IK1350 Protocols in Computer Networks/ Protokoll i datornätverk Spring 2008, Period 3 Module 1: Introduction

Lecture notes of G. Q. Maguire Jr.

KTH Information and Communication Technology For use in conjunction with *TCP/IP Protocol Suite*, by Behrouz A. Forouzan, 3rd Edition, McGraw-Hill, 2006.

For this lecture: Chapters 1-5

© 2008 G.Q.Maguire Jr. .

All rights reserved. No part of this course may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission of the author.

Last modified: 2008.01.20:12:04

Maguire maguire@kth.se Introduction.fm5 2008.01.20

Welcome to the 'Protocols in Computer Networks' course!

The course should be fun.

We will dig deeper into the protocols used for computer networks (especially IP based protocols used in LANs and the Internet).

Information about the course is available from the course web page:

http://www.it.kth.se/courses/IK1350/

The best is to always look at the link from <u>http://web.it.kth.se/~maguire</u>

Staff Associated with the Course

Instructor (Kursansvarig)

prof. Gerald Q. Maguire Jr. <maguire at kth.se>

Assistants for Recitation Sessions (Övningar)

none

Administrative Assistant: recording of grades, registration, etc.

Irina Radulescu <irina.radulescu at wireless.kth.se>

Goals, Scope and Method

Goals of the Course

- To give deep knowledge and competence (*designing*, *analyzing*, and *developing*) of computer networking protocols and architecture, both practical and analytical.
- To be able to read and understand the relevant Internet standardization documents (IETF RFCs and Internet Drafts), IEEE standards, and current literature.
- You should have the knowledge and competence to do significant networking tasks.

Scope and Method

- Dig deeper into the protocols by using diagnostic tools to examine, observe, and analyze these protocols in action. Understanding the details!
- Demonstrate this by writing a written report.

Aim

The overall goal of the course is to give the student basic knowledge and skills in planning, implementing, and supporting the packet switching infrastructure of IP based local networks. Moreover, the course will create a foundation for further studies in IP based LANs and WANs with a focus on services, planning, security, and the continuing developments of protocols and media.

You should develop a habit of reading the relevant journals, standards, trade papers, etc.

As per the catelog description - "After the completing the course the student will be able to:

- Describe the function of Ethernet based switches and methods for packet and frame switching inside LANs, for example assymetrical switching
- Describe and apply packet filtering with access control lists
- Describe and apply techniques for virtualziation of LANs, for example VLANs
- Describe protocols used by Ethernet switches and routers in IP based LANs, for example, RIP, OSPF, Spanning-Tree, and IEEE 802.1q
- Explain how the algorithms used in the protocols work, for example Bellman-Ford and Dijkstra
- Based on a problem definition propose suitable equipment and protocols for an IP based LAN, with respect to performance and security
- Make network simulations, using for example Packet Tracer"

Prerequisites

 Knowledge in basic computer communication and basic computer user experience corresponding to the course (6B2945) Computer networks or similar course

or

• Equivalent knowledge in Computer Communications)

Contents

This course will focus on the **protocols** that are the widely used for computer networks, particularily local area networks (LANs) and the Internet. We will also explore what internetworking means and what it requires. We will give both practical and more general knowledge concerning computer networks and their network architecture.

The course consists of 30 hours of lectures and recitations ($\ddot{o}vningar$) - these will be combined and not separate events; along with written assignments (corresponding to ~15⁺ hours of laboratory like exercises).

Topics

- Ethernet and other simple link (and MAC) layer framing
- Ethernet based switches and methods for packet and frame switching (inside LANs)
- Packet filtering and access control lists
- Virtualziation of LANs, VLANs, tunneling, etc.
- Protocols used by Ethernet switches and routers in IP based LANs, for example, RIP, BGP, OSPF, Spanning-Tree, and IEEE 802.1q
- Algorithms for computing routes and forwarding paths, for example Bellman-Ford and Dijkstra
- Network simulation and protocol analysis
- What an internet is and what is required of protocols to allow internetworking
- Multicasting
- Domain Name System (DNS, Dynamic DNS)

- What happens from the time a machine boots until the applications are running (RARP, BOOTP, DHCP, TFTP)
- Details of the TCP/IP protocols and some performance issues
- Details of a number of application protocols
- Performance and security in the context of computer networks (including firewalls, AAA, IPSec, SOCKs, ...)
- Differences between IPv6 and IPv4
- Network management (SNMP)

We will also examine some emerging topics:

 cut-through routing, tag switching, flow switching, QoS, Mobile IP, Voice over IP, SIP, NAT, VPN, Diffserv,

Examination requirements

- Written assignment
 - based on lectures, recitations, and your references
 - with half of the total grade being based upon experiments and your analysis of them

Grades: A..F (ECTS grades)

- To get an "A" you need to write an outstanding or excellent paper.
- To get a "B" you need to write a very good paper, i.e., it should be either a very good review or present a new idea.
- To get a "C" you need to write a paper which shows that you understand the basic ideas underlying network protocols and that you understand one (or more) particular aspects at the level of an average undergraduate student in the area.
- To get a "D" you need to demonstrate that you understand the basic ideas underlying network protocols, however, your depth of knowledge is shallow in the topic of your paper.
- If your paper has some errors (including incomplete references) the grade will be an "E".
- If your paper has serious errors the grade will be an "F".

If your paper is close to passing, but not at the passing level, then you will be offered the opportunity for "komplettering", i.e., students whose written paper does not pass can submit a revised version of their paper (or a completely new paper) - which will be evaluated.

Ethics, Rights, and Responsibilities

There is a policy of zero tolerance for cheating, plagiarism, etc. - for details see

http://www.kth.se/dokument/student/student_rights.pdf

See also the KTH Ethics Policies at:

http://www.kth.se/info/kth-handboken/I/7/1.html

Written Assignment

Goal: to gain analytical **and** practical experience and to show that you have mastered some knowledge in this area in depth.

- Can be done in a group of 1 to 3 students (formed by yourself). Each student must contribute to the final report.
- There will be one or more suggested topics, additional topics are possible (discuss this with one of the teachers **before** starting).

Assignment Registration and Report

- Registration: **Monday 11-February 2008**, to <maguire@kth.se>
 - Group members
 - Topic selected.
- Final report
 - A short technical document describing: 1) what you have done; 2) who did what; 3) methods and tools used; 3) the test or implementation results.
 - The length of the final report should be 5-6 pages for each student (detailed measurements, configuration scripts, etc. can be in additional pages as an appendix or appendices). ¹
 - Contribution by each member of the group must be clear

Final Report: Friday 14-March 2008

- Send email with URL link to a PDF file to <maguire@kth.se>
- Late assignments will <u>not</u> be accepted (i.e., there is no guarantee that they will graded in time for the end of the term)

Note that it is pemissible to start working *well in advance* of the deadlines!

^{1.} Papers which are longer than 6 pages per student will have a maximum grade of "E".

Literature

The course will mainly be based on the book: Behrouz A. Forouzan, *TCP/IP Protocol Suite*, 3rd edition, McGraw-Hill, publication date January 2005, (Copyright 2006), 896 pages, ISBN 0072967722 (hardbound) or 0071115838 (softbound) {Note that this is the same textbook as used for the Internetworking course.}

Other additional references include:

- W. Richard Stevens, *TCP/IP Illustrated*, <u>Volume 1: The Protocols</u>, Addison-Wesley, 1994, ISBN 0-201-63346-9 and Douglas E. Comer, *Internetworking with TCP/IP: Principles, Protocols, and Architectures, Vol. 1*, byPrentice Hall, 4th edt. 2000, ISBN 0-13-018380-6.
- Gary R. Wright and W. Richard Stevens, *TCP/IP Illustrated*, <u>Volume 2:</u> <u>The Implementation</u>, Addison-Wesley, 1995, ISBN 0-201-63354-X - the commented source code
- Christian Huitema, *IPv6: The New Internet Protocol*, Prentice-Hall, 1996, ISBN 0-13-241936-X.

- Russell Bradford, *The Art of Computer Networking*, Pearson Education Limited, Prentice Hall, 2007, 304 pages, ISBN 978-0-321-30676-0
- concerning HTTP we will refer to TCP/IP Illustrated, <u>Volume 3: TCP for</u> <u>Transactions, HTTP, NNTP, and the UNIX Domain Protocols</u>, Addison-Wesley, 1996, ISBN 0-201-63495-3.
- Wendell Odom and Rick McDonald, *Routers and Routing Basics CCNA 2 Companion Guide*, (Cisco Networking Academy Program), 1st edition, Cisco Press, 2006 ISBN 1-587113-166-8.
- Kevin Downes (Editor), H. Kim Lew, Steve Spanier, Tim Stevenson, Internetworking Technologies Handbook (Online:

http://www-fr.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/index.htm

We will refer to other books, articles, and RFCs as necessary. In addition, there will be **compulsory** written exercises.

Lecture Plan

Subject to revision!

- Module 1: Introduction
- Module 2:
- Module 3:
- Module 4:
- Module 5:
- Module 6:
- Module 7:

Context of the course

"The network called the Internet is the single most important development in the communications industry since the public switched voice network was constructed..."

-- John Sidgmore when he was CEO, UUNET Technologies and COO, WorldCom¹

^{1.} http://www.lucent.com/enterprise/sig/exchange/present/slide2.html {this URL no longer functions}

Network Architecture

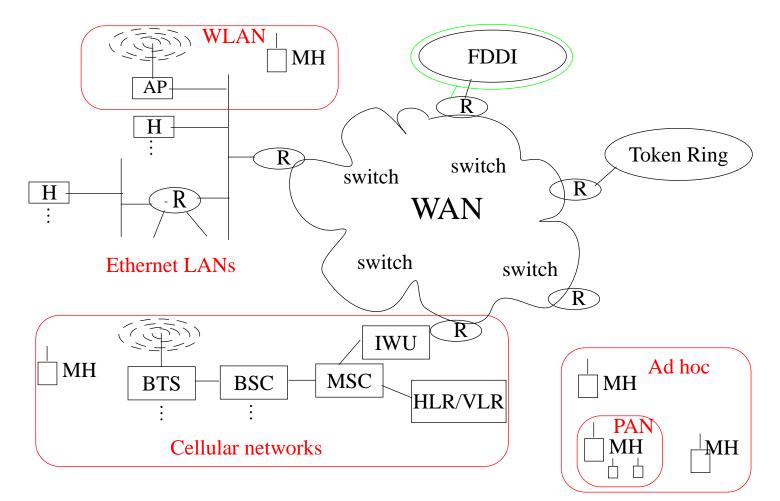


Figure 1: Multiple network technologies - internetworked together

Note that some of the routers act as **gateways** between different types of networks.

Power of the Internet (chaos)

"Historically, the Internet has been an environment in which to experiment. There have been a few basic rules. The most important is the standard for IP and TCP.

The are other important standards for promulgating routing information and the like, but the real power of the Internet idea is that there are not mandidated stanards for what can run over the 'Net.

