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Abstract. A technique to prove existence of solutions of non-linear ODEs is
presented. It is based on the fact that an approximate numerical solution is
the solution of a near-by problem. The aim is to show existence of stationary
viscous shock-wave solutions of hyperbolic conservation laws. The technique
is applied to viscous Burgers' equation. Equations for the di�erence between
the exact and the approximate solution are constructed. SuÆcient conditions
for existence of a solution of these equations are derived using a �xed point
argument. Estimates of the solution of the linearized ODE are needed to
derive the conditions. If the truncation error of the approximate solution is
small enough, the suÆcient conditions are satis�ed, and hence the existence
of an exact solution is proven.

1. Introduction

For many PDEs, approximate numerical solutions can be found, though existence
of a solution has not been proven. We are interested in viscous shock-wave solutions
of systems of conservation laws. Existence can only be shown in some special
cases, see for example Smoller [8], Freist�uhler and Szmolyan [1] or Freist�uhler and
Rohde [2]. We want to investigate whether it is possible to develop a technique
to prove existence using the fact that a computed approximate solution exists. In
this paper we only consider a stationary shock-wave solution of a scalar problem.

In such a technique, suÆcient conditions for existence can be derived for
a class of problems, but to evaluate the suÆcient conditions, computations are
needed for each single case. An existence proof of this form will consist of two
main parts:

� Derivation of suÆcient conditions on the approximation solution to guar-
antee the existence of an exact solution.

� Computation of an approximate solution that satis�es the conditions.

The �rst part consists of classical mathematical work. The evaluation of the con-
ditions in the second part of the proof is done numerically, since the approximate
solution is known numerically. To base a rigorous existence proof on numerically
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computed quantities, we must use some kind of rigorous numerics. By rigorous
numerics we mean numerical approximations with rigorous error bounds, see for
example [7]. In this paper, we have concentrated on the �rst part of the proof.
For the numerical evaluation of the conditions we have used standard methods.
Since we have no exact control of the errors we can not rigorously show that the
suÆcient conditions for existence are satis�ed.

We use the following method for the �rst part of the proof: Denote the ex-
act stationary solution by u(x) and the known approximate solution by v(x). The
approximate solution is constructed by a �nite di�erence method followed by inter-
polation to obtain a continuous function. We chose an interpolation method which
yields an interpolant with a suÆcient number of continuous derivatives. How many
derivatives that are needed depends on the problem. Next, substitute v(x) into the
di�erential equation of the stationary problem to get the truncation error, which
we call Æq(x), where Æ is positive constant. If the discrete method used to compute
v(x) has order of accuracy p we chose Æ = hp. We expect q(x) to be essentially
independent of h. We prove existence of u(x) by proving existence of w(x), where
u = v + Æw. The equations for w will be of the form

L(x; v)w = q(x)� Æp(x; v; w); (1)

where L is a linear di�erential operator and p is a nonlinear di�erential operator.
The operator L will be the linearization at v of the ODE. We construct a �xed
point iteration for w and derive suÆcient conditions for the iteration to converge to
a solution of (1). Hence, the suÆcient conditions for convergence of the �xed point
iteration will be suÆcient conditions for the existence of u(x). The conditions will
be satis�ed if jjÆqjj and jjÆqxjj are suÆciently small.

We are mainly interested in proving existence of stationary solutions of vis-
cous conservation laws

ut + g(u)x = uxx + F (x):

In cases where
d

dt

Z
u(x; t)dx = 0;

for the time dependent problem, the quantity
R
udx is determined by the initial

conditions. Hence, to make the solution of the stationary problem unique, we add
the condition Z

udx = C:

In this paper we consider periodic Burgers' equation, in the special case C = 0,
i.e. �

u2

2

�
x

= uxx + F (x); 0 � x � L; L > 1; (2a)

Z L

0

udx = 0; (2b)
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where F (x) = d
dxg(x) and g(x) is a periodic C2-function. Note that for this prob-

lem, existence is known. For scalar conservations laws in general, methods for
proving existence are fully developed. For systems, however, it is only known how
to prove existence in some special cases. We aim at applying this technique to
systems, and as a �rst test we apply it to the scalar problem (2).

