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Abstract. First order errors downstream of shocks have been detected in computations with
higher order shock-capturing schemes in one and two dimensions. We use matched asymptotic
expansions to analyze the phenomenon for one dimensional time dependent hyperbolic systems and
show how to design the artificial viscosity term in order to avoid the first order error. Numerical
computations verify that second order accurate solutions are obtained.
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1. Introduction. In many cases, solutions of conservation laws obtained by
formally higher order methods are only first order accurate downstream of shocks;
see, e.g., [2], [5], and [4]. Basically, errors from the shock region follow outgoing
characteristics and pollute the solution downstream. Examples in one space dimension
in which this effect can be seen are steady-state calculations for systems with a source
term and time dependent calculations for systems with nonconstant solution. The
effect cannot be seen in one dimensional Riemann problems, because the exact global
conservation determines the postshock states.

This degeneration in accuracy is troublesome, even though the first order term
for reasonable mesh-sizes seems to be small in many cases. In some applications, e.g.,
aeroacoustics, where waves with small amplitude need to be computed accurately,
it is particularly important to achieve very high accuracy. It is also important to
understand the phenomenon more deeply in order to be able to design new methods
which do not suffer from this deficiency.

The aim of this paper is to show that the first order error can be understood by
matched asymptotic analysis of the modified equation and that the analysis can be
used to construct methods that yield second order accurate solutions.

We consider the case of systems with time dependent solutions. We assume that
the numerical solution can be modeled by a slightly viscous equation, a so-called
modified equation. In the shock layer, the coefficient of the viscous term is O(h),
where h is the grid size. We analyze the solution of the modified equation using
matched asymptotic expansions. It is assumed that an inner solution is valid in the
shock region, and an outer solution is valid elsewhere. The two solutions are matched
in a so-called matching zone. From the analysis, we see that generally the outer
solution contains a term of O(h) downstream of the shock. We also see that if the
inner solution satisfied a certain condition, the O(h) term would be eliminated. Based
on this observation, we design a matrix valued viscosity coefficient, which gives the
inner solution the right shape to eliminate the O(h) downstream term. We construct a
numerical scheme, using this matrix valued viscosity coefficient, and show in numerical
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experiments that the first order downstream error really is eliminated. However, we
do not claim to have constructed an efficient and robust numerical method which can
be used in realistic computations.

Similar analysis and construction of a matrix valued viscosity coefficient is done
in [8] for the case of a steady-state solution of a system with a source term. In [3],
matched asymptotic expansions for a problem that is very similar to the problem
studied in this paper are analyzed for other purposes. The phenomenon has also been
studied by other methods in [5] and [2]. In [5], analytic examples are constructed
where the numerical solution is only first order accurate downstream of a shock,
although the numerical scheme is formally second order. It is also shown that a
converging numerical method will yield solutions having the formal order of accuracy
in domains where no characteristics have passed through a shock. In [2], the first order
downstream error is numerically detected in solutions of a shock-sound interaction
problem solved by a fourth order ENO method. A scalar, linear equation is used to
model the problem. It can be seen that the solution of the model problem computed
with the fourth order ENO method behaves qualitatively differently depending on
whether the discontinuity is located on a cell interface or in the interior of a cell. In the
first case, the solution is fourth order in all of the domain, but in the second case the
solution is only first order downstream of the discontinuity. Based on this observation,
the numerical method is modified such that the shock position will always be on a
cell interface, and fourth order accuracy of the solution of the shock-sound interaction
problem is obtained both upstream and downstream. Also in [1], shock wave solutions
are analyzed, and it is concluded that the structure in the shock region is of crucial
importance for the solution outside the shock region. However, the analysis in [1]
concerns another numerical phenomenon and considers methods where the shock is
so narrow that it is not well modeled by the solution of a slightly viscous equation.

This paper is organized as follows. In section 2, we use asymptotic analysis to ex-
plain the first order downstream error and derive a matrix valued viscosity coefficient
that eliminates it. In section 3, we implement a numerical method using the matrix
valued viscosity coefficient and show in computations that the first order downstream
error is eliminated.

2. Analysis.

2.1. The inviscid problem. Consider the inviscid problem

ut + f(u)x = 0, 0 ≤ x ≤ xend,(1)

u(x, 0) = g(x),(2)

where u(x, t),g(x) ∈ Rn, f : Rn → Rn, and g is a piecewise smooth function. We
denote the Jacobian of the flux function f ′(u) by J(u). We assume that the eigenvalues
of J(u), denoted λi(u), i = 1, 2, . . . , n, are real and ordered in increasing order and
that the eigenvectors span Rn.

The initial and boundary conditions are chosen such that a shock forms at some
inner point s(t). At the shock, the solution satisfies the Rankine–Hugoniot condition

ṡ[u] = [f(u)].