Anyone who adheres to TCP/IP standards can create applications and run them without getting anyone's permission. No ISP even has to know you are experimenting (or playing, which is also OK). This freedom produces unpredictable results. New industries can be created almost overnight and existing industries severely affected. ..."

-- Scott O. Bradner, "The Importance of Being a Dynamist", Network World, December 13, 1999, p. 48 (www.nwfusion.com)

Maguire maguire@kth.se

Internet Trends

- Numbers of users and internet devices increases very rapidly
 - Network Wizards' Internet Domain Survey <u>http://www.isc.org/index.pl?/ops/ds/</u>
 Jan. 2007: 433,193,199, Jan.2006: 394,991,609, Jan. 2005: 317,646,084 hosts
 - RIPE's survey <u>European hosts</u>:
 Estimates are based on DNS information; <u>http://www.ripe.net/hostcount/hostcount++/</u>
 - Network Weather Maps <u>http://www.cybergeography.org/atlas/weather.html</u> http://www.nordu.net/stat-g/load-map/ndn-map,,traffic,busy
- QoS: Demand for integrating many different types of traffic, such as video, audio, and data traffic, into one network ⇒ Multicast, IPv6, RSVP, DiffServ, emphasis on high performance, and TCP extensions (we will examine a number of these in this course)
- Mobility: both users and devices are mobile
 - There is a difference between portable (bärbar) vs. mobile (mobil).
 - IP is used in wireless systems (for example 3G cellular).
 - Increasing use of wireless in the last hop (WLAN, PAN, Wireless MAN, ...)
- Security:
 - Wireless mobile Internet initial concern driven by wireless link
 - Fixed Internet distributed denial of service attacks, increasing telecommuting, internet connectivity to Supervisory Control and Data Acquisition systems (SCADA systems), ...

IP traffic growing exponentially!

Traffic increasing (but not due to voice)

- IP traffic between US and Sweden many times the total voice+FAX traffic
- many Gbit/s transatlantic fiber

Fixed Links - arbitrarily fast:

- LANs: 10Mbits/s, 100Mbits/s, 1Gbits/s, 10Gbits/s, ...
- Backbones: Gigabits/s Transoceanic fibers between continents ⇒ Gbit/s ⇒ Tbit/s
- Major sites link to backbones: increasingly 10⁺Mbit/s to Gbit/s
- Individual users links: 28.8 Kbits/s and ISDN (128Kbits/s)
 ⇒ ethernet and xDSL (2 Mbits/s .. 100 Mbits/s)

Points of Presence (PoPs) + FIX/CIX/GIX/MAE¹ \Rightarrow GigaPoPs

(George) Guilder's Law states that network speeds will triple every year for the next 25 years. This dwarfs Moore's law that predicts CPU processor speed will double every 18 months.

^{1.} Federal Internet eXchange (FIX), Commercial Internet eXchange (CIX), Global Internet eXchange (GIX), Metropolitan Access Exchange (MAE)

Growth rates

Some people think the Internet bandwidth explosion is relatively recent, but right from the beginning it's been a race against an ever-expanding load. It isn't something you can plan for. In fact, the notion of long-range planning like the telcos do is almost comical. Just last month, a local carrier asked us why we didn't do five-year plans, and we said, "We do-about once a month!"

-- Mike O'Dell¹ VP and Chief Technologist UUNET

Mike points out that the growth rate of the Internet is driven by the increasing speed of computers, while telcos have traffic which was proportional to the growth in numbers of people (each of whom could only use a very small amount of bandwidth).

• by 1997 UUNET was adding at least one T3/day to their backbone

^{1.} from http://www.data.com/25years/mike_odell.html {no longer a valid URL}

¿Question?

"Which would you rather have twice as fast: your computer's processor or modem?

After 30 years of semiconductor doublings under Moore's Law, processor speed are measured in megahertz. On the other hand, after 60 years of telco's snoozing under monopoly law, modem speeds are measure in kilobits. Modems are way too slow for Internet access, but you knew that."¹

-- Bob Metcalfe, inventor of Ethernet in 1973

^{1. &}quot;From the Ether: Moving intelligence and Java Packets into the Net will conserve bandwidth", by Bob Metcalfe, Inforworld, Oct., 6, 1997, pg. 171.

Increasing Data Rates

"Ethernet'

- 3 Mbps Ethernet (actually 2.944 Mbits/sec)
- 10 Mbps Ethernet (which became IEEE 802.3)
- 100 Mbps Ethernet (100Tx)
- Gigabit Ethernet (IEEE 802.3z, IEEE 802.3ab)
- 10 GbE (IEEE 802.3ae), 40GbE, and 100GbE

Optical

 Dense Wavelength Division Multiplexing (DWDM) - allowing 1000s of multi-Gbits/s channels to be carried on existing fibers

Wireless

- IEEE 802.11 Wireless LAN (2 .. 100 Mbits/s)
- IEEE 802.15 Wireless Personal Area Network (WPAN)
- IEEE 802.16 Metropolitan Area Networks Fixed Broadband Wireless

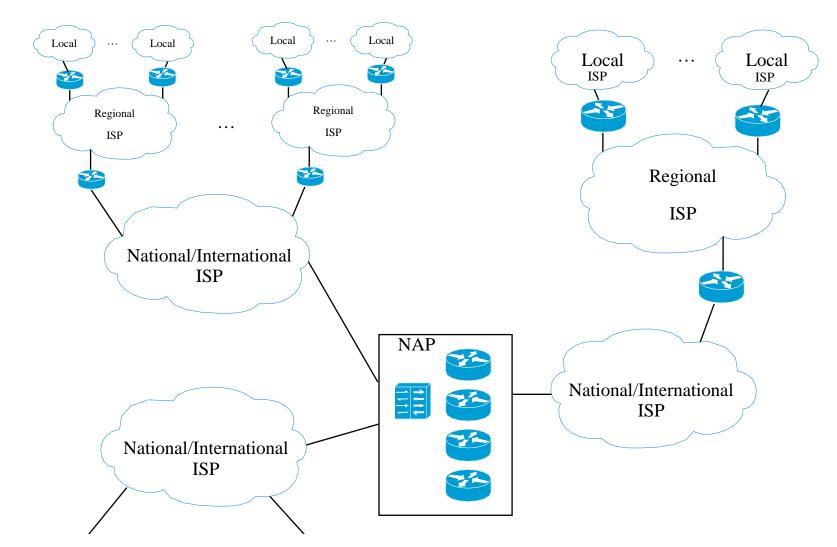
The "Get IEEE 802®" program makes these standards available on-line:

http://standards.ieee.org/getieee802/index.html

Internetworking

Internetworking is

- based on the interconnection (concatenation) of multiple networks
- accommodates multiple underlying hardware technologies by providing a way to interconnect heterogeneous networks and makes them inter-operate.


We will concern ourselves with one of the most common internetworking protocols IP (there *are* other internetworking protocols, such as Novell's Internetwork Packet Exchange (IPX), Xerox Network Systems (XNS), IBM's Systems Network Architecture (SNA), OSI's ISO-IP).

We will examine both IP:

- version 4 which is in wide use
- version 6 which is coming into use

Internet: the worldwide internet

The Internet Today

key: Internet Serice Provider (ISP), Network Access Point (NAP)

Maguire maguire@kth.se The Internet Today 2008.01.20

Basic concepts

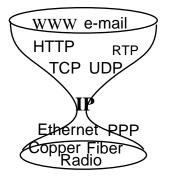
open-architecture networking [1],[2]

The End2End

Argument [4]

• Each distinct network stands on its own makes its own technology choices, etc. ⇒ no changes within each of these networks in order to internet

- Based on best-effort delivery of datagrams
- Gateways interconnect the networks
- No global control


Some basic design principle for the Internet:

- Specific application-level functions should **not** be built into the lower levels
- Functions implemented **in** the network should be simple and general.
- Most functions are implemented (as software) at the edge
 - \Rightarrow complexity of the core network is reduced
 - \Rightarrow increases the chances that new applications can be easily added.

See also [5], [6]

- Anything over IP
- IP over anything

Note the broad (and open) top - enabling lots and lots of application

Hourglass (Stuttgart wineglass) Model

Clean slate re-design of the Internet

Many have questioned one or more of the basic concepts and currently several groups are attempting to do a clean slate re-design of the Internet.

Consider for example the two research questions that researchers at Stanford University are asking as part of their Clean Slate program:

- "With what we know today, if we were to start again with a clean slate, how would we design a global communications infrastructure?", and
- "How should the Internet look in 15 years?"

-- Quoted from http://cleanslate.stanford.edu/

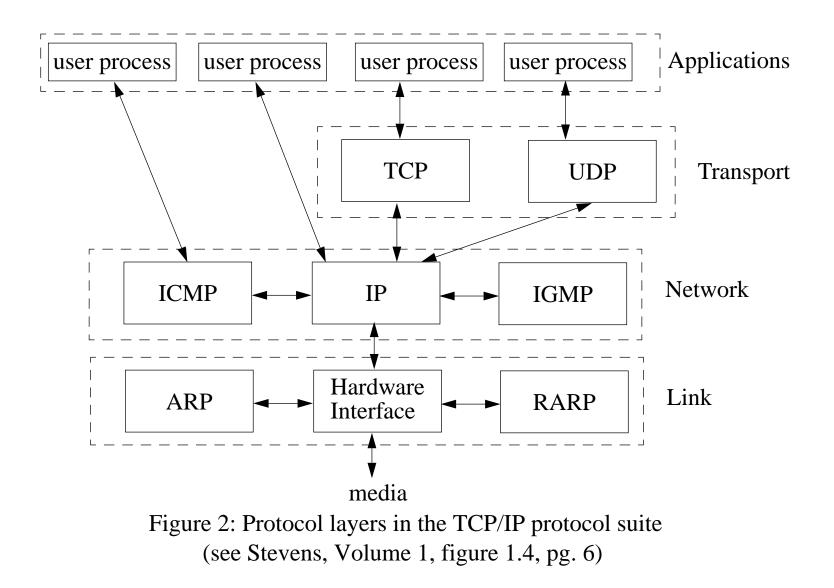
See also: <u>http://cleanslate.stanford.edu/about_cleanslate.php</u>

This is only one of many such projects, see also:

