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Abstract

Boundary conditions leading to small errors in the continuous problem can
make the construction of a stable and accurate discrete scheme very difficult.
We discuss this problem and focus on the common procedure of specifying the
pressure at a subsonic outflow boundary. The result of the analysis provide
numerical boundary conditions for both inflow and outflow boundaries that
lead to second order accurate results. Numerical experiments that support the
theoretical conclusions are presented.



1 Introduction

Although computational fluid dynamics (CFD) has had a great impact on
aerospace engineering, this impact has mainly been limited to steady flows,
such as the flow around a cruising aircraft. The jump to truly dynamic prob-
lems, caused for example by gusts, other passing aircrafts, flight maneuvers,
propellers and moving or deforming control surfaces is highly nontrivial, and
leads to a number of new difficulties. Chief among these are the development
of accurate time-dependent boundary conditions at artificial boundaries.

Accurate time-dependent boundary conditions is also of the utmost impor-
tance is computational aeroacoustics. The nonlinear sound source is often com-
puted using conventional CFD methods (finite volume in space and Runge-
Kutta in time, see [7]). The outer linear acoustic problem can be solved using
for example the so called Kirchhof method [6] where the CFD solution is used
as boundary data on a cylinder surface surrounding the source. An accurate
noise prediction require accurate boundary data, which in turn means accurate
far field boundary conditions in the CFD calculation.

To obtain accurate solutions in the numerical calculation, well-posed bound-
ary conditions with accurate data are required. In [5][4], it is shown that if
one measure the influence of a small error introduced at a farfield boundary
in a local norm, it decreases with increasing distance to the boundary. The
discretized problem (including the discrete version of the well posed boundary
conditions) must be augmented with numerical boundary conditions such that
a stable and sufficiently accurate discrete solution is obtained. The numerical
boundary conditions can be at most one order less accurate than the scheme in
the interior, see [1] [2].

Sometimes, and this is the topic of this paper, a conflict between the math-
ematical boundary condition and the numerical boundary conditions appears.
An optimal boundary condition leading to a small error in the continuous prob-
lem can make the construction of a stable and accurate discrete scheme very
difficult. In this paper we will discuss this problem and focus on the common
procedure of specifying the pressure (leads to a well posed problem and the
error in the data is often small) at a subsonic outflow boundary. The analy-
sis presented in this paper is for the corresponding semi-discrete quater-space
problem, (z > 0,¢ > 0), linearized at a constant subsonic state.

2 Euler equations

The Euler equations for a polytropic gas in one space dimension are

pr+ (pu)e =0 (1a)

1
Uy + Gty + Eﬁ”” =0 (1b)
Pt + Up, + vDU, = 0. (1C)

Here p is the density, @ the velocity, p the pressure and -~y is the ratio of specific
heat. The speed of sound is ¢ = ,/%ﬁ. In order to have a well defined solution

in the region x > 0, ¢ > 0 we need initial conditions

ﬂ(iE,O) = Uo(x), pN('rvO) = pO(x)a ]3(:13,0) = pO(x)a (2)



and boundary conditions at = 0. In the case of subsonic outflow one boundary
condition should be prescribed since one characteristic enters the domain. We
will consider

p(0,1) = g(2). (3)
Linearizing (1) at a constant subsonic state (R, U, P) yields

p UR 0 p
| +(0UR|[a] =o. (4)
D 0P U D

t x

The initial and boundary conditions are of the same form as before.
Note that @ and p are independent of p. In this paper we only consider
numerical boundary conditions that do not couple @ and p to p. Thus it suffices

to analyze
1 U R™! ]
_ ] + ] =0. 5
<p>t <7P v ><p> ®)

Below we will comment on how to apply our results to the full system.
Introduce the scaling

(Z;):(\/V;TPp)’ @ =0%, C:\/Ev (6)
<Z>t+<7711;1> <Z>z:07 m:%v -l1<m<1. (7)

A corresponding semi-discrete problem is obtained by introducing gridpoints
x; =ih —h/2,i=1,2,..., and corresponding gridfunctions u;,p;,i = 0,1,....
The space derivatives are replaced by central differences,