Here [u] = u+ − u−, where u± = limδ→0+ u(s(t) ± δ, t). Corresponding notation for
other quantities will be used frequently.
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We assume that the shock is a classical Lax 1-shock, i.e.,

ṡ < λ−1 ,

λ+
1 < ṡ < λ

+
2 ,

and that the matrix

D =
(
S+
II [u]

)
(3)

is nonsingular. Here the columns of S+
II are the eigenvectors of J

+ corresponding to
the eigenvalues λ+

2 , λ
+
3 , . . . , λ

+
n .

To complete the problem we also need boundary conditions. At each boundary we
need as many boundary conditions as there are ingoing characteristics. We consider
pointwise boundary conditions, i.e., boundary conditions where the quantities involved
are prescribed pointwise at the boundary to some function of time. One example of
such boundary conditions is when the ingoing characteristic variables are prescribed
as a function of time. We call these boundary conditions mathematical boundary
conditions to distinguish them from numerical boundary conditions. For more details
concerning mathematical boundary conditions for hyperbolic equations, we refer to [9].

Remark. For 1-shocks and n-shocks there is just one downstream side. Hence, the
first order error appears on only one side of the shock. For other Lax shocks, both
sides of the shock are downstream sides, and first order errors appear on both sides.
The phenomenon can be analyzed by the same method in both cases, but the analysis
becomes less involved when only one side must be considered. Hence, here we analyze
a 1-shock.

2.2. The slightly viscous model. We intend to study the behavior of numer-
ical solutions of (1); i.e., we want to study the behavior of discrete functions that are
the solutions of difference equations. A useful technique for studying the behavior
of solutions to difference equations is to model the difference equation by a differen-
tial equation. Such a differential equation is often called a modified equation; see,
e.g., [11], [6]. Many numerical solutions of (1) can be viewed as higher order accurate
solutions of the modified equation

uε
t + f(uε)x = (Γu

ε
x)x, 0 ≤ x ≤ xend.

In the shock region, the modified equation can be shown to be valid only for weak
shocks; see, e.g., [7]. However, our computations indicate that it applies also for strong
shocks. In the neighborhood of a shock layer we must have Γ = O(h), where h is the
grid size, in order to avoid oscillations in the solution. Outside the shock region, Γ
can be smaller. In this paper we consider methods which can be modeled by

uε
t + f(uε)x = ε(φu

ε
x)x + c2ε

2uε
xx,(4)

where ε = c1h and c1 and c2 a scalar constants. Here φ is a smooth function of
(x− s(t))/ε satisfying

φ

(
x− s(t)
ε

)
=

{
1 for |x−s(t)

ε | ≤ K0,

0 for |x−s(t)
ε | ≥ K1,

where K0 < K1 are constants with K0 sufficiently large.
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We must also model the initial data. In computations, the shape of the shock
profile will depend on the method. If the initial data does not have exactly the right
shape, the profile will after a short time adjust and obtain the right shape. In this
process, small diffusion waves appear and flow out of the shock region, following the
outgoing characteristics; see [12] and the references therein. We are not interested
in studying this initial effect, and consequently we assume that the initial profile is
exactly the right profile for the method that is modeled. We specify the initial profile
in (12) and (13).

We consider the same mathematical boundary conditions for uε as for u. When
(1) is solved numerically, the mathematical boundary conditions must be augmented
by numerical boundary conditions. Correspondingly, additional boundary conditions
that model the numerical boundary conditions are needed for uε. Numerical boundary
conditions can introduce boundary layers in the solution. We consider numerical
boundary conditions where such effects are O(h2) or smaller, e.g., extrapolation of
outgoing characteristic variables.

We define the position of the viscous shock layer as the smallest x-value such that
uε(1)(x, t) = (u−(1) + u+(1))/2, and denote this point by xε; i.e., the viscous shock
position is defined as the point where the first component of the viscous solution uε

is halfway between the right and left states in the corresponding inviscid shock.

2.3. Asymptotic expansions. We assume the following: The solution of (4)
can be described by an inner solution, valid in the shock layer, and an outer solution,
valid elsewhere. These solutions can be expanded in powers of ε and matched in a
region of overlap. Also, the position of the shock layer can be expanded in ε. To
leading order, the outer solution is equal to the solution of the corresponding inviscid
problem.

We will now show that the outer solution downstream of the shock contains an
O(h) term; i.e., downstream, the solution of (4) is just a first order approximation
of the solution of the corresponding inviscid problem (1). There is no O(h) term
upstream.

The inner solution is expressed using the variables (x̃, t̃), where

x̃ =
x− s(t)
ε

,

t̃ = t.

Thus we have expansions of the form

Outer: uε ∼ u(x, t) + εu1(x, t) + ε
2u2(x, t) + · · · ,(5)

Inner: uε ∼ U0(x̃, t̃) + εU1(x̃, t̃) + ε
2U2(x̃, t̃) + · · · ,

Position: xε ∼ s(t) + εx1(t) + ε
2x2(t) + · · · .(6)

In [3], analysis of the asymptotic expansions for a very similar problem is pre-
sented, and also the existence of an asymptotic expansion is treated. For a detailed
presentation of matched asymptotic expansions, we refer to [10].

