second order accurate upstream, but
only �rst order accurate downstream. The solutions computed by the matrix vis-
cosity method is however second order accurate both upstream and downstream.

Table 1. Estimates of the order of accuracy (r) and the L2-norm of the absolute error
(jjejj) for the �u component of the solution for the standard method.

Upstream Downstream
h r jjejj r jjejj

1 � 10�2 1:5 � 10�3 3:1 � 10�2

5 � 10�3 3.92 1:0 � 10�4 2.17 6:9 � 10�3

2:5 � 10�3 2.38 1:9 � 10�5 2.15 1:6 � 10�3

1:25 � 10�3 2.00 4:6 � 10�6 1.46 5:7 � 10�4

6:25 � 10�4 2.00 1:2 � 10�6 1.20 2:5 � 10�4

3:125 � 10�4 2.00 2:9 � 10�7 1.08 1:2 � 10�4

1:5625 � 10�4 2.00 7:2 � 10�8 1.03 5:7 � 10�5

Table 2. Estimates of the order of accuracy (r) and the L2-norm of the absolute error
(jjejj) for the �u component of the solution for the matrix viscosity method.

Upstream Downstream
h r jjejj r jjejj

1 � 10�2 6:3 � 10�3 1:8 � 10�2

5 � 10�3 4.71 2:4 � 10�4 1.93 4:8 � 10�3

2:5 � 10�3 3.68 1:9 � 10�5 1.96 1:2 � 10�3

1:25 � 10�3 2.01 4:6 � 10�6 2.00 3:1 � 10�4

6:25 � 10�4 2.00 1:2 � 10�6 1.99 7:7 � 10�5
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