

Live migration of Virtual Machines: Sustaining active TCP-sessions

IK1550 Internetworking

Final Paper

Examinator: Prof. Gerald Q. Maguire Jr.

Elis Kullberg

KTH - Royal Institute of Technology

Stockholm, September 3 2009

1

1. Introduction

Virtualization and the technology associated with it, has attracted quite a lot of attention during the

past years. As of 2009, it is estimated that the market for virtualized X86 server solutions will be

worth in the vicinity of $1.8 Billion [1]. So far, the main advantages presented by virtual solution

vendors have been related to server consolidation savings. Users of virtualization capable hardware

environments enjoy a greater “bang for the buck” since servers with low utilization can be virtualized

in the same physical machine. Guest-migration, the process of moving virtual guests between different

hardware platforms has been an area of research for more than 20 years [2, page 1]. The process of

“live” or “seamless” migrations of virtual machines (or processes) would add scalability to

virtualization solutions since virtual guests could be moved freely around different sets of hardware

depending on bandwidth, available CPU cycles and latency requirements, while optimizing costs for

the service provider. Migrations can also add redundancy to server environments by mirroring active

VMs on different sets of hardware. The health of a VM can be monitored via a tailored external active

monitoring solution or via passive monitoring in the host OS, and migrated at the first sign of trouble

[3, page 18].

The hardware-related issues for offering techniques for seamless live migrations of servers have more

or less been solved. Most solution vendors offer some kind of service for migrating guests between

different physical hosts seamlessly [4, page 7]. However, these solutions still struggle with network

related challenges, mainly the problem of keeping active TCP-sessions connected for an indefinite

time after migration. Most solutions today offer no integrated way to ensure that network connectivity

is unaffected by a server migration, thus all existing connections are lost for the end user every time a

server is migrated.

The purpose of this paper is to assess current methods for ensuring the continuity of TCP-sessions

during, and after, live migrations of virtual machines outside the original subnet. The primary purpose

of this type of functionality is to enable migrations of servers via wide area networks, but this

functionality is also useful for any type of service-provider with ambitions of offering scalable

virtualized services to clients by migrating virtual machines or processes between different types of

hardware in different geographical or network-topological environments.

The paper will present a summary of current methods for live-migrations, and also review the

feasibility and implications of future proposed solutions. The paper also features a test-implementation

of a current technique.

2

2. Theory: Research conducted so far

2.1 An introduction to virtualization

Reasons for why the market for virtualization-solutions has boomed, and buzzwords such as “the

cloud” are becoming increasingly used in boardrooms around the globe include reduced costs for

bandwidth and widely different costs for IT-competence in different parts of the globe. However, the

main reason for the leap is that the main reverse-salient for virtualization – the fact that the X86

architecture is notoriously hard to virtualize – has been solved thanks to CPU-instruction-extensions

from AMD and Intel, i.e AMD-V and Intel VT-x respectively [5, page 225]. These extensions make it

possible for hypervisors to run unmodified guest operating-systems with minimal overhead. Intel’s

and AMD’s respective 64-bit architecture extensions are also supported for virtualization (and

migration between the two platforms is possible).

In this paper I have decided to focus my research on a single virtualization technology, called KVM

(kernel based virtual machine). KVM is integrated into the linux kernel and leverages as much of the

existing kernel-functions as possible, improving performance and streamlining the development

process [6, page 37]. KVM is open source, well documented and free to use and modify. Practically a

user-space is set up and managed by a modified version of Qemu (a popular x86 emulator), and the

hardware-capabilities of the host are accessed though the /dev/kvm device [7, page 226]. A

disadvantage of KVM is that its (obviously) tied to the linux-platform. The KVM module is included

in the 2.6.x kernel, and features unique migration features [8].

Network support in KVM is inherited from the Qemu emulator and features a wide range of options. A

standard option is Usermode Network Stack, that simply embeds a implementation of IP, TCP, UDP,

DHCP, etc. within the Qemu process itself. This has been heavily criticized, but proved to be quite

functional for simple applications [9]. The most advanced way to handle network communication

between guests, the host, and the external network is to use the tun/tap kernel drivers. TAP-devices

work in a similar way as IP-tunnels, but on data-link level. Live migration is supported by KVM,

according to the following algorithm [10].

Setup > Transfer memory > Stop the guest > Transfer state > Continue the guest

In the “Transfer memory” phase almost all of the Virtual Machine’s virtual memory is transferred,

while the virtual machine is still running. In the “Transfer state”-phase the final parts of the memory

(that have been changed since the main transfer) are copied. The memory read/write instructions are

monitored via dirty page logging to enable this type of functionality.

KVM supports compression of the data-stream and several types of encryption. The migration process

does not feature any support for handling the network-related changes for the guest, and the process is

designed to take place in a separate subnet. Apart from automatically broadcasting a gratuitous ARP-

reply, all other network-related issues need to be handled by the administrator. This makes it a

challenge to migrate virtual guests to a new subnet, especially without resetting existing TCP-

connections. However, several solutions have been proposed.

2.2 Status quo

One “solution” would be to simply ignore the TCP-issue. Instead focus would only have to be put on

either giving the client a new IP address as fast as possible. This can be achieved by configuring a

DHCP server with short IP-lease times. The administrator could also use static IP’s and identical

3

network topologies before and after migration. However, this would result in all TCP-connections

being reset. For a FTP-server, ERP-server, or just a server being administered via a remote desktop-

protocol this would yield very disturbing results for the end user, since the communication would be

reset.