We will match the inner and the outer solutions at an upstream and a downstream
matching point, x−m(t) and x

+
m(t). The matching points must satisfy limε→0 |x±m−s| =

0. We will also need e∓x̃±
m = o(1). Choosing x±m = s∓ε log(ε), we have e∓x̃±

m = O(ε),
and both requirements are satisfied.

The viscous problem (4) models a method which is a second order accurate ap-
proximation of (1) away from the shock region. We claim that the solution will be
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second order accurate upstream of the shock, but in general only first order down-
stream. Hence we must show that u1 = 0 upstream and u1 �= 0 downstream. To
do this we need equations, initial data, and boundary conditions for u1. Via the
boundary conditions in the shock region, the outer solution will be coupled to the
inner solution. Specifically, to derive boundary conditions for u1 we need information
about U0. Hence, we derive equations and boundary conditions also for U0.

To obtain equations for the terms in the outer and inner expansions we substitute
the expansions into (4), Taylor expand, and collect terms multiplying the same power
of ε. The equation for U0 is

(φU0x̃)x̃ + ṡU0x̃ − f(U0)x̃ = 0, −∞ < x̃ <∞,(7)

where we have used that the relations between derivatives in x and t and derivatives
in x̃ and t̃ are

∂

∂x
=
1

ε

∂

∂x̃
,

∂

∂t
= − ṡ

ε

∂

∂x̃
+
∂

∂t̃
.

The inner and outer expansions of uε are assumed to be valid in a region of overlap
containing the matching points x±m. Hence, in the matching points, we must have
limε→0 |U0 − u| = 0, i.e.,

lim
ε→0

|U0(∓ log(ε), t̃)− u(s∓ ε log(ε), t)| = 0,

where we have used that x±m = s ∓ ε log(ε). Evaluating the limit, we arrive at the
matching conditions

U0(±∞, t̃) = u±(t),(8)

where U0(±∞, t̃) = limx̃→±∞ U0(x̃, t̃). Note that (7) and (8) determine the shape of
U0 but not the exact position of the shock layer.

We define Û(x̃, t̃) by

Ûx̃x̃ + ṡÛx̃ − f(Û)x̃ = 0, −∞ < x̃ <∞,(9)

Û(x̃, t̃) = u(s± 0, t̃) as x̃→ ±∞,(10)

Û(1)(0, t̃) = (u−(1) + u+(1))/2.(11)

We see that Û differs from U0 in two ways. First, Û is independent of φ, which
makes the equation for Û much easier to analyze. Second, the position of Û is fixed
at x̃ = 0. We note that both problems are independent of ε.

Let us first compare the shape of solutions of (7) and (8) with the shape of
solutions of (9) and (10), disregarding the difference in shock position. It is easy

to show that Û approaches its limit values exponentially fast as x̃ → ±∞. If one
constructs the equations for the difference Û−U0 and uses the exponential behavior
of Û, one can conclude that U0 also approaches its limit values exponentially fast
and that |Û−U0|∞ < e−K , where K is a large constant.

Since the position of the shock layer has the expansion (6), we have, except for
exponentially small terms, to leading order

U0(x̃, t̃) = Û(x̃− x1(t̃), t̃).
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Below we will derive an ordinary differential equation for x1(t̃). The initial value of
x1(t̃) is determined by the initial condition gε, which we now specify:

Outer region: gε(x) = g(x),(12)

Inner region: gε(x̃) = Û(x̃, 0).(13)

This is sufficient for our purposes. However, if one considers more terms in the inner
expansion, one would have to add the corresponding terms to (13). Note that (13)
means that x1(0) = 0.

The equation for u1 is

u1t + (f
′(u)u1)x = 0, x ∈ outer region,(14)

where we have used that φ = 0 in the outer region. We also need initial data and
boundary conditions for u1. The initial conditions for uε, (12), gives u1(x, 0) =
0. Since uε and u satisfy the same mathematical boundary conditions and since
boundary layer effects, due to numerical boundary conditions, are assumed to be
O(h2) or smaller, we conclude that all boundary conditions for u1 at x = 0 and
x = xend are homogeneous. At the upstream side of the shock, no further boundary
conditions are needed since all characteristics of (14) are going into the shock. Since u1

in the upstream region is the solution of a homogeneous equation with homogeneous
initial data and homogeneous boundary conditions, we have u1 ≡ 0 in the upstream
region. To determine u1 in the downstream region, we also need boundary conditions
at x = s+. We derive such boundary conditions in the next section.

