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Todays lecture

• More on the "best power" transform
• High leverage points vs. outliers
• Using H to find high leverage points
• Methods for finding influential points: Cook’s distance, DFBETAS,

and DFFITS
• Multicollinearity, definition, sources, and effects
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Finding the "correct power"
1 firstpower <- 0.1936642
2

3 alpha0 <- 1
4 alpha0list <- c(alpha0)
5 dt <- .01
6 T <- 1000
7

8 for (j in c(1:T)) {
9 df01.model0 <- lm(people_fully_vaccinated_per_hundred~I(

diabetes_prevalence^alpha0) + I(gdp_per_capita^
firstpower), data = df01)

10 df01.model1 <- lm(people_fully_vaccinated_per_hundred~I(
diabetes_prevalence^alpha0) + I(diabetes_prevalence^
alpha0*log(diabetes_prevalence)) + I(gdp_per_capita ^.1),
data = df01)

11

12

13 alpha0 <- alpha0 + dt* df01.model1$coefficients [[3]]/df01.
model0$coefficients [[2]]

14 alpha0list <- append(alpha0list ,c(alpha0))
15 }
16

17 plot(alpha0list ,type = "s", col="#703457")
18 cat("alpha: ", alpha0)
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Finding the "correct power"
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Finding the "correct power"

1 summary(lm(people_fully_vaccinated_per_hundred~ I(gdp_per_
capita ^.2) + I(diabetes_prevalence ^-4), data = df01) )

lm(formula = people_fully_vaccinated_per_hundred ~ I(gdp_per
_capita ^0.2) +
I(diabetes_prevalence ^-4), data = df01)

Residuals:
Min 1Q Median 3Q Max

-28.089 -7.267 -1.172 5.255 53.035

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.032 14.407 -3.959 0.000259 ***
I(gdp_per_capita ^0.2) 14.692 1.915 7.674 8.98e-10 ***
I(diabetes_prev^-4) 1663.632 1422.056 1.170 0.248076
---
Signif.codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 15.46 on 46 degrees of freedom
Multiple R-squared: 0.5667 ,^^ IAdjusted R-squared: 0.5479
F-statistic: 30.08 on 2 and 46 DF , p-value: 4.428e-09
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Finding the "correct power"

1 library("car")
2 boxTidwell(people_fully_vaccinated_per_hundred ~ gdp_per_

capita + diabetes_prevalence , data=df01 , tol =0.00001 ,
verbose=FALSE , max.iter =100)

MLE of lambda Score Statistic (z) Pr(>|z|)
gdp_per_capita 0.38862 -2.5506 0.01075 *
diabetes_prevalence 4.00294 1.4445 0.14860
---
Signif.codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

iterations = 15
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Finding the "correct power"

1 summary(lm(people_fully_vaccinated_per_hundred~ I(gdp_per_
capita ^.388) + I(diabetes_prevalence ^4), data = df01) )

Call:
lm(formula = people_fully_vaccinated_per_hundred ~ I(gdp_per

_capita ^0.388) + I(diabetes_prevalence ^4), data = df01)

Residuals:
Min 1Q Median 3Q Max

-37.755 -12.768 0.958 8.540 60.352

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.288e+01 6.586e+00 -1.956 0.0549 .
I(gdp_per_c^0.388) 1.277e+00 1.368e-01 9.335 1.48e-13 ***
I(diabetes_pr^4 ) 6.400e-05 2.568e-05 2.492 0.0153 *
---
Signif.codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 16.36 on 64 degrees of freedom
Multiple R-squared: 0.5826 , Adjusted R-squared: 0.5695
F-statistic: 44.66 on 2 and 64 DF , p-value: 7.231e-13

7 / 27



High leverage points vs. outliers

Influential points
Data point which affects the choice of model a lot.

High leverage points
Data points which exerts a lot of "pull" on the model.