(), = (V) Gt o) ®
pi ), 2h \ 1 m ) \ pit1 —Pi1

The boundary condition (3) is replaced by

yielding

po +p1 = 2g(t). 9)

The semi-discrete problem will not have a well defined solution unless a numer-
ical boundary condition is added at z = 0 and we require ||u||;, + ||p||n < oo.
We define a discrete scalar product and norm by

o0

(u,v)p = Z(ui,vi)h, [ullf = (u,u)n,  (ui,v) = @v;. (10)

i=1

We will investigate two different possibilities for the numerical boundary
condition at z = 0.



Case 1. The primitive variable u is extrapolated,
Upg — 2U1 + uz = 0. (11)

The boundary conditions (9) and (11) can be written on the more compact

matrix form
Uo
L =Gy, 12

! <p0 > ! ( )

L= <(1 _OE)2 1£E>’ G = <290(t)>’

and the translation operator E is defined as

where

(EU)Z = Vj41-
Case 2. The outgoing characteristic variable v — p is extrapolated,

ug — po — 2(uy — p1) +ug — p2 = 0. (13)

In matrix form (9) and (13) are

L, (“) e (14)

DPo

L= () e ()

3 Conditions for Stability

where

In this section we will use the Laplace transform technique described in [3] to
investigate the stability of the semi-discrete problem. First we prove a theorem
relating the stability of (8) together with boundary conditions of the form

L(ZS) =G (15)

to an algebraic condition. With the help of this theorem we investigate the
stability of (8) with boundary conditions (12) or (14). To conclude the section
we prove that in the case of boundary condition (14) the numerical solution is
second order accurate.

To simplify the analysis, we introduce the characteristic variables

(@) (D

With these variables the matrix in equation (8) is transformed to

S‘1<T;>S:<% ;\)2>EA, (17)

where \{ = m —1and A\ =m + 1.



Define

=-AE-E™ (18)
then the (8) with boundary condition can be written as
d; 1
E = ﬁsz+Fz; (193)
LSvy =G, ||v]|n < o0, (19b)
UZ(O) :f,', iZO,l,.... (19(})

Here we have included a forcing F' in the equation.

3.1 Sufficient Conditions for Stability

In this subsection we investigate what conditions on L are sufficient for (19) to
be strongly stable.
Consider the two auxiliary problems:

dwi 1
= gp @it Fi, (20a)
U},(O) = fz'; (20b)
L wy) —wy) ) 20
= =0, < oo,
Wo w((f) i w£2) lJwl[n < o0 (20c)
and
dyi _ 1
- ﬁQyu (21a)
yi(0) =0, (21b)
LSyo =G — LSwo =G, ||y||n < . (21c)

We assume that the boundary condition in equation (21) can be expressed as

q
yo =Y Bjy; + ByG, (22)

j=1
where B;j,j =0,1,...,q, are bounded matrices and independent of h. We see

that v; = w; + y; satisfies (19).
Lemma 1 The solution of system (20) satisfies
t t
@ +C [ ol + 1w Phar < 20171 +2 [ F@Rar (2

where C > 0 is a constant.

Proof.
A standard energy estimate gives
d
Ellwlli = (=ADow, w)p + (w, —ADow)s + (w, F)p + (F, w)n

1 00
= (—ADOw,w)h — (—ADow,w)h — §(mjAw]'+1 +wj+1ij)

0
+(w, F)p + (F,w)p,



where ADy = —()/2h. Using that ||w||n < oo, yields

d o ¢
ol = m = Do) + (m+ Dwg?wy” + w, P+ (Fw). (24)

By using the boundary conditions (20c) equation (24) is reduced to
d 1 2
el = ~[0m = D] Jug” P = [(m+ D] g™ + (w, P + (Fw)a. (25)

To continue, we first assume that F' = 0 in equation (25) and integrate,

t «
meﬁ+éOW—DH%W”HW+DH%W%h§Wm. (26)