2.4. Downstream boundary condition for the first order outer term.
Integration of the viscous equation (4) over the shock layer, from matching point x−m
to matching point x+

m, gives∫ x+
m

x−
m

uε
t dx+ [f(u

ε)]
x+
m

x−
m
= O(ε2),(15)

where we have used that φ vanishes in the matching regions. Using the outer expansion
of uε, we obtain

[f(uε)]
x+
m

x−
m
= [f(u)]

x+
m

x−
m
+ ε[J(u)u1]

x+
m

x−
m
+O(ε2).(16)

By integrating the inviscid (1) over the same interval, we obtain

[f(u)]
x+
m

x−
m
= ṡ[u]−

∫ s−

x−
m

ut dx−
∫ x+

m

s+
ut dx.(17)

Note that u is discontinuous at x = s(t) and the Rankine–Hugoniot condition applies
across the discontinuity. After taking into account that u1 ≡ 0 to the left of the shock
layer and introducing (16) and (17) into (15), we arrive at

ṡ[u] + εJ(u(x+
m, t))u1(x

+
m, t) + I1 = O(ε2),(18)

where we have introduced the notation

I1 =

∫ s−

x−
m

(uε
t − ut) dx+

∫ x+
m

s+
(uε

t − ut) dx.
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After Taylor expansion of u and u1 around x = s
+, (18) can be rewritten as

ṡ[u] + εJ(u(s+, t))u1(s
+, t) + I1 = o(ε).(19)

In the coordinate system (x̃, t̃) we have

I1 = −ṡA+ εI2,
where

A =

∫ 0−

x̃−
m

(uε − u)x̃ dx̃+

∫ x̃+
m

0+

(uε − u)x̃ dx̃,

I2 =

∫ 0−

x̃−
m

(uε − u)t̃ dx̃+

∫ x̃+
m

0+

(uε − u)t̃ dx̃.

Evaluating the integral yields

A = [u] + [uε − u]
x̃+
m

x̃−
m
.

By using the outer expansion of uε, taking into account that u1 is zero upstream and
Taylor expanding u1 around x = s

+, we obtain

A = [u] + εu+
1 + o(ε).

Next, consider I2. Using the inner expansion of u
ε, the Taylor expansion of u around

x = s± 0, and U0(x̃, t̃) = Û(x̃− x1, t̃), we obtain

I2 =

∫ 0

x̃−
m

(Û(x̃− x1, t̃)− u−)t̃ dx̃+
∫ x̃+

m

0

(Û(x̃− x1, t̃)− u+)t̃ dx̃+ o(1).

We rewrite I2 in two steps. First we make the substitution x̂ = x̃ − x1. Next, we
use the fact that Û approaches the limit values exponentially fast, and the matching
points are chosen such that e∓x̃±

m = O(ε). Hence we can extend the integration
interval to infinity, still keeping the remainder term o(1). We obtain

I2 = I3t̃ − (x1[u])t̃ + o(1),

where

I3(t̃) =

∫ 0

−∞
(Û(x̃, t̃)− u−) dx̃+

∫ ∞

0

(Û(x̃, t̃)− u+) dx̃.

Since I2, I3, x1, and [u] are functions of t̃ only, and since t̃ = t, this can be written as

I2(t) =
∂

∂t
(I3(t)− x1(t)[u](t)) + o(1).

Hence we have

I1 = −ṡ[u] + ε(−ṡu+
1 + I3t − (x1[u])t) + o(ε).

Substituting this into (19) and rearranging, we obtain

(J+ − ṡI)u+
1 − (x1[u])t + I3t = o(1).
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Hence the equations for u+
1 and x1(t) are

(J+ − ṡI)u+
1 (t)− (x1(t)[u])t = −I3t,(20)

x1(0) = 0.(21)

The two equations (20) and (21) constitute the boundary conditions for u1 at x = s
+.

To make (20) and (21) easier to understand, we rewrite them using the characteristic
variables of u1. Let wI be the characteristic variable of u1 going into the shock, and
wII be the characteristic variables going out of the shock. We then have

u+
1 = (S

+
I S

+
II)

(
w+

I

w+
II

)
,

where S+
I is the eigenvector of J

+ corresponding to the eigenvalue λ+
1 and the columns

of S+
II are the eigenvectors of J

+ corresponding to the eigenvalues λ+
2 , λ

+
3 , . . . , λ

+
n .

Expressed in the characteristic variables, the boundary condition is(
w+

II

ẋ1

)
=

(
Λ+
II − ṡI 0
0 −1

)−1

D−1
(−I3t + x1[u]t − S+

I (λ
+
1 − ṡ)w+

I

)
,(22)

x1(0) = 0,(23)

where Λ+
II = diag(λ

+
2 , λ

+
3 , . . . , λ

+
n ) and D is defined by (3).

By solving (22) and (23) for x1(t) and then substituting the solution into (22)
again, we can express w+

II in w
+
I and known functions of time. The energy method

(see [9]) shows that the equation, boundary conditions, and initial data for w con-
stitute a well-posed problem. Well-posedness implies that for any I3t there exists a
unique solution. The boundary condition for w at x = s+ is homogeneous if I3t ≡ 0,
and nonhomogeneous otherwise. Since w is a transformation of u1, the same applies
for u1.

It is now clear that I3t is crucial for the order of accuracy of u
ε. In the special

case I3t ≡ 0 we have u1 ≡ 0 in the downstream region, since u1 is the solution
of a homogeneous equation with homogeneous initial data and boundary conditions.
From (5) it then follows that uε is a second order accurate approximation of u.
However, in the general case, we have u1(x, t) �= 0 for x > s, and uε will be a first
order accurate approximation of u.

