DAG EKENGREN
E92, KTH IT

1999-02-08

RDF

FOR

MULTIMEDIA BROKER

METADATA ON THE WEB

ABSTRACT 3
1. INTRODUCTION 4
1.1. OBJECTIVES AND REQUIREMENTS . ..utttiiiiiiittertieeseiitsreeesesiessssesesseisssressesssasssssesssssssssssssesssessnnes 5
1.2. I3] TR 5
1.3. F A = = (0 Y- 0! RPN 6
1.4. ORGANIZATION OF THIS REPORT ...utttitieiiiiiitireeeeeseiesbaseeessssssssssssesesssesssssssesssssasssssssssesssassnsens 6
2. BACKGROUND 7
2.1 INTENDED USE OF RDFttt ettt e e e s et a e e e s e s e e aab b e e e e e e s e s nnabraneeeeas 7
2.2. IR (0 = = 7Y =] | 1 8
2.3. RESOURCE DISCOVERY AND IDENTIFICATION ..cciiiiiiiiiiieie ettt sn s e nn e 10
2.4. 1Y T 10
3. RDF BASICS 12
3.1 SIMPLE STATEMENTS — NODESAND ARCS.....ittiitiiitiiieeie i e et e st e s st e s s sab e s ssnsaeaas 12
3.2. USE OF THE DATA MODEL IN PARSERS ...ttt ettt et et e et et st s s s s e s s s s aneanaens 13
3.3. ADDING A SCHEMA USING XML NAMESPACES. ... ccutittiiitietieiiiiesieesiesneeseesieesnessessessesrneees 13
3.4. USING RESOURCES ASVALUES ...uuiitiiitiiit ettt e etestiesae et et e ea e st s eas st e et s etesteeasetsernassniesnnns 14
3.5. COLLECTIONS — BAG, SEQ AND AL T 1iiituiiiiiitieiiieit e tee et te et e e et e e e e st s e e s s st e s etaeranrernesrneeans 15
3.6. S ATEMENTS ABOUT STATEMENTS — REIFICATION ..uuituiii ettt eiieeiee et e eae et e e e et e e s eaeereeen 16
3.7. THE DESCRIPTION CONSTRUGCT .11 tttttttettettietteestestessesstessesstssssesnessntesnessnetsnresessnresneesneesnrees 18
3.8. PBBREVIATED SYNTAX 1utttuittuittutetettteseetetseetaestaeeseeteeteetettetaestieraesieetiestesstierteesnnesee 18
4. APPLYING RDF MODEL AND RDF SCHEMA 20
4.1. QUALIFYING PROPERTIES — NON-BINARY RELATIONS ...uuiiiiiiiieeeiiiiieeeeeesin s e e eeai e e s esiaaeeaenes 20
4.2. MATH EXERCISES IN A CONTEXT 1tuttuiiuniitiitetteeteeasetettssasstssasssesnessntssnesnesssiesnessnessnresns 21
4.3. LRI = Y N TN 22
4.3.1. Type System — Classes And PrOPerties................c.ccocveiummiieiieeieiiieeieeeeeieeeieeieeieeeeeeneens 22
4.3.2. CORSIFAINLS ..o 24
4.3.3. Vocabularies vs. SCREmMaASooooe oo 26
4.4, DOCUMENT CONTENT DESCRIPTION — DCD . cuuiiiiicec et 26
4.5, RDFASMEANS OF TRANSPORT ...ttuttttttteetttttieetettestestesteetesteetaestiestessttestteressnierneesnersneees 28
4.6. S L LY Y 2 PPN 1 2
5. DESIGN AND IMPLEMENTATION......ccooveeerreeecrrrreessssseeesssssessssssasssssssssssssasssssssassssssasssssnses 31
5.1. RDF DATA MODEL AND SCHEMA . .. cttiitiite it eee e et e st e e e et e st e e s e st e e s e st e s b s ea s st e eanssbenas 31
5.2. SFRVER SIDE — MULTIMEDIA BROKER....cuuiittiitiitiiieiiee e tesetse e e ttessaeesesaasesne et ssneeansssnees 33
52,1, THE XSL PFOCESSOFocuveeeieiieie ettt ese e esa s ens 35
5.2.2. Other Server IMplementationsccccoovuecieiiieiieiieieecie et 36
5.3. CLIENT SIDE — THE RDF CLIENT «ttittiittiiteit et e et e e et e et e et s et et s et e st s sa e st s saessn e ssneasnsssneans 37
5.3.1. RdfClient Functionality — A Guided TOUFc.ccoovvevieiiiiiiiiaiieiiece e 38
5.3.2. InSide RAFCIIENEoccooiiiiee ettt 43
5.3.3. Different Views Of DQLQccccccoioiiiiiiiii ettt 48
53040 SUMIAFY ..ottt ettt 48
6. FUTURE WORK 49
6.1. INDEX SERVERS ..t ittiiittttettt ittt ettt set e st e sttt e st e s et st ean e s saa e s s sassan et ssaseansstassansetnsstnsesnsetrernns 49
6.2. RDF ANVARE WEB BROWSERS. .. .uuitiiuitiitittiittttttatatatsessassssesesesesesetaesnesssnssnesnesnenns 49
6.3. 0 o YT S A= N = T 50
6.4. EXISTING DOCUMENT ANALY SIS i ttititiitiitiitittietttstetssesssnsanseneeneeneene et raersernerserserneraarns 50
7. CONCLUSIONS 51
ACKNOWLEDGEMENTS 52
REFERENCES 52

APPENDIX A. THE EXTENSIBLE MARKUP LANGUAGE 1

WHY XML?WHY NOT JUST HTML OR SGIML? ...ttt ettt ee s e sebabe e e s s sananes 1
KIML DOCUMENTS .. ttttiteeeieiitttreieeeseiitbbrreeessessssbasaeeseeesaabasaeeseessaaba b s eeeeessaasabsassesssesassbaneeesesesansrarenesens 2
DOCUMENT TYPE DEFINITION — DT D .ot iitiiiiiiiiiii ettt e et e e et e e e et e e e e s e et e e b s eaeebaeeen 2
WELL-FORMED VS. VALID XML ..ottt ittt et et e et e et e et e e e e b e et e e b e et e et e ean e et eeans 2
KIMIL N AMESPACES .1t ittt ittt et et et e et et e et e et e et e et e et e sa s st e aa e sa s sa s e s s bassan e et s san et esbassansetestnsenannnns
DY ISy R =S T = B €] PN 3
REFERENCESuiittiitiitietee et e et ettt e it e st e e et e et e et e et e s e e e st s eb e ea e e b s eaa e s basesasstesansstnsesnssnnnnannnns 4
APPENDIX B. RDF 1
RO IN DETAIL, TRIPLES. ettt tttuuiettteeett e ettt e ett e e eatee e s e sat e s eat e ee s e e s et eaeaa e e saa st aaasesan s essansessassantnseesnnsenen 1
RDF COre; “LAVEF 07ccoeiiiieeee ettt ettt ettt e et etae s 1
ULility Relations; “Layer 17cccccoooiivieciiiiieiece ettt 3
RDF SCRCIIA ..o e et 3
L] Y Y = I S P 4...
SOWIWAP@ AGEILS ...ttt ettt ettt ettt ettt nee st e e e eneenneens 4
REFERENCES ... iittiittiitie et e ettt et e et e et e et e e et e et e et e s st e e st e eb e et e et s e s e s basesnsstesansstnsesnssnnnnennnnn 5
APPENDIX C. THE XML TO RDF STYLESHEETS... 1
APPENDIX D. THE RDFCLIENT SOFTWARE 5
SY STEM REQUIREMENT S . et titttttttettttet ettt eestesstestaestesaeetasssneesasstesaestsetsstaresnssstresnesstsertasetnessneesnsrsnnes 5
THE RDFFORXML PARSER CLASSES ...uuittiiittttitttiettesitiesteestessneetetteesettettasetaettasettesteesasstieseesiesneees 5
APPENDIX E. INSTRUCTIONAL MANAGEMENT SYSTEM - IMS 1
L = O I N O) 251 1 = Y T
DIUCHIONATY ...ttt et ettt et e et e ettt e et e et e et e e ntae s 1
SCREMA LIDFAFY ...ttt ettt eae e 1
A SIMPLIFIED IMS METADATA STRUCTURE EXAMPLE.ttt et e et s s et s s e sassaeeaaas 1
THE IMS IMASTER SCHEMA ...t uiitiitiiiteeit ittt ete st e e et e s e e s e et s e s e et e e b e et e et s e s e et e ea s st estaesaaastsesnaesnseennns 3
THE IMS SCHEMA LIBRARY ..otuiituiitiiiteitieiteeetie et s st et e st e st e st s st e aa s st saneesaessarean st sansetnestneeaneeterans 4
IMS T1OI TYPE ... ettt ettt et ettt ettt ettt et ene e neen 4
IMS MOGULE TYPE.......c..ooeeiiee ettt ettt ettt 4
IMS TOOI TYPC.......oeeeee ettt ettt ettt ettt et e e et e et e eneeneens 4
REFERENCESuiittiitiitiietee et et e e e et e st e et e et e et e et e e et e e st e sb e sa e et s eaa e s ta e sasstesansetnsesnsennnnennnnn 4
APPENDIX F. SOFTWARE TOOLS 1
SIRPAC (W3EC) .ttt ettt ettt ettt e ettt e st e e e st et e e e e ab e e e e e e nnnnnes 1
XML FORJIAVA (IBM) ..ttt ettt e ettt e e e s it et e e e e s bbb e e e e e s annbrneeeeeams T
RDFFORXML (IBIM) ...ttt ettt ettt et et e e e e e e e e e e e e e e s e s e e nsanabebbeseeeeeeeeeeeemmmnne 1.
INTERNET EXPLORER 5 (IMICROSOFT) ...ttteetiittttteeea sttt eeeesaitbe et e e e e sttt e e e e s ambbe e e e e e s ansbbe e e e e e e annbneeeeeennnnnes 1
COMMUNICATOR 4.5 (NETSCAPE) ...ceettiutttetee e e ettt e e e s sttt e e e sttt et e e e s st b e e e e e e s aabb b et e e e s abbneeeeeesanbbnneeeeeanes 1
XML STYLER (ARBORTEXT) .tettuuuuutnstussnseereereeeeaaaasessesiasanassssssssssssssseeerreeeeeeeaessnnsanannnssnssssmssmmeerree 1

ABSTRACT

The Internet and the World Wide Web has made enormous amounts of information
instantly accessible to millions of users. The sheer wealth of resources makes finding information
difficult. Most of the data provided lacks metadata, such as classification and structural
information. This report shows how RDF (Resource Description Framework) can be used to
give metadata descriptions to resources (documents, images, sounds, products) on the World
Wide Web. We describe the basics of metadata, RDF and RDF Schema and develop an RDF
data model for a simple product. We then show how RDI metadata can be implemented on a
web server. In this project we use the Multimedia Broker platform for the implementation, but
RDF can be implemented on any web server with scripting capabilities. The report includes a
discussion of future RDF clients and RDF setvers. As an example of an RDI client we introduce
a Java client capable of browsing and editing RDF documents with a graphical user interface.

1. INTRODUCTION

Searching for information on the World Wide Web often proves time-consuming and tedious.
Finding the information you want is difficult to automate. Search engines indices information
based on occutrences of word in bulk text documents. This can be illustrated by the following
example:

Example: You want to find information on documents written by William Shakespeare and
type “William Shakespeare” into a search engine such as Lycos, Infoseek or Altavista. The
search engine returns a large number of references to documents containing the words
“William Shakespeare”. Alta Vista reports more than 40 000 matches to a quety on
“William Shakespeatre”. Most of the matches are irrelevant to our search as they refer to
documents about Shakespeare rather than by Shakespeare. The search engine may even
return a match on this document!

Cleatly we need some better way to describe our information so that search engines can give
results with much better precision. The information describing information is referred to as
metadata.

The Multimedia Broker developed at SITI! is a software architecture that would benefit from
Metadata and is used as a case study in this report. Multimedia Broker is an EU funded research
project that aims to integrate a number of multimedia techniques into an infrastructure, which
will support publishers with new means of producing, structuring, disseminating and selling
content and information products [MMBROK]. The system provides products and services to
end users on the Internet by combining components stored in a database in real-time. The
services and products can be adapted to individual users based on their user profiles and
individual preferences. The profiles are built up from the history of actions requested by the user.
The preferences atre specific requirements provided by the user.

We have now realized the need of metadata and introduced a particular piece of software
that would benefit from a metadata implementation. We haven’t yet discussed what metadata 7.
The Macquarie Dictionary defines the prefix Mefa as meaning "among", "together with", "after"
ot "behind". This suggests that metadata is data that comes together with other data to desctibe

that data’s use or interpretation. The metadata is a “fellow travelet?” of our data.

Metadata is often described as “data about data”. A good example of metadata is the card
system used in public libraries. The cards contain descriptions about the books in the library. In this
case the books are our data and the cards are “data about our data”.

The descriptions on every card follow a certain schema. The schema tells us what type of
information we can expect to find on each card, i.e. the schema provides the criteria with which
the books in our library are described. A good schema for libraries should probably contain
elements like T7tle, Creator and Publisher.

The cards are metadata to the books and the schema is metadata to the cards. This suggests
that the distinction between data and metadata is not always clear, rather it depends on the

I SITT — The Swedish Institute for Information Technology. http://www.siti.se

2 Sputnik in Russian.

application. What is considered to be metadata in one application may be considered data in
another.

One problem today is the great variety of standards and classifications for describing resources.
Resources can be documents, images, sounds, basically any kind of data. There has been some
work for providing simple metadata embedded in HTML? documents, but until now there have
been no recommendations for how general resources should be described on the web. The
problem is often that products or documents are described in existing databases, every database
with its own classifications and representation. This is fine for closed systems that are used in a
single company or organization. However, with the rise of the web the need for exporting data
and metadata has emerged.

1.1. OBJECTIVES AND REQUIREMENTS

The data in existing databases should be mapped and packaged in a general way so that other
systems can utilize it. Specifically, the Multimedia Broker needs to package its products with
descriptions that can be interpreted by other systems. Some sort of metadata desctiption
framework is needed.

The metadata for the Multimedia broker should enable:

Resource Discovery: The products provided by the Multimedia Broker should be described and
classified so they can be indexed by web search indexes (for example other brokers).

Resource Authoring: Users should be able to browse and search provided products. The
descriptions should enable the user to compose products that are tailor-made for his/her needs.

Resource Exchange: 1t should be possible to exchange information and data between
heterogeneous systems, that is systems that have their own internal representation of the data.

We want to describe the products and services so outside metadata consumers can discover
the products and relationships between products. We also want to be able to describe and export
products and services to other Multimedia Broker systems or similar systems from other vendors.

The metadata framework should be based on web standards to enable znteroperability with
other web systems, such as search indexes and web browsers. Solutions not dependent on any
particular software vendor should be preferred. Classifications that are widely understood should
be used.

Another objective is to implement a client that can read, parse and browse RDI descriptions
provided by the Multimedia Broker as well as other RDF data sources.

1.2. RDF

XML* has emerged as zbe universal data format for the web. XML can be used to store and
transport any kind of information, including metadata. XML is a grammar for creating mark-up
languages, called XML applications. One such XML application is RDF, Resource Description
Framework.

3 Hypertext Markup Language

4+ XML — The Extensible Markup Language

RDF is a data model for describing resources. A resource in this case is anything you can refer
to with a URI5. Examples of resources are documents, images and sounds. A resource could also
be a more abstract thing, such as a service or a process, but it must then be represented by
something that can be referred to by a URI, e.g. a document describing the resource.