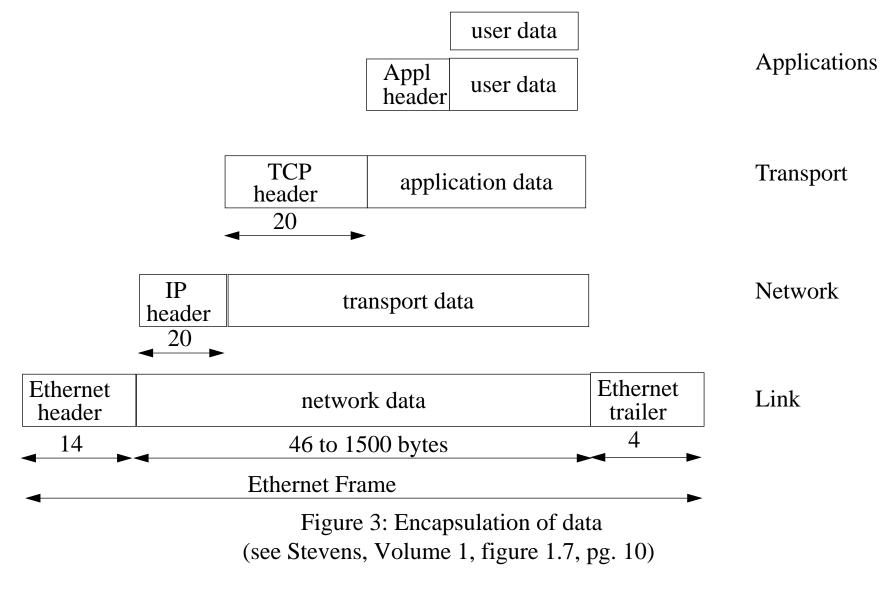
- U. S. National Science Foundation GENI: <u>http://geni.net</u>
- European Union Future Internet Research and Experimentation (FIRE): <u>http://cordis.europa.eu/fp7/ict/fire/</u>

Implicit vs. Explicit Information

Van Jaconson expresses this as:

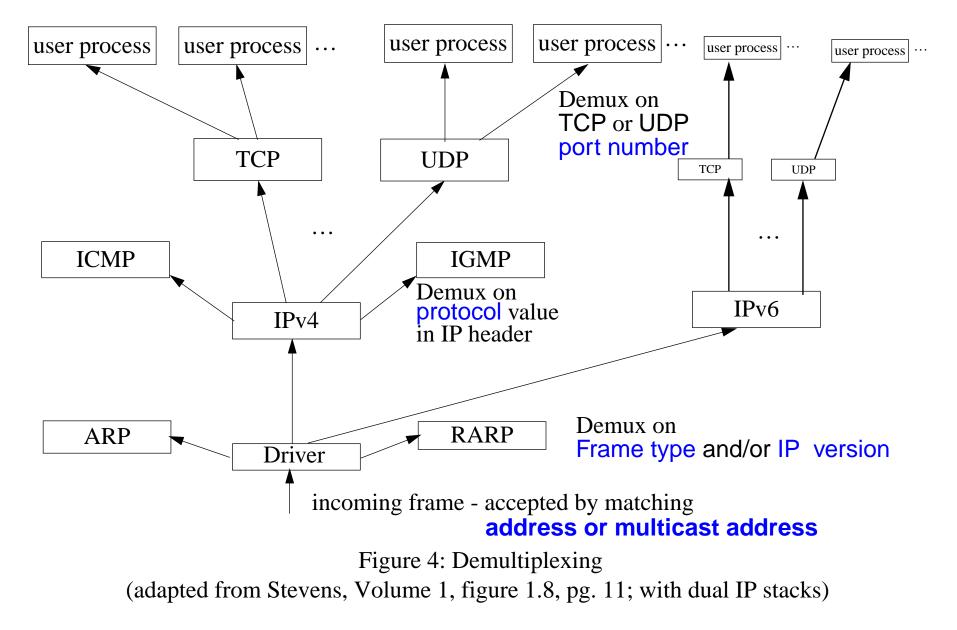

- "The nice properties of packet switching result from moving source & destination information implicit in a circuit switchs time slot assignments into explicit addresses in the packet header. (But its easy to do this wrong, e.g., ATM.)
- The nice properties of dissemination result from making the time & sequence information implicit in a conversation be explicit in a fully qualied name."

-- slide 26: "Digression on Implicit vs. Explicit Information" of


Van Jacobson, "If a Clean Slate is the solution what was the problem?", Stanford Clean Slate Seminar, February 27, 2006

http://cleanslate.stanford.edu/seminars/jacobson.pdf

Review of Layering



Encapsulation

Encapsulation 2008.01.20

Demultiplexing

Addresses in TCP/IP

- Transport layer
 - Port number
- Network layer
 - IP address
 - Protocol
- Link & Physical layers
 - Frame type
 - Media Access and Control (MAC) address

Basic communication mechanism: datagram

Properties of datagrams:

- Best effort
- Each message handled independently global addressing.
- IP packets (datagrams) are forwarded according to the network address (which is in each datagram) by routers.

Basic Ethernet + IP Software Architecture

Figure 5: Basic Ethernet + IP Architecture - based on Stevens, TCP/IP Illustrated, Volume 2

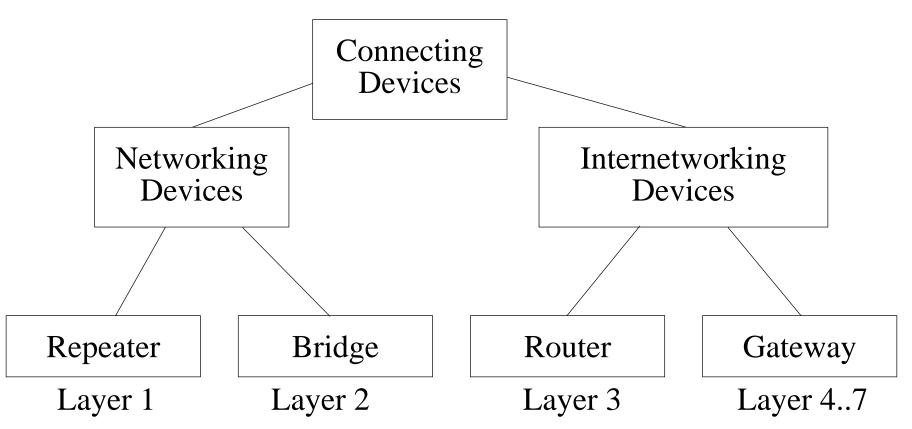
Maguire maguire@kth.se Basic Ethernet + IP Software Architecture 2008.01.20

Link Layer

Possible link layers include:

- Ethernet and IEEE 802.3 Encapsulation
 - with possible Trailer Encapsulation
- SLIP: Serial Line IP
- CSLIP: Compress SLIP
- PPP: Point to Point Protocol
- Loopback Interface
- Virtual Interface
- ...
- carrier pigeons CPIP (Carrier Pigeon Internet Protocol) April 1st 1990, RFC 1149 was written. A protocol for IP over avian carriers. Implementation (April 28 2001): <u>http://www.blug.linux.no/rfc1149/</u>

Some of the issues concerning links are:


- MTU and Path MTU
- Serial line throughput

Simple Campus Network

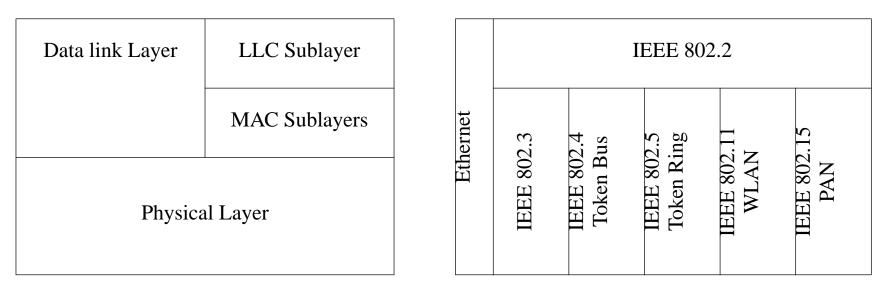
Simple Campus Network 2008.01.20

Connecting Devices

- Ethernet hub = a multiport repeater
- Ethernet switch = a multiport bridge
- Layer 3 switch = combines functions of an ethernet switch and a router

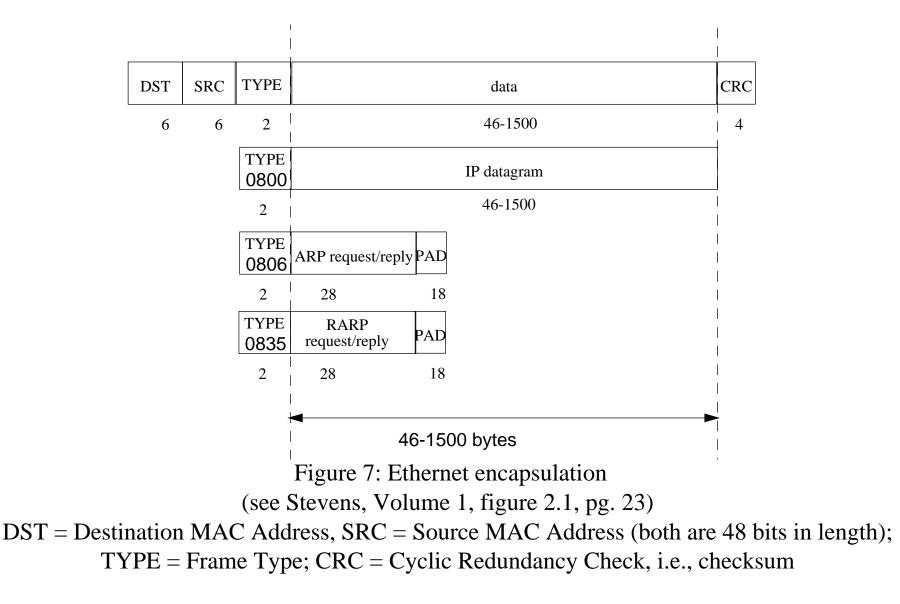
How important are switches vs. routers?

There are an enormous number of switches sold per year. Probably more than one switch port sold per wired Ethernet interface!

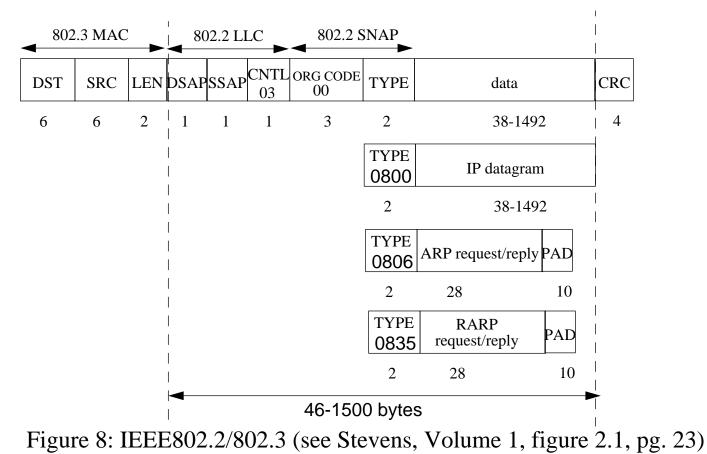

	July 28,2007	Percentage of net product sales
Routers	US\$ 6,920 M	23.5%
Switches	US\$12,473 M	42.3%
Advanced Technologies ^a	US\$ 8,075 M	27.4%
Other ^b	US\$ 1,994 M	6.1%
Total	US\$29,462 M	

a. Video Systems, Unified Communications, Home networking, Security products, WLAN, and Storage Area networking

b. Optical networking, sales of IP-based solutions to other service providers, and Scientific-Atlanta


For comparison purposes: HP's Corporate Investments (which includes their Ethernet switch business) was US\$566 M in 2006 - and had grown 8% over the previous year due to gigabit switch products[10]; while in 2007 it was US\$762 M with a 33% growth attributed to enterprise class gigabit network switches! [11]

LAN Protocols



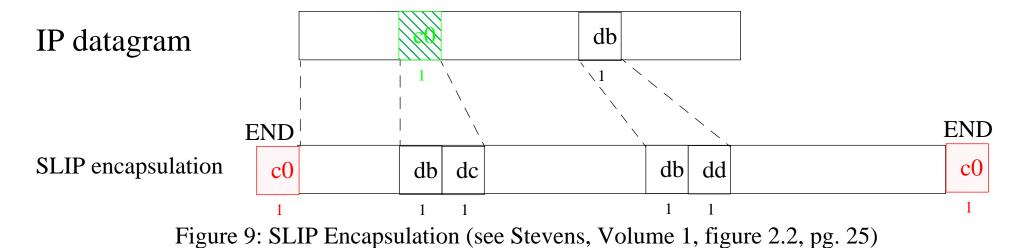
OSI Layers LAN specifications Figure 6: Physical and Link layer protocols used for LANs

Ethernet Encapsulation (RFC 894)

IEEE 802.2/802.3 Encapsulation (RFC 1042)

 $DSAP \equiv Destination Service Access Point; SSAP \equiv Source Service Access Point; SNAP \equiv Sub-Network Access Protocol; for other TYPE values see RFC1700.$

IEEE 802 Numbers of Interest


"... IEEE 802 Networks. These systems may use a Link Service Access Point (LSAP) field in much the same way the MILNET uses the "link" field. Further, there is an extension of the LSAP header called the Sub-Network Access Protocol (SNAP).