2.5. A matrix valued viscosity coefficient eliminating the O(h) error.
We will now investigate whether it is possible to design the viscosity term such that
the first order downstream error is eliminated and second order accurate solutions are
obtained. We consider a method which has the modified equation

uε
t + f(uε)x = ε(φ(x)E(u

ε)uε
x)x + c2ε

2uε
xx,(24)

where E(uε) is a matrix valued function. The solutions given by such a method can
be analyzed in the same way as in the previous sections. The only point which will
change in the analysis is the equation for Û. The new equation for Û is

(E(Û)Ûx̃)x̃ + ṡÛx̃ − f(Û)x̃ = 0,(25)

together with the conditions (10) and (11). The boundary condition for u1 at x = s
+

is still given by (22) and (23). If E(Û) can be chosen such that I3t ≡ 0, we will have
u1(x, t) ≡ 0 also in the downstream region.
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We note that if Û = Û∗ with

Û∗ = u− + γ(x̃)[u],(26)

where γ is a scalar smooth function, we obtain

I3 = cγ [u],

where

cγ =

∫ 0

−∞
γ(x̃) dx̃+

∫ ∞

0

(γ(x̃)− 1) dx̃.

If γ is antisymmetric around (0, 0.5) with

γ(−∞) = 0, γ′(−∞) = 0, γ(∞) = 1, γ′(∞) = 0,
then cγ = 0 and the boundary conditions (10) and (11) are satisfied.

It now remains to investigate whether it is possible to choose the matrix val-
ued function E(Û) such that Û∗ satisfies (25). Integrating (25) from −∞ to x̃ and

substituting Û∗ gives

γ′(x̃)E(Û∗)[u] = q(Û∗),(27)

where

q(U) = f(U)− f(u−)− ṡ(U− u−).

Note that E(Û) is a function of Û only, with no explicit x̃ dependence. Hence, in

order to solve (27) for E(Û), we must be able to express γ′ as a function of Û. This
is the case if we can express γ′ in terms of γ, and if γ is monotone. Now solving (27)
for E(Û∗) gives

E(Û∗) =
1

γ′
q(Û∗)qT (Û∗)

qT (Û∗)[u]
.(28)

To ensure that E(uε) is bounded as x̃→ ±∞ we must also require

lim
x̃→−∞

γ

γ′
=M−, lim

x̃→∞
γ − 1
γ′

=M+,

where |M±| <∞.
Note that in order to evaluate E(Û) the quantities ṡ, u−, and u+ must be known

or estimated.
Remark. Prescribing the viscous profile as above means that the solution follows a

straight line in phase space between the upstream and the downstream states. Many
other shapes of the solution, and hence, paths in phase space, would also be possible.
The properties of E(uε) will depend on which path is chosen. In order to obtain a
stable method, it is necessary that the total viscosity coefficient of the method be
positive definite. Since the term c2ε

2uε
xx is also present, it is sufficient that E(u

ε) be
positive semidefinite. We have found that the choice (28) is not positive semidefinite
for all problems. In order to design a robust numerical method, we must further
investigate what paths in phase space to use. Probably, this will differ depending on
the equation that is to be solved. However, we are interested only in showing that it
is possible to obtain second order accuracy also downstream, and for this purpose it
is good enough to use E(uε) defined by (28).



2140 MALIN SIKLOSI AND GUNILLA KREISS

3. Numerical experiments. In this section we test how the matrix valued
viscosity coefficient derived in the previous section behaves in computations, and
compare the results to corresponding computations with a scalar viscosity coefficient.

3.1. The test problems. We consider two test problems. In both problems,
the equations, domain, initial data, and boundary condition at x = xend are the same,
while the boundary condition at x = 0 differs.

We consider the Euler equations with Riemann initial data connected by a 1-
shock. That is, we consider (1) and (2) with

u =


 ρ
ρu
E


 , f(u) =


 ρu

ρu2 + p
u(E + p)


 , xend = 6,

u(x, 0) =

{
uL for x ≤ s0,
uR for x > s0,

(29)

where E and p are connected by the equation of state for a polytropic gas

E =
p

γ − 1 +
1

2
ρu2, γ = 1.4.

Since uL and uR are connected by a 1-shock, they are fully determined if ρL, uL, and
pL—the initial density, velocity, and pressure at x ≤ s0—and pR, the initial pressure
at x > s0, are specified. We have used ρL = 3, uL = 1.2, pL = 2, and pR = 5. This
gives a 1-shock with speed ≈ −0.26. We have not specified the initial shock position
s0 explicitly. In the computations, which will be further described below, we started
the computation at t = −1, with the profile (31) and the shock located at x = 1.75.
We computed for one time unit using u(0, t) = uL. In this way we obtained a good
initial profile. We do this to avoid pollution of the numerical solution by disturbances
due to nonperfect initial data. We have also used a rather large xend in order to avoid
reflection of such disturbances at the boundary x = xend.