RDF gives us is a data model for describing our resources and a standardized way of
expressing that model in XML.

The World Wide Web Consortium (W3C) has working groups that deal with metadata on the
web. The results of their efforts are the “RDF Model and Syntax” [RDF] and “RDF Schema”
[RDFSCH] specifications. RDF is the web metadata framework that will be recommended by
W3C.

1.3. APPROACH

The approach of this project is to use the RDF specification to describe the products and
services provided by the Multimedia Broker system using the Dublin Core classification scheme
(section 2.2). As a case study educational products of a fictitious company “Educational Products
Inc.” are described with RDF. The products described in this case were books containing math
exercises. This gives us two levels of granularity, which is interesting for the RDF
implementation.

Whetre Dublin Core is not sufficient to fully describe a product, we use a classification
scheme, which we create ourselves in this project. We also look at the IMS project (section 2.4)
which contains, among other things, a metadata classification scheme for learning objects.
However, we decide not use it for the reasons stated in section 2.4.

The RDF description generation is very well integrated with the other components of the
Multimedia Broker system. The descriptions are made both on a product level and at a finer grain
of resolution.

The RDF client, a sample RDF consumer that is able to browse and navigate any RDF
document, is implemented in Java, using XML and RDF parsers from IBM. We come to the
conclusion that a hierarchical graphical representation is sufficient for displaying the RDIF data
model.

1.4. ORGANIZATION OF THIS REPORT

To fully appreciate this report, the reader should have some basic knowledge about the
Internet. Some knowledge about HTML and XML helps. The reader doesn’t have to know
anything about metadata prior to reading this report. First some background is given and related
technologies are presented. RDF is introduced and a general discussion on interoperability is
given. The Dublin Core classification scheme is introduced. IMS is discussed and rejected. In
chapters 3 and 4 we model our case study math exercise step by step. Readers mainly interested
in the RDF data model may start from there. The chapters are both an introduction to the RDI
Model and Syntax specification and to RDF Schema, as well as a guide to modeling a product in
RDF. Examples of RDF applications are given. In chapter 5, we show a complete RDF instance
and schema for our math exercise case study. The rest of the chapter describes how RDF can be
implemented both on the client side and the server side. Specifically RDF is implemented on the
Multimedia Broker setver and on a Java client, called RdfClient. These sections assume some
knowledge about web setvers and Java. They are intended for readers who want to implement
RDF on their own. In chapter 6 some ideas about the future of RDI applications are presented.
Index servers, RDF browsers and Software agents are discussed.

5 URI — Universal Resource Identifier. See section 2.3.

2. BACKGROUND

The history of metadata at the World Wide Web Consortium started in 1995 with PICS
[PICS] (Platform for Internet Content Selection). PICS is a mechanism for communicating
ratings of web pages from a server to clients: for example, whether a particular page contains a
peer-reviewed research article, or was authored by an accredited researcher, or contains sex,
nudity, violence, foul language, etc [RDFINTRO]. The target group for PICS was initially users
such as parents worried about their children’s web usage. Using PICS they could set their
browsers to filter out any web pages not matching their criteria.

PICS is a restricted metadata framework that allows only certain things to be expressed. It is
too limited for the metadata required by the objectives of our project. RDF on the other hand is
a general metadata framework and a general knowledge representation mechanism for the web.

[RDFINTRO]

RDF defines a framework for describing resources with metadata. As mentioned earlier, the
distinction between data and metadata is not an absolute one. What is considered metadata by
one application would be data to another. The RDF model is not restricted to storing metadata; it
can be used to store any data. One example is the Mozilla web browser in which RDF is used for
many purposes [MOZ1]: “It’s a Swiss army knife and we will use it wherever it makes sense to
use the RDF data model as a representation language.” In particular RDI is used to store
bookmarks, history lists, search results and site maps.

“At the core RDF is a model for representing named properties and their values. These
properties serve both to represent attributes of resoutrces and to represent relationships
between resources. The RDF data model is a syntax-independent way of representing
RDF statements.” [RDF]

Before we take on the RDF basics in chapter 3, let’s address the “Why RDF, why not just
XML?” issue: XML gives us the freedom to define any markup language. We can define our own
tags and express constraints for the syntax of elements and attributes. So let’s say we would like
to define a markup language form describing resources on the web. We would need to define the
elements that constitute our descriptions. We would have to figure out how to express resources
and attributes. We would have to publish this new XML application so that others could use it.
In effect, we would have to do what the W3C RDF Model and Syntax working group has already
done. Remember that RDI 7r an XML application.

2.1. INTENDED USE OF RDF

RDF is a framework for metadata that facilitates automated processing of web resources
[RDFFAQ]. RDF is a proposed standard that deals with issues such as Resowrce Discovery to
provide better search engine capabilities; in caaloging for describing the content and content
relationships available at a particular Web site, page, or digital library; by zutelligent software agents to
facilitate knowledge sharing and exchange; in content rating, in desctibing collections of pages that
represent a single logical “document”; for describing intellectual property rights of Web pages, and
many others. RDF with digital signatures will be key to building the “Web of Trust” for electronic
commerce, collaboration, and other applications [RDFFAQ)].

Examples of the intended use of RDF according to W3C:

Cataloging Intellectual Property Rights
Intelligent Software Agents Digital Signatures

Content Rating Electronic Commetce
Collections of Pages Collaboration

Table 1 Intended use of RDF according to W3C

The effective use of metadata in applications requires that we have common conventions
and a common syntax, so that users beyond a small community can benefit from it. To allow for
machine processing of metadata strict standards are necessary. The common denominator for all
intended uses of RDF is nteroperability. Interoperability is discussed further in section 2.2

RDF imposes structure and syntax, but does not stipulate semantics for each resource
description community |[RDF]. A resource description community can be an individual, an
organization or a company. RDF lets each community create the elements needed in a standard
manner. To allow for communities to define their own elements, RDF uses scherzas®. Schemas are
the set of properties, or metadata elements, defined by resource description communities. One of
the key features of RDF is to be able to reuse schemas. The standard way of declaring schemas
enables different resource communities to extend and reuse semantics from other communities’
schemas. One such schema for RDF is Dublin Core, which is discussed later in this paper.

2.2. INTEROPERABILITY

The key word for web technologies is znteroperability. Interoperability is required for
applications where heterogeneous systems are involved. One example of interoperable data is
HTML documents. Users can view HTML documents using all kinds of computer hardware,
operating systems and browser software. If you follow the W3C recommendations for writing
HTML documents, you can be quite certain that they are readable by anyone. However HTML
documents are generally not machine-understandable, they are intended to be processed by the
human eye and the human brain.

The next step for the web is machine-understandable data. For this, we need interoperability
on (at least) three levels:

6 Schemas are sometimes called 1 ocabularies.

Semantics

Structure

Syntax

Figure 1: Machine-understandable documents require interoperability on three levels.

The lowest level, syntax, provides the required foundation for interoperability. Syntax
determines how the documents should be written, for example if they use markup language.
Examples of technologies that provide interoperability on this level are SGML and XML.

Interoperability on the structure level deals with how units of information (resources) are
structured and how relationships between them can be expressed. RDF operates on this level.
RDF was inspired by Structured Maps, a technology invented before the web.

Structured Maps are based on Topic Navigation Maps [[SO13250] defined by the SGML
community. Structured Maps provide a layer of semantics and relationships on top of existing
data. References to documents can be typed with for example author-of or written-by
relationships. A Structured Map can be compared to a normal road map. It presents a szew of the
information. A road map is a simplified view of the world. Depending on our interests, we can
have different maps covering the same part of the world, emphasizing different aspects of the
existing information. For example, one could have a map that shows all McDonald’s restaurants
and another map with topological data. Structured Maps inspired the work on RDF. [DELCA]

Interoperability on the semantic level requires agreements on the semantics expressed. This
requires that both the producer and the consumer of the information agree on what the
semantics of an image, a car or a title is. Classification schemes, such as Dublin Core operate on
this level. The Dublin Core (DC) is a 15-element metadata element set intended to facilitate
discovery of resources. Originally conceived for author-generated description of web resources, it
has also attracted the attention of formal resource description communities such as museums and

libraries. [DCPURL]

The Dublin Core has been discussed through a number of international workshops [DC4]
[DC5]. Experts from many different communities have tried to reach consensus around what
elements to use and their exact semantics. This is after three years still an ongoing effort.

Design principles for the Dublin Core are [DCPURL] are Simplicity, Semantic Interoperability,
International Consensus and Flexibilizy. Simplicity is important for enabling widespread use. It should
be easy for non-catalogers to understand the elements involved. The flexibility makes it possible
to encode additional structure and more elaborate semantics where needed without sacrificing
interoperability with older software.

The Dublin Core has historically had a close relationship with RDF. At the second DC
workshop in Warwick, a conceptual foundation for a metadata framework was laid, the so-called
Warwick Framework [WP] [DC5]. This framework, along with the Meta Content Framework |MCF]

formed the nucleus for the development of RDF. The Dublin Core and the RDF working groups
share a number of members, and the co-evolution of these projects has added to the progress of
each. According to a Dublin Core Workgroup decision (September 1998) “the RDF data model
1s the foundation for the DC data model”.

The Dublin Cote Elements are [DCPURL]:

Content Intellectual Property Instantiation
Title Creator Date
Subject Publisher Type
Description Contributor Format
Source Rights Identifier
Language

Relation

Coverage

Table 2: The fifteen Elements of Dublin Core

Each element is optional and repeatable. Furthermore, metadata elements may appear in any
order, and with no significance being attached to that order.

The Dublin Core initiative has achieved wide acceptance on the Internet. It is a vocabulary
that is well suited for desctibing online resources. It is a good idea to support as many Dublin
Core elements as possible in any RDF metadata implementation. The number of supported
elements is often restricted by the data available in existing databases.

2.3. RESOURCE DISCOVERY AND IDENTIFICATION

A Resource is any real or conceptual object that can be identified. Discovery involves finding and
retrieving of resources that are relevant to the user of the system. Users are usually human users but
may be automated processes that have a need to fulfill a resource discovery requirement [RDU].

One reason for imposing st7ucture on information is to enable Resource Discovery [RDU], Le. to
make data accessible and easy to find and to label resources so that their relevancy can be
estimated. Ideally this should be done automatically by agents or search engines with minimal
effort from the user. In order for this to happen on the World Wide Web we need standards for
all the levels of interoperability (section 2.2).

Resource discovery also involves actually retrieving the discovered resource. To retrieve the
resource we need some means of identification. Every resource available on the Web has an

address that may be encoded by a Universal Resource Identifier, or URI [HTML:

URIs typically consist of three pieces: U The naming scheme of the mechanism used to
access the resource, 2 the name of the machine hosting the resource and ? the name of the
resource itself, given as a path.

Example of a URI is http://www.ekengren.com/rdf/default.asp

2.4. IMS

The IMS (Instructional Management System) specification is a huge document covering the
technical details for an online learning system. Our interest in IMS stems from the fact that our
test case implementation is about learning material. Here is a list of the requirements to be IMS

10

compliant. Group Management, Personal Profile Management, Activity Management, Assessment and
Certification Management, Content Management, Commerce and Licensing Management, Security Management,
Technical Administration Management.

Creating an IMS compliant system would require significant additions to the Multimedia
Broker architecture, which definitely are beyond the scope of this project. Instead we focused on
the metadata parts of IMS. After a study of IMS (Appendix E) we decided not to use IMS for the
following reasons:

1. The IMS system is more of a metadata infrastructure than a mere classification scheme.
The development of IMS metadata predates that of RDF and it is unclear how (and if)
IMS should be combined with RDF. RDF and DC (Dublin Core) on the other hand
focus on simplicity and ease of implementation. Also, the RDIF and the DC working
groups are committed to making their parts fit together.

2. We could not make the system IMS compliant because many parts required for such a
system isn’t supported by the Multimedia Broker architecture. Also, the case study
database we use would require much new data just to support the IMS metadata part. It
was not acceptable to redesign the database to achieve IMS metadata compliance.

3. Given that the IMS system is for learning material only and Dublin Core can be used for
all kinds of resources, Dublin Core is much more likely to become widely used on the

web. This increases the probability of our Multimedia Products ever being discovered.

For readers interested in the metadata parts of IMS there is a short survey in Appendix E.

11

3. RDF BASICS

Rather than trying to describe the RDIF Model and Syntax in every detail we will provide a
step by step explanation of how the description of a math exercise product was modeled in our
educational products case study. In each step we will provide examples of how the RDI' data
model is serialized to XML. We will also try to explain and highlight interesting features. For
more details- and formalism, please refer to Appendix B, or the W3C RDF Model and Syntax
draft [RDF]. If you are unfamiliar with XML, please refer to Appendix A.

3.1. SIMPLE STATEMENTS - NODES AND ARCS

The foundation for RDF is a model for representing resources with named properties. The
same data model can be expressed in several ways: with a graph of nodes and arcs, serialized to
XML or as a collection of triples (see Appendix B for details).

The model consists of three object types:

1.

Resources are the “things” we describe. A resource can be anything we can refer to with a
URL. In fact, URIs can be used to reference anything. On the web RDF will probably be
used to desctibe documents that are retrieved with HTTP. URLs (which is a subset of
URISs) can identify such documents. An example of a URL is
http://www.ekengren.com/rdf/math_exercise

math_exercise

Figure 2: A math exercise resource. Only part of the URL s included for clarity.

Properties are what we describe our resources with. In the RDF data model we can
express properties as an arc, or an arrow. The properties are named, and the names
define their meaning.

tittle——»

Figure 3: A named property. Good for giving a title to our math exercise.

Statements. A statement is a triple consisting of a resource, a named property and a value.
The value of the property can be either a string (called /zeral) or another resource. Both
values that are strings and values that are other resources ate represented as nodes in the
RDF data model. Now we ate ready to describe our math exercise, using RDF:

12

title—b "Pigeon and Email

Figure 4: This is our first RDF statement!

That’s really all there is to it: Nodes and Archs! Now, let’s try to express our math exercise
description in XML

<rdf:Description about="http://www.ekengren.com/rdf/math_exercise">
<title>Pigeon and Email</titie>
</rdf:Description>
The rdf:Description element creates a node that represents our math exercise resource. The
next line creates an arch and a /Jfera/ resource. We can make our description slightly more
complex by adding more properties:

Pigeon and Email

= 4
title
math_exercise creator——» Dag Ekengren
date

1998-11-13

Figure 5: More statements about our math exercise

The XML serialization is:

<rdf:Description about="http://www.ekengren.com/rdf/math_exercise">
<title>Pigeon and Email</titie>
<creator>Dag Ekengren</creator>
<date>1998-11-13</date>

</rdf:Description>

3.2. USE OF THE DATA MODEL IN PARSERS

There is a number of syntactic variations possible when serializing the same RDF description
to XML. Things can be in different order and there are syntactic variations such as abbreviation
(more on this in section 3.8). The data model can be used internally in an RDI parser to
determine if two RDF descriptions that are serialized to XML are the same semantically. The
following XML serializations represent the same data model:

<rdf:Description about="http://www.ekengren.com/rdf/math_exercise">
<title>Pigeon and Email</titie>
<creator>Dag Ekengren</creator>
<date>1998-11-13</date>

</rdf:Description>

and

<rdf:Description about="http://www.ekengren.com/rdf/math_exercise”
date="1998-11-13" title="Pigeon and Email”
creator="Dag Ekengren” />
3.3. ADDING A SCHEMA USING XML NAMESPACES
Great, our math exercise already has more metadata than most resources on the web.
However, there is a small problem with our description. We have used the elements iz, creator

13

and date from some schema we implicitly invented. e know the meaning of these elements, but
we would like the rest of the world to know as well.