The IEEE likes to describe numbers in binary in bit transmission order, which is the opposite of the big-endian order used throughout the Internet protocol documentation."

Assignments from F	RFC1700
--------------------	---------

Linl	k Service Access Poi	nt	Description	References
IEEE binary	Internet binary	decimal		
0000000	0000000	0	Null LSAP	[IEEE]
01000000	00000010	2	Individual LLC Sublayer Mgt	[IEEE]
11000000	00000011	3	Group LLC Sublayer Mgt	[IEEE]
00100000	00000100	4	SNA Path Control	[IEEE]
01100000	00000110	6	Reserved (DOD IP)	[RFC76]
01110000	00001110	14	PROWAY-LAN	[IEEE]
01110010	01001110	78	EIA-RS 511	[IEEE]
01111010	01011110	94	ISI IP	[JBP]
01110001	10001110	142	PROWAY-LAN	[IEEE]
01010101	10101010	170	SNAP	[IEEE]
01111111	11111110	254	ISO CLNS IS 8473	[RFC926]
11111111	11111111	255	Global DSAP	[IEEE]

SLIP (RFC 1055)

RFC 1055: Nonstandard for transmission of IP datagrams over serial lines: SLIP SLIP uses character stuffing, SLIP ESC character $\equiv 0xdb$ SLIP END character $\equiv 0xc0$

- point to point link, \Rightarrow no IP addresses need to be sent
- there is no TYPE field, ⇒ you can only be sending IP, i.e., can't mix protocols
- there is no CHECKSUM, \Rightarrow error detection has to be done by higher layers

SLIP Problems \Rightarrow **CSLIP** \equiv **Compressed SLIP**

- because many users running SLIP over lines at 19.2 kbits/s or slower
- lots of interactive traffic (telnet, rlogin, ...) which uses TCP
 - many small packets
 - each of which needs a TCP header (20 bytes) + IP header (20 bytes) ⇒ overhead 40 bytes
 - Send 1 user character requires sending a minimum of: 1 + 40 + END, i.e., 42 bytes
 - most of the header is predictable

CSLIP (RFC 1144: Compressing TCP/IP headers for low-speed serial links, by Van Jacobson) reduces the header to 3-5 bytes, by:

- trying to keep response time under 100-200ms
- keeping state about ~16 TCP connections at each end of the link
 - the 96-bit tuple <src address, dst address, src port, dst port> reduced to 4 bits
- many header fields rarely change so don't transmit them
- some header fields change by a small amount just send the delta
- no compression is attempted for UDP/IP
- a 5 byte compressed header on 100-200 bytes \Rightarrow 95-98% line efficiency

Robust Header Compression (rohc)

Header compression schemes that perform well over links with high error rates and long roundtrip times.

http://www.ietf.org/html.charters/rohc-charter.html

PPP: Point to Point Protocol (RFC 1331, 1332)

PPP corrects the deficiencies in SLIP. PPP consists of:

- encapsulation for either async or synchronous links,
 - HDLC (see RFC 1549)
 - X.25 (see RFC 1598)
 - ISDN (see RFC 1618)
 - SONET/SDH (see RFC 1619)
- Link Control Protocol
 - establish, configure, and test data-links [includes option negociation]
 - authentication (see RFC 1334)
- Family of Network Control Protocols (NCPs) specific to different network protocols, currently:
 - IP (see RFC 1332)
 - DECnet (see RFC 1376)
 - OSI network layer (see RFC 1377)
 - AppleTalk (see RFC 1378)
 - XNS (see RFC 1764)

See: James D. Carlson, "PPP Design, Implementation, and Debugging", Second edition, Addison-Wesley, 2000, ISBN 0-201-70053-0 [8].

PPP frames

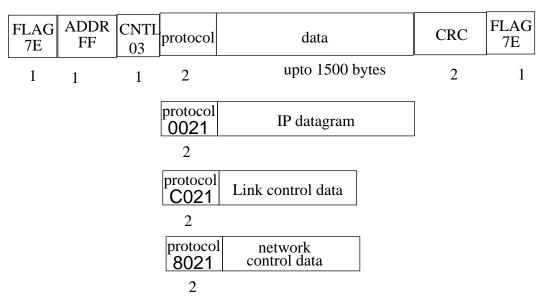


Figure 10: Format of PPP frame (see Stevens, Volume 1, figure 2.3, pg. 26)

- The protocol field behaves like the Ethernet TYPE field.
- CRC can be used to detect errors in the frame.
- Either character or bit stuffing is done depending on the link.
- you can negotiate away the CNTL and ADDRESS fields, and reduce the protocol field to 1 byte ⇒ minimum overhead of 3 bytes
- Van Jacobson header compression for IP and TCP

PPP summary

- support for multiple protocols on a link
- CRC check on every frame
- dynamic negociation of IP address of each end
- header compression (similar to CSLIP)
- link control with facilities for negotiating lots of data-link options

All at a price averaging 3 bytes of overhead per frame.

Internet Protocol version 4 (IPv4) (RFC 791)

0	7	8 15	16	23 24	31
4 bit version	4-bit header length	8-bit Type of Service (TOS)		16 bit total length	
	16 bit ide	entification	3-bit flags	13 bit Fragment Offset	S
8-bit Time	to Live (TTL)	8-bit Protocol		16 bit header checksum	20 bytes
		32 bit Sour	ce IP addres	S	20
		32 bit Destina	ation IP add	ess	
		options (padded	d to 32 bit le	ngth)	
		d	lata		

Figure 11: IP header (see Stevens, Vol. 1, figure 3.1, pg. 34)

The fields: Version, Protocol, and Source & Destination IP addresses are all used for demultiplexing the incoming IP packet.

We will first examine version 4, then later in the course version 6.

Maguire maguire@kth.se

IP "Protocol" field (RFC 1700)

In the Internet Protocol (IP) [DDN], [RFC791] there is a field, called Protocol, to identify the next level protocol. This is an 8 bit field.

Assigned Internet Protocol Numbers (assigned by Internet Assigned Numbers Authority (IANA) <u>http://www.iana.org/assignments/protocol-numbers</u>

Decimal	Keyword	Protocol	References
0	HOPOPT	IPv6 Hop-by-Hop Option	[RFC1883]
1	ICMP	Internet Control Message	[RFC792]
2	IGMP	Internet Group Management	[RFC1112]
3	GGP	Gateway-to-Gateway	[RFC823]
4	IP	IP in IP (encapsulation)	[RFC2003]
5	ST	Stream	[RFC1190,RFC1819]
6	ТСР	Transmission Control	[RFC793]
7	CBT	CBT	[Ballardie]
8	EGP	Exterior Gateway Protocol	[RFC888,DLM1]
9	IGP	any private interior (e.g., used by Cisco for their IGRP)	[IANA]
10	BBN-RCC-MON	BBN RCC Monitoring	[SGC]
11	NVP-II	Network Voice Protocol	[RFC741,SC3]
12	PUP	PUP	[PUP,XEROX]

Decimal	Keyword	Protocol	References
13	ARGUS	ARGUS	[RWS4]
14	EMCON	EMCON	[BN7]
15	XNET	Cross Net Debugger	[IEN158,JFH2]
16	CHAOS	Chaos	[NC3]
17	UDP	User Datagram	[RFC768,JBP]
18	MUX	Multiplexing	[IEN90,JBP]
19	DCN-MEAS	DCN Measurement Subsystems	[DLM1]
20	HMP	Host Monitoring	[RFC869,RH6]
21	PRM	Packet Radio Measurement	[ZSU]
22	XNS-IDP	XEROX NS IDP	[ETHERNET,XEROX]
23	TRUNK-1	Trunk-1	[BWB6]
24	TRUNK-2	Trunk-2	[BWB6]
25	LEAF-1	Leaf-1	[BWB6]
26	LEAF-2	Leaf-2	[BWB6]
27	RDP	Reliable Data Protocol	[RFC908,RH6]
28	IRTP	Internet Reliable Transaction	[RFC938,TXM]
29	ISO-TP4	ISO Transport Protocol Class 4	[RFC905,RC77]
30	NETBLT	Bulk Data Transfer Protocol	[RFC969,DDC1]
31	MFE-NSP	MFE Network Services Protocol	[MFENET,BCH2]
32	MERIT-INP	MERIT Internodal Protocol	[HWB]
33	SEP	Sequential Exchange Protocol	[JC120]
34	3PC	Third Party Connect Protocol	[SAF3]
35	IDPR	Inter-Domain Policy Routing Protocol	[MXS1]

Decimal	Keyword	Protocol	References
36	XTP	XTP	[GXC]
37	DDP	Datagram Delivery Protocol	[WXC]
38	IDPR-CMTP	IDPR Control Message Transport Proto	[MXS1]
39	TP++	TP++ Transport Protocol	[DXF]
40	IL	IL Transport Protocol	[Presotto]
41	IPv6	Ipv6	[Deering]
42	SDRP	Source Demand Routing Protocol	[DXE1]
43	IPv6-Route	Routing Header for IPv6	[Deering]
44	IPv6-Frag	Fragment Header for IPv6	[Deering]
45	IDRP	Inter-Domain Routing Protocol	[Sue Hares]
46	RSVP	Reservation Protocol	[Bob Braden]
47	GRE	General Routing Encapsulation	[Tony Li]
48	MHRP	Mobile Host Routing Protoco	[David Johnson]
49	BNA	BNA	[Gary Salamon]
50	ESP	Encap Security Payload for IPv6	[RFC1827]
51	AH	Authentication Header for IPv6	[RFC1826]
52	I-NLSP	Integrated Net Layer Security TUBA	[GLENN]
53	SWIPE	IP with Encryption	[JI6]
54	NARP	NBMA Address Resolution Protocol	[RFC1735]
55	MOBILE	IP Mobility	[Perkins]
56	TLSP	Transport Layer SecurityProtocol (using	[Oberg]
		Kryptonet key management)	
57	SKIP	SKIP	[Markson]

