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Abstract

Boundary conditions leading to small errors in the continuous problem can
make the construction of a stable and accurate discrete scheme very di�cult.
We discuss this problem and focus on the common procedure of specifying the
pressure at a subsonic out�ow boundary. The result of the analysis provide
numerical boundary conditions for both in�ow and out�ow boundaries that
lead to second order accurate results. Numerical experiments that support the
theoretical conclusions are presented.



1 Introduction

Although computational �uid dynamics (CFD) has had a great impact on
aerospace engineering, this impact has mainly been limited to steady �ows,
such as the �ow around a cruising aircraft. The jump to truly dynamic prob-
lems, caused for example by gusts, other passing aircrafts, �ight maneuvers,
propellers and moving or deforming control surfaces is highly nontrivial, and
leads to a number of new di�culties. Chief among these are the development
of accurate time-dependent boundary conditions at arti�cial boundaries.

Accurate time-dependent boundary conditions is also of the utmost impor-
tance is computational aeroacoustics. The nonlinear sound source is often com-
puted using conventional CFD methods (�nite volume in space and Runge-
Kutta in time, see [7]). The outer linear acoustic problem can be solved using
for example the so called Kirchhof method [6] where the CFD solution is used
as boundary data on a cylinder surface surrounding the source. An accurate
noise prediction require accurate boundary data, which in turn means accurate
far �eld boundary conditions in the CFD calculation.

To obtain accurate solutions in the numerical calculation, well-posed bound-
ary conditions with accurate data are required. In [5][4], it is shown that if
one measure the in�uence of a small error introduced at a far�eld boundary
in a local norm, it decreases with increasing distance to the boundary. The
discretized problem (including the discrete version of the well posed boundary
conditions) must be augmented with numerical boundary conditions such that
a stable and su�ciently accurate discrete solution is obtained. The numerical
boundary conditions can be at most one order less accurate than the scheme in
the interior, see [1] [2].

Sometimes, and this is the topic of this paper, a con�ict between the math-
ematical boundary condition and the numerical boundary conditions appears.
An optimal boundary condition leading to a small error in the continuous prob-
lem can make the construction of a stable and accurate discrete scheme very
di�cult. In this paper we will discuss this problem and focus on the common
procedure of specifying the pressure (leads to a well posed problem and the
error in the data is often small) at a subsonic out�ow boundary. The analy-
sis presented in this paper is for the corresponding semi-discrete quater-space
problem, (x � 0; t � 0), linearized at a constant subsonic state.

2 Euler equations

The Euler equations for a polytropic gas in one space dimension are

~�t + (~�u)x = 0 (1a)

~ut + ~u~ux +
1

~�
~px = 0 (1b)

~pt + ~u~px + 
~p~ux = 0: (1c)

Here ~� is the density, ~u the velocity, ~p the pressure and 
 is the ratio of speci�c

heat. The speed of sound is c =
q


 ~p
~� . In order to have a well de�ned solution

in the region x � 0; t � 0 we need initial conditions

~u(x; 0) = u0(x); ~�(x; 0) = �0(x); ~p(x; 0) = p0(x); (2)
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and boundary conditions at x = 0. In the case of subsonic out�ow one boundary
condition should be prescribed since one characteristic enters the domain. We
will consider

~p(0; t) = g(t): (3)

Linearizing (1) at a constant subsonic state (R;U; P ) yields0
@ ~�

~u
~p

1
A

t

+

0
@U R 0

0 U R�1

0 
P U

1
A
0
@ ~�

~u
~p

1
A

x

= 0: (4)

The initial and boundary conditions are of the same form as before.
Note that ~u and ~p are independent of ~�. In this paper we only consider

numerical boundary conditions that do not couple ~u and ~p to ~�. Thus it su�ces
to analyze �

~u
~p

�
t

+

�
U R�1


P U

��
~u
~p

�
x

= 0: (5)

Below we will comment on how to apply our results to the full system.
Introduce the scaling

�
~u
~p

�
=

�
up


RPp

�
; x = C~x; C =

r

P

R
; (6)

yielding �
u
p

�
t

+

�
m 1
1 m

��
u
p

�
x

= 0; m =
U

C
; �1 < m < 1: (7)

A corresponding semi-discrete problem is obtained by introducing gridpoints
xi = ih � h=2; i = 1; 2; : : : , and corresponding gridfunctions ui; pi; i = 0; 1; : : :.
The space derivatives are replaced by central di�erences,�

ui
pi

�
t

= � 1

2h

�
m 1
1 m

��
ui+1 � ui�1
pi+1 � pi�1

�
(8)