What definition of ##/e did we use when we chose the title “Pigeon and Email”? What is a
creator? Is it the company printing the books with math exercises or is it the author of the
exercise? In what format is the date stored? These are questions that a machine or a human being
would like answers to when they see our descriptions. Our description is of little value to them if
we can’t provide this metametadata called schema.

Fortunately, the XML namespace’ facility comes to our rescue. It lets us associate a URL
with each property. The resource referenced by this URL may be a human-readable resource that
describes the schema used. It may also be a schema in some machine understandable format. The
RDF Schema specification provides such a format [RDFSCH]. For now it will suffice to just give
a reference to some imaginary schema document. XML namespaces associates a schema URL
with a prefix that we use in our property names:

<?xml version="1.0"?>
<rdf:RDF xmins:rdf="http://www.w3.org/rdf-syntax”
xmins:dc="http://purl.com/dc/elements/1.0” >
<rdf:Description about="http://www.ekengren.com/rdf/math_exercise">
<dc:title>Pigeon and Email</dc:title>
<dc:creator>Dag Ekengren</dc:creator>
<dc:date>1998-11-13</dc:date>
</rdf:Description>
</rdf:RDF>
Here we have assigned the Dublin Core schema to the prefix di. Please note that we have
defined a schema rdf-syntax for the RDF-specific elements. An ordinary XML parser doesn’t
know anything about RDF and treats elements in the 74f namespace no differently from elements
in for example the dr namespace. An RDF parser® however knows the semantics of elements

such as rdf:Description. Also note that the RDF document is enclosed in an 74fRDF element.

We can use several different schemas in the same RDF description. The schemas may be
defined by different schema authorities. The schemas can be used even if some elements exist in
both schemas, because a different prefix is assighed each schema. Two different schemas should
not use the same prefix to avoid ambiguity.

In the math exercise sample we will create a schema of our own for properties and classes
not supported by the Dublin Core. This schema will have the prefix edy, as in “educational”.

3.4. USING RESOURCES AS VALUES

Up to this point, we have used simple literal values. One of the benefits of RDF is that we
can use resources to describe resources. We could let the value of the dicreator property be a
resource describing a person, in this case me. This resource could contain the name, address,
telephone number of the creator. It may even contain digital photographs and other complex
data.

7 Please refer to Appendix A for details on XML namespaces.

8 RDF parsers are often implemented on top of XML parsers. Because an RDF document is an XML application it can
be parsed by an XML parser, which builds a tree structure that represents the document. The RDF parser can then
patse that tree and look for elements in the 74f namespace.

14

In our math exercise, it will suffice to use a literal value for dizcreator. We could add a picture
as a description of the math exercise though:

math_exercise

edu:content

h

pigeon.jpg

Figure 6: Showing off a resource property value.

Pigeon and Email

v
dc:title
dc:creator——» Dag Ekengren

dc:date
\

1998-11-13

<?xml version="1.0"?>
<rdf:RDF xmins:rdf="http://www.w3.org/rdf-syntax”
xmins:dc="http://purl.com/dc/elements/1.0"
xmins:edu="http://www.ekengren.com/rdf/schemas/eduschema” >
<rdf:Description about="http://www.ekengren.com/rdf/math_exercise">
<dc:title>Pigeon and Email</dc:title>
<dc:creator>Dag Ekengren</dc:creator>
<dc:date>1998-11-13</dc:date>
<edu:image resource="http://www.ekengren.com/rdf/images/pigeon.jpg” />
</rdf:Description>
</rdf:RDF>
The example above demonstrates the syntax for adding a resource as the value of a property.
The resource value may be in the same document as the RDI' description or in another
document (as in this example). Remember that RDF descriptions are also resources. This means
that the value of a property may be an RDF description. This facility allows for highly structured

metadata.

3.5. COLLECTIONS - BAG, SEQ AND ALT

In RDF you often want to refer to a collection of resources. If you’re describing a course you
may want to include a students property which refers to a collection of the students that attend
the course. If you’re describing a web page you may want to refer to a collection of web servers
where the page is mirrored.

There are three different types of collection objects in RDF:

1. Bagis used to declare a collection of resources where the ordering of the resources is not
significant. For example, in the collection of students the ordering of the students that
attend the course may not be important.

2. Seq is used to declare a collection where the ordering of the resources 7 indeed
significant. Seg could be used if we were describing an exam and wanted an ordering of
the students according to their results.

3. Al is used to give alternative values to a single value. An application that is using a

property whose value is an ~4/+collection can choose one (and only one) of the values in
the collection.

15

In our math exercise in Figure 6, we have a edu:content property that refers to a single
picture resource. What if our math exercise has more than one picture associated to it? Or an
audio clip for that matter? It would be nice collect these in a bag resource. In the following
example we have added a bag node as the value of the edu:content property:

Pigeon and Email

4
dc:title
math_exercise dc:creator——» Dag Ekengren
dc:date
A
edu:content 1998-11-13 rdf:.Bag

rdf:type

rdf:_1))
rdf;_2 pigeon.jpg
wild cat.jpg

Figure 7: We have used a Bag to collect wild cat.jpg and pigeon.jpg.

Note that the bag node has no identifier and the node appears “empty” in the graph 6ver.
We can add an ID-attribute to the Bag if we want to refer to it from other statements. The
content in the bag is referred to by the rdf_n-properties. The rdf:fype property is used to declare
that a resource belongs to a certain class of resources, in this case the rdf:Bag class. Classes and

the rdf-type-property are covered in section 4.3. The XML serialization of the example in Figure 7
1s:

<?xml version="1.0"?>
<rdf:RDF xmins:rdf="http://www.w3.org/rdf-syntax”
xmins:dc="http://purl.com/dc/elements/1.0"
xmins:edu="http://www.ekengren.com/rdf/schemas/eduschema” >
<rdf:Description about="http://www.ekengren.com/rdf/math_exercise">
<dc:title>Pigeon and Email</dc:title>
<dc:creator>Dag Ekengren</dc:creator>
<dc:date>1998-11-13</dc:date>
<edu:content>
<rdf:Bag>
<rdf:li resource = http://www.ekengren.com/rdf/images/pigeon.jpg />
</rdf:Bag>
</edu:content>
</rdf:Description>
</rdf:RDF>

The rdf:_n properties in the data model appeat as <| i >-tags in the XML serialization.

3.6. STATEMENTS ABOUT STATEMENTS - REIFICATION

It is sometimes interesting to say something about statements, ie. give statements about
statements. We could then express who made the description and when. Perhaps we trust

descriptions from a respected web page rating company more than descriptions from some
anonymous individual.

How can statements about statements be expressed in the RDF data model? We need to be
able to identify a statement so that we can refer to it. This can be achieved by a process called
reification.

16

@—dc:creator» Dag Ekengren

Figure 8: No reification here. This statement cannot be referred to. Since no judgement can be placed
on this statement, the statement is considered a fact.

The above statement is reified to:

dc:creator
" Dag Ekengren

rdf:predicate
statement00

Figure 9: The statement has been reified

This is still the same statement as the one above, but we can now refer to it by the id
“statement00”. Now let’s give a statement about this statement:

dc:creator\> Dag Ekengren

rdf:SUbjeCt rdf:ObjeCt

rdf:predicate

statement00

dc:creator—p. john McEnroe
dc:date

“a

1998-11-17

Figure 10: Statements about a statement. Who says that the creator of the resource is Dag
Ekengren?

The serialization to XML is very simple:

<?xml version="1.0"?>
<rdf:RDF xmins:rdf="http://www.w3.org/rdf-syntax”
xmins:dc="http://purl.com/dc/elements/1.0" />
<rdf:Description>
<dc:creator ID="statement00">Dag Ekengren</dc:creator>
</rdf:Description>

<rdf:Description about="#statement00">

<dc:creator>John McEnroe</dc:creator>
<dc:date>1998-11-17</dc:date>

17

</rdf: Descripti on>
</rdf: RDF>
The statements with properties rdfusubject, rdf:object and rdfpredicate are implicitly constructed by
the RDF parser.

3.7. THE DESCRIPTION CONSTRUCT

The description lets us bundle several statements. We can refer to the description to make
statements about the collection of statements as a whole. The description construct is simple in
XML but the data model is quite complex. Each statement is reified and the new nodes (such as
the one called “statement00” in Figure 10 are collected in a bag. The bag is given an id called
baglD.

Let’s return to the math exercise example in Figure 5. We would now like to say who made
the description. We reify all the statements and put them in a bag:

- . math_book.doc IsPartOf
" < another math * deait e/'
exercise > dc:identity ey
\ ””"H,,edu:content Pigeon and Email
rdf:_3

b

dc:relation dc:title / Dag Ekengren
dc:creator

dc:date ¥1998-11-13

pigeon.jpy
edu:conte rdf:

raf:_1

N rdf:_2

< another math rdf:type
exercise >

rdf:type rdf:_2

The answer to this
interesting exercise is 23

Figure 11: The Description construct. The collection of statements called a description does not need a
special construct in the data model. A bag container is used to indicate that a set of statements
belongs to the same description.

Serialization to XML is simple because the reification and bag nodes are created implicitly by
the parser. The only new thing is the baglD attribute in the rdf:Description-element.

<rdf:Description about="http://www.ekengren.com/rdf/math_exercise”
baglD="description00">
<dc:title>Pigeon and Email</dc:title>
<dc:creator>Dag Ekengren</dc:creator>
</rdf:Description>

We can now make statements about the description identified by “description00”.

3.8. ABBREVIATED SYNTAX

RDF allows an abbreviated syntax where the statements are XML attributes in the
rdf:Description element. Abbreviation is useful for properties that aren’t repeated within a
description and where the values of those properties are literals. In this case, the properties may
be written as XML attributes of the description element.

18

The RDF description in 3.5 can be abbreviated to:

<?xml version="1.0"?>
<rdf:RDF xmins:rdf="http://www.w3.org/rdf-syntax”
xmins:dc="http://purl.com/dc/elements/1.0"
xmins:edu="http://www.ekengren.com/rdf/schemas/eduschema” >
<rdf:Description about="http://www.ekengren.com/rdf/math_exercise”
dc:titte="Pigeon and Email” dc:creator="Dag Ekengren”
dc:date="1998-11-13">
<edu:content>
<rdf:Bag>
<rdf:li resource = “http://www.ekengren.com/rdf/images/pigeon.jpg”

/>
<rdf:li>The answer to this interesting exercise is 23</rdf:li>
</rdf:Bag>
</edu:content>
</rdf:Description>
</rdf:RDF>

19

4. APPLYING RDF MODEL AND RDF SCHEMA

4.1. QUALIFYING PROPERTIES - NON-BINARY RELATIONS

The RDF data model intrinsically only supports binary relations; that is, a statement specifies
a relation between to resources. There is however a recommended way [RDI] to represent higher
arity relations in RDF using just binary relations. The recommended technique is to use an
intermediate resource with additional properties of this resource giving the remaining relations.

An example of non-binary relations is when we want to use qualified properties. The Dublin
Core relation property is an example where this is useful. The relation property can be used to
indicate a relationship between two resources. We often want to be a little more specific and say

something about what £&ind of relationship the resources have. The way to do this is to gualify the
relation propetty.

dc:relation math_book.doc

Figure 12: An unqualified de:relation. What kind of relationship do the resources have?

The dc:relation types come in pairs depending on which “side” the described resource are:

IsPartOf HasPart
IsVersionOf HasVersion
IsFormatOf HasFormat
References IsReferencedBy
IsBasedOn IsBasisFor

Requites IsRequiredBy

After qualification the data model becomes:

20

math_book.doc

dc:relation

dcq:identifier

dcq:type
IsPartOf

Figure 13: A gqualified de:relation. The relationship consists in the math exercise being part of a
math book A new unnamed node has been created. The namespace prefix for DC qualifiers is dcq.

The XML serialization is:

<rdf:Description about="http://www.ekengren.com/rdf/math_exercise">
<dc:relation>
<rdf:Description>
<dcq:identifier rdf:resource =
“http://www.ekengren.com/rdf/math_book.doc” />
<dcq:type>IsPartOf</dcq:type>
</rdf:Description>
</dc:relation>
<dc:creator>Dag Ekengren</dc:creator>
</rdf:Description>

The dc:date-element we have used throughout this example can also be qualified to further
specify what meaning this date has for the resource. Is it the date of creation or is it date the
resource became valid® Let’s try it:

Pigeon and Email

v
dc:title
dc:creator——» Dag Ekengren
1998-11-13

math_exercise

dc:date
edu:image dcq: created

h
i i dcg: avallable
pigeon.jpg ® 1998-12-01

Figure 14: We have qualified the de:date statement. Great stuff!

The Dublin Core workgroup is working on qualifiers other DC elements as well. Refer to

http://purl.org/DC/documents/working drafts/ for the latest details.

4.2. MATH EXERCISES IN A CONTEXT

One of the interesting things with RDF is the ability to describe resources with different
levels of granularity. Some users may want very detailed descriptions where a single resource
refers to other descriptions, while others are happy with a shorter description that is easier to
manage.

In our educational products case study, we sell books with math exercises. We can describe a
book as a complete product or as a product consisting of a number of math exercises, each with
its own descriptions. The math exercise descriptions may be placed inline the RDI document
that describes the book or it may be linked to the book with rdf:resource-tags. The advantage
with the former is simplicity. You can get the entire description, including descriptions for all the
math exercises in a single GET-request to the web server. The other approach has the advantage

21

that the user can choose to get only the book description and perhaps a description to a few of
the math exercises.

To achieve this link between math books and math exercises we can use a derelation-
statement as was mentioned in 4.1. Of course, our math exercise can be part of other math books
as well, i.e. many math books could refer to our math exercise using a edu:content-statement. The
dc:relation may not be very useful if the exercise belongs to several books.

- . math_book.doc IsPartOf
" < another math * deait e/'
exercise > dc:identity a-yp
\ ””"H,,edu:content Pigeon and Email
rdf:_3

b

dc:relation dc:title / Dag Ekengren
dc:creator

dc:date ¥1998-11-13

Srdf_1 _
math_exercise

rdf2 pigeon.jpg
y - edu:conte rdf:_1
< another math - rdf:type
exercise >

rdf:type rdf:_2

The answer to this
interesting exercise is 23

Figure 15: Math exercise in a context. The math exercise is part of a larger structure, in this case a
book. The dotted lines are URL-boundaries if the math exercises are not inline in the RDF
document describing the math book.

4.3. RDF SCHEMAS

We have already touched upon RDF Schemas in 3.3 and we’re revisiting the subject here.
The XML namespace facility allows us to associate a prefix with a URL that defines a schema.
We haven’t yet looked into how that schema can be defined.

So what is a schema anyway? It is where we define our properties and casses. We can give
human readable comments and define machine-understandable constraints on their use. We can
declare that a resource belongs to a particular class as we have already done in section 3.5 and in
Figure 15 above. As you can see in Iigure 15, two unnamed (empty) nodes are of the class

rdf-Bag.

There are many ways in which we could declate our schemas. The RDI' Schema
Specification [RDFSCH] uses the RDF data model not only for describing resources, but for

expressing schemas as well.

43.1. TYPE SYSTEM — CLASSES AND PROPERTIES

Let’s define some classes for our math exercise example. A good place to start would be to
define a math exercise class, called edu:Exercise and define our zustance “math_exercise” to be an
instance of that class.

22

rdf:type
math_exercise

Figure 16: We bave defined our math exercise instance to be of the class edu:Excercise. We can have
lots of math exercise instances and they will all be of the same class.