Decimal	Keyword	Protocol	References
58	IPv6-ICMP	ICMP for IPv6	[RFC1883]
59	IPv6-NoNxt	No Next Header for IPv6	[RFC1883]
60	IPv6-Opts	Destination Options for IPv6	[RFC1883]
61		any host internal protocol	[IANA]
62	CFTP	CFTP	[CFTP,HCF2]
63		any local network	[IANA]
64	SAT-EXPAK	SATNET and Backroom EXPAK	[SHB]
65	KRYPTOLAN	Kryptolan	[PXL1]
66	RVD	MIT Remote Virtual Disk Protocol	[MBG]
67	IPPC	Internet Pluribus Packet Core	[SHB]
68		any distributed file system	[IANA]
69	SAT-MON	SATNET Monitoring	[SHB]
70	VISA	VISA Protocol	[GXT1]
71	IPCV	Internet Packet Core Utility	[SHB]
72	CPNX	Computer Protocol Network Executive	[DXM2]
73	CPHB	Computer Protocol Heart Beat	[DXM2]
74	WSN	Wang Span Network	[VXD]
75	PVP	Packet Video Protocol	[SC3]
76	BR-SAT-MON	Backroom SATNET Monitoring	[SHB]
77	SUN-ND	SUN ND PROTOCOL-Temporary	[WM3]
78	WB-MON	WIDEBAND Monitoring	[SHB]
79	WB-EXPAK	WIDEBAND EXPAK	[SHB]
80	ISO-IP	ISO Internet Protocol	[MTR]

Decimal	Keyword	Protocol	References
81	VMTP	VMTP	[DRC3]
82	SECURE-VMTP	SECURE-VMTP	[DRC3]
83	VINES	VINES	[BXH]
84	TTP	TTP	[JXS]
85	NSFNET-IGP	NSFNET-IGP	[HWB]
86	DGP	Dissimilar Gateway Protocol	[DGP,ML109]
87	TCF	TCF	[GAL5]
88	EIGRP	EIGRP	[CISCO,GXS]
89	OSPFIGP	OSPFIGP	[RFC1583,JTM4]
90	Sprite-RPC	Sprite RPC Protocol	[SPRITE,BXW]
91	LARP	Locus Address Resolution Protocol	[BXH]
92	MTP	Multicast Transport Protocol	[SXA]
93	AX.25	AX.25 Frames	[BK29]
94	IPIP	IP-within-IP Encapsulation Protocol	[JI6]
95	MICP	Mobile Internetworking Control Pro.	[JI6]
96	SCC-SP	Semaphore Communications Sec. Pro.	[HXH]
97	ETHERIP	Ethernet-within-IP Encapsulation	[RXH1]
98	ENCAP	Encapsulation Header	[RFC1241,RXB3]
99		any private encryption scheme	[IANA]
100	GMTP	GMTP	[RXB5]
101	IFMP	Ipsilon Flow Management Protocol	[Hinden]
102	PNNI	PNNI over IP	[Callon]
103	PIM	Protocol Independent Multicast	[Farinacci]

Decimal	Keyword	Protocol	References
104	ARIS	ARIS	[Feldman]
105	SCPS	SCPS	[Durst]
106	QNX	QNX	[Hunter]
107	A/N	Active Networks	[Braden]
108	IPComp	IP Payload Compression Protocol	[RFC2393]
109	SNP	Sitara Networks Protocol	[Sridhar]
110	Compaq-Peer	Compaq Peer Protocol	[Volpe]
111	IPX-in-IP	IPX in IP	[Lee]
112	VRRP	Virtual Router Redundancy Protocol	[Hinden]
113	PGM	PGM Reliable Transport Protocol	[Speakman]
114		any 0-hop protocol	[IANA]
115	L2TP	Layer Two Tunneling Protocol	[Aboba]
116	DDX	D-II Data Exchange (DDX)	[Worley]
117	IATP	Interactive Agent Transfer Protocol	[Murphy]
118	STP	Schedule Transfer Protocol	[JMP]
119	SRP	SpectraLink Radio Protocol	[Hamilton]
120	UTI	UTI	[Lothberg]
121	SMP	Simple Message Protocol	[Ekblad]
122	SM	SM	[Crowcroft]
123	PTP	Performance Transparency Protocol	[Welzl]
124	ISIS	over IPv4	[Przygienda]
125	FIRE		[Partridge]
126	CRTP	Combat Radio Transport Protocol	[Sautter]

Decimal	Keyword	Protocol	References
127	CRUDP	Combat Radio User Datagram	[Sautter]
128	SSCOPMCE		[Waber]
129	IPLT		[Hollbach]
130	SPS	Secure Packet Shield	[McIntosh]
131	PIPE	Private IP Encapsulation within IP	[Petri]
132	SCTP	Stream Control Transmission Protocol	[Stewart]
133	FC	Fibre Channel	[Rajagopal]
134	FRSVP-E2E-IGNORE		[RFC3175]
136	UDPLite		[RFC3828]
137	MPLS-in-IP		[RFC-ietf-mpls-in-ip-or-g re-08.txt]
138-252	Unassigned		[IANA]
253	Use for experimentation and	l testing	[RFC3692]
254	Use for experimentation and	l testing	[RFC3692]
255	Reserved		[IANA]

As of Jan. 2005, there are 4 fewer available protocol numbers than the course in 2003 and 41 fewer since the course in 1999.

Loopback interface

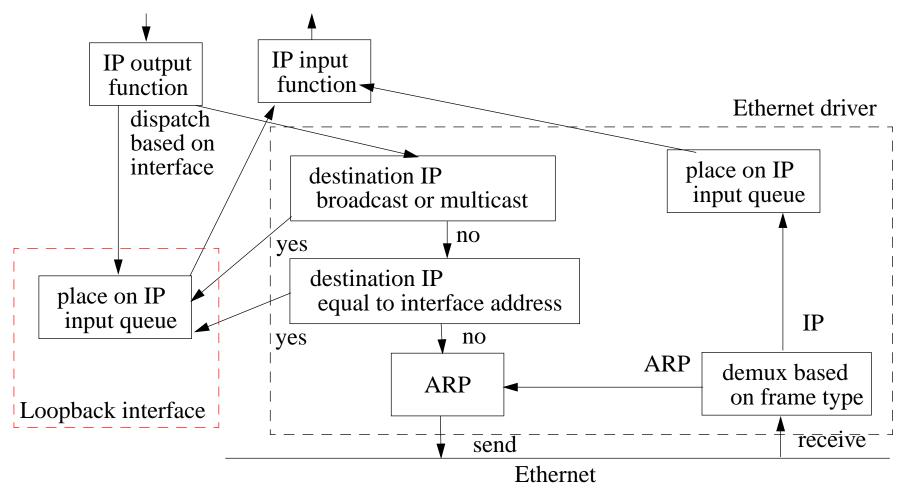


Figure 12: Processing of IP Datagrams (adapted from Stevens, Volume 1, figure 2.4, pg. 28)

Loopback interface summary

- loopback address = 127.0.0.1 generally called "localhost"
- all broadcasts and multicasts get sent to the loopback because the sender gets a copy too!
- everything sent to the host's own IP address is sent to the loopback interface

Virtual Interface (VIF)

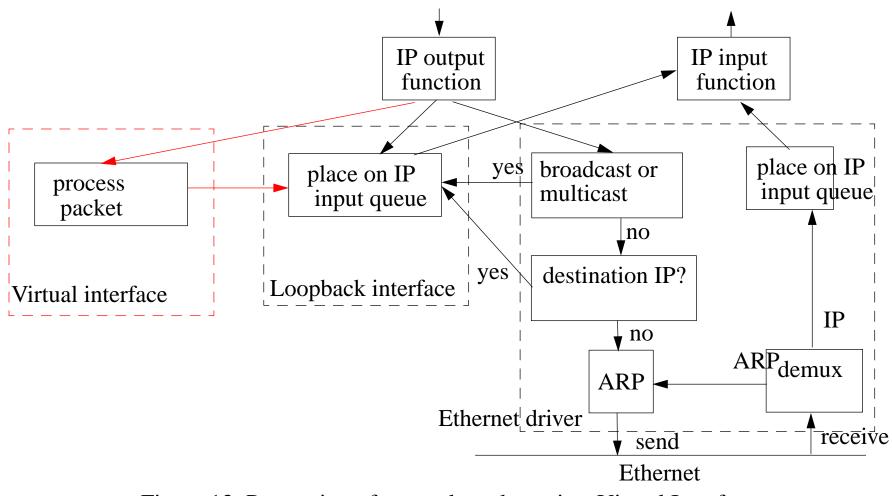


Figure 13: Processing of network packets via a Virtual Interface

Using VIF for tunneling

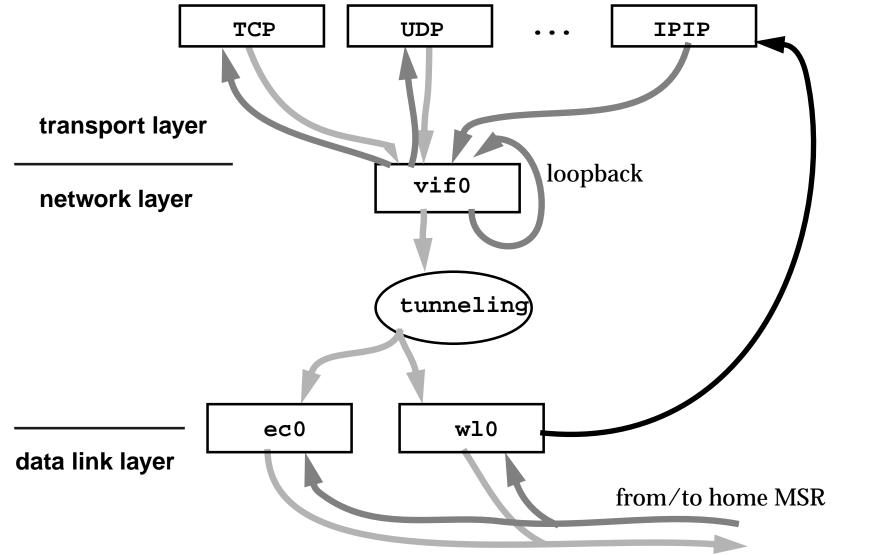


Figure 14: Using a Virtual Interface for Tunneling (IP in IP) adapted from John Ioannidis's thesis

Maguire maguire@kth.se

Wireshark, tcpdump, etc.

Wireshark <u>http://www.wireshark.org/</u> is a tool for capturing, visualizing, analyzing, ... network traffic

It builds on the earlier tcpdump program and utilizes the ability to promiscuously listen to a network interface.