The boundary condition (3) is replaced by

p0 + p1 = 2g(t): (9)

The semi-discrete problem will not have a well de�ned solution unless a numer-
ical boundary condition is added at x = 0 and we require jjujjh + jjpjjh < 1.
We de�ne a discrete scalar product and norm by

(u; v)h =

1X
i=1

hui; viih; jjujj2h = (u; u)h; hui; vii = �uivi: (10)

We will investigate two di�erent possibilities for the numerical boundary
condition at x = 0.
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Case 1. The primitive variable u is extrapolated,

u0 � 2u1 + u2 = 0: (11)

The boundary conditions (9) and (11) can be written on the more compact
matrix form

L1

�
u0
p0

�
= G1; (12)

where

L1 =

�
(1�E)2 0

0 1 +E

�
; G1 =

�
0

2g(t)

�
;

and the translation operator E is de�ned as

(Ev)i = vi+1:

Case 2. The outgoing characteristic variable u� p is extrapolated,

u0 � p0 � 2(u1 � p1) + u2 � p2 = 0: (13)

In matrix form (9) and (13) are

L2

�
u0
p0

�
= G2; (14)

where

L2 =

�
(1�E)2 �(1�E)2

0 1 +E

�
; G2 =

�
0

2g(t)

�
:

3 Conditions for Stability

In this section we will use the Laplace transform technique described in [3] to
investigate the stability of the semi-discrete problem. First we prove a theorem
relating the stability of (8) together with boundary conditions of the form

L

�
u0
p0

�
= G (15)

to an algebraic condition. With the help of this theorem we investigate the
stability of (8) with boundary conditions (12) or (14). To conclude the section
we prove that in the case of boundary condition (14) the numerical solution is
second order accurate.

To simplify the analysis, we introduce the characteristic variables

vi =

�
ui
pi

�
� S�1

�
ui
pi

�
; S =

��1 1
1 1

�
: (16)

With these variables the matrix in equation (8) is transformed to

S�1
�
m 1
1 m

�
S =

�
�1 0
0 �2

�
� �; (17)

where �1 = m� 1 and �2 = m+ 1.
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De�ne
Q � ��(E �E�1) (18)

then the (8) with boundary condition can be written as

di
dt

=
1

2h
Qvi + Fi; (19a)

LSv0 = G; jjvjjh <1; (19b)

vi(0) = fi; i = 0; 1; : : : : (19c)

Here we have included a forcing F in the equation.

3.1 Su�cient Conditions for Stability

In this subsection we investigate what conditions on L are su�cient for (19) to
be strongly stable.

Consider the two auxiliary problems:

dwi

dt
=

1

2h
Qwi + Fi; (20a)

wi(0) = fi; (20b)

~Lw0 �
 
w
(1)
0 � w

(1)
1

w
(2)
0 + w

(2)
1

!
= 0; jjwjjh <1; (20c)

and

dyi
dt

=
1

2h
Qyi; (21a)

yi(0) = 0; (21b)

LSy0 = G� LSw0 � ~G; jjyjjh <1: (21c)

We assume that the boundary condition in equation (21) can be expressed as

y0 =

qX
j=1

Bjyj +B0
~G; (22)

where Bj ; j = 0; 1; : : : ; q, are bounded matrices and independent of h. We see
that vi = wi + yi satis�es (19).

Lemma 1 The solution of system (20) satis�es

jjw(t)jj2h + C

Z t

0

(jw0j2 + jw1j2)d� � 2jjf jj2h + 2

Z t

0

jjF (�)jj2hd�; (23)

where C > 0 is a constant.

Proof.
A standard energy estimate gives

d

dt
jjwjj2h = (��D0w;w)h + (w;��D0w)h + (w;F )h + (F;w)h

= (��D0w;w)h � (��D0w;w)h � 1

2
(wj�wj+1 + wj+1�wj)

����
1

0

+(w;F )h + (F;w)h;
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where �D0 = �Q=2h. Using that jjwjjh <1, yields

d

dt
jjwjj2h = (m� 1)w

(1)
0 w

(1)
1 + (m+ 1)w

(2)
0 w

(2)
1 + (w;F )h + (F;w)h: (24)

By using the boundary conditions (20c) equation (24) is reduced to

d

dt
jjwjj2h = �j(m� 1)j jw(1)