This can be serialized to:

<?xml version="1.0"?>
<rdf:RDF xmins:rdf="http://www.w3.org/rdf-syntax”
xmins:dc="http://purl.com/dc/elements/1.0"
xmins:edu="http://www.ekengren.com/rdf/schemas/eduschema” >
<rdf:Description about="http://www.ekengren.com/rdf/math_exercise">
<rdf:type resource =
"http://www.ekengren.com/rdf/schemas/eduschema#Exercise” >
<dc:title>Pigeon and Email</dc:title>
</rdf:Description>
</rdf:RDF>
Because RDF Schema is expressed using the RDF data model, it seamlessly extends our
RDF data model with the schema definitions. In the data model, the rdfpe-property doesn’t
differ from other properties such as dc:title or dcsubject. There is a special construct for
expressing the class of an instance in the XML syntax: This construct makes use of the XML

namespace facility:

<?xml version="1.0"?>
<rdf:RDF xmins:rdf="http://www.w3.org/rdf-syntax”
xmins:dc="http://purl.com/dc/elements/1.0"
xmins:edu="http://www.ekengren.com/rdf/schemas/eduschema” />
<edu:Exercise about="http://www.ekengren.com/rdf/math_exercise”>
<dc:title>Pigeon and Email</dc:title>
</edu:Exercise>
</rdf:RDF>
We have replaced the rdf:Description element with a edu:Exercise element and removed the
rdf:type property. This doesn’t in any way change the data model, hence the serializations are

equivalent.

Now, let’s see how the edu:Exercise class is defined in the
http://www.ekengren.com/rdf/schemas/eduschema. Well, we create a node that has the ID of
Exercise by creating a description-element with the ID-attribute, but without the about-attribute.
In effect, this is not a description about a resource, rather it is a resource in itself with the
specified ID. We declare this resoutrce to be of the class rdfs:Class. The rdfs:Class-resource, is
defined as part of the RDF Schema machinery. Every RDF data model includes this resource
(and a few other resources) implicitly.

The edu:Exercise node in Figure 16 is defined in eduschema as:

<rdf:Description ID="Exercise”>
<rdf:type resource = “http://www.w3.0rg/TR/WD-rdf-schema#Class"/>
</rdf:Description>

Or, using the more compact form, with rdfs defined as the RDF Schema namespace:

<rdfs:Class ID="Exercise"/>

Properties are declared in a similar way, using the built-in rdf:Property-resource. The
recommended convention is to use the first letter capitalized in class names and non-capitalized
in property names.

23

<rdf:Property ID="title"/>

There are a few “Core Classes”, “Core Properties” and “Core Constraints” defined in the
RDF Schema specification [RDFSCH]. There are many scenarios where these simple
mechanisms are not adequate; a more general schema mapping mechanism for RDI may be
developed in future W3C activity [RDEFSCH].

43.2. CONSTRAINTS

We can place constraints on properties by declaring in what domain a particular property is
relevant, ie. on what class of resources it can be used. We can also constrain the range of a
property by declaring the class allowed for the resource values for the property.

RDF Schema focuses on properties rather than classes. This means that the RDF Schema
Specification cutrently does o introduce a way of specifying what properties are required to
describe an instance of a particular class. We cannot declare that an instance of the class
edu:Exercise must include the properties #tk and creator. Also, we cannot in any way prevent
people that use eduschema from describing instances of edu:Exercise with unknown properties
from other schemas. The advantages and disadvantages of this are discussed further in section
4.4 where DCD (Document Content Description) is introduced.

A more complete schema for our math exercise looks like this:

24

The content of this resource.

This may be a literal resource

or another ContentObject or a
collection of reources.

ContentObject

The prerequisites
required from the
rdfs:subClassOf rdfs:domain /4 users of this

rdfs:comment rdfs:comment resource.
. rdf:type
Exercise .
content prerequisites
rdf:type rdf:type

rdfs:Class / rdf:type rdf:type
rdf:Bag
rdf:type
rdf:Property

rdfs:subClassOf

rdfitype . ‘ Schema

pigeon.jpg

rdf:object

Instance
rdf:type)

rdf:type

math_exercise

rdf:subject

description01

Figure 17: This is part of the schema definition for eduschema. Note that the schema is part of the
RDF data model for the math exercise. We have defined Exercise and Image as subclasses of a
ContentObject class and we have constrained the content property so that it can only be used on
Instances of ContentObject (or subclasses thereof). The dotted line is the division between schema
and instance.

We have used the edu:content-property to describe our math exercise. Apparently, our math
exercise contains an instance of the class edu:Image. The edu:content-property has been constrained
to be used only on instances of ContentObject (or subclasses of ContentObject). This constraint is
expressed with the rdfs:domain property.

A problem with the current RDF Schema specification is that only one 7dfi:range statement
may be given to a property. In this case we would like the edu:content statements to have a value
that is ezzher an instance of the class ContentObject or a string. In the RDI Schema specification,
strings are instances of the class rdfs:Litera/ which is implicitly declared by the RDF Schema
machinery. If we constrain edu:content to have only ContentObject values then the following
construct is invalid:

25

edu:ContentObject

rdfs:subClassOf Fyodor Dostoyevski

/

rdfs:subClassOf

edu:Exercise

de:creator plexey Fyodorovitch Karamazov was the third

emembered among us owing to his gloomy and

dft rdf:type son of Fyodor Pavlovitch Karamazov, a landowner
rat-type well known in our district in his own day, and still
edu:conten

tragic death...

Figure 18 The edu:content property to the right has a string value (class rdf-Literal). This invalid if
the edu:content property’s range is ContentObject.

A workaround for this problem is to give a “human readable” comment in the schema
instead of a machine understandable range-constraint: “edu:content is the content of this resource. The
content may be a literal resource or another ContentObject or a collection of resources.”

43.3. VOCABULARIES VS. SCHEMAS

There is some confusion as to what the difference 1s between vocabularies and schemas.

[RDEFSCH] states:

“The phrase RDF vocabulary is used here to refer to those resources which evolve over time;
RDF Schema is used to denote those resources which constitute the particular (unchanging)
versions of an RDF vocabulary at any point of time. Thus we might talk about the evolution of
the Dublin Core vocabulary. Each version of the Dublin Core vocabulary would be a different
RDY schema, and would have a corresponding RDI model and concrete syntactic representation.”

4.4. DOCUMENT CONTENT DESCRIPTION - DCD

DCD was submitted to the World Wide Web Consortium (W3C) by IBM and Microsoft
[DCD]. The document proposes a structural schema facility for specifying rules covering the
structure and content of XML documents. As we understand the specification [DCD], DCD is a
grammar for expressing RDF vocabularies, rather than an RDF vocabulary in itself. This means
that we would refer to a DCD document with our namespace declarations in our RDF
documents (section 3.3), i.e. it’s schema declarations.

DCD is an interesting alternative to the RDF Schema specification [RDFSCH]. Here is a
comparison of features:

26

RDF Schema DCD

Approach Property based ~ Class based
Syntax RDF XML
Constraints on classes No Yes
Constrains on properties Yes No
Primitive data types No? Yest!

Table 3: Comparison of features: RDF Schema vs. DCD.

A Document Content Description (DCD) is a set of properties used to constrain the types of
elements and names of attributes that may appear in an XML document, the contents of the
elements, and the values of the attributes. If the XML document follows the RDF model, DCD
puts constraints on allowed and required statements in the declared classes.

Here is an example of a DCD schema:

<DCD>
<ElementDef Type="content"/>

<ElementDef Type="ContentObject” Model="Elements” Content="Open">
<Description>This is the ContentObject class</Description>
<Group RDF:Order="Bag">
<Group Occurs="Required">
<Element>dc:title</Element>
<Element>dc:creator</Element>
<Element>dc:date</Element>
</Group>
<Group Occurs="Optional”>
<Element>content</Element>
</Group>
</Group>
</ElementDef>

<ElementDef Type="Exercise” Model="Elements” Content="Open”>
<Description>This is the Exercise class. It inherits from
ContentObject</Description>
<Extends Type="ContentObject"/>
</ElementDef>
</DCD>

The above schema declares a ContentObject class which should be described by the required
elements de:title, dezcreator and de:date (defined in some external schema). The content object can be
described with the optional content element (declared in this schema). The attribute
Content="Open” declares that instances of this class can also be described by other elements,
defined in this or an external schema.

As Table 3 suggests, RDF Schema and DCD are quite different. RDF Schemas are expressed
using RDF Model and Syntax and are close to RDF “in spirit”, while DCDs use their own XML

syntax and are much closer in spirit to classical databases. The reasons for this conclusion are:

1. RDF Schema focuses on properties. You declare a vocabulary (schema) which is a collection
of properties and constraints on those properties. It’s possible to constrain the instances

9 RDF Schema may be extended in the future to support data types.

10 Examples of DCD data types ate: string, number, date and time.

27

of which classes a property may be used. It is also possible to say that a property must
have a value that is an instance of a certain class. Often no such constraints are given,
because one wants the vocabulary to be used on all kinds of resources. One example of
such a vocabulary is the Dublin Core schema. In RDF Schema there is (currently) no
way to express that a certain class must or should be described by a certain property. Given
the decentralized nature of the web, it wasn’t considered feasible to restrict a class to be
described in a certain way or with certain properties. The RDIF Schema doesn’t contain
any data types but may be extended to support them.

2. In DCD the focus is on classes. We can say that a class must be described by certain
properties (elements in the DCD terminology). We can even put a constraint
Content="Closed” which means that the class can on/y be described by the supplied
properties. We can also put constraints on the values of properties. DCD also defines

data types.

So which schema definition language should we use, RDI' Schema or DCD? In the math
exercise case study we chose RDF Schema. The reasons for this can be illustrated by an example:

With RDF Schema we can subclass our “MathBook™ class from a well known “Book” class
from some widely used schema. Let’s say for example that the online bookstore Amazon
provides such a schema. By subclassing the Book class from the Amazon schema we declare that
we are selling a book that complies with Amazon’s definition of what a book is. This does not
mean that we have to use properties from the Amazon schema to describe our book (or math
book) resources. Instead we may want to use the Dublin Core schema and a few properties that
we declare in our own schema (edu). It is impossible for the creator of the Amazon schema to
perceive every possible property that users on the web will want to describe the book class with.

The next section (4.5) describes a scenario where DCD is useful, i.e. when we use RDF to
transport data between servers. Then we would like to validate the RDI descriptions so that they
contain all data the receiving server requires and that the data are of the required data types.

DCD is likely to become widely used if IBM and Microsoft continue to back them. DCD is
already implemented in Microsoft Internet Explorer 5.

4.5. RDF AS MEANS OF TRANSPORT

As we add more resources to the edu:content-bag of our math exercise, such as an instance
of the class Text, an instance of Image and an instance of Solution we may start to realize that
this is no longer a description of a math exercise defined in math_exercise. The RDIF document zs
the math exercise! This highlights the fact that RDF is a data model general enough to be used
for other things than just describing resources. We can use RDF as the #ransport format of math
exercises.

As the RDF document is in fact our math exercise, we can remove the “about”-attribute
from the rdf:Description-element and add an ID that identifies this new math exercise resource.

RDF can be used to transport math exercises or books containing math exercises between
different servers. A math exercise broker could import math exercises expressed in RDI from
many different servers. Of course, the market for math exercises may not be big enough to make
this commercially viable.

28

RDF Data Sources

-

RDF data

Math
Problem
Broker

Teacher looking for math problems

Figure 19: The RDF Data sources are providers of math exercises. They are capable of delivering
the math exercises in RDF according to some agreed upon schema. The Math Exercise Broker
reads the RDF data from the different sources and provides an interface to the Teacher looking
Sfrom math exercises.

Figure 19 highlights why RDF is interesting to a system like the Multimedia Broker
[MMBROK]. The Multimedia broker would benefit from being able to present its products in a
format that is recognized by external systems (for example other Multimedia Brokers).

4.6. SUMMARY

We have now completed the RDF math exercise example. We have modeled a math exercise
using the RDF data model and provided a schema using the RDF Schema specification. We have
showed that RDF is capable of more than just describing resources. RDIF can be used for
storage, transport and retrieval of any data.

When modeling the math exercise we used the dc:relation property to indicate relations
between different resources. The math exercise is a part of a larger context, the math book. The
exercise in turn consists of a number of resources such as texts and images.

In constructing a schema for the math exercise we briefly discussed the benefits of RDF
Schema over other schema definition models such as DCD. We also noted a problem with
allowing only one rdfs:range property in the schema definition of a property.

We conclude this chapter with examples of RDF applications. An RDF application is a
vocabulary and additional semantics that form a layer on top of RDF. Examples of RDF
applications are:

1. PICS — Platform for Internet Content Selection [PICS] which we discussed in chapter 2.

2. P3P - Platform for Privacy Preferences [P3P]. The P3P specification will enable Web sites to
express their privacy practices and users to exercise preferences over those practices. P3P
products will allow users to be informed of site practices, to delegate decisions to their
computer when possible, and allow users to tailor their relationship to specific sites.

29

DSig — Digital Signature Initiative [DSIG]. The W3C Digital Signature Working Group
developed a standard format for making digitally-sighed, machine-readable assertions about a
particular information resource. More generally, it is the goal of the DSig project to provide a
mechanism to make the statement: signer believes statement about information resource.

PICS P3P DSig

RDF

XML

Figure 20: RDF applications are a layer on top of RDF

30

5. DESIGN AND IMPLEMENTATION

In this section we will discuss how RDI was implemented in our project. Let’s recapture the
objective of the implementation part of this project from the introduction in section 1:

“We want to describe the products and services so outside metadata consumers can
discover the products and relationships between products. We also want to be able to
describe and export products and setvices to other Multimedia Broker systems or similar
systems from other vendors”

We have already discussed the how the products in the Multimedia Broker can be modeled
with the RDF data model. We have also defined a simple schema suitable for the educational
product case in the Multimedia Broker. A complete description of the math exercise model and
schema can be found in the next section.

RDF was implemented both on the Multimedia Broker and in a simple client, which we call
the RdfClient. Details about the server side implementation, ie. the implementation on the
Multimedia Broker can be found in section 5.2. The RdfClient is an RDF parser capable of
showing RDF descriptions of all kinds of resources, i.e. the client is not tied to any particular
application or schema. A user can edit the RDF descriptions using a simple graphical user
interface. Details about the client side implementation, the RdfClient, can be found in section 5.3.
These sections assume some knowledge about web servers and programming techniques.

5.1. RDF DATA MODEL AND SCHEMA

The interested reader should have a pretty good understanding of RDF after reading the
previous chapters and is probably eager to see the RDF data model of math exercise instances
actually generated by the Multimedia Broker. Let’s look at a math exercise instance and the edu
schema implementation before we dive into the server-side implementation in section 5.2:

31

IsPartOf
dc:identity Pl
dcq:type

edu:MathBook 14~rgf.type

edu:content

dc:relali&rdf:lype /1 Pigeon and Email
; detide ¥ Dag Ekengren 1998-11-13
rdf._1 ; . ' dc:creator . bl

http://127.0.0.1/VNDatabaser/Liber/ dcq:created
/ VNContentServer.asp?INFOPROD_ID= :
19&Prodld=3 R

rdf:_2 " Fractions and Potency

. i dc:description
dutlevel :publisher
(e u eve7‘\ de:language Prerequisites: The

edu:prerequisites

rdf:type Middle) \ four ways of counting.
edu.categoryxr \< de:rights \ﬂ ' Category:Problem
he four ways of counting ucational Products Inc. exercise training
edu:content Difficulty level: Middle
"/ http://127.0.0.1/(other \ Problem exercise training en

\ exercises)

Copynght 1998,
Educational
Products Inc. All
rights reserved.

rdf:_1
) pigeon.pg ’df:‘ype
rdf:_3 rdf._2
& rdf:type" edu:Text

dc:creator
John Doe *-(c:creator de-date —a Charles

edu:content Dickens

" <othermath rdf:type, ¥ _w 1873-11-23
problems > ; dcg:created
- edu:Solution dcdate edu:content Asmall
pigeon flies
1873-11-23 - ¥ across the
dcq:created The answer to this Mexican
interesting exercise is 23 border with
a..