In a recent paper Jiang and Yu [4] use a similar strategy for proving the exis-
tence of discrete stationary shock pro�les for conservative �nite di�erence schemes
which approximate scalar conservation laws

ut + f(u)x = 0: (3)

They use a computed numerical solution and a �xed point argument. Similarly
in Liu and Yu [6] existence of discrete weak pro�les for systems is proved using a
�xed point argument.

In section 2 we prove suÆcient conditions that an approximate solution must
satisfy to guarantee the existence of a solution of (2). In section 3 we compute an
approximate solution of (2) for F (x) = 0:1 sin(2�x=L); L = 30 which satis�es the
suÆcient conditions. Note that we not have used rigorous numerics.

2. SuÆcient Conditions for Existence

Let v(x) be an approximate solution of (2), i.e. v(x) is a known periodic function
that satis�es �

v2

2

�
x

= vxx + F (x)� Æq(x); 0 � x � L; L > 1; (4a)

Z L

0

vdx = 0; (4b)

for a scalar Æ > 0. De�ne w(x) by u = v + Æw. We have

(v + Æw)2

2
=

v2

2
+ Ævw +

Æ2w2

2
: (5)

De�ne the linear di�erential operator L by Lw = �wxx + (vw)x. From (2), (4)
and (5) we see that w must satisfy

Lw = q � Æ(
w2

2
)x; (6a)

Z L

0

wdx = 0; w periodic: (6b)

In this section we will prove a theorem that states conditions on v; Æ and
q that guarantee the existence of a solution of (6), and hence the existence of a
solution (2). Note that the conditions are suÆcient but not necessary. First, in
subsection 2.1 we make an exponential scaling of the problem, to transform the
problem to a form where the linear operator is self-adjoint. In subsection 2.2 we
prove a few auxiliary lemmas. Finally, in subsection 2.3 we derive criteria for the
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existence of a solution of the transformed problem by constructing a sequence
of functions, f ~wng; n = 0; 1; 2; : : :, and investigating under what conditions the
sequence will converge to the solution of the transformed problem.

2.1. Exponential Scaling

We de�ne the inner-product and norm of two L-periodic functions u = u(x) and
v = v(x) by

(u; v) =

Z L

0

u(x)v(x)dx; jjujj = (u; u)1=2:

We also use the norms

jjujj2Hp =

pX
j=0

jjd
ju

dxj
jj2;

and

juj2
1;p =

pX
j=0

jd
ju

dxj
j2
1
;

The operator L is not self-adjoint, but it can be transformed into a self-
adjoint operator. Generally, the transformation makes the transformed problem

non-periodic. This is avoided in the special case
R L
0
vdx = 0. Since better energy

estimates can be found for the transformed problem, we transform (6) and show
existence of a solution of the transformed problem.

De�ne

f(x) = exp

�
1

2

Z x

a

v(�)d�

�
;

where a is an arbitrary constant which doesn't e�ect the convergence criteria. We
chose a such that jf j1 = 1.

Also de�ne ~w(x) by w(x) = f(x) ~w(x). Then (6) is equivalent to

~L ~w = ~q � Æ

f

�
f2 ~w2

2

�
x

; (7a)

Z L

0

f ~w = 0; ~w periodic; (7b)

where

~L ~w = � ~wxx + c(x) ~w;

c(x) =
1

2

d

dx
v(x) +

1

4
v(x)2;

and ~q = q=f . The corresponding eigenvalue problem

~L�i = �i�i; i = 0; 1; 2; : : : (8a)

�i periodic; (8b)

is a periodic Sturm-Liouville system. Thus the eigenvalues are real, and the eigen-
functions form a complete set of orthogonal functions in L2, see e.g. [3]. Note that
�0 = f . Also, 0 = �0 < �1 � �2 � : : :, see [5].
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2.2. Auxiliary Lemmas

