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Abstract. A technique to prove existence of solutions of non-linear ODEs is
presented. It is based on the fact that an approximate numerical solution is
the solution of a near-by problem. The aim is to show existence of stationary
viscous shock-wave solutions of hyperbolic conservation laws. The technique
is applied to viscous Burgers’ equation. Equations for the difference between
the exact and the approximate solution are constructed. Sufficient conditions
for existence of a solution of these equations are derived using a fixed point
argument. Estimates of the solution of the linearized ODE are needed to
derive the conditions. If the truncation error of the approximate solution is
small enough, the sufficient conditions are satisfied, and hence the existence
of an exact solution is proven.

1. Introduction

For many PDEs, approximate numerical solutions can be found, though existence
of a solution has not been proven. We are interested in viscous shock-wave solutions
of systems of conservation laws. Existence can only be shown in some special
cases, see for example Smoller [8], Freistiihler and Szmolyan [1] or Freistiihler and
Rohde [2]. We want to investigate whether it is possible to develop a technique
to prove existence using the fact that a computed approximate solution exists. In
this paper we only consider a stationary shock-wave solution of a scalar problem.

In such a technique, sufficient conditions for existence can be derived for
a class of problems, but to evaluate the sufficient conditions, computations are
needed for each single case. An existence proof of this form will consist of two
main parts:

e Derivation of sufficient conditions on the approximation solution to guar-

antee the existence of an exact solution.

e Computation of an approximate solution that satisfies the conditions.
The first part consists of classical mathematical work. The evaluation of the con-
ditions in the second part of the proof is done numerically, since the approximate
solution is known numerically. To base a rigorous existence proof on numerically
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computed quantities, we must use some kind of rigorous numerics. By rigorous
numerics we mean numerical approximations with rigorous error bounds, see for
example [7]. In this paper, we have concentrated on the first part of the proof.
For the numerical evaluation of the conditions we have used standard methods.
Since we have no exact control of the errors we can not rigorously show that the
sufficient conditions for existence are satisfied.

We use the following method for the first part of the proof: Denote the ex-
act stationary solution by u(z) and the known approximate solution by v(z). The
approximate solution is constructed by a finite difference method followed by inter-
polation to obtain a continuous function. We chose an interpolation method which
yields an interpolant with a sufficient number of continuous derivatives. How many
derivatives that are needed depends on the problem. Next, substitute v(z) into the
differential equation of the stationary problem to get the truncation error, which
we call dg(z), where 0 is positive constant. If the discrete method used to compute
v(z) has order of accuracy p we chose 6 = h?. We expect g(x) to be essentially
independent of h. We prove existence of u(x) by proving existence of w(x), where
u = v + dw. The equations for w will be of the form

L(z,v)w = q(z) = op(z, v, w), (1)

where L is a linear differential operator and p is a nonlinear differential operator.
The operator £ will be the linearization at v of the ODE. We construct a fixed
point iteration for w and derive sufficient conditions for the iteration to converge to
a solution of (1). Hence, the sufficient conditions for convergence of the fixed point
iteration will be sufficient conditions for the existence of u(x). The conditions will
be satisfied if ||d¢g|| and ||0¢,|| are sufficiently small.
We are mainly interested in proving existence of stationary solutions of vis-
cous conservation laws
Ut + g(u)z = Ugy + F(.CL')

In cases where

— [ u(z,t)de =0,

5 | u@0)
for the time dependent problem, the quantity [ udz is determined by the initial
conditions. Hence, to make the solution of the stationary problem unique, we add

the condition
/ udr = C.

In this paper we consider periodic Burgers’ equation, in the special case C' = 0,
ie.

2
(%) =uy, + F(z), 0<z<L, L>1, (2a)
&z

L
/ udx =0, (2b)
0
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where F(z) = L g(z) and g(z) is a periodic C*-function. Note that for this prob-
lem, existence is known. For scalar conservations laws in general, methods for
proving existence are fully developed. For systems, however, it is only known how
to prove existence in some special cases. We aim at applying this technique to
systems, and as a first test we apply it to the scalar problem (2).

In a recent paper Jiang and Yu [4] use a similar strategy for proving the exis-
tence of discrete stationary shock profiles for conservative finite difference schemes

which approximate scalar conservation laws

Ut + f(u)x =0. (3)
They use a computed numerical solution and a fixed point argument. Similarly
in Liu and Yu [6] existence of discrete weak profiles for systems is proved using a
fixed point argument.

In section 2 we prove sufficient conditions that an approximate solution must
satisfy to guarantee the existence of a solution of (2). In section 3 we compute an
approximate solution of (2) for F(z) = 0.1sin(27z/L), L = 30 which satisfies the
sufficient conditions. Note that we not have used rigorous numerics.