For desktop systems, low utilizations servers for backup-purposes a migration without any action to

ensure the protection of active sessions would be acceptable. For most modern applications however,

this is not the case.

2.3 Using Visualization Devices

A team of researchers from Nortel Labs, Northwestern University, and Universiteit van Amsterdam

released a paper in 2006 that addressed live migration of virtual systems [11, page 6]. Part of the paper

was dedicated to live migration over WANs. In order to keep TCP-sessions active, the network traffic

was tunneled to a “visualization device”. The visualization device has the same function as the home-

agent in the mobile IPv4 standard (described in section 2.5). It not migrated, has a static IP, and

forwards the traffic to the virtual machine via an IP-tunnel. In summary, IP-tunnels work by

encapsulating IP-packets in a new IP-packet (IP in IP) [12]. The visualization keeps track of the real IP

of virtual machine (for example by running a special service in the virtual operating system that sends

heartbeats to the visualization device). It encapsulates traffic for the virtual machine with packets

addressed to current host of the virtual machine. This host decapsulates the packets and delivers them

to the guest NIC. Traffic in the other direction works in the same way, it is sent via the tunnel and

seems to be delivered from the visualization device.

Since all external traffic goes through the visualization device, and is then dynamically redirected to

the current IP of the virtual machine, TCP-sessions do not have to be reinitialized when the virtual

machine migrates. The paper delivers a nice analogy where you think of an IP-tunnel, with one end

statically attached to the visualization device, and the other end dynamically attached to different hosts

as the virtual machine moves around.

In my opinion the main advantage of using a visualization device is simplicity. The host-system will

always connect to the same visualization-device making the scripting-process quite simple. Having a

static visualization device also makes route-optimization easier since data will always be forwarded

through a maximum of one tunnel. Disadvantages include the fact that if the visualization-device fails

the virtual machine will be rendered useless. Furthermore, if the route to the visualization device has a

low QoS, the visualization device would become a bottleneck. Therefore the geographical position of

the visualization device and the infrastructure supporting it is of great importance.

2.4 Using a “temporary redirection scheme”

In 2007 a group of researchers from Deutsche Telekom Laboratories published a paper with a different

approach. Instead of routing an IP-tunnel to a static visualization-device, an IP-tunnel is set up

between the old host and the new host. Old TCP-sessions will be forwarded via the IP-tunnel, while

new sessions are set up via the new host-IP [13, page 4]. This system is more flexible and redundant

than the system with visualization devices since no central node exists. Less hardware overhead is

required since no visualization device needs to exist. Disadvantages include the fact that this solution

would yield a complex net of IP tunnels if a server is migrated several times. Furthermore security

could be an issue in this type of implementation. The numerous tunnels could make the data-stream

venerable to packet sniffing; man-in-the-middle attacks, etc.; meaning that the use of encryption is

important. This can be handled via IPSec tunnels at the network layer level for content protection

4

though the tunnels. An even more secure approach is use SRTP [14] at the application level layer in

order to provide application to application security; this could work especially well in the case of

container based virtualization. However implementations such as the one conducted in this paper

feature the guest VM bridged virtually at the data link layer, meaning that the RTP-implementation

would have to be done within the Guest VM itself. If the end-user decides to run an unmodified

operating-system on his VM, he would not be getting encryption automatically, which is a problem.

The authors of the research-paper omit one very important factor in their method description. They fail

to describe how they implemented the separation of new TCP-connections established after migration

(that are associated with the new external IP), and the already active TCP-connections (that are

associated with the old IP) and routed through the tunnel. One alternative would be to use multiple

NICs in the guest, that would however require guest OS networking modifications during the

migration (for virtual interfaces), or a large number of NICs (emulated by KVM) for consecutive

migrations. It is very hard to increase the number of NICs after the virtual machine has been

initialized. The other alternative that I looked into when doing my test implementation was

state(policy)-routing using iptables, this only works for TCP, and would yield an immensely

complicated routing table in the host.

2.5 Mobile IPv4

The visualization implementation is very similar to mobile IPv4-protocol [15]. In the mobile IPv4-

protocol each mobile node has a home agent that receives all communication. When a mobile node

moves away from its home-node, it communicates with the foreign agent in the new network, and a

tunnel is set up between the home agent and foreign agent. For the virtualization-case the host-systems

could act as the home agent and foreign agents.

In order to work in compliance with the mobile IPv4 protocol however, some overhead-code (the

agents) is needed that could seem unnecessary in a situation where a single node is to be migrated. The

size of the overhead is however very manageable since Mobile IP is designed for use in mobile

hardware with limited capabilities. For most corporations, and service providers, an IPv4

implementation is beneficial, since a large number of migrations need to be supported, and code can

be reused. Finally, if the vendors of integrated virtualization-solutions decided to use mobile IPv4

instead of vendor-specific solutions, the horizon for migration between different hypervisors would

improve.