From the boundary conditions we have that

t t
/ |U}0|2d7’ = / |’U)1|2d7'.
0 0

This together with equation (26) give us the estimate
t
min(|m — 1], |m + 1|)/ lwi|?dr < ||fll7, i=0,1.
0
Since |m| < 1 we have the estimate

t
HMM@+CAGWP+WNMTSWﬂ% (27)

where C' > 0 is a constant. By Duhamel’s principle we finally have

t t
mwmi+0A<mdﬁmemfsmmm+2AHmemr

a
Counsider (21). By the energy method,

d . .
E||y||i < Ci(lyol* + |y1]*) €1 >0, constant. (28)

We will use Laplace transform technique to derive an estimate for the right hand
side of (28). First Laplace transform (21) in time, yielding

2shg; = Qi (29a)
LSjo =G, ||g|ln < . (29b)

We need to estimate the solution for all Re (3) > 0, § = sh.
Equation (29a) is a system of two uncoupled difference equations

25
Ziy1 + )\—ZZ —zi—1 =0, (30)
k

with A; = m — 1 and Ay = m + 1. With the ansatz z; = cx’ we get

95
KP4+ 2k —1=0 (31)
Ak



with the solutions
- N 2
ma=—py/(5) +1 (32

From (31) we know that k1x2 = —1. For Re (5) > 0 there will alway be exactly
one of k1 and k2 with |k| < 1. Call this root of. Hence oy, is defined by

~ ~ 2
(@) = —— — [ [Z) +1 M\ <0 (33a)
Ak Ak

2
) +1 if A, > 0. (33b)

The general solution of equation (29a) can be written as

. (al 0
i = <0 U§~>c. (34)
The boundary condition (29b) yields

H(3)c = G. (35)
where R
H(3) =LS (”1(53) 02(25) > . (36)
If |(H(3))™'| < C for all Re (5) > 0 then (35) has a solution such that

;> < Kj|GI?, Re(3)>0, j=0,1, (37)

where the constant K is independent of § and G.
By Parseval’s relation,

/ =27 |y, (1) 2dr < Kj/ =217 |G(r) Pdr < Kj/ G(r)[2dr, > 0.
0 0

0

(38)
Since the right-hand side is independent of  and y;(7) for 0 < 7 <t does not
depend on G(r) for 7 > t, it follows that

t t
/0 |yj|2dT§Kj/0 |G (7)|?dr. (39)

If we integrate equation (28) and use the estimate (39) for the boundary
terms we get

t
I < Cu(to + k) [ |60 (40)
0
This completes the proof of the following lemma.

Lemma 2 If |(H(3))™!| < C for all Re (3) > 0 then the solution of (21) satis-
fies

¢
lly@®)|17 < K/o |G(7)|?dr, K >0, constant. (41)



By combining lemma (1) and lemma (2) we obtain the following theorem.

Theorem 1 Assume that the boundary conditions can be expressed as in (22).
If (H(3))™] < C for all Re (5) > 0 then the problem (19) is strongly stable,
i.e. the solution satisfies,

mmmSKQmﬁﬁvaWm+Anﬂwmﬂ. (42)

Here K is a constant independent of F,G and f.

Note that if det(H(5)) = 0 for some 59 with Re (59) > 0 then the problem
cannot be stable in any sense. If Re (§9) = 0 then stability cannot be determined
without further investigations, see [3].

3.2 Extrapolation of Primitive Variable

In this and the following subsection we investigate whether the assumption in
theorem 1 are satisfied for (19) with boundary conditions (12) and (14) re-
spectively, i.e. if the boundary condition can be expressed as in (22) and if
|(H(3))7] < C for all Re (5) > 0. In the two subsections we only consider
Re (5) > 0.