2. Sufficient Conditions for Existence

Let v(x) be an approximate solution of (2), i.e. v(x) is a known periodic function
that satisfies

2
<%> =V, + F(z) —dq(z), 0<z<L, L>1, (4a)

L
/ vdr =0, (4b)
0

for a scalar 0 > 0. Define w(z) by u = v + dw. We have

5 2 2 52 2
w:%+5vw+ = (5)

Define the linear differential operator £ by Lw = —wg, + (vw),. From (2), (4)
and (5) we see that w must satisfy

L’w:q—é(%z)w, (6a)

I
/ wdx =0, w periodic. (6b)
0

In this section we will prove a theorem that states conditions on v,d and
g that guarantee the existence of a solution of (6), and hence the existence of a
solution (2). Note that the conditions are sufficient but not necessary. First, in
subsection 2.1 we make an exponential scaling of the problem, to transform the
problem to a form where the linear operator is self-adjoint. In subsection 2.2 we
prove a few auxiliary lemmas. Finally, in subsection 2.3 we derive criteria for the
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existence of a solution of the transformed problem by constructing a sequence
of functions, {w,},n = 0,1,2,..., and investigating under what conditions the
sequence will converge to the solution of the transformed problem.

2.1. Exponential Scaling

We define the inner-product and norm of two L-periodic functions v = u(z) and
v =wv(x) by

L
(%mzﬂzmw@w,nw:mmW?

We also use the norms

llull7e = ZII ||2
and

jule Z@j :

The operator £ is not self—adpmt, but it can be transformed into a self-
adjoint operator. Generally, the transformation makes the transformed problem
non-periodic. This is avoided in the special case fOL vdzx = 0. Since better energy
estimates can be found for the transformed problem, we transform (6) and show
existence of a solution of the transformed problem.

Define .
o) =ean (5 [ oierte)

where a is an arbitrary constant which doesn’t effect the convergence criteria. We
chose a such that |f|e = 1.

Also define w(z) by w(z) = f(z)w(z). Then (6) is equivalent to
_ K} f2 72
Lib=q— ?< 5 >w, (7a)
L
/ fw =0, @ periodic, (7b)
0
where
L = —tlgy + c(z)b,
1d 1 9
c(z) = §d_v( )+ZU($) ;
and ¢ = ¢/ f. The corresponding eigenvalue problem
Lo =Ny, 1=0,1,2,... (8a)
¢; periodic, (8b)

is a periodic Sturm-Liouville system. Thus the eigenvalues are real, and the eigen-
functions form a complete set of orthogonal functions in Ly, see e.g. [3]. Note that
¢o=f.Also, 0 =X < A1 < X2 <., see [5].
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2.2. Auxiliary Lemmas

Lemma 2.1. Consider the linear problem
Lw=H
(¢o,w) =0, w periodic,

where ||H||g1 < oo. Then there is a unique solution w € H? such that ||0|[3; <
a|[H|* + BI[H.||*, where

4
a = EKZZ
i=1

g =3
1
K = =
1 )\%7
2 2
K2 = K1+|C|OOK1,
K3 = 2(c3 K7 +1),
K = 3(lcl2 BT + |el3 K3).

Proof. Using the eigenfunctions of (8) and the first condition in (7b), we express

the solution as
oo

1
N H ¢n n-
n:lA
Thus
1
£ < 53

[l

giving ||@||*> < K7||H||?. The identity
(@, H) = |[w]]* + (@, c)
vields |2 < K2||H|P. From
By = b — H (10)

we get |[w..]|? < K2||H||?. Differentiation of (10) gives ||...|[* < Ki||H|]* +
B||H||*. The proof of the lemma is complete. O

By straightforward energy estimates we prove the following two lemmas.

Lemma 2.2. The function

Glale) = 1(o) - 7 (f ()" () ) (1)
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satisfies || G|[* < col|ql[* +0° K3||@|[3s and ||Gol* < c1l|Gel[* + 0 K[ |35, where

Co = 3,
c1 = 5,
3
I(S2 = §|U|2o +3,
45
K2 = 10| + Z|v|§o + 15.

Lemma 2.3. Assume that ||0;||%s < z for j = m,n. Then G, w,) = G () —
G(wy) satisfies ||G|]* < 0?Ry||@Wm — Wnl|3s and ||Gel|* < 6 Ro||Wn — wnll%s,
where G(w) is defined in (11) and

R = (4|’ +8)z,
Ry = (24]c|oo + 27|v|% + 48)2.
Lemma 2.4. Consider the sequence
Zntl = a+bz72b, zo=a, a,b>0.
If 4ab < 1, the sequence converge to z,

L 1—+1—4ab
o 2b

Also, z, < z.
The proof is simple and is omitted.