2.6 Mobile IPv6

Mobile IPv6 is has the ability to facilitate the migration of virtual machines [16]. To simply implement

IPV6 is not sufficient; in order to be able to migrate over the boundaries of subnets a home agent (with

an IPv6 address that the node is always reachable via) is needed. Otherwise connections will break

ungracefully when the node receives a new IPv6 address. Improvements compared to mobile IPv4

include NAT-related problems disappear, since there are enough (128-bit) addresses to give virtual

machines globally unique addresses. Depending on implementation, VMs are usually bridged with the

eth0 interface of the host, and therefore receive a node-adress within the same subnet as the host. The

simplest way for the virtual NIC to receive a new IPv6 address after migration is via DHCP with very

low lease-times. Furthermore, thanks to movement detection in the nodes via the IPv6 router

advertisement foreign agents are not needed; the data can be decapsulated directly in the mobile node.

Less noticeable improvements that would be beneficial in large scale implementations include better

support for route optimization and reverse tunneling.

5

There are however few up-to-date open source implementations of the mobile IPv6-protocol available.

The Helsinki Institute of Technology created the MIPL-implementation, that was designed for a

patched 2.4.22 Linux kernel [17]. The same university also has an open-source implementation named

Dynamics available for download, however with sketchy documentation [18]. On the BSD-front

support seems to be a bit better – NEC and Ericsson have implementations available via license [19].

With the proper research and implementations mobile IPv6 has the potential to be the standard

protocol for mobile nodes in the future. At the time of publication of this paper, the implementations

are not mature enough to support real applications.

2.7 HIP – Host identification protocol

A promising complement to Mobile IPv6 is the HIP protocol [20]. HIP addresses the problem of using

IP addresses as both locators in network topologies, and network interface identifiers. By adding a

host identification layer between the transport layer and network layer, it would be possible to identify

and track virtual (and mobile) nodes in a simpler way. TCP sessions would use the Host identity to

specify what interface (virtual machine) it wants to communicate with, and the underlying HIP-

infrastructure would translate this into the actual IP, that is used to locate the node in the network

topology. This seems to be a very promising standard, but at the same time it seems quite unfeasible

that the change of introducing a new layer in the internet-stack could be achieved within a reasonable

time-horizon. Even though HIP seems to be a very good idea, the Mobile IPv6 protocol has the

advantage of being a natural complement to the IPv6-standard that is reaching a rising acceptance

level (especially in Asia) [21, page 32-40]. The reason I took interest in the protocol is that it seems

that TKK have abandoned its mobile IPv6-implementation for infraHIP – a quite mature HIP

infrastructure implementation project [22].

3. Making it real – Implementation test

3.1 Justification / Goals

As stated before, quite a few implementations of WAN-migrations exist, with a varying degree of

documentation. In the interest of getting a better idea of the opportunities and challenges regarding

live migrations of virtual machines over wide area networks, I decided to create a simple test-

environment. The goal of the implementation was not to benchmark ground-breaking performance,

nor to design a Mobile IPv6-killer protocol. My aim was instead to demonstrate that exciting protocols

such as the redirection scheme proposed by Deutsche Telekom Labs, and Mobile IPv4/6 are both

feasible, realistic, and can be supported by existing network infrastructure and hypervisor technology.

3.2 Method

I decided to create the environment on a linux platform, using the KVM hypervisor. I chose the Linux

platform because of the superior tools for network configuration, the transparent open-source

architecture, and the opportunity to create powerful scripts efficiently. I chose KVM mainly because it

is well-documented open-source, has leading migration features [23], and has very customizable

networking features thanks to the Qemu front-end and the TUN/TAP drivers.

6

My initial plan was to script in python with the libvirt API python bindings [24]. I quickly decided to

abandon this plan because of lacking support for KVM’s migration features in the libvirt API, instead

I decided to use simple shell-scripting as much as possible. The issue of automating the interaction

with the KVM-console was solved by simply routing the Qemu console to a temporary unix-socket,

and using SOCAT [25] to send/receive commands.

The implementation requires at least two Intel VT-x (or AMD-V) enabled host-machines. My first

plan was to connect my hosts to the tele2-UMTS network and migrate over a wireless connection.

Sadly I had to abandon the idea; there are too many unknown factors in their network (including their

usage of NAT). Instead I decided to use a PC-router running Slackware Linux, interconnecting the two

machines, to represent an ISP.

The implementation logic is shown in Appendix A.2. Highlights include the heavy reliance on

bridging TAP-interfaces (link level tunnels) together with virtual bridges in order to create advanced

virtual network topologies. I decided to load the virtual routers from a virtual memory image (pseudo

migration), this improves start-up times significantly. Both the virtual routers and the virtual guests

use live-cd linux-technology, meaning that they need no hard-drive image access via nfs. The main

reason for this decision was not the issue of setting up a NFS-server. The qcow harddrive-image

format has a tendancy of becoming corrupt when the KVM-process is terminated (the analogy is

pulling the plug on a physical machine), which often happens in the testing-environment – thus it was

useful to not have an actual virtual hard disk drive. The full script code, and a detailed environment-

description is available in appendices A.3 and A.4.

The main difference between my implementation and the Deutsche telekom-implementation (that

served as a initial point of reference) is the fact that all the traffic related to the client is tunneled to the

initial host – I did not manage to implement policy routing in a manner sophisticated enough to allow

for the separation of established and new TCP-sessions.

3.3 Benchmarking results

After successfully scripting and setting up a successful environment, my first test was simple: to

migrate a virtual machine with an active SSH-session without resetting the connection. In order for the

session to be able to be sustained and reestablished directly from the guest at its new location source

routing is required, this was something I initially overlooked. After this tweak the migration worked

seamlessly from the virtual guest, TCP-sessions were sustained during migration.