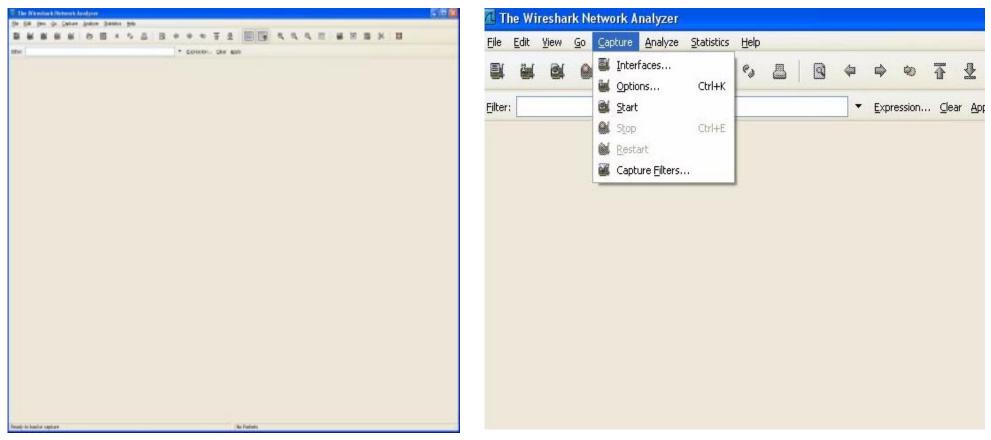


Figure 15: Start the program, then select Capture

Description		IP	Packets	Packets/s	Stop
📕 Adapter for generic dialup and VPN capture		unknown	0	0	Start Options Details
📕 Agere Systems (Microsoft's Packet Scheduler)		unknown	0	0	Start Options Details
📕 Broadcom NetXtreme Gigabit Ethernet Driver (Microsoft's Packet Sche	eduler)	192.168.1.19	7 1	0	Start Options Details
🛋 Realtek RTL8169/8110 Family Gigabit Ethernet NIC	(Microsoft's Packet Scheduler)	un Immedi	ately star	t a capture	from this interface:

Figure 16: Select the interface

Note that the Microsoft Windows drivers will not allow you to promiscuously listen on a WLAN interface.

			ression Sear Bo		
Time	Source	Destination	Protocal	Info	
2 0.000556	Cisco-L1_4d:3d:a2	Broadcast	ARP	who has 192.168.1.2197 Tell 192 who has 192.168.1.2137 Tell 192	
3 0.019421	Cisco-Li_4d:3d:a2	Broadcast	ARP	who has 192.168.1.2087 Tell 192.1	
4 0.042448	cisco-L1_4d:3d:a2	proadcast	ARP	who has 192.168.1.2067 Tell 192.:	
5 0.043124 6 0.043697	Cisco-L1_4d:3d:a2 Cisco-L1_4d:3d:a2	Broadcast Broadcast	ARP	who has 192.168.1.194? Tell 192.1 Who has 192.168.1.2117 Tell 192.1	
7 0.067420	Cisco-L1_4d:3d:a2	Droadcast	ARP	who has 192.168.1.2127 Tell 192.:	
8 0.090488	cisco-L1_4d:3d:a2	proadcast	ARP	who has 102.168.1.2017 Tell 102.:	
9 0.114450	Cisco-L1_4d:3d:a2 192.108.32.199	Broadcast 192.105.1.197	TCP	who has 192.168.1.203? Tell 192 46571 > ftp [SYN] Seg=0 Len=0 MSS	
11 0.115616	Cisco-L1_4d:3d:a2	proadcast	ARP	who has 192.168.1.2237 Tell 192.3	
12 0.138684	c1sco-L1_4d:3d:a2	Broadcast	AUP	who has 192.168.1.214? Tell 192.:	168.1.1
13 0,139433 14 0.162928	Cisco-Li_4d:3d:a2 Cisco-Li_4d:3d:a2	Broadcast	ARP	Who has 192.168.1.2027 Tell 192.1 Who has 192.168.1.1957 Tell 192.1	
15 0.163729	C1sco-L1_4d:3d:a2	proadcast	ARP	who has 192.168.1.215? Tell 192.:	
16 0.234449	Cisco-L1_4d:3d:a2	Broadcast	ARP	who has 192.168.1.222? Tell 192.1	
17 0.235011 18 0.235345	Cisco-Li_4d:3d:a2 Cisco-Li_4d:3d:a2	Broadcast	ARP	Who has 192.168.1.2077 Tell 192.	
hernet II, Sr	es on wire, 60 bytes c c: Cisco-Li_idd:3d:a2 (ion Protocol (request)	00:16:b6:4d:3d:a2)		Who has 192.168.1.2007 Tell 192.	168.1.1
thernet II, Sr	c: Cisco-Li_4d:Id:a2 (00:16:b6:4d:3d:a2)			168.1.1
thernet II, Sr	c: Cisco-Li_4d:Id:a2 (00:16:b6:4d:3d:a2)			168.1.1
thernet II, Sr	c: Cisco-Li_4d:Id:a2 (00:16:b6:4d:3d:a2)			168.1.1
thernet II, Sr	c: Cisco-Li_4d:Id:a2 (00:16:b6:4d:3d:a2)			168.1.1
hernet II, Sr	c: Cisco-Li_4d:Id:a2 (00:16:b6:4d:3d:a2)			168.1.1
thernet II, Sr	c: Cisco-Li_4d:Id:a2 (00:16:b6:4d:3d:a2)			168.1.1

Figure 17: After capturing some packets

Time for a demo!

Exporting data to other tools

By exporting the data we can process it with lots of different tools:

- tcpdump (and similar tools),
- Perl, AWK, ... scripts,
- spreadsheets,
- ...
- custom programs

Wireshark: Exp	ort File		?
Save jn:	My Document	is 🕜 😰 🖾 -	
My Recent Documents	DMS Log Files Downloads Exjobs My Google Gado My Music My Pictures Pocket_PC My D UpdaterS		
My Documents	C WorkingDocs		
My Computer			
	File <u>n</u> ame:	Save	
My Network Places	Save as <u>type</u> :	Plain text (*.txt) Cancel Plain text (*.txt) Help	
Packet Range	⊙ Ca	CSV (Comma Separated Values summary (*.csv) PSML (XML packet summary) (*.psml) PDML (XML packet detail) (*.pdml)	
All packets		2 2 Packet details:	
Selected pa Marked pac		1 1 As displayed 💽	
O First to last r		2 2 Packet Bytes	
O Range:		0 0 Each packet on a new page	

Figure 18: Export the captured traffic

Comma Separated Values

Example:

"No.", "Time", "Source", "Destination", "Protocol", "Info"

"1","0.000000","192.168.1.197","192.168.1.255","BROWSER", "Host Announcement CCSNONAME, Workstation, Server, NT Workstation"

"2","2.208042","Cisco-Li_4d:3d:a2","Broadcast","ARP", "Who has 192.168.1.219? Tell 192.168.1.1"

"3", "3.206115", "Cisco-Li_4d:3d:a2", "Broadcast", "ARP", "Who has 192.168.1.219? Tell 192.168.1.1"

"4","4.206193","Cisco-Li_4d:3d:a2","Broadcast","ARP", "Who has 192.168.1.219? Tell 192.168.1.1"

Importing in to a Microsoft Excel¹ spreadsheet

he Text Wizard has	determined that your data is Fixed Width		
f this is correct, cho	ose Next, or choose the data type that b	est describes your data.	
Original data type			
Choose the file typ	e that best describes your data:		
Delimited	- Characters such as commas or tabs s	eparate each field.	
O Fixed width	- Fields are aligned in columns with spa	ces between each field.	
United mouth			
Start import :	at row: 1 😴 File origin:	437 : OEM United States	•
Start import : Preview of file C:\D 1 "No.", "Time 2 1, "0.00000 3 2, "0.095617 4 3, "0.457763	at row: 1 File origin: ocuments and Settings\maguire\My Docur ","Source","Destination","Pro ","83.250.80.1","Broadcast",' ","83.250.80.1","Broadcast",' ","83.250.80.1","Broadcast",'	nents\Class\2IT-r\Kia.txt. >tocol", "Info" 'ARP", "Who has 83.250. 'ARP", "Who has 83.250. 'ARP", "Who has 83.250.	.86 .90

Figure 19: First step after opening a CSV formatted file

^{1.} Similar mechanims can be used with other spreadsheets

ext I	ext Import Wizard - Step 2 of 3						
how y		set the delimiters fected in the previ Se <u>m</u> icolon Other:	your data contai ew below.		ecutive delimiters as or	ne Y	
Data g	greview						
No.	Time	Source	Destination	Protocol	Info		
						~	
1	0.000000	83.250.80.1	Broadcast	ARP	Who has 83.250.	86.	
1	3 2 C 17 2 2 C C C C C C C C C C C C C C C C C	83.250.80.1 83.250.80.1		A CONTRACT OF A CONTRACT OF	The State of the second s	200120 C	
1 2 3	3 2 C 17 2 2 C C C C C C C C C C C C C C C C C	83.250.80.1		ARP	Who has 83.250. Who has 83.250. Who has 83.250.	86.	
1 2	0.095617 0.457763	83.250.80.1	Broadcast Broadcast	ARP ARP	Who has 83.250. Who has 83.250.	86.	
1 2 3	0.095617 0.457763	83.250.80.1 83.250.80.1	Broadcast Broadcast	ARP ARP ARP	Who has 83.250. Who has 83.250. Who has 83.250.	86.	

Figure 20: Second step in conversion

	een lets you a Format.	select each colum	n and set	Column data	1		
		numeric values to nd all remaining va	CALCULATION AND AND A REAL PROPERTY OF A DESCRIPTION OF A	O <u>T</u> ext O <u>D</u> ate:	MDY	~	
					import colun	nn (skip)	
ata pr	eview	anced					
ener	eview	General	General	General	General]
ener	eview General Time	General Source	Destination	Protocol	Info	00.050.05]
ener 0.	General Time 0.000000	General Source 83.250.80.1	Destination Broadcast	Protocol ARP	Info Who has	83.250.86.	
ener e.	eview General Time 0.000000 0.095617	General Source 83.250.80.1 83.250.80.1	Destination Broadcast Broadcast	Protocol	Info Who has Who has	83.250.86.	
ener o.	Eview General Time 0.000000 0.095617 0.457763	General Source 83.250.80.1 83.250.80.1	Destination Broadcast Broadcast Broadcast	Protocol ARP ARP	Info Who has Who has Who has		

Figure 21: Final step -- Note that in this step if you are using the Swedish language version of Microsoft's Excel - you need to indicate that the "." in the Time column, should be converted to a ","
- otherwise you can not do arithmetic on these values (since they look like strings!!!)