0 j2 � j(m+ 1)j jw(2)
0 j2 + (w;F )h + (F;w)h: (25)

To continue, we �rst assume that F = 0 in equation (25) and integrate,

jjw(t)jj2h +

Z t

0

(j(m� 1)j jw(1)
0 j2 + j(m+ 1)j jw(2)

0 j2)d� � jjf jj2h: (26)

From the boundary conditions we have thatZ t

0

jw0j2d� =

Z t

0

jw1j2d�:

This together with equation (26) give us the estimate

min(jm� 1j; jm+ 1j)
Z t

0

jwij2d� � jjf jj2h; i = 0; 1:

Since jmj < 1 we have the estimate

jjw(t)jj2h + C

Z t

0

(jw0j2 + jw1j2)d� � 2jjf jj2h; (27)

where C > 0 is a constant. By Duhamel's principle we �nally have

jjw(t)jj2h + C

Z t

0

(jw0j2 + jw1j2)d� � 2jjf jj2h + 2

Z t

0

jjF (�)jj2hd�:

Consider (21). By the energy method,

d

dt
jjyjj2h � C1(jy0j2 + jy1j2) C1 > 0; constant: (28)

We will use Laplace transform technique to derive an estimate for the right hand
side of (28). First Laplace transform (21) in time, yielding

2shŷi = Qŷi; (29a)

LSŷ0 = ~̂G; jjŷjjh <1: (29b)

We need to estimate the solution for all Re (~s) > 0; ~s = sh.
Equation (29a) is a system of two uncoupled di�erence equations

zi+1 +
2~s

�k
zi � zi�1 = 0; (30)

with �1 = m� 1 and �2 = m+ 1. With the ansatz zi = c�i we get

�2 +
2~s

�k
�� 1 = 0 (31)
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with the solutions

�1;2 = � ~s

�k
�
s�

~s

�k

�2

+ 1 (32)

From (31) we know that �1�2 = �1. For Re (~s) > 0 there will alway be exactly
one of �1 and �2 with j�j < 1. Call this root �k. Hence �k is de�ned by

�k(~s) = � ~s

�k
�
s�

~s

�k

�2

+ 1 if �k < 0 (33a)

�k(~s) = � ~s

�k
+

s�
~s

�k

�2

+ 1 if �k > 0: (33b)

The general solution of equation (29a) can be written as

ŷi =

�
�i1 0
0 �i2

�
c: (34)

The boundary condition (29b) yields

H(~s)c = ~̂G: (35)

where

H(~s) = LS

�
�1(~s) 0
0 �2(~s)

�
: (36)

If j(H(~s))�1j � C for all Re (~s) � 0 then (35) has a solution such that

jŷj j2 � Kj j ~̂Gj2; Re (~s) > 0; j = 0; 1; (37)

where the constant Kj is independent of ~s and ~̂G.
By Parseval's relation,Z 1

0

e�2�� jyj(�)j2d� � Kj

Z 1

0

e�2�� j ~G(�)j2d� � Kj

Z 1

0

j ~G(�)j2d�; � > 0:

(38)
Since the right-hand side is independent of � and yj(�) for 0 � � � t does not

depend on ~G(�) for � > t, it follows thatZ t

0

jyj j2d� � Kj

Z t

0

j ~G(�)j2d�: (39)

If we integrate equation (28) and use the estimate (39) for the boundary
terms we get

jjy(t)jj2h � C1(K0 +K1)

Z t

0

j ~G(�)j2d�: (40)

This completes the proof of the following lemma.

Lemma 2 If j(H(~s))�1j � C for all Re (~s) � 0 then the solution of (21) satis-
�es

jjy(t)jj2h � K

Z t

0

j ~G(�)j2d�; K > 0; constant: (41)
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By combining lemma (1) and lemma (2) we obtain the following theorem.

Theorem 1 Assume that the boundary conditions can be expressed as in (22).
If j(H(~s))�1j � C for all Re (~s) � 0 then the problem (19) is strongly stable,
i.e. the solution satis�es,

jjv(t)jj2h � K

�
jjf jj2h +

Z t

0

jG(�)j2d� +
Z t

0

jjF (t)jj2hd�
�
: (42)

Here K is a constant independent of F;G and f .

Note that if det(H(~s)) = 0 for some ~s0 with Re (~s0) > 0 then the problem
cannot be stable in any sense. If Re (~s0) = 0 then stability cannot be determined
without further investigations, see [3].

