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Todays lecture

• Prediction and hidden extrapolation
• Rescaled residuals
• Testing the normality assumptions
• Different useful plots of residuals
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Prediction of new observations

Assume that we want to predict y0 at a point x0 = (x01, x02, . . . , x0n).

Then a point estimate is given by ŷ0 = xT
0 β̂, and a confidence interval is

given by

y0 = ŷ0 ± tα/2,n−k−1

!
σ̂2(1− xT

0 (X
TX)−1x0)
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Extrapolation

"We extrapolate when we predict a response y0 at a point x outside of the set
containing the regressors."
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Extrapolation
"We extrapolate when we predict a response y0 at a point x0 outside of the set
containing the regressors."
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Regressor variable hull (RVH)
The smallest convex set containing all the original data points.

Intrapolation vs extrapolation
Prediction at a data point inside the RVH is called interpolation, and prediction
outside the RVH is called extrapolation.

Hidden extrapolation
Extrapolation at points which are in the rectangular hull, but not in the RVH.
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Extrapolation

If we have many regressors, then it is hard to visualize the RVH. How can we
avoid hidden extrapolation?

Ellipsical approximations of the RVH
Note that

• xT
j (X

TX)−1xj = XT (XTX)−1X(j, j) = H(j, j)

• {x : xT (XTX)−1x ≤ t} is always an ellipse.

Hence the set

ERVH = {x : xT (XTX)−1x ≤ maxdiagH}

contains the RVH. Equivalently, ERVH is the smallest ellipse, centered at the
origin, which contains all the points in the RVH.

→ It is (much!) easier to check if a point belongs to ERVH than if it belongs
to RVH.

6 / 19



Extrapolation

Comparison of approximations of the RVH
!! If the columns of X are not centered, the can be too large.
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How to check that the model assumptions hold?

Which assumptions have we made?

• There is a linear relationship between the regressors and the response
• The errors εi have mean 0, variance σ2, and are uncorrelated
• The error ε ∼ N(0,σ2I).

Even though the fit of the model, using the statistics from previous lectures,
are good, this will be meaningless if the model assumptions are violated.
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Reminder on residuals

Residuals
Measures deviation between data and fit.

ei := yi − ŷi
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Properties of the residuals

• E[ei] = 0

• Var(ei) ≈
!

(ei−ē)2

n−k−1
= SSRes

n−k−1

• Not independent (this can be seen from the degree of freedom, which
should be n if they were independent).
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Rescaled residuals

Standardized residuals
Rescaled to have approximate variance 1. Makes sense to rescale to be able to
interpret residual size.

di :=
ei√

MSRes

=
ei!

SSRes/(n− k − 1)
. standardized

residuals
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Rescaled residuals

Studentized residuals
We previously showed that Cov e = σ2(I −H) (not diagonal, since correlated!)
and thus Var ei = σ2(1− hii). In particular, the variance is not the same for all
points! Approximating σ with MSRes, we define

ri :=
ei!

MSRes(1− hii)
=

ei"
MSRes(1− 1

n
− (xi−x̄)2

Sxx
)
. studentized

residuals
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Rescaled residuals

PRESS residuals
If observation i is an outlier (which thus violates the model assumptions), then
it is likely that removing the outlier will affect the fitted model. In other words,
if we let ŷ(i) be the predicted value at xi if we remove (xi, yi) from our data
set, then

e(i) = yi − ŷ(i) =
ei

1− hii

PRESS
residuals

should be large.

0.2 0.4 0.6 0.8 1.0

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.2 0.4 0.6 0.8 1.0

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

12 / 19



Rescaled residuals
Externally studentized residuals (R-student)
Recall that the studentized residuals were given by

ri := ei/
!

MSRes(1− hii). internally studentized
residuals

Since the ith oberservation was used to estimate σ2, we say that these are
internally studentized residuals.
If (xi, yi) is an outlier, then it might effect the estimate σ̂2 much. This
motivates removing this point when estimating σ2 before normalizing ei;

ti :=
ei"

S2
(i)(1− hii)

∼ tn−k−1−1. externally studentized
residuals
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How can we check the normality assumption?

If εi ∼ N(0,σ2), then we have

ti :=
ei!

S2
(i)

(1− hii)
∼ tn−k−1−1

n−k−2=∞∼ N(0, 1) externally studentized
residuals

1. Order the externally studentized residuals t(1) ≤ t(2) ≤ . . . t(n).

2. Sample n points from an independent normal distribution, and order them
z(1) ≤ z(2) ≤ . . . ≤ z(n).

3. Plot the points (z(1), t(1)), (z(2), t(2)), . . . , (z(n), t(n)).

If the normality assumption is correct, then these should lie on a straight line.
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y = x + ε
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y = x + |ε|2 sgn ε
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y = x+
!

|ε| sgn ε
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y = x + xε

0.2 0.4 0.6 0.8 1.0

-0.2

0.2

0.4

0.6

0.8

1.0

-2 -1 0 1 2

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y = x2 + ε

14 / 19



Example: Normality plot

1 plot(df00.model ,2)
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Example: Plot of residuals vs fitted values

If the model is correct, residuals should be evenly spread out in a
horisontal band.

1 pp <- ggplot(model00 , aes(x=fitted_values , y=residuals)) +
geom_point(aes(text=location),color="#703457") + theme_
bw()

2 ggplotly(pp , tooltip="text")
3

4 plot(df00.model ,1)

Data and fitted line. Residuals vs. fitted
values.

Residuals vs. fitted
values.
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Example: Plots of residuals vs regressors

1 pp <- ggplot(model00 , aes(x=gdp_per_capita , y=residuals)) +
geom_point(aes(text=location),color="#703457") + theme_
bw()

2 ggplotly(pp , tooltip="text")
3

4 pp <- ggplot(model00 , aes(x=hospital_beds_per_thousand , y=
residuals)) + geom_point(aes(text=location),color="
#703457") + theme_bw()

5 ggplotly(pp , tooltip="text")

Data and fitted line. Residuals vs. one of the
regressors included in the

model.

Residuals vs. one of the
regressors not included in

the model.
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The PRESS

Recall that the press residuals were computed as e(i) = yi − ŷ(i)
PRESS statistic:

PRESS =
#

(yi − ŷ(i))
2 =

#$
ej

1− hii

%2

A measure of how well the model can predict new data. In general, we want
PRESS to be small.

R2
prediction := 1− PRESS

SST

"the model explains about 100R2% of the variability in predicting new
observations
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Example

1 # the press residuals
2 pr <- resid(df00.model)/(1 - lm.influence(df00.model)$hat)
3 PRESS <- sum(pr^2)
4 PRESS
5

6 # the total sum of squares
7 SSt <- sum((df00$people_fully_vaccinated_per_hundred - mean(

df00$people_fully_vaccinated_per_hundred))^2)
8

9 # The R2_prediction statistic
10 R2 <- 1 - PRESS/SSt
11 R2

[1] 1792.621
[1] 0.6393454
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