2.3. The Main Theorem
Theorem 2.5. Assume there exists a v(x) that satisfies (4). Let

1—+v1—4abd?

== 2b02
a = OéCO||(7||2 +/601||q~z||27
b = OéK52 +ﬂKga

K = OéRl + ,BRQ,
where co,c1,a, 3, K2, K2, Ry and Ry are defined in the auziliary lemmas. If
4abs*> <1 and &6*k <1, (12)

then there exists a solution of (2).

Proof. Consider the sequence of functions w,,n = 0,1,2,... where
wy = Zil(j;
. iy . 0 02
aw = £ (7-5C5).

and W, satisfies (7b). We will use the result of the auxiliary lemmas to prove that
the sequence converges uniformly to the solution of (7). First, Lemma 2.1, 2.2
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and 2.4 are used to show that ||@w,|| g3 is bounded. Then, Lemma 2.3 can be used
to show the uniform convergence.

Lemma 2.1 and 2.2 gives ||Wy,41]|%s < a+ 62b||y,||}s. Applying Lemma 2.4
we get limy,_, o ||0n||3s < 2z and ||, ||%s < 2.

Consider the difference y, = Wp4+p — Wy, where p > 0 is some arbitrary

integer. The sequence y,,n = 0,1,2,... satisfies
yo = LHG(@,)— G()),
Yn+1 = E_l(G(wn+p) = G(wy)) = ﬁ_lG(UN)n-&-pa Wy),

where G and G are defined in lemma 2.2 and 2.3. Since ||w,||gs is bounded,
we can apply Lemma 2.3. We get |[ynt1||3s < 62K||yn|[3, hence |jyn||3s <
(626)™|yol|3s- If 6°k < 1, then ||y,||%s is arbitrary small if n is large enough.
Sobolev inequalities give |yn|2, 5 < 3||ynl|us. According to the Cauchy criterion,
{w,} and its two first derivatives converges uniformly to a solution @ of (7). By
construction, v = v + 0 f satisfies (2). This completes the proof of Theorem 2.5.

d

3. Numerical Results

We have performed computations to investigate whether it is possible to obtain
approximate solutions which satisfies the conditions of Theorem 2.5, and hence
prove existence of a solution of (2).

We computed the approximate solutions by a solving the time dependent
problem by method of lines to steady state. We used backward Euler in time and
discretized with constant step-size h in space, approximating % by Dy and %
by DyD_. To obtain a continuous function we interpolated the discrete solution
using Fourier interpolation. Next, we substituted the approximate solution into
the differential equation and obtained the truncation error dq. The eigenvalue \;
was computed by solving the discrete eigenvalue problem, again using Dy and
D, D_ to approximate derivatives with respect to z. Also the norms of ¢ and v
were computed numerically.

In Figure 1 we show the result of computations for the problem (2) with
F(z) = 0.1sin(2wz/L) and L = 30. When 32 point/length unit where used in the
discrete solution the conditions (12) where satisfied (4abé? = 0.52 and 6%k = 0.41),
and hence Theorem 2.5 applies.

Remark 3.1. Since we not have used rigorous numerics we have no evact control
of the errors, (due to e.g. rounding and truncation in the computing process) and
hence we have not rigorously shown that Theorem 2.5 applies.

Due to the exponential scaling, a large part of the mass of §(z) and §,(x) is
situated away from the shock. The mass away from the shock will grow exponen-
tially as L increases. Hence, it will require an exponentially growing computational
effort to obtain an approximate solution which can prove the existence of a solution
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Ficure 1. Approximate solution of (2) for F(z) =
0.1sin(2rz/L) and L = 30. Step size h = 3.125 - 10=2 in the
finite difference method gives 4abdé? = 0.52 and §?k = 0.41. Left:
v(z). Middle: ¢(z) (solid line), q(z) (dotted line). Right: §,(x)
(solid line), g, (z) (dotted line).

of (2). The exponential behavior arises since an exponential scaling is needed to
transform the operator to self-adjoint form. Possibly the effect of the exponential
scaling could be damped by using more than one eigenvalue in the estimate of
175 i

We have used Fourier interpolation to construct a continuous approximate
solution v(z). The interpolant constructed by Fourier interpolation becomes os-
cillatory when many points are used. When the number of interpolation points is
large, ¢ and ¢, will be totally dominated by the oscillations, and the norm of §
and ¢ will increase as the space step h is decreased. Obviously, to obtain useful
results for small A some other interpolation method must be used.
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