3.2 Extrapolation of Primitive Variable

In this and the following subsection we investigate whether the assumption in
theorem 1 are satis�ed for (19) with boundary conditions (12) and (14) re-
spectively, i.e. if the boundary condition can be expressed as in (22) and if
j(H(~s))�1j � C for all Re (~s) � 0. In the two subsections we only consider
Re (~s) � 0.

Consider the boundary conditions with extrapolation of primitive variable,
(12). This boundary condition can be expressed as in (22). We have

H(~s) =

��(1� �1(~s))
2 (1� �2(~s))

2

1 + �1(~s) 1 + �2(~s)

�
; (43)

Hence,

H�1(~s) =
1

det(H(~s))

�
1 + �2(~s) �(1� �2(~s))

2

�(1 + �1(~s)) �(1� �1(~s))
2

�
; (44)

where

detH(~s) = ((1� �1(~s))
2(1 + �2(~s)) + (1 + �1(~s))(1� �2(~s))

2: (45)

We have

lim
j~sj!1

H�1(~s) =
1

2

�
1 �1
�1 �1

�
(46)

Hence j(H(~s))�1j � C for all ~s i� detH(~s) 6= 0 for all j~sj � K.
To determine whether

detH(~s) = 0 (47)

has any roots with Re (~s) � 0 we introduce the transformation

Z =
~s

m+ 1
and B =

1 +m

1�m
: (48)

We can express �1 and �2 in the new variables:

�1 = ZB �
p
(ZB)2 + 1;

�2 = �Z +
p
Z2 + 1:

(49)
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Hence, we also have
�21 = 1 + 2ZB�1;

�22 = 1� 2Z�2;
(50)

Introduction of (49) and (50) into (47) and some algebraic manipulations give

Z3(c4Z
4 + c3Z

3 + c2Z
2 + c1Z + c0) = 0 (51)

where

c4 = 4B3(B � 1); (52)

c3 = B2(B2� 14B + 1); (53)

c2 = 4B(B � 1)(B2 � 3B + 1); (54)

c1 = �4B(3B3 � 2B + 3); (55)

c0 = �8(B � 1)(B2 + 1): (56)

By the manipulations of the equation, we have introduced new roots, which are
not roots of the original equation. It is easy to see that no real ~s can solve (47).
Hence, we are only interested in complex Z, so we study the complex roots of
the fourth degree polynomial

c4Z
4 + c3Z

3 + c2Z
2 + c1Z + c0 = 0: (57)

We have determined the roots numerically. The fourth degree polynomial
will have two real and two complex conjugate roots. The complex roots of (57)
are plotted in �gure (1). By substituting the complex roots of (57) into (47)

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−4

−3

−2

−1

0

1

2

3

4

B=1

B ≈ 2.32

B = ∞

Re(Z)

Im
(Z

)

Figure 1: The complex roots of (57). The dotted part indicates solutions with
Re (Z) � 0 that correspond to solutions of (47) with Re (~s) > 0.

we �nd that for B in the interval (1; B1), B1 � 2:32, there are two complex
conjugate solutions of (47) with Re (~s) � 0. For all other B-values there are no
solutions with Re (~s) � 0. Hence, for M 2 (0;M1), with M1 � 0:4, the problem
is not stable.
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3.3 Extrapolation of Characteristic Variable

Consider the boundary conditions with extrapolation of the characteristic vari-
able, (14). This boundary condition can also be expressed as in (22). We have

H(~s) =

��2(1� �1)
2 0

1 + �1 1 + �2

�
: (58)

Hence,

H�1(~s) =
1

det(H(~s))

�
1 + �2 0

�(1 + �1) �2(1� �1)
2

�
; (59)

where
detH(~s) = �2(1� �1)

2(1 + �2): (60)

We have

lim
j~sj!1

H�1(~s) =
1

�2
�

1 0
�1 �2

�
(61)

For ~s 6= 0, we have j�k j < 1. For ~s = 0, we have �1 = �1 and �2 = 1. Hence,
detH2(~s) 6= 0 and the problem is strongly stable.

Remark: The above analysis is easily extended to the full system (4). A
boundary condition for � must be added. If a condition that yields a strongly
stable scalar problem is used, then the full system will be strongly stable.

3.4 Order of Accuracy in Case 2

Consider (8) together with boundary condition (14). In the discretization of
the continuous problem, we have used operators that are formally second order.
This does not guarantee that the numerical solution is second order accurate.
Hence the actual accuracy must be investigated.