After completing my initial goal I decided to benchmark the performance and availability of the guest

using iperf [26] in tcp-mode. I used an extra virtual guest in the initial host as a client, and the

migrating guest as the server.

7

Figure 1: Virtual Guest throughput (Kbit/s) as a function of time (s)

The large downtime (between point B and C) can be traced to the fact that the tunnels and routes are

initialized directly following migration decision (at point A), combined with the time required for the

network topology changes to take effect. I found no simple, reliable way to get a migration

confirmation from the KVM monitor. The bad throughput after migration (at point D) is most

probably a consequence of the questionable NICs used in the PC-router (acquired pre-2001,

benchmarked to around 10Mbit/s bandwidth). More detailed output is available in Appendix A.5.

3.4 Implementation Analysis

The implementation does what it is supposed to do, even though the performance is not earth-

shattering. It demonstrates that seamless live migrations of virtual guest operating systems while

maintaining active TCP-connections are quite feasible, and also quite easy to implement in a scalable

manner. I’ve been thinking quite about a lot about ways to minimize the server downtime, such as

calculating an estimated migration time1, flooding the socket with info-requests, etc. Asynchronous

notification is not an option since KVM does fails to route any console output to the socket upon

successful (or failed) migration, the VM is simply paused if a successful migration takes place. The

purpose of the implementation was a proof of concept, so I will leave this as a recommendation for

further study (or API-binding project), along with an encryption implementation.

The scalability of this implementation should be quite good, compared to DNAT/SNAT-solutions that

could work equally well in a small environment. It also has the potential to follow the mobile IPV4-

protocol more strictly with further modifications. During the process of designing and scripting the

implementation I encountered several problems, almost all of them related to NAT. After going

through this process I have been convinced that an IPv6-transition is crucial for the continued

development of the internet.

1
 Iissue a “sleep”-command to the script after migration, for a time period equaling (guest RAM-size / NIC-throughput).

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20 40 60 80 100 120

A

B C

D

8

4. Conclusion

After reviewing the literature, and implementing my test, I am convinced that live migration of virtual

machines with sustained TCP-connectivity is a problem that can be solved quite easily. However, for

this type of migration to get a higher level of acceptance and utilization, more research and

development needs to be conducted. There are two areas of research I believe crucial for continued

innovation within the field. A standardized and accessible solution for the issue of separating outgoing

traffic, needs to be developed (switching to mobile IPv6 may be a good solution). More importantly a

much more robust and hypervisor independent virtualization API needs to be developed and

maintained. In my opinion, the libvirt API does not offer the capabilities and configurability needed to

be able to program an efficient migration-script, because of insufficient bindings. The API is however

a step in the right direction, and the ability for programmers to make simple but robust hypervisor-

independent GUI-frontends and scripts will make the live-migration process much more accessible to

system administrators and the general public in the future. If organizations like SUN Microsystems

(that are already heavily involved in open source development of their Virtualbox decided to) endorse

and support a single platform-independent API, the standardization process could perhaps be speeded

up. Access to a suitable API could have optimized the downtime of my implementation considerably.

It is interesting that the problem of mobility – that has been addressed by mobile service providers for

decades – is now beginning to be applicable to virtual machines (VMs) and processes moving between

physical hosts. The fact that IP-addresses are used both as locators in the network-topology and

interface identifiers, is becoming a problem (once again). The IPv6-solution is a step in the right

direction thanks to the huge increase in the number of available IP addresses. However, I believe that

the HIP-layer has quite a few advantages that are needed for a streamlined development-process of

cloud services, and that this protocol is worth keeping an eye on during the upcoming years.

The development of cloud-systems such as Microsoft’s Azure and Amazon EC2 represents only the

tip of the ice berg regarding what is possible thanks to VM (and process) migration. In the future, I

believe that CPU-cycles and bandwidth will be commodities, just like electricity – with clear and

important market prices. Combined with SaaS-offerings2 and SOA-service3 contracts, the “main

thought of the year” for the past few years– that our computing needs will be moving into “the cloud”,

might become a reality in the upcoming decade.

2
 Software as a Service – offering software online for a license fee.

3
 Service Oriented Architecture Service Contract – Standardized contracts for the specifications of services.

9

Appendix A.1 – References and Software used

A1.1 References

[1] www.computerworld.co.nz, 2009-08-30

http://computerworld.co.nz/news.nsf/tech/EDAD5A16489D8FB4CC25721B0006B9EA

[2] G. Q. Maguire Jr. and J.M Smith, Process migration: Effects on Scientific Computations,

Columbia University, New York, 1988

[3] Peterström Dan, IP Multimedia for Municipalities: The supporting architecture, Royal Institute of

Technology, Stockholm, August 2009

[4] Christopher Beal, xVM Server and xVM Virtualbox, (published online by Sun Microsystems),
http://opensolaris.org/os/project/losug/files/October2008/xVM-losug-oct-08.pdf 2009-08-30

[5] Kivity Avi, Kamay Yaniv, Laor Dor, Lublin Uri, Ligouri Anthony, “KVM: the Linux Virtual
Machine Monitor” published in proceedings of the Linux Symposium Volume one, Ottawa Canada,
2007

[6] Shah Amit, “Deep Virtue: Kernel Based Virtualization with KVM”, published in Linux Magazine,