Lemma 2.1. Consider the linear problem

~L ~w = H

(�0; ~w) = 0; ~w periodic;

where jjH jjH1 < 1. Then there is a unique solution ~w 2 H3 such that jj ~wjj2H3 �
�jjH jj2 + �jjHxjj2, where

� =

4X
i=1

K2
i ;

� = 3;

K2
1 =

1

�21
;

K2
2 = K1 + jcj1K2

1 ;

K2
3 = 2(jcj2

1
K2
1 + 1);

K2
4 = 3(jcxj21K2

1 + jcj2
1
K2
2):

Proof. Using the eigenfunctions of (8) and the �rst condition in (7b), we express
the solution as

~w =
1X
n=1

1

�n
(H;�n)�n:

Thus

jj ~L�1jj2 � 1

�21
;

giving jj ~wjj2 � K2
1 jjH jj2. The identity

( ~w;H) = jj ~wxjj2 + ( ~w; c ~w)

yields jj ~wxjj2 � K2
2 jjH jj2. From

~wxx = c ~w �H (10)

we get jj ~wxxjj2 � K2
3 jjH jj2. Di�erentiation of (10) gives jj ~wxxxjj2 � K2

4 jjH jj2 +
�jjHxjj2. The proof of the lemma is complete. �

By straightforward energy estimates we prove the following two lemmas.

Lemma 2.2. The function

G( ~w(x)) = ~q(x) � Æ

f(x)

�
f(x)2 ~w(x)2

2

�
x

(11)
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satis�es jjGjj2 � c0jj~qjj2+Æ2K2
5 jj ~wjj4H3 and jjGxjj2 � c1jj~qxjj2+Æ2K2

6 jj ~wjj4H3 , where

c0 = 3;

c1 = 5;

K2
5 =

3

2
jvj2
1
+ 3;

K2
6 = 10jcj2

1
+

45

4
jvj2
1
+ 15:

Lemma 2.3. Assume that jj ~wj jj2H3 � z for j = m;n. Then ~G( ~wm; ~wn) = G( ~wm)�
G( ~wn) satis�es jj ~Gjj2 � Æ2R1jj ~wm � ~wnjj2H3 and jj ~Gxjj2 � Æ2R2jj ~wm � ~wnjj2H3 ,
where G( ~w) is de�ned in (11) and

R1 = (4jvj2
1
+ 8)z;

R2 = (24jcj1 + 27jvj2
1
+ 48)z:

Lemma 2.4. Consider the sequence

zn+1 = a+ bz2n; z0 = a; a; b > 0:

If 4ab < 1, the sequence converge to z,

z =
1�p

1� 4ab

2b
:

Also, zn � z.

The proof is simple and is omitted.

2.3. The Main Theorem

Theorem 2.5. Assume there exists a v(x) that satis�es (4). Let

z =
1�p

1� 4abÆ2

2bÆ2

a = �c0jj~qjj2 + �c1jj~qxjj2;
b = �K2

5 + �K2
6 ;

� = �R1 + �R2;

where c0; c1; �; �;K
2
5 ;K

2
6 ; R1 and R2 are de�ned in the auxiliary lemmas. If

4abÆ2 < 1 and Æ2� < 1; (12)

then there exists a solution of (2).

Proof. Consider the sequence of functions ~wn; n = 0; 1; 2; : : : where

~w0 = ~L�1~q;
~wn+1 = ~L�1

�
~q � Æ

f
(
~w2
n

2
)x

�
;

and ~wn satis�es (7b). We will use the result of the auxiliary lemmas to prove that
the sequence converges uniformly to the solution of (7). First, Lemma 2.1, 2.2
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and 2.4 are used to show that jj ~wnjjH3 is bounded. Then, Lemma 2.3 can be used
to show the uniform convergence.