Consider the boundary conditions with extrapolation of primitive variable,
(12). This boundary condition can be expressed as in (22). We have

H®:<—ﬂ—m®yﬂ—wﬁw>7 @)

1+O’1(§) 1+O’2(§)

Hence,
1y 1 1+0’2(§) —(1—0’2(5))2
H(5) = det(H (3)) <—(1 +01(5)) —(1— ol(é))2> ’ )
where
det H(3) = (1~ 01(3)*(1 + 02(3)) + (1 + 01(3)) (1 — 02(3))? (45)
We have i H ) = 1 < ) _1> o)
|§\1—r)noo =9\ -1 1

Hence |(H(3))~!| < C for all § iff det H(5) # 0 for all |3] < K.
To determine whether
det H(3) = 0 (47)

has any roots with Re (§) > 0 we introduce the transformation

S 1+m
m+1 an 1-m (48)

We can express o7 and o5 in the new variables:

o1 =2ZB—\/(ZB)? +1,

oy =—Z+VZ?+1.



Hence, we also have
0? =1+ 2ZBoy,

50
03 =1-2Z0, (50)

Introduction of (49) and (50) into (47) and some algebraic manipulations give

Z3(C4Z4+63Z3+62Z2+01Z+Co) :0 (51)
where
cy = 4B*(B - 1), (52)
c3 = B*(B2 - 14B + 1), (53)
¢y = 4B(B —1)(B* —3B + 1), (54)
c1 = —4B(3B*? — 2B +3), (55)
co = —8(B —1)(B*+1). (56)

By the manipulations of the equation, we have introduced new roots, which are
not roots of the original equation. It is easy to see that no real § can solve (47).
Hence, we are only interested in complex Z, so we study the complex roots of
the fourth degree polynomial

C4Z4+C3Z3+02Z2+01Z+Co =0. (57)

We have determined the roots numerically. The fourth degree polynomial
will have two real and two complex conjugate roots. The complex roots of (57)
are plotted in figure (1). By substituting the complex roots of (57) into (47)

4

3L 4

e ]
B=cw B=1

B=2.32

Im(Z)
o

4 L L L L I I
-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Re(2)

Figure 1: The complex roots of (57). The dotted part indicates solutions with
Re (Z) > 0 that correspond to solutions of (47) with Re (5) > 0.

we find that for B in the interval (1,B;), B; &~ 2.32, there are two complex
conjugate solutions of (47) with Re (§) > 0. For all other B-values there are no
solutions with Re (5) > 0. Hence, for M € (0, M;), with M; ~ 0.4, the problem
is not stable.



3.3 Extrapolation of Characteristic Variable

Consider the boundary conditions with extrapolation of the characteristic vari-
able, (14). This boundary condition can also be expressed as in (22). We have

H(g):<_2(1_"1)2 0 > (58)

1+01 1+0’2

Hence,
_ ~ 1 1+0’2 0
H™(3) = ———s : 59
() det(H (3)) <—(1 +o1) —2(1 - ‘71)2> ’ (&)
where
det H(3) = —2(1 — 01)*(1 + 02). (60)
We have )
. S L (100
o H =7 <—1 —2> (o1
For 5§ # 0, we have |o;| < 1. For § = 0, we have 0y = —1 and 02 = 1. Hence,

det Hy(8) # 0 and the problem is strongly stable.

Remark: The above analysis is easily extended to the full system (4). A
boundary condition for p must be added. If a condition that yields a strongly
stable scalar problem is used, then the full system will be strongly stable.

3.4 Order of Accuracy in Case 2

Consider (8) together with boundary condition (14). In the discretization of
the continuous problem, we have used operators that are formally second order.
This does not guarantee that the numerical solution is second order accurate.
Hence the actual accuracy must be investigated.

Let v*(z,t) denote the true solution. Then by Taylor expansion the error
ei(t) = v;(t) — v*(z;,t) satisfies

d.
ﬁ:Qez_f'hQFl(t)? 7;:1727"'7

dt (62)
L2€0 = hgg(t), 62(0) =0.

If the initial condition and the boundary condition are smooth and compatible
then F' and g are smooth functions. The equations for the error e;(t) is of
the same form as the equations for v;(t). Hence, the equation for the error is
strongly well-posed and the solution satisfies

le(®Ii < h'K (/Ot 1F(7)llhdr + /Ot Ig(T)Isz> : (63)

where K is independent of F', g ant ¢. Hence, the order of accuracy is two as
expected.