Munich, 2009

[7]Kivity Avi, Kamay Yaniv, Laor Dor, Lublin Uri, Ligouri Anthony, “KVM: the Linux Virtual
Machine Monitor” published in proceedings of the Linux Symposium Volume one, Ottawa Canada,
2007

[8] www.linux-kvm.org, 2009-08-30

www.linux-kvm.org/page/Migration

[9] www.nongnu.com, 2009-08-30

www.nongnu.com/qemu

[10] www.linux-kvm.org, 2009-08-30

www.linux-kvm.org/page/Migration

[11] Travostino Franco, Daspit Paul, Gammans Leon, Joj Chetan, de Laat Cees, Mambretti Joe,
Monga Inder, van Oudenaarde Bas, Raghunath Satish, Wang Phil, “Seamless Live Migration of
Virtual machines over the MAN/WAN”, published in “Future Generation computer systems” USA,
2006

[12] lartc.org, 2009-08-30

http://lartc.org/howto/lartc.tunnel.ip-ip.html

[13] Bradford Robert, Kotsovinos Evangelos, Feldmann Anja, Schiölberg Harald, Live Wide-Area

Migration of Virtual Machines Including Local Persistent State, Deuche Telecom Laboratories, 2006

[14] Bauger M, Mcgrew D, Naslund M, Carrara E, Norrman K, Ericsson Research, Cisco Systems Inc,
“The Secure Real Time Transport Protocol”, RFC 3711, Stockholm, Sweden, NYC, USA, 2004
 http://www.ietf.org/rfc/rfc3711.txt 2009-08-30

[15] Perkins C (Ed.), “IP Mobility support for IPv4”, RFC 3344, Mountain view USA, 2002
http://www.ietf.org/rfc/rfc3344.txt, 2009-08-30

10

[16] Johnson D, Perkins C, Arkko J, “Mobility support for IPv6”, RFC 3775 Houston USA, Mountain
View, USA, Jorvas, Finland, 2004
 http://www.ietf.org/rfc/rfc3775.txt, 2009-08-30

[17] http://fivedots.coe.psu.ac.th, 2009-08-31
http://fivedots.coe.psu.ac.th/~ple/ipv6/mipl/mipl-howto.html#setup

[18] dynamics.sourceforge.net, 2009-08-30
http://dynamics.sourceforge.net

[19] www.eurescom.de, 2009-08-30

http://www.eurescom.de/~public-web-deliverables/P1100-series/P1113/D1/41_mip.html

[20] Moscowitz R, Nikander P, Jokela P, Henderson T, ”Host Identity Protocol”, RFC5201, Jorvas,
Finland, Seattle, USA, 2008
http://www.ietf.org/rfc/rfc5201.txt, 2009-08-31

[21] Hain Tony (Cisco Systems), “IPv6 Acceptance”, published at IPv6 Forum Beijing, China, 2008
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6553/Tony_Hain_IPv6Forum_200804
151.pdf, 2008-08-31

[22] Infrahip.hiit.fi, 2009-08-30
http://infrahip.hiit.fi/index.php?index=how

[23] www.linux-kvm.org, 2009-08-30

www.linux-kvm.org/page/HOWTO

[24] Libvirt – Virtualization API

www.libvirt.org, 2009-08-30

[25] Socat – Multipurpose relay
www.dest-unreach.org/socat, 2009-08-30

[26] iperf – measure TCP performance
http://sourceforge.net/projects 2009-08-30

A.1.2 Software Used

Ubuntu Linux – Debian Based Linux Distrobution

www.ubuntu.org, 2009-08-30

Knoppix Security Tools Edition – Live CD with useful network tools

www.knoppix-std.org 2009-08-30

Scientific Linux – Live CD with iperf pre-installed

www.scientificlinux.com 2009-08-30

Damn Small Linux – Live CD, smaller than 50Mb

www.damnsmalllinux.org, 2009-08-30

KVM – Kernel-based Virtual Machine

www.linux-kvm.org, 2009-08-30

11

iperf – measure TCP performance
http://sourceforge.net/projects 2009-08-30

TUN/TAP Kernel Drivers
http://vtun.sourceforge.net/tun 2009-08-30

12

Appendix A.2 Implementation Logic

13

Appendix A.3 Network Topology

A.3.1 Before Migration

PC Switch (to represent ISP)

Hostname: Madde, os: Slackware 12.2

eth0: 80.216.x.x

eth1: 172.0.0.1/24

eth2: 172.0.1.1/24

Virtual router, knoppix

eth0:172.0.0.249

Eth1: 10.0.0.1/24

Virtual router, knoppix

eth0:172.0.1.249

Eth1: 10.0.0.1/24

Virtual guest

eth0: 10.0.0..41

(just an example guesst)

KVM-instance

(listning on host port 4444)

Virtual guest

eth0: 10.0.0..40

(just an example guesst)

Virtual guest

eth0: 10.0.0.2

(DSL for quick migration)

PC Host #1

Hostname: Mange, os: Ubuntu 9.04

br0: 172.0.0.250

PC Host #2

Hostname: Malin, os: Ubuntu 9.04

br0: 172.0.1.250

Domain of Mange Domain of Malin

14

A.3.2 After migration

A.3.3 Hardware Used

Malin

Intel Core2Quad Q9400

4 GB RAM (only 3.2 GB addressed by OS)

Asus P5Q-motherboard

Nvidia-graphics

Ubuntu 9.04 – 32bit

Mange (Dell XPS M1330)