Outliers
Data points whose response does not follow the general trend of the data.
Might be due to errors, fat tailed error distributions, etc. Often we want to
remove them, but must be transparent that this was done.
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Example
1 scaledgdp <- (df01$gdp_per_capita)^0.1
2 df01$scaled_gdp_per_capita <- scaledgdp
3

4 df01.model2 <- lm(people_fully_vaccinated_per_hundred~scaled
_gdp_per_capita , data = df01)
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Example
1 scaledgdp <- (df01$gdp_per_capita)^0.1
2 df01$scaled_gdp_per_capita <- scaledgdp
3

4 df01.model2 <- lm(people_fully_vaccinated_per_hundred~scaled
_gdp_per_capita , data = df01)
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Example

1 df <- read.csv("/Users/malin/Dropbox/Jobb/Teaching/KTH -
SF2930/data.csv", header = TRUE)

1 df0 <- df0 %>% group_by(location) %>% slice(n()) %>% ungroup
2

3 df0[df0$location =="Norway" ,8] <- 71.2
4 df0[df0$location =="Qatar" ,8] <- 85.2
5 ...

1 df00 <- df %>% group_by(location) %>% slice_max(people_fully
_vaccinated_per_hundred) %>% slice(n()) %>% ungroup

df0 df00 df00 corrected
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Using H to find high leverage points
Recall that H = X(XTX)−1XT .

The hat matrix and variance
Var(e) = σ2(I −H) and Var(ŷ) = σ2H.

Leverage
Since ŷ = Hy, hii is often interpreted as the amount of leverage exerted by yi
on ŷi.

The regressor variable hull
When the columns of X are normalized, hii = xT

i (X
TX)−1x is often used a

standardized measure of the distance between xi and the center of the space of
x-values.

Properties of the diagonal of H
• −1/n < hii ≤ 1 (0 < hii ≤ 1 if there is no intercept term)
• !

hii = rankH = rankX = k + 1, and hence h̄ = (k + 1)/n. (k instead
of k + 1 if there is no intercept)

High leverage points
If |h̄| < 1, we say that (xi, yi) is a high leverage point if hii > 2h̄.

Influential points
Observations with hii high are only influential if they also have high residuals.
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Example

1 df01.model2.extra <- df01[,c("continent","location","gdp_per
_capita")]

2 df01.model2.extra$leverage <- hatvalues(df01.model2)
3 df01.model2.extra$residualsstudentized <- rstudent(df01.

model2)
4

5 df01.model2.extra[which(df01.model2.extra[,"leverage"]>2*
hatmean) ,]

continent location gdp_per_capita leverage residualsstudentized

Asia Macao 104861.851 0.09901327 -1.2362750
Africa Mozambique 1136.103 0.12631339 0.6759785
Africa Rwanda 1854.211 0.09393737 0.9283018
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Cook’s distance

A measure which consider both the location of a point and its effect.

Cook’s distance

Di :=
(β̂(i) − β̂)TXTX(β̂(i) − β̂)

(k + 1)MSRes
=

r2i
k + 1

· hii

1− hii
=

(ŷ(i) − ŷ)T (ŷ(i) − ŷ)

(k + 1)MSRes

(Here ri is the internally studentized residual at i.)

Cutoff motivation
Di ∼ Fk+1,n−k−1. Let α be such that Fα,k+1,n−k−1 = Di. Then, heuristically,
deleting point i would move β̂ to β̂(i), which lies on the boundary of a
100α%-confidence region for β.

Influential points
We say that (xi, yi) is influential if Di > Fα0,k+1,n−k−1.
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Example
1 cooks.distance(df01.model2)
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DFBETAS

A measure of how much the ith observation affects β̂j .

DFBETAS

DFBETASij :=
β̂j − β̂j(i)"

S2
(i)(X

TX)−1(j, j)
=

Rji"
RT

j·Rj·

· ti√
1− hii

where R = (XTX)−1XT and ti is the externally studentized residual at i. Rj·
can be thought of as a measure of the leverage the points in the sample has on
β̂i.
DFBETASij measures how much β̂j changes if the ith observation is deleted,
rescaled by the standard deviation of β̂j . In other words, it measures the effect
observation i has on β̂j .