4 Numerical experiments in one space dimension

In this section we verify the theoretical results experimentally and compare
the effectiveness of the different numerical boundary conditions. Details of the
applied difference approximations are found in 4.1. In 4.2 we give the parameters
for our test cases and also account for the results.



4.1 Description of the discretization

Two issues must be addressed before the analyzed semi-discrete problem can
be turned into a complete numerical algorithm. First we must introduce a
boundary to the right, we denote the z-interval [0,L]. Second, we have to
discretize time.

Recall that the grid points are x; = ih — h/2, we choose h so that L = Nh.
This implies that we have N grid points in the interval [0, L] and the bound-
aries x = 0 and & = L lies centered between grid points. Our unknowns are
{(us, p;)T I, where T denotes the transpose operation.

The semi-discrete approximation (8) counsists of 2N coupled ODE’s which
contain (ug,po)” and (uny1,pn+1)T. Counting the number of equations and
unknowns we see that the numerical method requires two boundary conditions
on each boundary to eliminate (ug,po)? and (uni1,pv41)?

In the computations we will examine three versions of boundary conditions,
described below. In all cases the discretization of the physical pressure boundary
condition (9) is the same. In the computations the boundary conditions will be
homogeneous:

po+p1=0 and PN +pny1 = 0.

We use the initial data to get a non-trivial solution. For the remaining boundary
conditions we examine three cases which we now list

Case 1. Here we use the extrapolation formula (11) for the primitive variable.
This gives, for the two boundaries

ug — 2u1 +us =0
un_1 — 2uny +un41 = 0.

We see directly how to express (ug,po)? and (uni1,py+1)? in terms of the
unknowns at the “inner” points.

Case 2. In this case we apply the extrapolation formula to the outgoing char-
acteristic variable, for the left boundary this gives equation (13). We use the
pressure boundary condition to solve for the outer points and arrive at the
expressions

ug = 2u; — 3p1 — U2 + P2

UNy1 = 2uny +3pN —UN-1 — PN-1-

Case 3. The above two alternatives were introduced in section 2. In this
section we also study a third case. This is derived by applying the simplest
possible extrapolation of the outgoing characteristic variable. To the left we
have

Up —Po = U1 — P1-
To the right we have a corresponding expression. Using the pressure boundary
condition we can solve for the outer points and get the expressions
up =ur —2py

UN+1 = UN + 2pN.

10



The purpose of investigating these boundary conditions is to show the need for
more accurate extrapolations at the boundary because of the low accuracy for
the overall method resulting from this discretization.

Remark: In the three cases above we use the same procedure to derive bound-
ary conditions on both boundaries. A side effect of this is that we simultane-
ously investigate the effectiveness of the boundary condition on an inflow and
an outflow boundary. This will be clearly seen for case 1, illustrated in figure 4.

The time-discretization. We use a fourth order Runge-Kutta method for
the time stepping. The high accuracy should allow us to isolate the study of
the space discretization. We denote the length of the time step k.

4.2 Results

For the three test cases with different boundary conditions described above we
determine the convergence rate by experiments with refinement of the grid. The
following parameters are fixed in all computations.

e The length of the computational interval: L = 2.
e The length of the time interval: T = 4.

e The CFL-number: % =1.

e The “Mach”number: m = 0.25

The parameter m is negative if the constant flow we linearize at goes to the left,
so |m| is the Mach-number. The initial data is also the same, we construct it

using the function
_ e_l/””2, x>0

which is smooth and has supp ¢ = [0, 00). This function is used for the cut-off
near the boundaries and we have the following form of the initial data

{ u(z,0) = ¢(ax)p(a(z — L)) fo(z)
p(z,0) =0.

Here a is chosen to v/5 in the experiments, and we use fo(x) = sin(5z). The
initial data is shown in figure 2. In figure 3 we show the solution at time ¢t = 4
computed using the second boundary condition and a very fine grid.