Let v�(x; t) denote the true solution. Then by Taylor expansion the error
ei(t) = vi(t)� v�(xi; t) satis�es

dei
dt

= Qei + h2Fi(t); i = 1; 2; � � � ;
L2e0 = h2g(t); ei(0) = 0:

(62)

If the initial condition and the boundary condition are smooth and compatible
then F and g are smooth functions. The equations for the error ei(t) is of
the same form as the equations for vi(t). Hence, the equation for the error is
strongly well-posed and the solution satis�es

jje(t)jj2h � h4K

�Z t

0

jjF (�)jj2hd� +
Z t

0

jg(�)j2d�
�
; (63)

where K is independent of F , g ant t. Hence, the order of accuracy is two as
expected.

4 Numerical experiments in one space dimension

In this section we verify the theoretical results experimentally and compare
the e�ectiveness of the di�erent numerical boundary conditions. Details of the
applied di�erence approximations are found in 4.1. In 4.2 we give the parameters
for our test cases and also account for the results.
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4.1 Description of the discretization

Two issues must be addressed before the analyzed semi-discrete problem can
be turned into a complete numerical algorithm. First we must introduce a
boundary to the right, we denote the x-interval [0; L]. Second, we have to
discretize time.

Recall that the grid points are xi = ih� h=2, we choose h so that L = Nh.
This implies that we have N grid points in the interval [0; L] and the bound-
aries x = 0 and x = L lies centered between grid points. Our unknowns are
f(ui; pi)T gNi=1, where T denotes the transpose operation.

The semi-discrete approximation (8) consists of 2N coupled ODE's which
contain (u0; p0)

T and (uN+1; pN+1)
T . Counting the number of equations and

unknowns we see that the numerical method requires two boundary conditions
on each boundary to eliminate (u0; p0)

T and (uN+1; pN+1)
T .

In the computations we will examine three versions of boundary conditions,
described below. In all cases the discretization of the physical pressure boundary
condition (9) is the same. In the computations the boundary conditions will be
homogeneous:

p0 + p1 = 0 and pN + pN+1 = 0:

We use the initial data to get a non-trivial solution. For the remaining boundary
conditions we examine three cases which we now list

Case 1. Here we use the extrapolation formula (11) for the primitive variable.
This gives, for the two boundaries

u0 � 2u1 + u2 = 0

uN�1 � 2uN + uN+1 = 0:

We see directly how to express (u0; p0)
T and (uN+1; pN+1)

T in terms of the
unknowns at the �inner� points.

Case 2. In this case we apply the extrapolation formula to the outgoing char-
acteristic variable, for the left boundary this gives equation (13). We use the
pressure boundary condition to solve for the outer points and arrive at the
expressions

u0 = 2u1 � 3p1 � u2 + p2

uN+1 = 2uN + 3pN � uN�1 � pN�1:

Case 3. The above two alternatives were introduced in section 2. In this
section we also study a third case. This is derived by applying the simplest
possible extrapolation of the outgoing characteristic variable. To the left we
have

u0 � p0 = u1 � p1:

To the right we have a corresponding expression. Using the pressure boundary
condition we can solve for the outer points and get the expressions

u0 = u1 � 2p1

uN+1 = uN + 2pN :

10



The purpose of investigating these boundary conditions is to show the need for
more accurate extrapolations at the boundary because of the low accuracy for
the overall method resulting from this discretization.
Remark: In the three cases above we use the same procedure to derive bound-
ary conditions on both boundaries. A side e�ect of this is that we simultane-
ously investigate the e�ectiveness of the boundary condition on an in�ow and
an out�ow boundary. This will be clearly seen for case 1, illustrated in �gure 4.

The time-discretization. We use a fourth order Runge-Kutta method for
the time stepping. The high accuracy should allow us to isolate the study of
the space discretization. We denote the length of the time step k.

4.2 Results

For the three test cases with di�erent boundary conditions described above we
determine the convergence rate by experiments with re�nement of the grid. The
following parameters are �xed in all computations.

� The length of the computational interval: L = 2.

� The length of the time interval: T = 4.

� The CFL-number: k
h = 1.