Intel Core2Duo T7250

2GB RAM

Generic Dell motherboard

Nvidia Graphics

Ubuntu 9.04 – 32bit

Mange

Intel Celeron 300 Mhz @ 466 Mhz

64 MB RAM

Unknown motherboard

Integrated Graphics

Debian Linux (minimal installation)

2x NIC – Unknown vendors and speed

Apendix 4 – Script

#!/bin/sh

Live migration script for KTH course IK1550 (Internetworking)

Elis Kullberg, August 2009

Appendix to final report

Before starting

-br0 needs to be configured in /etc/network/interfaces (and bridged with your physical nic)

-tun/tap and socat packages needed

-rp_filter should be off (echo 0 > /proc/sys/net/ipv4/conf/all/rp_filter as root)

-ip-forward should be activated (echo 1 > /proc/sys/net/ipv4/ip_forward as root)

-Script tested in Ubuntu 9.04

-Intel-VX or AMV-V required... otherwise change "kvm"-commands to qemu (significantly lowers performance)

-script designed to be run with root-privelege

Example router-images and summary of configuration available on www.eliskullverg.com/livemigrationdocs

A Thank You to the Qemu support forum (http://qemu-forum.ipi.fi/) and the Ubuntu user community (http://help.ubuntu.com)

Available under Creative Commons ShareAlike 3.0 License - http://creativecommons.org/licenses/by-sa/3.0/

USERID=`whoami`

startup()

{

Thanks to author of https://help.ubuntu.com/community/KVM/Directly

Add TAP-devices, belonging to active user

Initialize two TAP-devices belonging to me

Also initialize one TAP-device for each virtual guest

iface1=`tunctl -b -u $USERID`

iface2=`tunctl -b -u $USERID`

iface3=`tunctl -b -u $USERID`

iface5=`tunctl -b -u $USERID`

Add first tap-device to existing bridge (connected to the world)

ifconfig $iface1 0.0.0.0 up

brctl addif br0 $iface1

Add second TAP-device to a new bridge

ifconfig $iface2 0.0.0.0 up

brctl addbr br1

ifconfig br1 0.0.0.1 up

brctl addif br1 $iface2

Add more TAP-devices (depending on desired number of guests)

ifconfig $iface3 0.0.0.0 up

brctl addif br1 $iface3

ifconfig $iface5 0.0.0.0 up

brctl addif br0 $iface5

Generate some random macs

A special thanks to pheldens @ qemu forums for this (released via help.ubuntu.com license)

ranmac1=$(echo -n DE:AD:BE:EF ; for i in `seq 1 2` ; \

do echo -n `echo ":$RANDOM$RANDOM" | cut -n -c -3` ;done)

ranmac2=$(echo -n DE:AD:BE:EF ; for i in `seq 1 2` ; \

do echo -n `echo ":$RANDOM$RANDOM" | cut -n -c -3` ;done)

ranmac3=$(echo -n DE:AD:BE:EF ; for i in `seq 1 2` ; \

do echo -n `echo ":$RANDOM$RANDOM" | cut -n -c -3` ;done)

ranmac4=$(echo -n DE:AD:BE:EF ; for i in `seq 1 2` ; \

do echo -n `echo ":$RANDOM$RANDOM" | cut -n -c -3` ;done)

Start our virtual router from RAM-dump.

It will obtain external IP from external router (or ISP)

Internal IP will be 10.0.0.1

We need static MAC addresses in order to resume a virtual dump glitch-lessley

1

gzip -c -d /home/elis/skola/IK1550/testenv/KSTD.gz | kvm -m 512 -net nic,vlan=0,macaddr=$ranmac1 -net tap,vlan=0,ifname=$iface1 -

net nic,vlan=1,macaddr=$ranmac2 -net tap,vlan=1,ifname=$iface2 -cdrom /home/elis/skola/IK1550/testenv/knoppix-std-0.1.iso -

incoming "exec: cat"&

Start other virtual guests

These need to be configured with static IP's in same subnet as virtual router (DHCP in virtual router - risk for IP-crash after migration!)

ifconfig eth0 10.0.0.x broadcast 10.0.0.255 netmask 255.255.255.0, route add default gw 10.0.0.1, should do the trick

startoptions="-localtime -m 512 -cdrom /home/elis/skola/IK1550/testenv/mini_livecd_SL53_2009-03-26.iso"

incomingoption="-incoming tcp:0:4444"

Initialization of guest #1 (this is the one that will be migrated)

Thanks francesco @ qemu forums for info on syntax for routing the Qemu monitor to a unix socket

kvm -net nic,vlan=3,macaddr=$ranmac3 -net tap,vlan=3,ifname=$iface3 $startoptions -monitor unix:/tmp/socket,server,nowait&

Print the mac-adress of the first machine - to make identification possible from within the virtual OS

echo macaddr=$ranmac3

Initialization of guest #2

kvm -net nic,vlan=4,macaddr=$ranmac4 -net tap,vlan=4,ifname=$iface5 $startoptions&

For let any process or person acces to socket-file that we routed the Qemu monitor to

chmod -v 0777 /tmp/socket (optional, not needed if script run as root)

}

listen()