Case 1. According to the theory, the boundary conditions at x = 0, the
inflow boundary, will cause instability for this value of m. The same boundary
condition at the right boundary is stable. We illustrate this behavior in figure
4 where we show the solution at t = 1.16. We have N = 500. We stop the time
stepping when the “blow-up” is apparent and before it has affected the solution
in the right part of the computational interval. In the same figure we have
Jfor comparison, plotted the converged solution computed with the boundary
conditions of case 2 and a more refined grid.

11



0.6

0.2 0.4 0.6 0.8 1 1.2 14 16 18 2

Figure 2: Initial data for u. The initial data for the pressure is p(x,0) = 0.

0.2 0.4 0.6 0.8 1 1.2 14 16 18 2

Figure 3: The solution at time t=4. The solution is computed using the bound-
ary conditions of case 2 and a very fine grid.

12



Case 2. Here we give numerical evidence of the second order accuracy pre-
dicted by theory. We investigate this case by first discretizing with N = 180.
Then we refine by successively increasing N with a factor three, we compute
with N =540, N = 1620 and N = 4820. The points

an =nAz — Az /2, n=1,2,...,20 Az=0.1 (64)

then lie on grid points for our choice of N-values. We compare the different
computed solutions in these points at time ¢ = 4. We choose this time level to
ensure that the solution has been reflected in both boundaries. The propagation
speed to the right is 1.25 length units/time unit and the speed to the left is 0.75
lLu/t.u . To determine the order of accuracy we use that

h
ug ) Uegact (T;) + ChY.
Combining three solutions we can thus solve for g. We use discrete L2-norms

Lt -]
Gexp = 75 In
03 " fulh73) = qi7o]]

(65)

where we use the 20 points introduced above to define the norm

20
||u||2 = Am Z |ul(n)|2
n=1

Here Az = L/20 and i(n) indicate that we take points with the same z-
coordinate, and thus different 7, when we refine. Our choice of test runs give
two values of g..p, these are given in table 4.2 where we also summarize the
results for the less accurate approximation of case 3.

A presentation of the computed solutions is shown in figure 5 where u(z, 4) is
plotted. The full line is the computation with N = 4860. The coarser grids are
shown by symbols at the 20 z-values we used for the norm comparison above.
The crosses represent the solution with N = 1620, the rings: N = 540 and the
diamonds: N = 180.

Case 3. As mentioned above, this case is include to show the need for the
more accurate approximations of case 1 and 2. The computations here are
thus designed to verify the first order accuracy of the overall scheme in this
case. Just as for the second boundary condition we use the refinement N =
180, 540, 1620, 4860. The resulting two values of g.,, are given in table 4.2.
There we see that the value of g.,, determined by the coarser grids is not very
close to one. This indicates that this scheme is not in the asymptotic region of
convergence for N = 180.

13



Figure 4: Blow-up at the boundary, ¢ = 1.16. Here we see that the boundary
conditions of case 1 gives an unstable difference scheme at an inflow boundary,
while the numerical solution at the outflow boundary is stable. The full line
is computed with the boundary conditions of case 1 as described above. The
dashed line is the converged solution computed with the boundary conditions
of case 2 with N = 1620.

Test cases
N-values used 2 | 3
{180,540,1620} | 1.969 | 1.2428
{540,1620,4860} | 2.018 ‘ 0.9903 ‘

Table 1: The experimental order of accuracy geqp defined by formula (65). The
column “ N-values used” indicates which computed solutions we insert in formula
(65). In test case 2 we see a good agreement with second order accuracy. In
test case 3 the first value is not very close to one. This indicates that, for this
scheme, the N-values {180, 540,1620} are not large enough to ensure that we
get the asymptotic convergence rate.

14
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-0.15

-0.25
0

Figure 5: Convergence of the solution in case 2. The full line is the solution at
time ¢t = 4 computed with N = 4860. The crosses represent the solution with
N = 1620, the rings: N = 540 and the diamonds: N = 180. The last three
solutions are shown in the gridpoints given by the expression (64).
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