� The �Mach�-number: m = 0:25

The parameter m is negative if the constant �ow we linearize at goes to the left,
so jmj is the Mach-number. The initial data is also the same, we construct it
using the function

�(x) =

�
e�1=x

2

; x > 0
0; x � 0

which is smooth and has supp� = [0;1). This function is used for the cut-o�
near the boundaries and we have the following form of the initial data�

u(x; 0) = �(�x)�(�(x � L))f0(x)
p(x; 0) = 0:

Here � is chosen to
p
5 in the experiments, and we use f0(x) = sin(5x). The

initial data is shown in �gure 2. In �gure 3 we show the solution at time t = 4
computed using the second boundary condition and a very �ne grid.

Case 1. According to the theory, the boundary conditions at x = 0, the
in�ow boundary, will cause instability for this value of m. The same boundary
condition at the right boundary is stable. We illustrate this behavior in �gure
4 where we show the solution at t = 1:16. We have N = 500. We stop the time
stepping when the �blow-up� is apparent and before it has a�ected the solution
in the right part of the computational interval. In the same �gure we have
,for comparison, plotted the converged solution computed with the boundary
conditions of case 2 and a more re�ned grid.
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Figure 2: Initial data for u. The initial data for the pressure is p(x; 0) = 0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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−0.2
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0.1
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u
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Figure 3: The solution at time t=4. The solution is computed using the bound-
ary conditions of case 2 and a very �ne grid.
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Case 2. Here we give numerical evidence of the second order accuracy pre-
dicted by theory. We investigate this case by �rst discretizing with N = 180.
Then we re�ne by successively increasing N with a factor three, we compute
with N = 540, N = 1620 and N = 4820. The points

xn = n�x��x=2; n = 1; 2; : : : ; 20 �x = 0:1 (64)

then lie on grid points for our choice of N -values. We compare the di�erent
computed solutions in these points at time t = 4. We choose this time level to
ensure that the solution has been re�ected in both boundaries. The propagation
speed to the right is 1.25 length units/time unit and the speed to the left is 0.75
l.u/t.u . To determine the order of accuracy we use that

u
(h)
i � uexact(xi) + Chq:

Combining three solutions we can thus solve for q. We use discrete L2-norms

qexp =
1

ln 3
ln

ku(h) � u(h)k
ku(h=3) � u(h=9)k (65)

where we use the 20 points introduced above to de�ne the norm

kuk2 = �x
20X
n=1

jui(n)j2:

Here �x = L=20 and i(n) indicate that we take points with the same x-
coordinate, and thus di�erent i, when we re�ne. Our choice of test runs give
two values of qexp, these are given in table 4.2 where we also summarize the
results for the less accurate approximation of case 3.

A presentation of the computed solutions is shown in �gure 5 where u(x; 4) is
plotted. The full line is the computation with N = 4860. The coarser grids are
shown by symbols at the 20 x-values we used for the norm comparison above.
The crosses represent the solution with N = 1620, the rings: N = 540 and the
diamonds: N = 180.

Case 3. As mentioned above, this case is include to show the need for the
more accurate approximations of case 1 and 2. The computations here are
thus designed to verify the �rst order accuracy of the overall scheme in this
case. Just as for the second boundary condition we use the re�nement N =
180; 540; 1620; 4860. The resulting two values of qexp are given in table 4.2.
There we see that the value of qexp determined by the coarser grids is not very
close to one. This indicates that this scheme is not in the asymptotic region of
convergence for N = 180.
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Figure 4: Blow-up at the boundary, t = 1:16. Here we see that the boundary
conditions of case 1 gives an unstable di�erence scheme at an in�ow boundary,
while the numerical solution at the out�ow boundary is stable. The full line
is computed with the boundary conditions of case 1 as described above. The
dashed line is the converged solution computed with the boundary conditions
of case 2 with N = 1620.

Test cases
N -values used 2 3
{180,540,1620} 1.969 1.2428
{540,1620,4860} 2.018 0.9903

Table 1: The experimental order of accuracy qexp de�ned by formula (65). The
column �N -values used� indicates which computed solutions we insert in formula
(65). In test case 2 we see a good agreement with second order accuracy. In
test case 3 the �rst value is not very close to one. This indicates that, for this
scheme, the N -values f180; 540; 1620g are not large enough to ensure that we
get the asymptotic convergence rate.
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Figure 5: Convergence of the solution in case 2. The full line is the solution at
time t = 4 computed with N = 4860. The crosses represent the solution with
N = 1620, the rings: N = 540 and the diamonds: N = 180. The last three
solutions are shown in the gridpoints given by the expression (64).
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