At x = xend we have the boundary condition

R1(xend, t) = R1(xend, 0),

where R1 = u− 2c/(γ− 1) is the Riemann invariant connected to λ1, and c =
√
γp/ρ

is the local speed of sound.
At x = 0 the boundary condition is specified by

p(0, t) = pL(1 + αd(t)),

ρ(0, t) = ρL

(
p(0, t)

pL

)1/γ

,

u(0, t) = uL +
2

γ − 1(c(0, t)− cL)

(see [2]); i.e., a disturbance with amplitude α is introduced into the Riemann invariant
R1, while the two other Riemann invariants are held constant. If α is small, this
models an acoustic disturbance. We have considered the following two test problems:

Test problem 1: α = −0.2, d(t) = (1− e−5t) sin 2t;

Test problem 2: α = −0.1, d(t) = e−10(t−0.7)2 .

In the test problems, α is rather large, in order to make the first order effect more
visible.
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Fig. 1. The function φ, with s1 = 60 and s2 = 4.

3.2. The standard method. A common way to solve (1) is to discretize in
space using central differences and add artificial viscosity. To avoid oscillations in the
solution, the viscosity must be O(h) in the shock layer. Outside the shock region, the
viscosity can be smaller. We obtain a formally second order method, whose solutions
can be modeled by (4), using the semidiscrete scheme

(uj)t +D0f(uj) = κ1hD+φjD−uj + ζh
2D+D−uj .(30)

For test problem 1, we used κ2 = 1 and ζ = 20, and for test problem 2, we used
κ1 = 0.5 and ζ = 40. We discretized in space by introducing xj = jh, h = 1/N ,
j = 0, 1, . . . , N , where uj(t) is a grid function with uj(t) ≈ uε(xj , t). The system
of ODEs (30) was solved with the classical fourth order Runge–Kutta method. The
time step was chosen as k = 0.5h, i.e., CFL-number 0.5.

The switch φ was

φ(x) =

{
0.5 tanh((x− s(t) + s1h)/s2h) + 0.5, x ≤ s(t),
0.5 tanh((x− s(t)− s1h)/s2h) + 0.5, x > s(t),

with s1 = 60 and s2 = 4; see Figure 1. Generally, there will be approximately 2s1
points where φ > 0.5, and hence we have used a very wide switch. The parameter s2
determines how steep the gradient of φ is in the transition area. The shock position
s(t) was numerically determined.

At x = 6 we used the mathematical boundary condition

R1(6, t) = R1(6, 0)

and the numerical boundary conditions

Ri(6, t) = 2Ri(6− h, t)−Ri(6− 2h, t), i = 2, 3,

where the Riemann invariants R2 and R3 are

R2 =
p

ργ
, R3 = u+

2c

γ − 1 .

The initial data was obtained in the following way. We started the computations at
t = −1 with the profile (31) and the shock located at x = 1.75. We computed for one
time unit using u(0, t) = uL.

We will refer to this method as the standard method.
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3.3. The matrix viscosity method. We will now introduce a method which
can be modeled by (24), and we will refer to it as the matrix viscosity method. The
matrix viscosity method is the same as the standard method, except that (30) is
replaced by

(uj)t +D0f(uj) = κ2hD+φjEjD−uj + ζh
2D+D−uj .

Here Ej ≈ E(uε(xj , t)). Our implementation is described below. When solving test
problem 1, we used κ2 = 15, ζ = 20, and CFL-number 0.05. For test problem 2, we
used κ2 = 7, ζ = 40, and CFL-number 0.1.

To implement Ej in a robust and accurate way is difficult. The expression (28)
is not suited for computations. The solution changes rapidly in the shock layer from
being close to u− to being close to u+. The quantities ṡ, u−, and u+ must be
numerically determined; hence it is difficult to compute q with high accuracy. Also,
both q and γ′ tend rapidly to zero as x̃→ ±∞. However, for large x̃ we can linearize
the expression for q and find

q =

{
γ(J− − ṡI)[u] as x̃→ −∞,
(γ − 1)(J+ − ṡI)[u] as x̃→ ∞.

By the assumptions on γ we find

E =

{
E− as x̃→ −∞,
E+ as x̃→ ∞,

where

E± =M± (J
± − ṡI)[u][u]T (J± − ṡI)T
[u]T (J± − ṡI)T [u] .

We have used

γ(x̃) =
1

2
(tanh(x̃) + 1),

and hence we have M− = 1/2 and M+ = −1/2.
In the computations we have used

Ej = (1− γ(x̃j))E− + γ(x̃j)E+.

The quantities ṡ, u−, and u+ were numerically determined. First, we approximated
u± by simply taking the value of the numerical solution 20 points upstream and
downstream, respectively, of the approximated shock position. The shock speed ṡ
was approximated by

ṡapprox =

3∑
k=1

[f (k)(u)]
/ 3∑

k=1

[u(k)].