Figure 21: A math exercise instance generated by the Multimedia Broker.

The math exercise uses the Dublin Core RDF schema and the following ed# RDI schema:

fs:subClassOf

/@rdfs:subclassof edu::MathBook
rdfs:subClassOf
rdfs:subCIassOfM

:subCIassOf
s:subClassOf

\ edu:Text
rdfs:domain

<edu:content> (edu:category)

rdf:type rdf:type rdfitype rdf:type

rdf:Property

Figure 22: RDF schema for the edu namespace

rdf:Class
a

rdf:type

edu:Content-
Object

rdfs:domain

rdfs:domain y¢s:domain

5.2. SERVER SIDE - MULTIMEDIA BROKER

The server-side implementation was simplified by the fact that the Multimedia Broker is a
flexible tool when it comes to choosing how products are presented. The system separates
content from presentation. This means that the same content may be displayed in several
different ways, depending on whom the user is.

In the broker system, there are Content Products and Information Products. The Content Products
are products in a traditional way. They can be books, math exercises, or things like cars, ships or
space stations. The Content Products are defined in the Multimedia Broker metadata database.
The products can be presented in many different ways and the combination of V) a product or a
collection of products and 2 the presentation of that product or collection of products makes an
Information Product. The presentation of a product is determined by a Presentation Model. An
information product can be the HTML presentation of a book. Another Information Product
would be the RDI description of the same book. A collection of products, for example the result
of a database query, with a presentation model is another Information Product.

The Content Products and Information Products are defined in a metadata database.

33

Math Exercise Book Video clip
Content

Products

‘z ¥ Processing

HTML

presentation HTML list of a RDF Information
of a single number of description of Products
book books that book

match a user’s
search query

Figure 23: Schematic drawing showing the Multimedia Brokers product structure. Each of the
Content Products above can be presented in any number of ways, called Information Products

The approach in this project is to implement RDF in the Multimedia Broker server by
creating an Information Product that has a Presentation Model that creates RDI' output. The
generation of RDF is then completely integrated with the rest of the system: RDF generation
doesn’t differ from generating HTML, VRML or any other output format. That’s one of the
advantages the Broker has over a traditional web setver. Fortunately it simplifies server-side
implementation in this project.

The process from client request to a returned RDI document is shown in the following
(much simplified) flow chart:

i Conversion
Client Database -
Request HTTP— Query —Stream-p to internal XML
format
\
Stream
\ 4
RDF document
back to client l¢——— HTTP— | XSL processor |«—File XML Stylesheet

Figure 24: The process from client request to an RDF document describing a product.

The steps of implementing RDI on the Broker are:

Create a database gzery that returns all the data needed for the product being described. The
Multimedia Broker uses CQL (Conceptual Query Language) which makes creating the query
particulatly straightforward.

Create an Information Product by associating the query with a Presentation Model. The
Presentation Model is implemented with an XML Stylesheet (XSL). Readers that aren’t familiar
with XSL. may want to read the section on XSL in Appendix A.

34

52.1. THE XSL PROCESSOR

The Multimedia Broker uses an internal XML format to exchange information between the
server’s different components. The result of our database query is wrapped up in an XML
document in a format internal to the Broker. If we made the proper query, this XML document
contains all the information needed for the RDI description of the product.

We simply feed that XML document to the XSL processor together with a stylesheet, that
transforms the XML document into an RDF document!!. The XML document’s attributes,
which are specific to the Multimedia Broker, are mapped to well-known schemas (most notably
the Dublin Core schema). The XSL processor lets us package and rearrange the information in a
way that creates output that is valid RDF descriptions of our products.

A separate XSL stylesheet for conversion to RDI has to be made for each product in the
system. So, in our educational products case, we made one stylesheet for the math exercises and
another for the math books. The schema is in effect hardwired into the XSL stylesheet scripts.
An area of future improvement is to allow the schemas to be defined in the metadata database.
The XSL stylesheet would then be generated from the metadata database automatically.

Here is part of an XML to RDF stylesheet for Microsoft’s XSL processor:

<xsl >

<rul e>

<r oot/ >

<!'[CDATA[

hell o

11> _

<?xm version="1.0"?>
<rdf >

<chi |l dren/ >

</ rdf >

</rul e>

<rul e>
<target-el ement type="CATTRI BUTE">
<attribute name="1D"' val ue="190"/>
</target-el erent >
<sel ect - el enent s>
<target-el ement type="A"/>
</ sel ect - el enent s>
</rul e>

<rul e>
<target-el ement type="A"/>
<! [CDATA[

<edu: Exerci se | D="]] ><eval >get Attri but e(’ HREF') </ eval ><! [CDATA[" >
1>
</rul e>

<rul e>
<target-el ement type="RON/>

<! [CDATA[
<!-- Instance of class edu: Exercise -->]]>

<sel ect - el enent s>
<target-el ement type="CATTRI BUTE">
<attribute name="1D"' val ue="190"/>
</target-el erent >
</ sel ect - el enent s>

<I[CDATA[<dc:Title>]]>
<sel ect - el ement s>
<target-el ement type="CATTRI BUTE">
<attribute name="ID"' val ue="199"/>
</target-el erent >

11 Please note that RDF documents are indeed XML documents, with the added requirement that they follow the W3C
RDF Model and Syntax specification.

35

</ sel ect - el enent s>
<! [CDATA[</dc: Titl e>
11>

<![CDATA[<dc:Creator>]]>

<sel ect - el enent s>
<target-el ement type="CATTRI BUTE">

<attribute name="1D"' val ue="106"/>

</target-el ement >

</ sel ect - el enment s>

<! [CDATA[<"</dc: Creat or >

11>

<! [CDATA[</ edu: Exer ci se>
>

</rul e>

<rul e>
<target-el ement type="RESULT"/>
<chi | dren/ >

</rul e>

<rul e>
<targem el ement type="QUERY"/>
<chi |l dren/ >

</rul e>

</ xsl >

A more complete XML to RDF stylesheet and an example of the internal XML format in the
Multimedia Broker can be found in Appendix C.

522. OTHER SERVER IMPLEMENTATIONS

RDF descriptions can be created on the server quite easily even if you don’t have access to
tools as powerful as the Multimedia Broker. This section gives examples of such
implementations.

Server Scripting

One way to generate RDF is to use server-side scripting. Server-side scripting is available for
most web servers, including the widely used Microsoft’s 11542 and Apache!®. The scripts are
mostly used to generate HTML today. The scripts can however generate any text-based format.

We will now show a script that opens a database connection and packages to information
directly into RDF statements.

The sample script is written in VBScript!#. The shaded parts are script code executed by the
web setver. The white parts are returned to the client as text.

<% ANGUAGE="VBSCRI PT" %

<% Option Explicit %

<%’ This script generates RDF netadata %
<%

Di m Prodl d

Di m Conn

D m RS

Di m sql

Set Prodld = Request. QueryString("Prodld")

12 TIS4 — Microsoft Internet Information Server version 4. Visit http://www.microsoft.com for details.

13 Apache — available to several platforms, including Linux and Windows NT. Visit http://www.apache.org for details.

14 VBScript — Visual Basic Scripting Edition, a Microsoft server scripting technology. Similar scripts can be written in
JavaScript and other scripting languages.

36

Best

Upen database
connection

nr,

Medi a, Forfattare, Texter,

Skol form Pr ogr am “pr ogr ankod, “pr ogr amTyp Amme, Kurs, nmgr upp. Typ fromgat a, C
texter2, ngrupp where data. Prodl d=""&Prodi d&'' and texter 2. Prodl d='"&Pr odl d&<—and reate
mgr upp, database
Set = Conn. Execute(sql)
Y%<? i on="1.0" "1 SO 8859- 1" 7> query
<?xml : namespac = tp: /1w chemas/ rdf -schema" prefix="rdf" ?>
<?xml : namespace ns= "http://purl.org/neta blin core” prefix="dc" ?>
<r df : RDF>
Execute Query
<rdf: Description bagl D="desc_<%Prodl d%" about

<dc:title><%RS("Titel")°/¢></dc title>

<edu: best Nr ><%=RS(" Best _nr ") %</ edu: best Nr >

<dc: creat or ><%RS("Forfat t & >

<dc: publ i sher >Educati onal Pr oduct s Inc. </ dc: publ i sher

<dc: Descri pti on><%RS(" Text er") %</ dc: Descri pti on> The web server fills
<% I|f Len(RS("Media")) > 0 Then ;
%<dc: f or mat ><%=RS(" Medi a") %<dc: f or mat > in values from the

<% End | f %</ rdf: Descripti on>

<rdf: Descripti on about ="#desc_<%Pr odl d%" >
<dc: creator>Muil ti medi a Broker</dc:creator>
<dc: dat e><%now¥e</ dc: dat e>

</rdf: Description>

Close database connection

database when
processing the
script

This simple script doesn’t handle things like missing values in the database. The script is run
by the web server when a web browser accesses it via a URL. The particular instance is identified

with Prodld, a product id.

http://ww. ekengren. conl rdf/testscript.asp?Prodl d=T10023

Here is an example of an instance generated by the script:

<?xm version="1.0" encodi ng="1SO 8859-1"?>
<?xm : namespace ns= "
<?xml : namespace ns= "http://purl
<r df : RDF>
<rdf:Description baglD="desc_T10023" about="T10023">
<dc:titte>Macbeth</dc:title>
<edu:bestNr>231231</edu:bestNr>
<dc:creator>William Shakespeare</dc:creator>
<dc:publisher>Educational Products Inc.</dc:publisher>

http://ww. w3. or g/ schenas/ r df - schena"
. or g/ net adat a/ dubl i n_cor e"

prefix="dc"

<dc:Description>A simplified version of Macbeth which includes all speeches but

the longer ones have been abridged</dc:Description>
<dc:format>paperback<dc:format>
</rdf:Description>

<rdf:Description about="#desc_T10023">
<dc:creator>Multimedia Broker</dc:creator>
<dc:date>1998-12-08</dc:date>
</rdf:Description>

</rdf:RDF>

prefix="rdf"

?>
?>

As you can see, the script has generated an RDI description of a book with the title

“Macbeth”. The script also generates a description for the description.

5.3. CLIENT SIDE - THE RDF CLIENT

As part of the project we implemented a client application for reading and parsing RDF

documents. The RdfClient is very useful for prototyping new schemas and for checking syntax in
RDF documents. It is also useful as a learning tool for the RDF data model.

The requitements are that the RdfClient:

* Is generic enough to show RDF descriptions of all kinds of resources and has an easy to
use graphical user interface to browse the RDF document

37

* Shows the RDI' document in a way that closely resembles the RDI data model
* Allows the user to search the RDF document

* Allows the user to edit the RDF document

* Provides some RDF schema support

* Runs in a Browser on a wide range of hardware/software configurations

To meet the last design goal we decided to write the RdfClient in Java 2. This allows the
client to run in browsers or with the Sun Java plug-in. The graphical user interface of the client
uses the Java Foundation Classes from Sun, which are included in the Java 2 platform!.
Specifically we wanted to use the “Tree” and “Table” graphical components and the menu
components, as shown in the following section. RdfClient runs both as an applet and as a
standalone application.

The client can be run from http://www.ckengren.com/rdf/client.html. Follow the guided
tour in the next section by pointing a web browser to this URL.

53.1. RDFCLIENT FUNCTIONALITY — A GUIDED TOUR

Loading RDF documents

Let’s start the guided tour by loading an RDF document. RDF documents can be loaded into
the client either from a local file or via HTTP from an URL. A local file is loaded by selecting
Open in the File menn:

15 The Java 2 platform is also known as JDK 1.2. Sun changed the name when the product went from beta version to
release.

38

* RdfClient v 0.2

File | Edit Yiew Help

Open RDF
[New... Clil+M documents from
(= Dpen... 4—Eﬁﬁg’¥ the local file
Open URL. .. A/ system ot from
Cloze URLs
[Save Chrl+5
Save fiz .
Print Ctl+P
E xit

Figure 25: Open File in the RdfClient

Other features in the Fike Menn are Save and Print. Print enables the user to print out the
current RDF document serialized to XML to standard output. Java Applets are not permitted to
access local files. If you load the RdfClient as a Java Applet, select Oper URL and type

http://www.ekengren.com/rdf/math exercise.xml.

Browsing an RDF document
One of the significant features in RdfClient is being able to browse any RDI' document to

demonstrate various RDF features. We load our famous math exercise instance into the
RdfClient. This is how it turns out:

39

The property
dc:title has been
looked up in the
Dublin Core
Schema. T.h ¢ Ebel Schema information
[=3 RdiClient v 0.3 statement 1n,t N about the selected
Schema was “’Title”
E“E Eﬂﬂ _fiEW ﬂEl resource or property
EEERBER /
(1 ROF Document : Information /
@ [ttpcr 27 A0 M Databaserfedunth '

| glzanins This is an instance of the class

edu:Exercise

[it

D AuthorCreator T Exercise'is a subcl
0] Date fﬁnntent@bjept'_ﬂ o _
o [Relation p is resnurce is identified by the R |

[Identification e

[} Difficulty Level : PrapertyType Value

[category Title Pigeon and Email

. JAuthornCreator Dag Ekengren
Suhject 3
D : | ldentification 3

| Braraguisites

— | Difficulty Level Midrle
' | Category Exercise exercise traini...
Suhject Fractions and Paotency
APraraanicite The four ways of counti. .
T The Content- V\
= property 1s

expandable. It

probably contains Statements about

lots of interesting the in the math

stuff. exercise instance

Figure 26: The RdfClient in all its glory.

The left pane shows the RDI' document. It is displayed as a TreelZew. The children nodes
can be expanded and collapsed by clicking on the bu/lefs next to the nodes. The Tablel iew to the
right shows the values of the properties for this particular instance. The instance can be edited by
the user and the changes are propagated to the internal RDF data model.

The schema information window tells us that we are viewing an instance of the class
edn:Exercise, which is a subclass of the class ContentObject. The math exetcise schema has been
described in section 4.3. The property names are looked up in the corresponding RDI Schemas.
That’s why we see Title instead of de:#itle in the property column of the Table in Figure 26.

By clicking on the Content property node in the TreelZew we can expand it to reveal its
contents:

40

g uifficuiy .
[categary Expandable
Node

[Subject
3 Prereqﬁé =
@] Conte

@ [rdfBag
o] Ij{edu:lmage}
0 [{eduText

«BE

O [J {edu:Solution}

| ¥

I

Diffl.

Cater

Subjer.
Prerequis

Figure 27: The value of the edu:content property is an rdf:Bag, which contains instances of the classes
edu:Image, edu:Text and edu:Solution

Let’s click on the bullet next to the node of the class edu:Text to reveal the statements inside. We
can now see that the edu:Text-instance included in this math exercise has a description with three
statements. One of the statements uses the edu:content-property. The value of this property is the
actual exercise text. We have also given the exercise text deereator and de:date statements which
may or may not match the corresponding statements about the math exercise. This demonstrates

@ [Content
@ [rdfBag
O [{edulmage}
® [{eduTex}

D AuthorCreatar

|__°‘| Date

D Content

FroperyType Value
AuthonCreatar | Dag Ekengren
Date 1998-11-17
Content Asmall pigeon flies a...