{

Get the router IP at sending site

echo "Enter senders router IP"

read senderip

Also current host router IP is needed

echo "Enter current router IP"

read receiverip

Get guest IP

echo "Enter the guest IP"

read guestip

Create TAP Device

iface4=`tunctl -b -u $USERID`

ifconfig $iface4 0.0.0.0 up

Add it to the second bridge

brctl addif br1 $iface4

Set up receiving side of the tunnel

Need to configure autologin to server (ssh)

ssh knoppix@172.16.0.249 "sudo ip tunnel add tunnel mode ipip remote $senderip local $receiverip dev eth0 ttl 255"

ssh knoppix@172.16.0.249 "sudo ip link set tunnel up"

ssh knoppix@172.16.0.249 "sudo ip -family inet addr add 10.3.0.2 peer 10.3.0.1 dev tunnel"

Source routing needed if guest wants to re-initializa communication

ssh knoppix@172.16.0.249 "sudo ip route add default via 10.3.0.2 dev tunnel table 200"

ssh knoppix@172.16.0.249 "sudo ip rule add from $guestip table 200"

#Start kvm in listning-mode

#startoptions="-localtime -m 48 -cdrom /home/elis/skola/IK1550/testenv/current.iso -monitor unix:/tmp/socket,server,nowait"

incomingoption="-incoming tcp:0:4444"

#kvm -net nic,vlan=4 -net tap,vlan=4,ifname=$iface4 $startoptions $incomingoption&

kvm -net nic,vlan=4 -net tap,vlan=4,ifname=$iface4 -localtime -m 512 -cdrom /home/elis/skola/IK1550/testenv/mini_livecd_SL53_2009-

03-26.iso $incomingoption&

}

migrate()

{

Migration requres a destination IP (for the host-system)

echo "Enter destination host IP"

read destip

Also current host IP is needed

echo "Enter current host-router IP"

read hostip

echo "Enter the upcoming host-router IP"

read nextrouterip

Finally the guest IP is needed

echo "Enter the guest IP"

read guestip

#Send migration command to QEMU

2

echo "migrate tcp:$destip:4444" | socat stdio unix:/tmp/socket

Set up sending side of the tunnel

Binding the session-keys to the router is possible for password-less ssh

Change ip and username if not using example image

ssh knoppix@172.16.1.249 "sudo ip tunnel add tunnel mode ipip remote $nextrouterip local $hostip dev eth0 ttl 255"

ssh knoppix@172.16.1.249 "sudo ip link set tunnel up"

ssh knoppix@172.16.1.249 "sudo ip -family inet addr add 10.3.0.1 peer 10.3.0.2 dev tunnel"

ssh knoppix@172.16.1.249 "sudo route add $guestip dev tunnel"

}

teardown()

{

This is really useful - cleans up after unsuccesful trials

Remove all TAP-interfaces

This is not smooth code, but it works

tunctl -d tap0 &> /dev/null

tunctl -d tap1 &> /dev/null

tunctl -d tap2 &> /dev/null

tunctl -d tap3 &> /dev/null

tunctl -d tap4 &> /dev/null

tunctl -d tap5 &> /dev/null

echo "TAP 0-5 gone"

Remove redundant virtual bridge

brctl delbr br1

echo "Attempted to remove br1"

}

########### MENU ##

echo "Welcome, [S]tartup a VM-environment, [L]isten [T]eardown or [M]igrate?"

read selection

case "$selection" in

 "S" | "s")

 startup

 ;;

 "L" | "l")

 listen

 ;;

 "M" | "m")

 migrate

 ;;

 "T" | "t")

 teardown

 ;;

 *)

 echo "Bad selection"

 ;;

esac

exit

3

Appendix 5 – iperf session output

iperf –c 172.16.1.10 -i 1 –w 2000 –d –f -k

Client connecting to 172.16.1.10, TCP port
5001
TCP window size: 3.91 KByte (WARNING:
requested 1.95 KByte)

[5] local 10.0.0.2 port 39907 connected
with 172.16.1.10 port 5001
[ID] Interval Transfer Bandwidth
[5] 0.0- 1.0 sec 4656 KBytes 38142
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 1.0- 2.0 sec 3872 KBytes 31719
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 2.0- 3.0 sec 4400 KBytes 36045
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 3.0- 4.0 sec 3920 KBytes 32113
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 4.0- 5.0 sec 4048 KBytes 33161
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 5.0- 6.0 sec 4048 KBytes 33161
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 6.0- 7.0 sec 4296 KBytes 35193
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 7.0- 8.0 sec 4408 KBytes 36110
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 8.0- 9.0 sec 3672 KBytes 30081
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 9.0-10.0 sec 4264 KBytes 34931
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 10.0-11.0 sec 3912 KBytes 32047
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 11.0-12.0 sec 3872 KBytes 31719
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 12.0-13.0 sec 3280 KBytes 26870
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 13.0-14.0 sec 3880 KBytes 31785
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 14.0-15.0 sec 4088 KBytes 33489
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 15.0-16.0 sec 4400 KBytes 36045
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 16.0-17.0 sec 4368 KBytes 35783
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 17.0-18.0 sec 4408 KBytes 36110
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 18.0-19.0 sec 1568 KBytes 12845
Kbits/sec
[ID] Interval Transfer Bandwidth