Suggested cutoff
|DFBETASij | > 2/

√
n.
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Example

1 df01.model2.extra$dfbetas0 <- dfbetas(df01.model2)[,1]
2 df01.model2.extra$dfbetas1 <- dfbetas(df01.model2)[,2]
3

4 threshold <- 2/sqrt(nrow(df01.model2.extra))
5 df01.model2.extra[which(df01.model2.extra[,"dfbetas0"]>

threshold | df01.model2.extra[,"dfbetas0"]< (-threshold)
) ,]

6 df01.model2.extra[which(df01.model2.extra[,"dfbetas1"]>
threshold | df01.model2.extra[,"dfbetas1"]< (-threshold)
) ,]

continent location dfbetas0 dfbeta1 residualsstudentized

Asia Cambodia 0.8540861 -0.6714375 3.980970
Asia Macao 0.3506097 -0.5641862 -1.236275

Africa Rwanda 0.2794231 0.2085492 -0.2678244

continent location dfbetas0 dfbeta1 residualsstudentized

Asia Cambodia 0.8540861 -0.8038152 3.980970
Asia Macao 0.3506097 -0.3695215 -1.236275
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Example

1 df01.model2.extra$dfbetas0 <- dfbetas(df01.model2)[,1]
2 df01.model2.extra$dfbetas1 <- dfbetas(df01.model2)[,2]
3

4 threshold <- 2/sqrt(nrow(df01.model2.extra))
5 df01.model2.extra[which(df01.model2.extra[,"dfbetas0"]>

threshold | df01.model2.extra[,"dfbetas0"]< (-threshold)
) ,]

6 df01.model2.extra[which(df01.model2.extra[,"dfbetas1"]>
threshold | df01.model2.extra[,"dfbetas1"]< (-threshold)
) ,]
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DFFITS

A measure of how much the ith observation affects ŷi.

DFFITS

DFFITSi :=
ŷi − ŷ(i)"
S2
(i)hii

=

#
hii

1− hii

$1/2

ti.

Suggested cutoff
|DFFITSi| > 2

%
(k + 1)/n.
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Example
1 dffits(df01.model2)

continent location dffits residualsstudentized

Asia Cambodia 0.9784329 3.980970
Asia Macao -0.4098289 -1.236275
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How to use these statistics?

• Cut-offs should be set so that we get a realistic number of influential
points.

• We should only remove data-points if we are sure they are outliers, which
needs investigation. No automatic test can show if a point is an outlier.
Rather, they detect points that could be outliers. We always need to
investigate such points further (manually) by e.g. looking more carefully
at the data, before w e classify them as outliers and remove them from
our data set.

• These methods are particularly useful for very large datasets, where we
cannot "see" the outliers directly in, e.g., plots.
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Multicollinearity

A dataset is said to exhibit multicollinearity if there is a new-linear relationship
between the regressors.

Linear dependence
There is a linear dependence in X if there is non-zero t1, t2, . . . , tn such that
t0X1· + t1X1· + . . .+ tkXk· = 0, i.e. such that Xt = 0.

Near linear dependence
There is multicollinearity in X if there is t ∕= 0 such that Xt ≈ 0.
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Effects of multicollinearity

What happens if there is a linear dependence?
Recall that the LSE (and MLE) of β̂ minimizes ‖y −Xβ‖22, and that the
minimum is a solution to XTXβ̂ = XTy.

• If there is a linear dependence in X, then X does not have full rank, and
hence XTX is not invertible.

• If XTX is not invertible, then XTXβ̂ = XTy has infinitely many
solutions. In other words, there exists infinitely many equally good choices
of regression coefficients β0,β1, . . .
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Effects of multicollinearity

What happens if there is almost a linear dependence?

• If there is almost a linear dependence in X, then detXTX is "small" but
non-zero. Hence (XTX)−1 exist, but has some very large entries.

• The equation XTXβ̂ = XTy will have a unique solution
β̂ = (XTX)−1XTy, but this solution will be very sensitive to small
changes in X, such as measurement errors or calculation errors made by
the computer. We will see this by noting that the confidence intervals for
βj , given by

βj = β̂j ± tα/2,n−k−1

%
σ̂2(XTX)−1(j, j)

become very large.
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Effects of multicollinearity

What happens if there is almost a linear dependence?