T

o fedu:Solution}

Kl

| »

Figure 28: The Bag which was the value of the edu:content property contains three objects. We have
clicked on the object of class edu:Text. This text object could be a part of other math exercises as

well.

Editing an RDF document

The RDF client gives the user the ability to edit any RDF document. This functionality can
be used as a basis for creating an RDF metadata authoring tool. The newly edited value is

immediately stored in the internal RDI data model.

41

(7] Ijrdf:Elag
O [{edulmage}
® [feduText!

|j| Date
D Content
O [{edu:Solution}

|j| AuthorCreatar

ProperType Yalue
AuthorCreator /Dag Eke
Date \-QE.E%J/
Content Asmall pigeon flies across...

The user can

edit any

value.

Figure 29: The de:creator property has been selected for editing. The user finishes editing by pressing
return. The change is immediately propagated to the internal RDF data model.

If we change the de:creator to “Dag Ekenben”, the change can be checked in RDI data model
by viewing the source as shown in the next paragraph.

View Source

In web browsers you can select the menu item [Zew Source to see the HTML-markup for the
currently loaded web page. In RdfClient you can select Sourve from the L7Zew-menu. This shows
the XML serialization of the currently loaded RDF data model in a separate window. You can
also right-click on any node and select VZew Source from here in the popup menu that appeats:

® [J Content
@ [rdfBag

] Ij{edu:lmage}

Pt
AutharfCre.

| Date

View Schema...
Print from here

] Ij{edu:Squtinn}

Figure 30: When the user right-clicks on a node a popup window appears. Selecting “View Source
Sfrom here” opens a window with the XML serialization of the current node and all its children.

In our example, we changed the value of the decreator property in our instance of edu:Text to
“Dag Ekenben”. As we might expect, the change is properly propagated to the RDF data model:

42

=3 Source =l
F

=edu:Tex decreator="Dag Ekenben" do.date="1988-11-17" edu:conts 2

[4]

{4 [E

| ¥

Figure 31: The value of the de:creator property has been changed to “Dag Ekenben”. Cool stuff.

Schema Support

The RdfClient Information window shows the information from the RDF schemas associated
with each property or class. This information is provided to help the user interpret or edit the
instance values:

i RdiClient v 0.3 M=l E3
File Edit Yiew Help

D= []e=e

T T T T T T T Y

EI i"l | : Information
e - [deicreator |~ |
[Author/Creator —{ | The person or organization primarily i

responsible for creating the intellectual content |25
ofthe resource. For example, authors in the
case ofwritten documents, arists,

D D ate
|__Q'| Relation
[y Part 0t

PropertuT voe | Walue J

Figure 32: The user has selected the de:creator property. The “Information” window shows the definition
of dezcreator from the Dublin Core schema. The full text can be viewed by using the scrollbar.

5.3.2. INSIDE RDFCLIENT

First a short summary for those who already know a lot about XML and Java. In the
following sections we will describe the process in more detail for the rest of us.

Summary: When RdfClient reads an RDF document it is first processed as an XML document.
The IBM XMLforJava [XMLA4]] patser does this and creates a DOM!S tree. This tree is processed
by the RDF parser, also from IBM [RDF4XML]. The RDF parser builds the RDF data model in
memory with Java objects. The RDI parsers data objects are wrapped up in classes that comply

16 DOM — Document Object Model. A W3C API for accessing data from a tree data structure [DOM].

43

with the JFC!'7 MutableTreeNode model. This means that the RDF data model is directly
browsable and modifiable by the JF'C Tree GUI component.

Let’s take a simple example of an RDF document and see how it is handled step by step by
RdfClient. Figure 35 summarizes this process. Readers unfamiliar with XML may want to read
Appendix A.

1. The XML parser reads the RDF document.

In this first step the RDF document is read in the same way the XML parser would read any
XML document. This RDF document is yet another flavor of our now famous math exercise:

<?xml version="1.0"?>
<rdf:RDF xmins:rdf="http://www.w3.org/rdf-syntax”
xmins:edu="http://www.ekengren.com/rdf/schemas/eduschema” >
xmins:dc="http://purl.org/dc/elements/1.0"
<edu:Exercise about="http://www.ekengren.com/rdf/math_exercise”>
<dc:title>Pigeon and Email</dc:title>
<edu:content>
<rdf:Bag>
<rdf:li>
<edu:Text edu:content="A small pigeon flies across the mexican
border with a floppydisk” dc:creator="Dag Ekengren”/>
</rdf:li>
</rdf:Bag>
</edu:content>
</edu:Exercise>
</rdf:RDF>

The XML patser reads this in the same way it reads any XML document. It doesn’t recognize
any RDF-specific tags. The XML parser builds a data structure while parsing the document. This
strictly hierarchical data structure is a DOM (Document Object Model) tree:

Skructure

== RDF-RDF
=-{_] EDL:EXERCISE
@ AROUT
Ny, DCTITLE
=1 EDL:CONTEMT
=] ROF:BAG
=] RDF.LI
EEERFED L TEXT
@ EDU:CONTENT
.. § DC:CREATOR

™
@

=
n

Figure 33: This the DOM of our RDF document. The example document was read by Microsoft’s
XML notepad. The XML notepad doesn’t know about RDF and doesn’t treat the RDF
document any differently from any other XML document.

This tree can be navigated and manipulated by a standard API'® proposed by the W3C
[DOM]. This navigation and manipulation is the RDF parset’s job.

17 JFC — Java Foundation Classes. GUI component classes downloadable from Sun Microsystem’s web server
http://www.sun.com. JFC is included in Java SDK 1.2 from Sun.

18 API — Application Programmer’s Intetface.

44

2. The RDF parser traverses the DOM tree

The RDF Parser has knowledge about the RDF-specific nodes and their semantics. It builds
the RDF data model in memory by traversing and parsing the DOM tree. The RDFfor]ava
parser from IBM builds this data model with Java objects of vatious classes.

The class hierarchy used in the RDF parser is described in Appendix D. For our sample
document the following RDIF data model is built:

RDFDescription

RDFproperty o
RDFBag

RDFDescription

RDFProperty

e o

Figure 34: The RDF data model built from our sample RDF document. The boxes are Java object
instances of the named classes. The RDE document’s root node is of class RDF. It contains one
RDFDescription instance (describing math_exercise). The RDFDescription instance is parent for
two RDFProperty instances. The first instance (corresponding to de:title) has a string value. The
other property instance (edu:content) has an RDF bag as value.

One of the design goals of RdfClient was to provide a Graphical User Interface that lets user
browse and edit RDI documents. The graphical representation of the RDI data model can be
done in many ways. The representation closest to the data model itself would be a GUI with
nodes and arcs. The disadvantage of this type of GUI is that layout and navigation can become
quite complex.

A tree view was chosen for the following reasons:

* Hase of implementation.

* Most users are familiar with how to navigate the tree from previous use of tools such as
the Microsoft Windows Explorer.

* Ability to use standard Java tree view classes.

45

3. The JEC MutableTreeNode Classes wrap the RDF data model classes

To make the RDI data model built by the RDI parser editable by the JFC Tree component,
each object in the RDF data model is wrapped up in a Java object of a class that implements the
MutableTreeNode interface. The RdfClient software accomplishes this task.

The RdfClient has an equivalent MutableTreeNode class for each of the RDF data model
classes presented in Appendix D. The user can manipulate each MutableTreeNode by using the

GUI The changes are actually made directly to the RDF data model nodes acting as
MutableTreeNodes. There is no data redundancy and therefor no risk for inconsistencies.

The figure below sums up the data flow in RafClient when loading an RDF document. When
a document is edited and saved, the data flows in the opposite direction.

RDF Data Model-y| RdfCient ——JFC tree

RDF Parser

XML Dom

\

XML Parser

Figure 35: The internal processing done in the RdfClient

The sample document looks like this in the TreeView of RdfClent:

46

| D"ﬁ'"E' |.:i'n [

FDF Document
1 Description of hitp A ekengren.comir
[y Title '
@ [Content
@] rdf:Bag
® [{eduTex}
D Content
D AuthorCreator

Figure 36: Our sample RDF document has been wrapped in MutableTreeNodes and then handed to
the JEC Tree Component.

4. Descriptions are wrapped in [EC TableModel

When the user clicks on a description object in the Tree component, the RDF description is
wrapped in a Java object that implements the TableModel interface. This allows the RDF
description to be directly edited by the JFC Table Component. Please refer to Figure 29 where
the TableView is shown “in action”.

5. RDF Schemas

One of the design goals of RdfClient was to provide some support for the RDI' Schema
proposition [RDFSCH]. When RdfClient loads an RDF document it looks at the namespaces
declared in the beginning of the document. Each schema is loaded from the URLs provided in
the declarations. The XML and RDF parser parses the schemas (which are themselves RDF
documents) independently from each other and from the main RDF document. They are used
for schema lookups only and are therefor not shown to the user in the Tree component.

When the user clicks on a node in the TreeView (which represents the RDF document and
not the associated schemas), the RdfClient searches the schema associated with that node. It
displays any schema information it can find about the node in the Information frame. The RdfClient
currently recognizes the following parts of RDF Schema [RDFSCH]:

* The Class of a resource

o If that class is a Swbclass of another class.
* Comments about properties and classes

* Labels for properties

* The Range and Domain for properties.

47

The range of a property is the allowed class of the RDF value of that property. The domain
is the class of the objects that the property can be applied to.

53.3. DIFFERENT VIEWS OF DATA

RdfClient presents the data in a way that is very close to the XML serialization of the RDF
data model. The same RDF data can be displayed in any way the application designer wants. The
data can also be presented in different ways and with different levels of detail depending on who
the user is.

In our RDF example with math exercises we could present the teacher with a full view of the
exercises and their solutions. The teacher picks the exercises he finds interesting and puts
together a collection of exercises for the semester.

When the students are presented with the math exercises they see a friendly user interface
with less information (and probably with the solutions removed).

534. SUMMARY

In this chapter we have showed the complete RDI' data model and Schema for our case
study math exercise. We have showed how RDF descriptions should be implemented on the
Multimedia Broker. The implementation, which is very well integrated in the Multimedia Broker,
is based on the Broker’s internal XML document format in combination with XML Stylesheets.
We have showed how RDI can be implemented on servers that support server-side scripting
languages such as VBScript or JavaScript. This chapter introduced the RdfClient software, which
can be used to browse RDIF documents on any computer and operating system. In the design of
the RdfClient we chose to present the RDF documents in a Tree GUI component, which proved
to be a presentation that worked well with our math exercise case study.

48

6. FUTURE WORK

The RdfClient, although a nice piece of software, may not be the typical RDF consumer in
the future. It is very much tied to the RDF data model and its XML serialization. This is good for
instructional purposes, but the end user may not be that interested in the internal workings of
RDF.

If the RDF consumer were a machine, it would want another interface than the Graphical
User Interface that RafClient provides. Clearly there is a need for more specialized consumers of
RDF data. In this section we will outline some ideas on RDF consumers.

6.1. INDEX SERVERS

One of the more obvious RDF consumers is providers of search engines like AltaVista
Lycos, Excite and Webcrawler. Web servers inline RDF metadata information in HTML
documents and this metadata is used by the search spiders when indexing the documents. This
takes us back to the example discussed in the Introduction when we tried to find web documents
anthored by William Shakespeare. One of the major objects of describing resources is of course to
enable Resource Discovery.

Web
Server

Web documents
with
inlined RDF
metadata

Search
Engine

Web Server

Server

Figure 37: A bright future with RDF data sources

Metadata expressed in RDF or in other formats may be the next big thing for the web. The
potential is enormous. Think about the web as a massive resource of information, with the data
classified according to a few well-known schemas, where the users can find exactly the
information they require. The web would no longer be the library “with all the books on the
floot™.

6.2. RDF AWARE WEB BROWSERS

Another RDI consumer could be the web browser. When visiting a web site the browser can
download an RDF description of the site with any level of granularity. This description can be
used to provide better ways to navigate the site from the browser. The browser can search the
RDF description of the site locally and minimize the number of roundtrips required to the web
site.

49

The Mozilla’® web browser has RDF functionality built in. The cutrently recognized RDF
format does not conform to recommendations from W3C. This is likely to change in later
releases and in Netscape Communicator 5.0. RDF will be the data format of choice for all the
Morzilla storage needs[MOZ1]. It will be used to store bookmarks, history lists, site maps, address
books etc. This emphasizes the fact that RDI is a transportable data structure suitable for any
data, not just metadata.

Cutrently, Netscape Communicator 4.5 sends back RDI data to Netscape’s servers to track
the users movements on the net. The information is used to provide users information in the
“what’s related” menu. The browser let’s the user know about web sites that are related to the
one currently viewed.

The Netscape “what’s related” system is currently in full use and Netscape serves over 2
million requests in RDF every day.0

6.3. SOFTWARE AGENTS

A domain with great need for metadata descriptions is that of “Software Agents”. A
description of Software Agents and their use is definitely beyond the scope of this paper. Let me
just point out that the agents need to be able to present themselves and their objectives. Other
agents must understand this presentation, i.e. there is need for machine-readable metadata. This
is a domain in which RDF may be useful. Software Agents from different vendors can agree
upon using one or more well-known schemas they both know about.

SICS (Swedish Institute of Computer Science) has research on Software Agents. As part of
my thesis I visited SICS and discussed metadata in this domain. SICS has developed a lisp-like
metadata instance and schema language of their own. There is clearly a need to be able to present
agents in a format that is more widely used, such as RDIF?.

6.4. EXISTING DOCUMENT ANALYSIS

Documents saved in popular office applications often contain some metadata. This metadata
is stored inside the document files, which often are of some proprietary binary document format.
Microsoft Office applications let the user specify properties such as title, subject, author,
company and category. These properties can later be extracted and mapped to Dublin Core
properties such as dc:title, dc:subject, dc:creator, de:publisher and dc:category. This extraction
can be done “on the fly” by a web server component when RDF metadata for the document is
requested by a client.

This means that a large number of existing documents already have some metadata
description. It is just a matter of making this metadata accessible from the web using RDF.

19 Developers can download the source code from http://www.mozilla.org. The Mozilla source code will be used for
Netscape Communicator 5.0.

20 According to email, November 05, 1998, from Mr. R Guha., Netscape.

21 As an exercise, I and Nicklas Finne (SICS) translated SICS agent metadata descriptions to RDI and RDF Schema.
The results can be admired in Appendix B.

50

7. CONCLUSIONS

In section 1.1 we defined the objectives of this project: “We want to describe the products
and services so outside metadata consumers can discover the products and relationships between
products. We also want to be able to describe and export products and services to other
Multimedia Broker systems or similar systems from other vendors”. This led us to look into the
RDF and RDF Schema specifications. We wanted to use a schema that was general enough to
become widely used on the web. The Dublin Core is a schema that fits that requirement.

In our math exercise data model we added the property, edu:content, to indicate the
relationships between the resources that constitute our math exercises. We wanted to restrict the
range of the edu:content property to resources of class edu:ContentObject or simple string values,
called literals. We realized that we had a problem here, because in RDI' Schema strings are
considered to be of class rdfs:Literal and the RDF Schema specification allows only one range for a
property. This means that we would have to choose between having edu:ContentObject or
rdfs:Literal as range for the edu:content property. We solved this by not restricting the range of
edu:content property at all. A better solution perhaps would be to think of a string (or literal) as
class-less. This would make strings possible values for all properties, regardless of their range.
Currently, this is not allowed for in the RDI Schema specification.