Example of what can be done

rosoft E	xcel - www	v.kth																
ile <u>E</u> dit	View Ins	ert F <u>o</u> rmat <u>T</u> o	ools <u>D</u> ata <u>W</u> indow	Help A	do <u>b</u> e PDF												Type a qu	estion for help
3 🛛 🕻		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	۵ 🗈 · 🖋 I 🤊 •	(***	Σ • 2↓	XI 🔟 🗗	100% 🗣	🕜 🖕 🛛 Ar	ial	• 10	• B .	<u>v</u> ≣	= = =	\$ %	, *:0 :00 		· 🖉 ·	<u>A</u> • 💂
1 🐔 🚽																		
71	•	fx																
A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S
91	17.64266	192.168.1.20	130.237.32.107	TCP		1482 > http	SYN] S	eq=0 Len=() MSS=146	0								
93	17.64903	192.168.1.20	130.237.32.107	TCP		1482 > http	ACK] S	eq=1 Ack=	1 Win=6553	35 [TCP CHE	ECKSUM	INCORREC'	T] Len=0					
94	17.64911	192.168.1.20	130.237.32.107	HTTP		GET / HTT	P/1.1	152		1.80			3					
98	17.66367	192.168.1.20	130 237 32 107	TCP		1482 > http	ACK S	eq=405 Acl	k=2921 Wir	=65535 [TC	P CHECK	SUM INCO	RRECT] Ler	n=0				
101	17.67207	192.168.1.20	130.237.32.107	TCP		1482 > http	ACKI S	eq=405 Acl	k=5841 Wir	=65535 [TC	P CHECK	SUM INCO	RRECT] Ler	1=0				
104	17.67972	192.168.1.20	130 237 32 107	TCP						=65535 [TC								
107	17.68144	192.168.1.20	130.237.32.107	TCP						in=65535 [T						- Coles Lorenza		
110	17.68724	192.168.1.20	130.237.32.107	TCP						in=65535 [T					Time for t	he first GET	0.038130	seconds
		192.168.1.20	130,237,32,107	HTTP		GET /css/i				1								
	and the second se	192.168.1.20	130.237.32.107	TCP		1483 > http	SYNI S	ea=0 Len=(MSS=146	0								
	the second s	192.168.1.20	130.237.32.107	0.0000						35 [TCP CHE	CKSUM	NCORREC	TI Len=0		Time for t	he 2nd GET	0.009935	seconds
		192,168,1,20	130.237.32.107	and the local diversion of the local diversio		GET /img/i												
		192.168.1.20	130.237.32.107	and the second s		GET /css/s												
				1222											-			

Figure 22: Use spreadsheet operations over the values

Using a Perl script

```
#!/usr/bin/perl -w
# each input line consists of a triple: Time, Source, RSSI
# separate the file based upon making a file for each source containing only the Time and RSSI
# 2007.12.27 G. Q. Maguire Jr. and M. E. Noz
# Security blankets - Perl authors claim programs are unsafe without this
# This only removes directories that have no files in them
#Use only perl libary
#@INC = $INC[$#INC - 1];
#die "Perl library is writable by the world!\n" if $< && -W $INC[0];
$ENV{'IFS'} = '' if $ENV{'IFS'};
umask 002;
# get the main directory paths
$project dir = '/home/noz';
$filename = 'all-time-source-RSSId.csv';
#$filename = 'all-time.small';
$sourcename = '';
$sourcename1 = '';
$time = '';
\$RRSID = '';
\$count = 0;
&create_tmp_file;
#open the data file for reading
open(DATA_FILE, $filename) || die "Can't open data file: $!\n";
while ($varrec = <DATA_FILE>) {
 if ($varrec =~ /^#/) {
     scount = 1;
     next;
 else {
   chop($varrec);
   print "count is $count\n";
# print "varrec is $varrec\n";
   ($time, $sourcename, $RSSId) = split(/,/, $varrec);
#
   print "time is $time, sourcename is $sourcename, RSSId is $RSSId\n";
    if ($count == 1) {
    $sourcename1=$sourcename;
```

Maguire maguire@kth.se

```
print PTMP "$time $RSSId\n";
    $count++;
    print "sourcename is $sourcename; sourcename1 is $sourcename1 \n";
    else {
    if ($sourcename =~ $sourcename1) {
        print PTMP "$time $RSSId\n";
    ι
    else (
        print "sourcename is $sourcename, old sourcename is $sourcename1\n";
        close PTMP;
        chmod 0664, '/tmp/ptmp';
        system("mv /tmp/ptmp $sourcename1");
        $sourcename1 = $sourcename;
        &create tmp file;
        print PTMP "$time $RSSId\n";
close PTMP;
chmod 0664, '/tmp/ptmp';
system("mv /tmp/ptmp $sourcename1");
close DATA FILE;
sub create_tmp_file {
     open(PTMP, ">/tmp/ptmptmp$$") || die "Can't create tmp file $!\n";
    close (PTMP);
    $locked = link("/tmp/ptmptmp$$", '/tmp/ptmp');
    unlink "/tmp/ptmptmp$$";
    $locked || die "Can't lock temporary file.\n";
    open(PTMP, ">/tmp/ptmp") || die "Can't open tmp file $! for writing\n";
```

This script process captured IEEE 802.11 packets to put measurements of the different sources into their own files, based upon the source MAC address. (In this case the program assumes that the file has already been sorted based upon the source MAC address.)

Choosing which columns to display

📶 Wireshark: Prefere	nces	
🗏 User Interface	User Interface	
Layout	Packet list selection mode:	Selects 💌
Columns Font	Protocol tree selection mode:	Selects 🔽
Colors	Save window position:	
Capture Printing	Save window size:	
Name Resolution	Save maximized state:	
	Open a console window	Never
	"File Open" dialog behavior:	Remember last directory O Always start in:
	Directory:	C:\Documents and Settings\maguire\My Documents
	"File Open" preview timeout:	3
	"Open Recent" max. list entries:	10
	Ask for unsaved capture files:	
	Wrap to end/beginning of file during a find:	
	Settings dialogs show a save button:	
	Figure 22: Set your professor and	OK <u>Apply</u> <u>Cancel</u>

Figure 23: Set your preferences for the User Interface

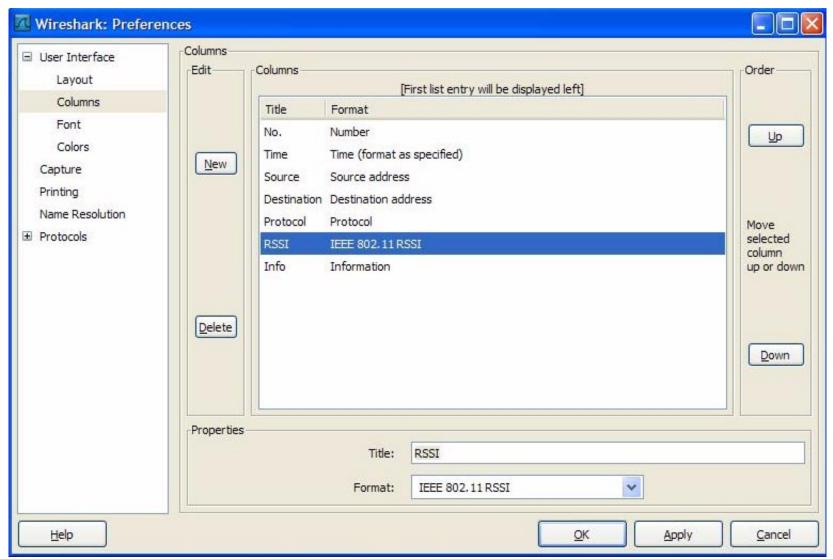


Figure 24: Add a column and place it in the desired column position

🔼 (Unt	itled) - Wireshar	k				
<u>Eile E</u> d	lit <u>V</u> iew <u>G</u> o <u>C</u> ap	oture <u>A</u> nalyze <u>S</u> tatistics <u>H</u> elp				
		e 🖬 🗶 😂 👌 🔍	2 7 😜 🗢			
Elter:			-	Expression <u>C</u> lear <u>A</u> pply		
No	Time	Source	Destination	Protocol RSSI	Info	
	1 0.000000	D-Link_9e:87:29	Broadcast	ARP	Who has 192.168.1.8?	Tell 192.168.1.1
	2 0.999919	D-Link_9e:87:29	Broadcast	ARP	Who has 192.168.1.8?	Tell 192.168.1.1
	3 1.999836	D-Link_9e:87:29	Broadcast	ARP	who has 192.168.1.8?	Tell 192.168.1.1
	4 3.543299	D-Link_9e:87:29	Broadcast	ARP	Who has 192.168.1.8?	Tell 192.168.1.1
	5 4.542636	D-Link_9e:87:29	Broadcast	ARP	Who has 192.168.1.8?	Tell 192.168.1.1
	6 5.542557	D-Link_9e:87:29	Broadcast	ARP	who has 192.168.1.8?	Tell 192.168.1.1
	7 6.542477	D-Link_9e:87:29	Broadcast	ARP	who has 192.168.1.8?	Tell 192.168.1.1
	8 7.542390	D-Link_9e:87:29	Broadcast	ARP	Who has 192.168.1.8?	Tell 192.168.1.1
	9 8.297723	LgElectr_Ob:5e:61	Broadcast	ARP	Who has 192.168.1.2?	те]] 192.168.1.20

Figure 25: Save your parameters and restart the program to use the newly configured user interface

IP addresses

Address types

- Unicast = one-to-one
- Multicast = one-to-many
- Broadcast = one-to-all

32 bit address divided into two parts:

Figure 26: IP address format

Note that although we refer to it as the Host ID part of the address, it is really the address of an interface.

Dotted decimal notation: write each byte as a decimal number, separate each of these with a "." i.e., 10000010 11101101 00100000 00110011 \Rightarrow 130.237.32.51 or in hexadecimal as: 0x82ED2033

Classful addressing

Classically the address range was divided into classes:

Class	NetID		Range (dotted decimal notation)	host ID
A	0	+ 7- bit NetID	0.0.0.0 to 127 .255.255.255	24 bits of host ID
В	10	+ 14-bit NetID	128 .0.0.0 to 191 .255.255.255	16 bits of host ID
С	110	+ 21-bit NetID	192 .0.0.0 to 223 .255.255.255	8 bits of host ID
D	1110		224 .0.0.0 to 239 .255.255.255	28 bits of Multicast address
E	11110		240 .0.0.0 to 247 .255.255.255	Reserved for future use

- Globally addressable IP addresses must be unique
 - later in the course we will see how NATs affect this
- addresses roughly 2⁷*2²⁴ + 2¹⁴*2¹⁶ + 2²¹*2⁸ = 3,758,096,384
 interfaces (not the number of hosts)
- in 1983 this seemed like a lot of addresses
- problems with the size of the blocks \Rightarrow lots of wasted addresses
 - lead to classless addressing!