Lemma 2.1 and 2.2 gives jj ~wn+1jj2H3 � a+ Æ2bjj ~wnjj4H3 . Applying Lemma 2.4
we get limn!1 jj ~wnjj2H3 � z and jj ~wnjj2H3 � z.

Consider the di�erence yn = ~wn+p � ~wn, where p � 0 is some arbitrary
integer. The sequence yn; n = 0; 1; 2; : : : satis�es

y0 = ~L�1(G( ~wp)�G( ~w0));

yn+1 = ~L�1(G( ~wn+p)�G( ~wn)) = ~L�1 ~G( ~wn+p; ~wn);

where G and ~G are de�ned in lemma 2.2 and 2.3. Since jj ~wnjjH3 is bounded,
we can apply Lemma 2.3. We get jjyn+1jj2H3 � Æ2�jjynjj2H3 , hence jjynjj2H3 �
(Æ2�)njjy0jj2H3 . If Æ2� < 1, then jjynjj2H3 is arbitrary small if n is large enough.
Sobolev inequalities give jynj21;2 � 3jjynjjH3 . According to the Cauchy criterion,
f ~wng and its two �rst derivatives converges uniformly to a solution ~w of (7). By
construction, u = v+ Æf ~w satis�es (2). This completes the proof of Theorem 2.5.

�

3. Numerical Results

We have performed computations to investigate whether it is possible to obtain
approximate solutions which satis�es the conditions of Theorem 2.5, and hence
prove existence of a solution of (2).

We computed the approximate solutions by a solving the time dependent
problem by method of lines to steady state. We used backward Euler in time and

discretized with constant step-size h in space, approximating d
dx by D0 and d2

dx2

by D+D�. To obtain a continuous function we interpolated the discrete solution
using Fourier interpolation. Next, we substituted the approximate solution into
the di�erential equation and obtained the truncation error Æq. The eigenvalue �1
was computed by solving the discrete eigenvalue problem, again using D0 and
D+D� to approximate derivatives with respect to x. Also the norms of q and v
were computed numerically.

In Figure 1 we show the result of computations for the problem (2) with
F (x) = 0:1sin(2�x=L) and L = 30. When 32 point/length unit where used in the
discrete solution the conditions (12) where satis�ed (4abÆ2 = 0:52 and Æ2� = 0:41),
and hence Theorem 2.5 applies.

Remark 3.1. Since we not have used rigorous numerics we have no exact control
of the errors, (due to e.g. rounding and truncation in the computing process) and
hence we have not rigorously shown that Theorem 2.5 applies.

Due to the exponential scaling, a large part of the mass of ~q(x) and ~qx(x) is
situated away from the shock. The mass away from the shock will grow exponen-
tially as L increases. Hence, it will require an exponentially growing computational
e�ort to obtain an approximate solution which can prove the existence of a solution



8 G. Kreiss and M. Siklosi

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

0 5 10 15 20 25 30
−0.1

−0.05

0

0.05

0.1

0 5 10 15 20 25 30
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Figure 1. Approximate solution of (2) for F (x) =
0:1sin(2�x=L) and L = 30. Step size h = 3:125 � 10�2 in the
�nite di�erence method gives 4abÆ2 = 0:52 and Æ2� = 0:41. Left:
v(x). Middle: ~q(x) (solid line), q(x) (dotted line). Right: ~qx(x)
(solid line), qx(x) (dotted line).

of (2). The exponential behavior arises since an exponential scaling is needed to
transform the operator to self-adjoint form. Possibly the e�ect of the exponential
scaling could be damped by using more than one eigenvalue in the estimate of
jj ~Ljj�1.

We have used Fourier interpolation to construct a continuous approximate
solution v(x). The interpolant constructed by Fourier interpolation becomes os-
cillatory when many points are used. When the number of interpolation points is
large, ~q and ~qx will be totally dominated by the oscillations, and the norm of ~q
and ~q will increase as the space step h is decreased. Obviously, to obtain useful
results for small h some other interpolation method must be used.
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