E
&
‖β̂ − β‖22

'
= E[(β̂ − β)T (β̂ − β)] =

(
E[(β̂j − βj)

2] =
(

Var β̂j

=
(

σ2(XTX)−1(j, j) = σ2 tr(XTX)−1 = σ2
( 1

λj

or equivalently,

E[‖β̂‖22] = ‖β‖22 + σ2 tr(XTX)−1 = ‖β‖22 + σ2
( 1

λj

If XTX is almost not invertible, then at least one of the eigenvalues of XTX
is going to be very close to zero, and hence at least one of the regression
coefficients is likely to be far from the correct value, and the vector of
regression coefficients will in general be too long.
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Example

1 df01 <- df01[!is.na(df01[,"diabetes_prevalence"]) ,]
2

3 df01$scaled_gdp_per_capita <- df01$gdp_per_capita ^.1
4 df01$scaled_diabetes_prevalence <- df01$diabetes_prevalence

^1.25
5

6 X <- data.matrix(df01[,c("scaled_gdp_per_capita", "scaled_
diabetes_prevalence")])

7 X <- cbind(ones=1,X);
8 XtX <- t(X)%*%X
9 eigen(XtX)$values

[1] 1.526829e+04 1.268325e+02 4.014914e-01
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Example

1 df01 <- df01[!is.na(df01[,"diabetes_prevalence"]) ,]
2

3 df01$scaled_gdp_per_capita <- df01$gdp_per_capita ^.1-mean(
df01$gdp_per_capita ^.1)

4 df01$scaled_gdp_per_capita <- df01$scaled_gdp_per_capita/
sqrt(sum((df01$scaled_gdp_per_capita)^2))

5

6 df01$scaled_diabetes_prevalence <- df01$diabetes_prevalence
^1.25 - mean(df01$diabetes_prevalence ^1.25)

7 df01$scaled_diabetes_prevalence <- df01$scaled_diabetes_
prevalence/sqrt(sum((df01$scaled_diabetes_prevalence)^2)
)

8

9 X <- data.matrix(df01[,c("scaled_gdp_per_capita", "scaled_
diabetes_prevalence")])

10

11 XtX <- t(X)%*%X
12

13 eigen(XtX)$values

[1] 1.2674516 0.7325484
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Example
1 df04 <- df00[!is.na(df00[,"total_cases_per_million"]) & !is.

na(df00[,"total_deaths_per_million"]) & !is.na(df00[,"
median_age"]) & !is.na(df00[,"gdp_per_capita"]) & !is.na
(df00[,"hospital_beds_per_thousand"]) & !is.na(df00[,"
people_fully_vaccinated_per_hundred"]) & !is.na(df00[,"
population_density"]) & !is.na(df00[,"male_smokers"]) &
!is.na(df00[,"diabetes_prevalence"]) & !is.na(df00[,"
life_expectancy"]) ,]

2

3

4 X <- data.matrix(df04[,c("total_cases_per_million","total_
deaths_per_million","median_age","gdp_per_capita" , "
hospital_beds_per_thousand","people_fully_vaccinated_per
_hundred", "population_density","male_smokers","life_
expectancy" ,"diabetes_prevalence")])

5 X <- scale(X)/sqrt(nrow(X) -1)
6

7 XtX <- t(X)%*%X
8

9 det(XtX)
10 eigen(XtX)$values

[1] 4.583689e-05
[1] 4.64521489 2.23059956 1.24750008 0.78877620 0.40032595

0.28476294 0.19479126 0.10200313 0.08174614 0.02427984
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Sources of multicollinearity

Constraints on the model or population
Some regressors are naturally related. In the covid data set, we for example
expects some things to be related, such as the number of covid cases, the
number of covid deaths and the median age of the population for example.

Model specification
If the range of xij is small, then the two vectors (xij)j and (x2

ij)j will be nearly
dependent.

An overdefined model
In some cases, it is easy to collect a lot of different regressors, but hard to get a
large sample (e.g. medical data). In the extreme case, when n < k + 1, we will
always get linear dependence.

The data collection method
This occur when we for some reason only sample points in a subset which
cause multicollinearity.
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