Classless addressing: Subnetting IP networks

Often we want to "subnet" - i.e., divide the network up into multiple networks:

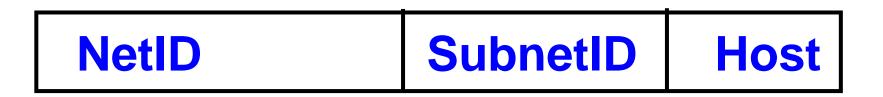
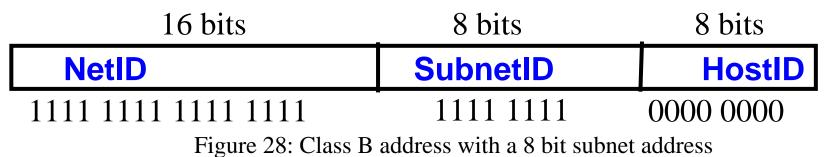


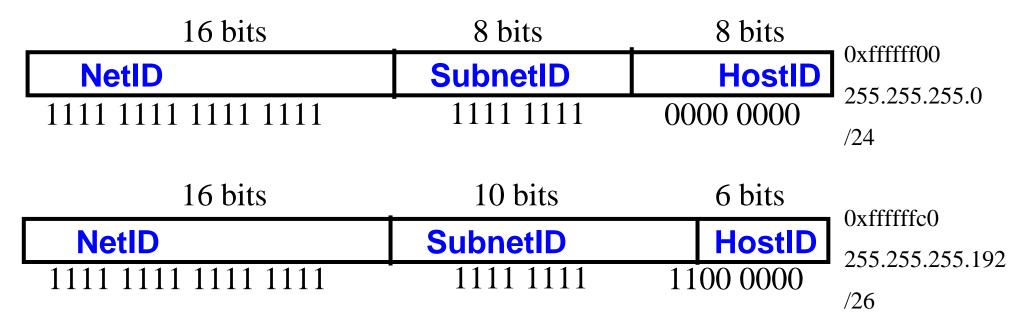
Figure 27: IP addresses and subnetting

Although the Subnet field is shown as a field which is separate from the Host field, it could actually be divided on a bit by bit basis; this is done by a **Subnet Mask.**

A common practice to avoid wasting large amounts of address space is to use Classless Interdomain Routing (CIDR) also called "supernetting" {see §10.8 of Steven's Vol. 1 and RFCs 1518 and 1519}.


Special Case IP Addresses

	IP Address		Can appear	ras	Description
net ID	subnet ID	host ID	source?	destination	
0		0	ОК	never	this host on this net
0		hostid	ОК	never	specified host on this net
127		any	ОК	ОК	loopback address
-1		-1	never	ОК	limited broadcast (never forwarded)
netid		-1	never	ОК	net-directed broadcast to netid
netid	subnetid	-1	never	OK	subnet-directed broadcast to netid, subnetid
netid	-1	-1	never	ОК	all-subnets-directed broadcast to netid


Thus for every subnet - the zero host ID address refers to **this net** and the all ones host ID is a **subnet broadcast** address; this uses up two addresses from every subnet's address range.

Subnet mask

32 bit value with a 1 for NetID + subnetID, 0 for HostID

2 different class B subnet arrangements

Classless Inter-Domain Routing (CIDR)

Slash notation

Length (CIDR)	Address mask	Notes	Length (CIDR)	Address mask	Notes
/0	0.0.0.0	All 0's ≡ no mask	/8	255.0.0.0	≡ Class A
/1	128.0.0.0		/9	255.128.0.0	
/2	192.0.0.0		/10	255.192.0.0	
/3	224.0.0.0		/11	255.224.0.0	
/4	240.0.0.0		/12	255.240.0.0	
/5	248.0.0.0		/13	255.248.0.0	
/6	252.0.0.0		/14	255.252.0.0	
/7	254.0.0.0		/15	255.254.0.0	

Slash notation continued

Length (CIDR)	Address mask	Notes	Length (CIDR)	Address mask	Notes
/16	255.255.0.0	≡ Class B	/24	255.255.255.0	\equiv Class C
/17	255.255.128.0		/25	255.255.255.128	
/18	255.255.192.0		/26	255.255.255.192	
/19	255.255.224.0		/27	255.255.255.224	
/20	255.255.240.0		/28	255.255.255.240	
/21	255.255.248.0		/29	255.255.255.248	
/22	255.255.252.0		/30	255.255.255.252	
/23	255.255.254.0		/31	255.255.255.254	
			/32	255.255.255.255	All 1's (host specific mask)

IP address assignments

Internet Service Providers (ISPs) should contact their upstream registry or their appropriate Regional Internet Registries (RIR) at one of the following addresses:

Region	
APNIC (Asia-Pacific Network Information Center)	<u>http://www.apnic.net</u>
ARIN (American Registry for Internet Numbers)	<u>http://www.arin.net</u>
RIPE NCC (Réseaux IP Européens)	<u>http://www.ripe.net</u>
LANIC (Latin America and Caribbean Network Information Centre)	<pre>http://www.lacnic.net/en/index.html</pre>
AfriNIC (Africa NIC)	<u>http://www.afrinic.net/</u>

Private addresses

These IP addresses are for strictly **private** use:

Class	Netids	block	
A	10.	1	
В	172.16 to 172.31	16	
С	192.168.0 to 192.168.255	256	

For an exmaple of how these private addresses are used within an organization

See: <u>http://www.lan.kth.se/norm/priv-net-usage.txt</u>

Problems with the dual functions of IP addresses

Unfortunatelly an IP address has dual functions:

- Network ID portion indicates a location in the network
 - i.e., the network ID binds the address to a location in the network topology
 - CIDR and hierarchical address prefixes allow for recursive subdivision of the topology
- Host ID portion identifies an interface often used as a node identifier
 - Unfortunately network connections are bound to these identifiers
 - Specifically TCP/UDP sockets are identified by the endpoint IP address (and port numbers)
 - DNS returns one or more addresses for new connections

 \Rightarrow This is bad for mobility and multi-homing (see textbook figure 4.12 on pg. 95)

- If a host changes its point of network attachment it must change its identity
 - Later we will see how Mobile IP addresses this problem
- Host with multiple interfaces are limited in how they can use them
 - Later we will see how SCTP addresses part of this problem

The result has been that multiple and dynamic addresses are difficult to handle and lead to a number of efforts to rethink how addresses are used.

ifconfig, route and netstat Commands

- ifconfig: to configure interface.
- route: to update routing table.
- netstat: to get interface and routing information.

For example: to configure interface, add an network and add a gateway:

root# ifconfig eth0 192.71.20.115 netmask 255.255.255.0 up

root# route add -net 192. 71.20.0 netmask 255.255.255.0 eth0

root# route add default gw 192.71.20.1 eth0

We will discuss these commands in more detail in following lectures and in the recitations.

Common Used Simple Services

Name	TCP port	UDP port	RFC	Description
echo	7	7	862	server returns what the client sends
discard	9	9	863	server discards what the client sends
daytime	13	13	867	Server returns the time and date in a human readable format
chargen	19	19	864	TCP server sends a continual stream of character, until the connection is terminated by the client. UDP server sends a datagradm containing a random number of characters each time the client sends a datagram.
ftp-data	20			File Transfer Protocol (Data)
ftp	21			File Transfer Protocol (Control)
telnet	23			Virtual Terminal Protocol
smtp	25			Simple Mail Transfer Protocol
time	37	37	868	Server returns the time as a 32-bit binary number. This number is the time in seconds since 1 Jan. 1990, UTC

Standardization Organizations

The most relevant to the Internet are:

- Internet Society (ISOC)
 - Internet Engineering Task Force (IETF)
- World-wide-web consortium (W3C)
- International Standards Organization (ISO)
- International Telecommunications Union Telecommunication Standards Sector (ITU-T)
- Institute of Electrical and Electronics Engineers (IEEE)

• ...

Read in the textbook sections 1.4 and 1.5.

- Course Introduction
- Internet Basics
 - Multiplexing and demultiplexing
 - Datagrams
- Link Layer Protocols for the Internet
 - Ethernet
 - SLIP, PPP
- IP: Internet Protocol
 - IP addressing
 - Subnetting

W. Richard Stevens

- Born in Luanshya, Northern Rhodesia (now Zambia) in 1951
- Died on September 1, 1999
- He studied Aerospace Engineering, Systems Engineering (image processing major, physiology minor)
- flight instructor and programmer
- His many books helped many people to understand and use TCP/IP
 - UNIX Network Programming, Prentice Hall, 1990.
 - Advanced Programming in the UNIX Environment, Addison-Wesley, 1992.
 - TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, 1994.
 - TCP/IP Illustrated, Volume 2: The Implementation, Addison-Wesley, 1995.
 - TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX Domain Protocols, Addison-Wesley, 1996.
 - UNIX Network Programming, Volume 1, Second Edition: Networking APIs: Sockets and XTI, Prentice Hall, 1998.
 - UNIX Network Programming, Volume 2, Second Edition: Interprocess Communications, Prentice Hall, 1999.

References

[1] Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn, Leonard Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, and Stephen Wolff, "A Brief History of the Internet", On The Internet, May/June 1997

http://www.isoc.org/oti/articles/0597/leiner.html

- [2] R. Kahn, Communications Principles for Operating Systems. Internal BBN memorandum, Jan. 1972.
- [3] V. Cerf and R. Kahn, "A protocol for packet network interconnection", IEEE Transactions on Communications Technology, Vol. COM-22, Number 5, May 1974, pp. 627-641.

http://global.mci.com/us/enterprise/insight/cerfs_up/technical_writings/protocol_paper/

 [4] Jerome H. Saltzer, David P. Reed, David D. Clark, "End-To-End Arguments In System Design" In ACM Transactions on Computer Systems, V2, #4, Nov. 1984, pages 277-288

http://citeseer.ist.psu.edu/saltzer84endtoend.html

[5] David D. Clark and Marjory S. Blumenthal, "Rethinking the Design of the Internet: The end to end arguments vs. the brave new world", In ACM Transactions on Internet Technology, Vol 1, No 1, August 2001, pp 70-109.

http://www.ana.lcs.mit.edu/papers/PDF/Rethinking_2001.pdf

[6] D. Clark, J. Wroclawski, K. Sollins, and R. Braden, "Tussle in Cyberspace: Defining Tomorrow's Internet", Proceedings of Sigcomm 2002.

http://www.acm.org/sigs/sigcomm/sigcomm2002/papers/tussle.pdf

- [7] Wendell Odom and Rick McDonald, Routers and Routing Basics CCNA 2 Companion Guide (Cisco Networking Academy Program), 1st edition, Cisco Press, 2006 ISBN 1-587113-166-8.
- [8] James D. Carlson, "PPP Design, Implementation, and Debugging", Second edition, Addison-Wesley,2000, ISBN 0-201-70053-0
- [9] Gerald Combs, Wireshark web page, <u>http://www.wireshark.org/</u>, last accessed
 4 January 2008 15:06:48 PM EST
- [10] ewlett-Packard Company Annual Report, 2006, page 60

- [11] Hewlett-Packard Company Form 10-K, 2007, page 60
- [12] Van Jacobson, "If a Clean Slate is the solution what was the problem?", Stanford Clean Slate Seminar, slide 26: "Digression on Implicit vs. Explicit Information", February 27, 2006<u>http://cleanslate.stanford.edu/seminars/jacobson.pdf</u>