After working with RDF and RDF Schema we have come to the conclusion that RDF is
about expressing relationships between resources. It is not intended to express full database
models. The heterogeneous and distributed nature of the web makes relationships between
resources important. What is the context of this resource? What other resources are related to
this resource, and in what ways? How can the related resources be retrieved? RDI’s ability to
express relationships between resources is more powerful than the hypertext linking facility in
HTML, because in RDI we have the power to express why the resources are linked. This can be
done in a way that is “machine-understandable”.

The emphasis on relationships is reflected by the RDF Schema specification where focus is
set on properties (which express relationships between resources) rather than on the resources
(or classes of resources) themselves. In RDF Schema, the classes differ from classes in the
traditional “object oriented” world where we define classes to have a certain set of properties. In
RDF Schema any number of properties from any number of schemas can be used to describe a
resource. Classes don’t have a fixed set of properties. The class defines the resoutrce’s relationship
with other resources, because of the subclassing facility. Subclassing let’s us build taxonomies
such us the ones used in libraries.

In modeling the math exercise example we realized that the RDF data model can be used to
model and transport any kind of data not just metadata. In the Mozilla web browser RDF is used
for all kinds of data, such as bookmarks, history lists and site maps.

When we implemented RDF on the Multimedia Broker we successfully used an XSL
processor to convert the Broker’s internal XML data structures to RDI. Increasingly, XML is
used for transporting data between different components of web setvers and this project has
shown that such internal data can be mapped and converted to RDF using XML stylesheets.

51

ACKNOWLEDGEMENTS

This document is the report of a mastet’s project for Department of Teleinformatics KTH.
The project was held at SITI, the Swedish IT Institute, Stockholm.

REFERENCES

[DC4] Weibel, S., Tannella, R., Cathro, W., The 4% Dublin Core Metadata Workshop Report, Jun-1997, ISSN
1082-9873, http://www.dlib.org/dlib/june97/metadata/06weibel.html

[DC5] Weibel, S., Hakala, J., DC-5: The Helsinki Metadata Workshop, D-Lib Magazine, Feb-1998, ISSN 1082-
9873, http://www.dlib.org/dlib/februatry98/02weibel.html

[DCD] Document Content Description for XML, 31-Jul-1998, Submission to the World Wide Web Consortium,
http://www.w3.org/TR/1998 /NOTE-dcd-19980731.html

[DCPURL] The Dublin Core Metadata Homepage, 1-Jan-1999, http://putl.oclc.org/metadata/dc

[DELCA] Delcambre, L. M. L., Maier, D., Reddy, R.., Anderson, L.: Structured Maps: modeling explicit semantics
over a universe of information. In: International Journal on Digital Libraries, Springer-Verlag, 1997

[DOM] World Wide Web Consortium: Document Object Model Specification 1.0, W3C Recommendation 20-
Jul-1998, http://www.w3.org/TR/1998 /WD-DOM-19980720

[DSIG] World Wide Web Consortium: Digital Signature Initiative Overview,
http://www.w3.org/DSig/Overview.html

[1SO13250] ISO JTC1/WG4, Information Processing — SMGL Applications — Topic Navigation Maps, ISO/IEC
CD 13250, Committee Draft, http:/ /swww.hightext.com/tnhm/psjan98.htm

[MCF] World Wide Web Consortium: Meta Content Framework Using XML, W3C Note, 24-Jun-1997,
http://www.w3.org/TR/NOTE-MCF-XMI.-970624

[MILL] Miller, E.: An Introduction to the Resource Description Framework. In: D-Izb Magazgine, ISSN 1082-

9873, May 1998, http://www.dlib.org/dlib/may98/miller/05miller.html

[MMBROK] Swedish Institute for Systems Development, SISU: Multimedia Broker, Developing Critical Support
Tools for Multimedia Publishing, http://www.sisu.se/projects/mmbroker/what.htm

[MOZ1] Guha, Churchill, R., Giannandrea, J.,,RDF. The Mozilla Organization,
http://www.mozilla.org/rdf/doc/index.html

[P3P] World Wide Web Consortium: P3 Project Overview, http://www.w3.org/P3P

[PICS] World Wide Web Consortium: PICSRules 1.1, W3C Recommendation 29-Dec-1997,
http://www.w3.org/TR/REC-PICSRules-971229

[RDF] World Wide Web Consortium: Resource Description Framework (RDF) Model and Syntax, W3C Working
Draft 7-Oct-1998, http://www.w3.0rg/1998/10/WD-rdf-syntax-19981008

[RDF4XML)] http://www.alphaworks.ibm.com

[RDFFAQ] World Wide Web Consortium: Frequently Asked Questions about RDF,
http://www.w3.org/RDEF/FAQ

52

[RDFINTRO] World Wide Web Consortium: Introduction to RDF Metadata, W3C Note 13-Nov-1997,
http://www.w3.org/TR/NOTE-rdf-simple-intro-971113.html

[RDFSCH] World Wide Web Consortium: Resource Description Framework (RDF) Schema specification, W3C
Working Draft 30-Oct-1998, http://www.w3.0rg/TR /1998 /WD-rdf-schema-19981030

[RDU] Research Data Network, Resource Discovery Unit, DSTC: Resoutce Discovery — A definition, DSTC
Symposium, 1995, http://www.dstc.edu.au/RDU/RD-Defn/

[WP] Lagoze, C., Digital Library Research Group, Cornell University, D-Lib Magazine, Jul/Aug-1996, ISSN
1082-9873, http://www.dlib.ore/dlib/july96/lagoze/07lagoze.html

[XMLA]] http:/ /www.alphaworks.ibm.com

[XMLDATA] Wotld Wide Web Consortium: XMI-Data, W3C Note, 5-Jan-1998,
http://www.w3.org/TR/1998 /NOTE-XMI_.-data-0105

53

54

APPENDIX A. THE EXTENSIBLE MARKUP LANGUAGE

The Extensible Markup Language (XML) is a simplified version of SGML, specifically designed
with the World Wide Web in mind. An XML document is also an SGML. document. XML has
brought with it a number of other standards (or proposed standards), e.g. XLink (XML Linking
Language) and XSL (XML Stylesheet Language).

XML differs from HTML in that it doesn’t mix content with appearance.

WHY XML? WHY NOT JUST HTML OR SGML?

It’s all the same, isn’t it? No, not quite. XML is a simpler version of SGML. It omits the more
complex and less-used parts of SGML in return for the benefits of being easier to write
applications, easier to understand, and more suited to delivery and interoperability over the web

[XMLFAQ].

With both XML and SGML you can use DTD to define your own markup language. HTML is
just one of those markup languages possible to define with XML/SGML. In fact, in the specs for
HTML 4.0 [HTML] an HTML document is defined as:

An HTML document is an SGMIL document that meets the constraints of this
specification (HTML 4.0 specs)

XML or Extensible Markup Language has really taken off with major software vendors
supporting it. The media hype has resulted in a large number of documents about XML on
WWW. We will look at XML as it is the preferred way to transport RDEF [RDF].

XML allows people to create their own markup languages, tailor made for the particular needs of
a particular community. One example of such a markup language is MashML, which can express
advanced mathematical formulas. Other markup languages can be developed, e.g. one for
chemical formulas and another for musical scores.

XML is not concerned with how these documents should be displayed. It’s up to the applications
that read the documents to decide what to do with them. A document describing music (a
“MusicML” document) may be played, rather than displayed, by the application

If we return to our example on searching the WWW for information on books written by Winston
Churchill we realize the benefits of XMIL. We could invent a markup language for describing
documents about books. Part of a document could look as follows:

<book>

<title>Liberalismand the Social Problenx/title>

<aut hor >W nst on Chur chi | | </ aut hor >

<publ i sher >Hodder & St ought on</ publ i sher>

<comrent >This early speech collection of the fighting radical ("a traitor to his
class") is now extrenely scarce and nany predict it will soar in value over the
next decade. </ conment >
</ book>

An “intelligent” search engine could immediately conclude that this document is relevant for our
query. Of course, for this to be useful we need to standardize how documents (and other
resources) should be described, and that’s where RDF and scherzas come into play.

XML DOCUMENTS

The XML specification defines a class of data objects called XML documents. Each XML
document has both a logical and a physical structure. Physzcally the document is composed of
units called enzities. An entity may refer to other entities to cause their inclusion in the document.
A document begins in a “root” or document entity. Logically, the document is composed of
declarations, elements, comments, character references, and processing instructions, all of which
are indicated in the document by explicit markup [XML].

This is an example of a complete XML document:

<?xml version="1.0"?>
<story>The rabbit used to hang out in bars</story>

The first line is an example of a Document Type Declaration. The document type declaration
isn’t mandatory. This is also a complete XML document:

<story>The rabbit used to hang out in bars</story>

DOCUMENT TYPE DEFINITION - DTD

The XML document type declaration contains or points to markup declarations that provide a
grammar for a class of documents. This grammar is known as a Document Type Definition (DTD).
The document type declaration can point to an external subset containing markup declarations,
or can contain the markup declarations directly in an internal subset, or can do both. The DTD
for a document consists of both subsets taken together [XML].

The DTD defines constraints on the logical structure of the document. The following document
has an external DTD that defines it syntax:

<?xml version="1.0"?>
<IDOCTYPE story SYSTEM “standard_story.dtd">
<story>The rabbit used to hang out in bars</story>

The DTD could look like this:

<IDOCTYPE standard_story.dtd
<IELEMENT story (#PCDATA)>
>

For further information on XML and DTD please refer to W3Cs specification [XML].

WELL-FORMED VS. VALID XML

There are essentially two related types of XML documents: Wel-Formed and 1 alid. A well-formed
XML document conforms to the general rules of XML syntax, which are more rigorous than
those of either HTML or SGML. XML character data is never left an ending markup designation
of some sort, either an end tag such as in the element <st ory> </story > or a special empty
element tag with a forward slash before the right-angle bracket, such as <st ory/>. [CNET1]
[XMLFAQ]

Valid XML documents are ones that conform to a specific DTD. Confirming the validity of
XML documents is largely the work of authoring and publishing tools, whereas XML-capable
browsers need only check for well-formedness in order to read XML documents. [CNET1]
[XMLFAQ]

XML NAMESPACES

Although XML namespaces specs [XMLNSP] is still a working draft, the notion of namespaces is
fundamental to implementing RDI on top of XML.

XML namespaces provide a simple method for qualifying names used in XML documents by
associating them with namespaces identified by URI. Namespaces provide universal names,
whose scope extends beyond their containing document. The combination of the universally
managed URI namespace and the local name produces names that are guaranteed universally

unique [XMLNSP].
Here is an example of an XML namespace in use:

<?xml:version="1.0"?>
<books xmins="http://books.com/schemas/”
xmins:de="http://ekengren.com/schemas”>
<Title>Liberalism and the Social Problem</Title>
<Author>Winston Churchill<Author>
<de:Rating>Interesting</de:Rating>
</books>
XML namespaces allows us to combine elements and attributes whose semantics (schemas) are
defined by different authorities. In this example an XML processor can look up the semantics for
the de prefix and find out that the possible ratings are interesting 2 cool or ? crazy. It is up to

the processor or application to decide what to do with this information.

The example declares books as the default namespace. This means that ##k and author will be
resolved as books:title and books:author.

Currently there is no standard way for RDF processors to read and process such schemas.
Document Object Model

The Document Object Model (DOM) specification defines a platform- and language-neutral interface
that will allow programs and scripts to dynamically access and update the content, structure and

style of documents [DOM].

The DOM applies both to HTML and XML documents to provide a single document metaphor.
Browser vendors such as Microsoft [MSDOM)] and Netscape have developed proprietary
documents models which has caused problems for site builders who want their content to work
on both platforms. A more formal description of the DOM for XML, check out W3C
[DOMXMI]

XML STYLESHEETS - XSL

XML documents don’t specify how they are to be displayed. That is the role of the Extensible
Stylesheet Language (XSL). The W3C has issued a working draft for the XSL requirements. As
usual the working draft is subject to change [XSL].

How are stylesheets used? The simplest application is to feed an XML document and an XSL
stylesheet into an XSL processor. The processor produces a displayable document in a format
determined by the rules in the stylesheet:

XML Document

\/\

Displayable
Document in, e.g.
XSL Processor » HTML, RTF, or

Postscript

.

XSL Stylesheet

@

Figure 38: XSL processing producing HTML, RDF or Postscript

You can make web browsers capable of reading an XML document an XSL stylesheet in the
same way current browsers read and display HTML documents. The beauty of the XML/XSL
approach is that a document’s content is separated from its appearance.

A good introduction to XSL and the Microsoft XSL processor can be found in
[XSLTUTOR]. For an example of what an XSL Stylesheet might look like, take a look in
Appendix C. Note that the XSL Stylesheet is expressed in XML and is in fact an XML document.

REFERENCES

[CNET1] Gorman, T.: 20 Questions on XML, 10-Mar-1998,
http://www.builder.com/Authoring/Xml20/index.html

[DC5] Weibel, S., Hakala, J., DC-5: The Helsinki Metadata Workshop, D-Lib Magazine, Feb-1998, ISSN 1082-
9873, http://www.dlib.org/dlib/februatry98/02weibel.html

[DOM] World Wide Web Consortium: Document Object Model Specification 1.0, W3C Recommendation 20-
Jul-1998, http://www.w3.org/TR /1998 /WD-DOM-19980720

[DOMXML] World Wide Web Consortium: Document Object Model (XML), W3C Working Draft 16-Apr-1998,
http://www.w3.org/TR/WD-DOM/level-one-xml.html

[HTML] World Wide Web Consortium: HTML 4.0 Specification, W3C Recommendation, revised on 24-Apz-
1998, http://www.w3.org/TR /1988 /REC-html40-19980424

[MSDOM] Microsoft Corporation: The XML Object Model in Internet Explorer 4.0, 7-Jan-1998,

http://www.microsoft.com/xml/articles/xmlmodel.as

[RDF] World Wide Web Consortium: Resource Description Framework (RDF) Model and Syntax, W3C Working
Draft 8-Oct-1998, http://www.w3.0rg/1998/10/WD-rdf-syntax-19981008

[RDFFAQ] World Wide Web Consortium: Frequently Asked Questions about RDF,
http://www.w3.org/RDEF/FAQ

[XML] World Wide Web Consortium: Extensible Markup Language (XML), 8-Dec-1997,
http://www.w3.org/TR/PR-xml-971208

[XMLFAQ] World Wide Web Consortium: Frequently Asked Questions about the Extensible Markup Language,
the XML FAQ, Version 1.41 (6-oct-1998). http://www.ucc.ie/xml

[XMLNSP] World Wide Web Consortium: Namespaces in XML, W3C Working Draft 16-Sep-1998,
http://www.w3.org/TR/1998/WD-xml-names-19980916

[XSL] World Wide Web Consortium: XSL Requirements Summary, W3C Working Draft 11-May-1998,
http://www.w3.org/TR/WD-XSI.Re

[XSLTUTOR] Microsoft Corporation: XSL Tutorial, 7-jan-1998,

http://www.microsoft.com/xml/xsl/ tutorial/ tutorial.as

APPENDIX B. RDF

RDF IN DETAIL, TRIPLES

RDF CORE; “LAYER 0”

The core data model is formally defined in [RDF] by W3C. In short, every Statement is a 3-tuple,
or triple, whose elements are:

{Predi cat e, Subj ect, Obj ect}

We can view a set of statements as a directed-labeled graph. Fach triple is a {p, s, o} is an arc
from s to o labeled by p:

[s] =p —> [c]
This can be read as o és the value of p for s, 5 has a property p with a value o, ot the p of s is 0.