By adding the jumps in the different components of f(u) and dividing by the sum
of the jumps in the different components of u, we avoid introducing large errors in
ṡapprox due to rounding effects. This method for approximating u± and ṡ was used
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when test problem 1 was solved, and we obtain second order accuracy both upstream
and downstream. The results are further presented in section 3.4.

The approximation of u± mentioned above has an error which is small, but inde-
pendent of h. Hence, there will be a small O(1) error in our approximation of E(uε),
which will cause a small O(h) error in the solution. This first order effect became evi-
dent as we tried to solve test problem 2. In order to eliminate it, we needed to use an
estimate of u± with an error which is O(h). We obtain this if we make use of the fact
that the solution in the shock region follows a straight line in phase space between u−

and u+, and that the function γ determines how fast the solution is approaching the
limit values. We pick the value of the solution 2κ2 points upstream and downstream
of the approximate shock position. Since γ is known, we know how far from the end
states these values are and correct for this. The shock speed ṡ is still computed as
above. Test problem 2 was solved using this improved approximation of u±, and we
obtained second order accuracy both upstream and downstream.

The implementation of E(uε) described above requires a fixed number of compu-
tations, independent of h.

As initial profile at t = −1, we used

uj = uL + γ(x̃j)(uR − uL);(31)

i.e., in the shock region the profile satisfies (26). The initial profile (31) is used to avoid
diffusion waves in the solution (see section 2.2). Ideally, using this initial profile, no
such waves should appear. However, in our numerical computations we see diffusion
waves, but they are very small.

In computations not reported here, we have also tried to use

u(x,−1) =
{
uL for x ≤ 1.75,

uR for x > 1.75.
(32)

As expected, the profile rapidly adjusts, and diffusion waves appear and move out of
the shock region following outgoing characteristics. Also as expected, for the matrix
method, the diffusion waves are much larger with (32) as initial data than if (31) is
used. However, the order of accuracy of the solution behind the diffusion waves is the
same.

3.4. Results. We have numerically investigated the rate of convergence of the
standard method and of the matrix viscosity method by solving the two test problems
described in section 3.1 with successively refined space step.

First, consider test problem 1. In Figure 2 we see the solution at t = 1.25. We
have solved test problem 1 with successively halved space step h with both methods.
We started with h = 0.02. In all, we computed six solutions with the matrix viscosity
method and eight solutions with the standard method.

The computational order of accuracy, rh, was estimated in the standard way,

rh = log

( ||ρu4h − ρu2h||
||ρu2h − ρuh||

)/
log 2,

where ρuh denotes the discrete approximation of ρu with space step h, and the norm
used was the discrete L2-norm on the interval (0, 0.7) in the upstream region and
(1.4, 2.2) in the downstream region. In Table 1 we see that the standard method
is second order accurate upstream, but only first order accurate downstream of the
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Fig. 2. The solution of test problem 1 at t = 1.25. The solution is computed numerically using
the standard method with h = 1.5625 · 10−4.

Table 1
Estimated order of accuracy (rh) and absolute error (||eh||) for the ρu-component of the solution

of test problem 1, computed by the standard method.

Upstream Downstream
h rh ||eh|| rh ||eh||
1 · 10−2 1.5 · 10−3 3.1 · 10−2

5 · 10−3 3.92 1.0 · 10−4 2.17 6.9 · 10−3

2.5 · 10−3 2.38 1.9 · 10−5 2.15 1.6 · 10−3

1.25 · 10−3 2.00 4.6 · 10−6 1.46 5.7 · 10−4

6.25 · 10−4 2.00 1.2 · 10−6 1.20 2.5 · 10−4

3.125 · 10−4 2.00 2.9 · 10−7 1.08 1.2 · 10−4

1.5625 · 10−4 2.00 7.2 · 10−8 1.03 5.7 · 10−5

Table 2
Estimated order of accuracy (rh) and absolute error (||eh||) for the ρu-component of the solution

of test problem 1, computed by the matrix viscosity method.

Upstream Downstream
h rh ||eh|| rh ||eh||

1 · 10−2 6.3 · 10−3 1.8 · 10−2

5 · 10−3 4.71 2.4 · 10−4 1.93 4.8 · 10−3

2.5 · 10−3 3.68 1.9 · 10−5 1.96 1.2 · 10−3

1.25 · 10−3 2.01 4.6 · 10−6 2.00 3.1 · 10−4

6.25 · 10−4 2.00 1.2 · 10−6 1.99 7.7 · 10−5

shock. The matrix viscosity method is second order accurate, both upstream and
downstream of the shock; see Table 2.

In Figure 3 we see an overview of how the ρ-component of the solution converges,
and in Figure 4 we see a close-up. Note that the aim when designing the matrix
viscosity method was to avoid the first order error outside the shock region. Hence,
the matrix viscosity method performs better than the standard method for fine grids,
where the first order downstream error destroys the convergence rate of the standard
method. For coarse grids, however, the matrix viscosity method is not better.