[5] 19.0-20.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 20.0-21.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 21.0-22.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 22.0-23.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 23.0-24.0 sec 8.00 KBytes 65.5
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 24.0-25.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 25.0-26.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 26.0-27.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 27.0-28.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 28.0-29.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 29.0-30.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 30.0-31.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 31.0-32.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 32.0-33.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 33.0-34.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 34.0-35.0 sec 8.00 KBytes 65.5
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 35.0-36.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 36.0-37.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 37.0-38.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 38.0-39.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 39.0-40.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 40.0-41.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 41.0-42.0 sec 0.00 KBytes 0.00
Kbits/sec

4

[ID] Interval Transfer Bandwidth
[5] 42.0-43.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 43.0-44.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 44.0-45.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 45.0-46.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 46.0-47.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 47.0-48.0 sec 0.00 KBytes 0.00
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 48.0-49.0 sec 192 KBytes 1573
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 49.0-50.0 sec 1000 KBytes 8192
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 50.0-51.0 sec 888 KBytes 7274
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 51.0-52.0 sec 896 KBytes 7340
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 52.0-53.0 sec 936 KBytes 7668
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 53.0-54.0 sec 936 KBytes 7668
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 54.0-55.0 sec 928 KBytes 7602
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 55.0-56.0 sec 944 KBytes 7733
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 56.0-57.0 sec 1032 KBytes 8454
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 57.0-58.0 sec 944 KBytes 7733
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 58.0-59.0 sec 912 KBytes 7471
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 59.0-60.0 sec 920 KBytes 7537
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 60.0-61.0 sec 928 KBytes 7602
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 61.0-62.0 sec 896 KBytes 7340
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 62.0-63.0 sec 928 KBytes 7602
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 63.0-64.0 sec 1072 KBytes 8782
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 64.0-65.0 sec 856 KBytes 7012
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 65.0-66.0 sec 856 KBytes 7012
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 66.0-67.0 sec 928 KBytes 7602
Kbits/sec
[ID] Interval Transfer Bandwidth

[5] 67.0-68.0 sec 944 KBytes 7733
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 68.0-69.0 sec 936 KBytes 7668
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 69.0-70.0 sec 944 KBytes 7733
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 70.0-71.0 sec 1024 KBytes 8389
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 71.0-72.0 sec 944 KBytes 7733
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 72.0-73.0 sec 904 KBytes 7406
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 73.0-74.0 sec 928 KBytes 7602
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 74.0-75.0 sec 904 KBytes 7406
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 75.0-76.0 sec 864 KBytes 7078
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 76.0-77.0 sec 848 KBytes 6947
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 77.0-78.0 sec 984 KBytes 8061
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 78.0-79.0 sec 920 KBytes 7537
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 79.0-80.0 sec 936 KBytes 7668
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 80.0-81.0 sec 920 KBytes 7537
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 81.0-82.0 sec 960 KBytes 7864
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 82.0-83.0 sec 896 KBytes 7340
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 83.0-84.0 sec 936 KBytes 7668
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 84.0-85.0 sec 1032 KBytes 8454
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 85.0-86.0 sec 840 KBytes 6881
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 86.0-87.0 sec 904 KBytes 7406
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 87.0-88.0 sec 904 KBytes 7406
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 88.0-89.0 sec 976 KBytes 7995
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 89.0-90.0 sec 960 KBytes 7864
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 90.0-91.0 sec 816 KBytes 6685
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 91.0-92.0 sec 904 KBytes 7406
Kbits/sec
[ID] Interval Transfer Bandwidth

5

[5] 92.0-93.0 sec 952 KBytes 7799
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 93.0-94.0 sec 800 KBytes 6554
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 94.0-95.0 sec 824 KBytes 6750
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 95.0-96.0 sec 832 KBytes 6816
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 96.0-97.0 sec 832 KBytes 6816
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 97.0-98.0 sec 720 KBytes 5898
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 98.0-99.0 sec 992 KBytes 8126
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 99.0-100.0 sec 1000 KBytes 8192
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 100.0-101.0 sec 936 KBytes 7668
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 101.0-102.0 sec 936 KBytes 7668
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 102.0-103.0 sec 936 KBytes 7668
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 103.0-104.0 sec 936 KBytes 7668
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 104.0-105.0 sec 960 KBytes 7864
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 105.0-106.0 sec 992 KBytes 8126
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 106.0-107.0 sec 936 KBytes 7668
Kbits/sec

[ID] Interval Transfer Bandwidth
[5] 107.0-108.0 sec 992 KBytes 8126
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 108.0-109.0 sec 912 KBytes 7471
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 109.0-110.0 sec 960 KBytes 7864
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 110.0-111.0 sec 928 KBytes 7602
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 111.0-112.0 sec 912 KBytes 7471
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 112.0-113.0 sec 1104 KBytes 9044
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 113.0-114.0 sec 872 KBytes 7143
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 114.0-115.0 sec 944 KBytes 7733
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 115.0-116.0 sec 952 KBytes 7799
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 116.0-117.0 sec 896 KBytes 7340
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 117.0-118.0 sec 920 KBytes 7537
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 118.0-119.0 sec 944 KBytes 7733
Kbits/sec
Waiting for server threads to complete.
Interrupt again to force quit.
[ID] Interval Transfer Bandwidth
[5] 119.0-120.0 sec 1048 KBytes 8585
Kbits/sec
[ID] Interval Transfer Bandwidth
[5] 0.0-120.0 sec 141472 KBytes 9657
Kbits/sec