If the order of accuracy is r, then the error in the ρu-component of the solution
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Fig. 3. Overview of the convergence of test problem 1. In the plots we see the ρ-component
of the solution. In both cases, the most viscous solution is computed using h = 0.02. Additional
solutions are computed using successively halved space step. For the standard method we see eight
different solutions, and for the matrix viscosity method six solutions.
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Fig. 4. Close-up of the convergence of the ρ-component for test problem 1. Solid lines: the
matrix viscosity method; dashed lines: the standard method. For both methods, the two coarsest
solutions are not seen in the close-up. As h is successively halved, the solutions from the matrix
viscosity method increase and the solutions from the standard method decrease.

can be estimated:

||eh|| = 1

2r − 1 ||u2h − uh||.

Hence, ||eh|| is computed with r = 2 in the upstream region for the standard method,
and both upstream and downstream for the matrix method. For the standard method
downstream of the shock, we have used r = 1. Again we use the discrete L2-norm, on
the same interval as above.

Corresponding computations for the ρ- and E-components of the solution give
qualitatively the same result.

By plotting the shock profile in phase space (see Figure 5), we see that the shock



2146 MALIN SIKLOSI AND GUNILLA KREISS

2.5
3

3.5
4

4.5
5

1.8

2

2.2

2.4

2.6

4

6

8

10

12

ρ u

ρ

E

Fig. 5. Numerical phase diagram of the shock profile computed by the matrix viscosity method
(o) and the standard method (+). Both solutions are computed using h = 6.25 · 10−4. The shock
profile computed by the matrix viscosity method follows a straight line in phase space quite closely.
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Fig. 6. The solution of test problem 2 at t = 1.9. The solution is computed numerically using
the standard method with h = 1.5625 · 10−4.

profile obtained by the matrix viscosity method approximately follows a straight line
between the shock states. The shock profile of the standard method clearly has
another shape.

Next, consider test problem 2. In Figure 6, we see the solution of test problem 2
at t = 1.9. Test problem 2 was also solved with successively halved space step h with
both methods, starting with h = 0.02. Again, in all we computed eight solutions
with the standard method and six solutions with the matrix viscosity method. In
Table 3, we see the estimated order of accuracy for the standard method. Again,
we have used the interval (0, 0.7) in the upstream region. In the downstream region
the discrete L2-norm was computed on the interval (1.1, 3). Upstream, the solution
is second order. Downstream the convergence is slower, and the order of accuracy is
slowly approaching one. In Table 4 we see that the matrix viscosity method is second
order accurate both upstream and downstream. In Figure 7 we see an overview of
how the ρ-component converges, and in Figure 8 we see a close-up. In phase space,
the shock profiles of the solutions of test problem 2 are qualitatively the same as in
Figure 5.
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Table 3
Estimated order of accuracy (rh) and absolute error (||eh||) for the ρu-component of the solution

of test problem 2, computed by the standard method.

Upstream Downstream
h rh ||eh|| rh ||eh||
1 · 10−2 6.2 · 10−4 5.0 · 10−2

5 · 10−3 7.93 2.6 · 10−6 1.95 1.3 · 10−2

2.5 · 10−3 2.58 4.3 · 10−7 1.96 3.3 · 10−3

1.25 · 10−3 2.33 8.5 · 10−8 1.91 8.8 · 10−4

6.25 · 10−4 2.01 2.1 · 10−8 1.88 2.4 · 10−4

3.125 · 10−4 2.00 5.3 · 10−9 1.69 7.4 · 10−5

1.5625 · 10−4 2.00 1.3 · 10−9 1.39 2.8 · 10−5

Table 4
Estimated order of accuracy (rh) and absolute error (||eh||) for the ρu-component of the solution

of test problem 2, computed by the matrix viscosity method.

Upstream Downstream
h rh ||eh|| rh ||eh||

1 · 10−2 1.5 · 10−3 2.1 · 10−2

5 · 10−3 4.24 7.9 · 10−5 2.06 4.9 · 10−3

2.5 · 10−3 8.01 3.1 · 10−7 2.33 9.8 · 10−4

1.25 · 10−3 1.86 8.5 · 10−8 2.23 2.1 · 10−4

6.25 · 10−4 2.01 2.1 · 10−8 2.00 5.2 · 10−5
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Fig. 7. Overview of the convergence of test problem 2. We see the ρ-component of the solution.
In both cases, the most viscous solution is computed using h = 0.02. Additional solutions are com-
puted using successively halved space step. For the standard method we see eight different solutions,
and for the matrix viscosity method six solutions.
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Fig. 8. Close-up of the convergence of the ρ-component for test problem 2. Solid lines: the
matrix viscosity method; dashed lines: the standard method. For both methods, the two coarsest
solutions are not seen in the close-up. As h is successively halved, the solutions from both methods
decrease.
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land, 1992.
[12] A. Szepessy and Z. Xin, Nonlinear stability of viscous shock waves, Arch. Ration. Mech. Anal.,

122 (1993), pp. 53–103.