The RDF data model is built up entirely on these triples. The first element of a triple (Predicate
above), is called Property. The second element is a Resource and the third is a Resource ot a literal.
The tripe as a whole is called a Statement.

{Property, Resoutce, Resoutce | Literal}

In the RDF data model both the resources being described and the values describing them are
represented as nodes in a directed labeled graph. The arcs connecting pairs of nodes correspond
to the names of the properties. Each arc /abeled by the corresponding property.

The RDF Layer O gives us the most fundamental tools to describe our resources. An RDF
statement can be written as:

[Resource R] --- Property P--> [Value V]
This would make the triple:
{[Property P], Resource R [Value V]}

We describe the resource R with a Property arc to a Value V. The value may be either a
resource or a literal. A literal should be stored using a ditect encoding of ISO/IEC 10646 ot an
encoding which can be mapped to ISO/IEC 10646 [ISO10646]. In [RDF]: “Language tagging is
part of the string value; it is applied to sequences of characters within an RDF string and does
not have an explicit manifestation in the data model.”

Now we are ready to start describing our resources (although we haven’t yet defined what
properties to use):

http://mww.ekengren.com/

i - —
stories/rabbit.html Author Dag Ekengren

Resource

Statement

Figure 39: Simple RDF statement

The semantics of the above is “The author of the resource rabbit.html is Dag Ekengren”. The
same can be expressed with a triple as:

{Author, [http://www.ekengren.com/stories/rabbit.html], “Dag
Ekengren}

The RDI data model is independent of any particular syntax. At the core RDI is a syntax-
independent model for representing resources and their corresponding descriptions [RDF]. Two
expressions in different syntax can be converted to the RDIF Data Model and then it can be
determined if the expressions’ semantics are the same, unambiguously. A good illustration of this
is found in [MILL]: Consider the following statements:

“The author of Document 1 is John Smith”
“John Smith is the author of Document 1”

To humans, these statements convey the same meaning. To a machine, however, these are
completely different strings. RDF attempts to provide an unambiguous method of expressing
semantics in a machine-readable encoding. The triple for both expressions is:

{Author, [Document 1], “John Smith”}

If a number of triples all refer to the same the same resource, they can be grouped as a single
unit. [RDF]. This makes things a little easier as a single resource often has many properties:

{Author; [rabbit.html], “Dag Ekengren”}
{Title, [rabbit.html], “The nosy rabbit"}
{Rating, [rabbit.html], “Cool"}

These three Triples can be considered a Description. The Description can have its own
identification, in effect, the Description is also a Resource. This Resource, the Desctiption, can
therefor be described by Properties, i.e. a Description can itself be used as the source node of
other arcs describing properties of the Description [RDF]].

One or more schemas define the properties in a given Description, as well as any characteristics
or restrictions of the property values themselves. Each property used in a Description is declared
to be from exactly one schema. Schemas will be discussed below.

UTILITY RELATIONS; “LAYER 17

The formal definition for layer 1 is given by W3C in [RDF]. The utility relations enable the
“Descriptions of Descriptions” feature of RDF by a process called refication. Reification allows us
to express modalities (e.g. beliefs about properties) or simply attach any properties to other
properties.

What we would like to do is to take a property (L.e. a triple) and in some well-defined way create
an identifiable node from that property.

The property {Author, [rabbit.html], “Dag Ekengren”} can be reified as:

{rdf: type, [Statementl], [rdf:statement]}
{rdf:predicate, [Statementl], [Author]}
{rdf:subject, [Statementl], [rabbit.html]}
{rdf:object, [Statementl], “Dag Ekengren”}

The property is now a named node (Statement1) which in turn has four properties. This allows us
to give properties to Statementl. We can express semantics such as “John says that Dag Ekengren
is the author of rabbit.html”:

StatementO1
rabbit.html Author——» Dag Ekengren

_w 1998-06-22

CreatedOn
StatementO1
Creator
T

John Blund

Figure 40: Example of “Description of Description”

More examples of resfication can be found in [RDF]|[MILL).

RDF SCHEMA

The standard for RDF Schemas is still being discussed by the W3C [RDFSCH]. The
specifications are cutrently in a working draft which should only be used to implement
experimental software. There are currently no RDF parsers available that conform to the RDF
Schema standard.

In short, RDF Schemas are used to declare the properties and semantics for a vocabulary. Each
metadata community can develop an RDI' Schema for their particular needs. These Schemas
should be machine understandable in a standard way to provide interoperability between

different RDF Schema capable software. RDF Schemas define the valid properties in a given
RDF description, as well as any characteristics or restrictions of their values [MILL].

An RDF Schema parser will be able to load Schemas from the metadata community that
provides them and validate documents that use the Schemas.

Type System

The RDF Schema introduces a relation called rdfisubClassOf. In the Model and Syntax paper
[RDF] W3C defined rdf:type which enabled a node to be an instance of a particular class.
However, in an object-oriented fashion, classes may be used in a hierarchical manner. The RDF
Schema property type 7dfs:subClassOf indicates such a relationship. Another development of
classes would be to introduce a set of “data types”, such as integer or date. [RDFSCH]

Constraints

The other aspect of RDIF Schemas is the ability to declare constraints associated with classes and
property types. Examples of constraints are:

The value of a statement should be a resource of a designated class.

Constraints on the properties that can be used to describe a resource is expressed with
allowedProperties.

The cardinality of a property, that is the number of properties of a given type that a
resource may have.

In a way, the RDI Schema is to RDF what the DTD (Document Type Definition) is to XML. XML
will be discussed later as a tool to expressing and fransporting RDF semantics.

RDF SAMPLES

SOWTWARE AGENTS

This is an RDF description of a contract for a software agent. The contract specifies the
interests of the agent’s owner. Other trade contracts specify what for example web sites and
online stores have to offer. When a user who has the agent client software installed visits a web
site with a web browser, the client and server agent software exchanges machine understandable
trade contracts. In a process called negotiation, the client and server agents tries to agree on the
terms of the other parties contract. If an agreement is made, the user can be notified that the web
site has something to offer that might interest him. The user can then decide what to do, for
example make a purchase. Of course, such actions can be triggered automatically.

Such agent trade contracts are great RDI applications. A sample instance of a trade contract
is:

<?xm version="1.0"?>

<l-- Some instances of agent contracts and other cool stuff -->

<rdf : RDF xmins:rdf="http://www.w3.org/schemas/rdf-schema”
xmins:agent_contracts="http://miller.sisu.se/schemas/agent_contracts.xml”
xmins:agent_trade_objects="

http://miller.sisu.se/schemas/agent_trade_objects.xml">

<agent_contracts:Trade_contract>

<agent _trade_obj ects: trade_object>
<agent _trade_obj ects: Cd>
<agent _trade_objects:title>Oxygene</ agent_trade_objects:title>
<agent _trade_objects:artist>Jarre</agent_trade_objects:artist>
</ agent _trade_obj ects: Cd>
</ agent _trade_obj ects:trade_object>
<agent _contracts: pri ce>200</ agent _contracts: pri ce>
<agent _contracts: buyer>
<agent _contracts: Person>
<agent _contracts: agent _address>map: // scheut z. si cs. se: 11000/ aut o</ agent _contracts: a
gent _addr ess>
<agent _contracts: name>NF</ agent _contract s: nane>
</ agent _contracts: Person>
</ agent _contracts: buyer>
</ agent _contracts: Trade_contract >
</ rdf : RDF>

REFERENCES

[ISO10646] - ISO/IEC 10646

[MILL] Miller, E.: An Introduction to the Resource Description Framework. In: D-Izb Magazine, ISSN 1082-
9873, May 1998, http://www.dlib.org/dlib/may98/miller/05miller.html

[RDF] World Wide Web Consortium: Resource Description Framework (RDF) Model and Syntax, W3C Working
Draft 8-Oct-1998, http://www.w3.org/TR/WD-rdf-syntax

[RDFSCH] - World Wide Web Consortium: Resource Description Framework (RDF) Schemas, W3C Working
Draft 30-Oct-1998, http://www.w3.org/TR/1998 /WD-rdf-schema-19981030

APPENDIX C. THE XML TO RDF STYLESHEETS

This section provides examples of XSL stylesheets that convert the internal XML format
used in the Multimedia Broker to RDF. Similar stylesheets can be created to generate RDF from
other platforms that use XML.

The following is an example of the internal XMI| This CATTRIBUTE. a Broker by a

database query. It represents a math exercise. .
query P element is matched by

<ROW the marked stylesheet

<CATTRI BUTE | NTERNALI D="124" DT="4" SQ "4"| rule below.

I SNULL="f al se" >3</ CATTRI BUTE>
<CATTRI BUTE | D="9001" NAIVE:" Uppgi ft. Presentation" ENTITY="Uppgift"
ATTRI BUTE=" Pr esent ation" DT="10" S@DT="12" SQ.PREC="255"

| SNULL="f al se' >127 0. 0. 1/ VNDgrabaser / Edu/ VNCont ent Ser ver . asp?l NFOPROD_| D=19&a

np; Prodl d= 3
<CATTRI BUTE | D 199 NAI\/E—‘ OpggQi ft . Nam" ENTI TY="Uppgi ft" ATTRI BUTE="Nam" DT="10"

SQLDT="12" & - NULL="f al se" >Pr obl em exerci se: Probl em 2</ CATTRI BUTE>
<CATTRI BUTE | D="190 "Uppgi ft. Uppgi ft" ENTI TY="Uppgi ft" ATTRI BUTE="Uppgi ft"

Dr="10" SQ.Dr="12" SQ_PREC— 255" | SNULL="f al se">
<A HREF =

"http://127.0.0. 1/ VNDat abaser / Edu/ VNCont ent Ser ver . asp?| NFOPRCD_| D=19&anp; Pr od

I d= 3">Probl em exercise: Probl em 2</ A>
</ CATTRI BUTE>
<CATTRI BUTE | D="176" NAME="Uppgi ft. Skapad" ENTI TY="Uppgi ft" ATTRI BUTE=" Skapad"

DT="10" SQLDT="12" SQLPREC="50" | SNULL="fal se">1998-12-09</ CATTRI BUTE>
<CATTRI BUTE | D="105" NAVE="Uppgi ft. Uppgi ft I d" ENTI TY="Uppgi ft"

ATTRI BUTE=" Uppgl ft_Id" DI="4" SQLDT="4" SQLPREC="10"

| SNULL="f al se" >3</ CATTRI BUTE>
<CATTRI BUTE | D="106" NAME="Uppgi ft. Upphovsman" ENTI TY="Uppgi ft"

ATTRI BUTE=" Upphovsman" DT="10" SQLDT="12" SQLPREC="255" | SNULL="fal se">Peter

Rosengr en</ CATTRI BUTE>
<CATTRI BUTE | NTERNALI D="134" DT="4" SQ.DT="4" SQLPREC="10"

| SNULL="f al se">7</ CATTRI BUTE>
<CATTRI BUTE | D="175" NAME="Sv&ari ng; ri ghet sgrad. G ad"

ENTI TY="Sv&ar i ng; ri ghet sgrad" ATTRI BUTE="Grad" DT="10" SQ.DT="12" SQ.PREC="50"

| SNULL="f al se">M ddl e</ CATTRI BUTE>
<CATTRI BUTE | NTERNALI D="140" DT="4" SQ.DT="4" SQLPREC="10"

| SNULL="f al se" >6</ CATTRI BUTE>
<CATTRI BUTE | D="126" NAME="Monent. Beskrivni ng" ENTI TY="Monent"

ATTRI BUTE=" Beskri vni ng" DT="10" SQLDT="12" SQLPREC="255"

I SNULL="Tr ue" >NULL</ CATTRI BUTE>
<CATTRI BUTE | D="125" NAME="Monent. Namm" ENTI TY="Moment" ATTRI BUTE="Namm" DT="10"

SQLDT="12" SQLPREC="255" | SNULL="fal se">Fracti ons and pot ency</ CATTRI BUTE>
<CATTRI BUTE | NTERNALI D="135" DT="4" SQ.DT="4" SQLPREC="10"

| SNULL="f al se">1</ CATTRI BUTE>
<CATTRI BUTE | D="123" NAME="Kat egori.Nam" ENTI TY="Kat egori" ATTRI BUTE=" Nam

DT="10" SQ.DT="12" SQ.PREC="50" | SNULL="fal se">Tr&aun ; na

Pr obl enl &ounl ; sni ng</ CATTRI BUTE>
<CATTRI BUTE | D="195" NAME="Kat egori . Beskrivni ng" ENTI TY="Kat egori"

ATTRI BUTE="Beskri vni ng" DT="10" SQ.DT="12" SQLPREC="255"

| SNULL="Tr ue" >NULL</ CATTRI BUTE>
<CATTRI BUTE | NTERNALI D="139" DT="4" SQ.DT="4" SQLPREC="10"

I SNULL="f al se" >4</ CATTRI BUTE>
<CATTRI BUTE | D="194" NAME="F&oun ; r kunskapskrav. Beskri vni ng"

ENTI TY="F&ounl ; r kunskapskrav" ATTRI BUTE="Beskri vni ng" DTr="10" SQ.DT="12"

SQLPREC="255" | SNULL=""Tr ue" >NULL</ CATTRI BUTE>
<CATTRI BUTE | D="193" NAME="F&ouni ; r kunskapskrav. Nam"

ENTI TY="F&ounl ; r kunskapskrav" ATTRI BUTE="Namm" DT="10" SQLDT="12" SQ.PREC="50"

I SNULL="f al se">The four ways of counting</ CATTRI BUTE>
<CATTRI BUTE | NTERNALI D="136" DT="4" SQ.DT="4" SQLPREC="10"

| SNULL="f al se" >2</ CATTRI BUTE>
<CATTRI BUTE | D="122" NAME="Bi | d. Upphovsman" ENTI TY="Bi | d* ATTRI BUTE=" Upphovsman"

DTr="10" SQLDT="12" SQLPREC="255" | SNULL="fal se">Yngve Pavasson</ CATTRI BUTE>
<CATTRI BUTE | D="121" NAME="Bi | d.Bildtyp" ENTITY="Bild" ATTRI BUTE="Bi | dtyp" DT="10"

SQ.DT="12" SQ.PREC="255" | SNULL="f al se">G F</ CATTRI BUTE>
<CATTRI BUTE | D="192" NAME="Bi | d. Nacm" ENTI TY="Bi | d" ATTRI BUTE="Namm" DT="10"

SQLDT="12" SQ.PREC="255"

I SNULL="f al se">D: &un ; | net pub&Qunm ; www oot &un ; VNDat abaser &0um ; Edu&Quni ; Bl

ob&Quni ; 0331- 31. gi f </ CATTRI BUTE>
<CATTRI BUTE | NTERNALI D="128" DT="4" SQ.DT="4" SQLPREC="10"

I SNULL="f al se">2</ CATTRI BUTE>
<CATTRI BUTE | D="108" NAME="Uppgi ftstext. Text" ENTI TY="Uppgi ftstext"

ATTRI BUTE="Text " DT="10" SQLDT="65535" SQLPREC="1073741824" | SNULL="fal se">A
rope is 120 cm The rope is to be cut into tw parts.<BR/ >One of the parts shall
be twice as long as the other.<BR/ >State the | enghts of the two
parts. </ CATTRI BUTE>
<CATTRI BUTE | NTERNALI D="138" DT="4" SQ.DT="4" SQLPREC="10"

| SNULL="f al se" >2</ CATTRI BUTE>
<CATTRI BUTE | D="196" NAME="L&ounl ; sni ng. Text" ENTI TY="L&oun ; sni ng"
ATTRI BUTE="Text " DT="10" SQLDT="12" SQLPREC="255" | SNULL="fal se">120 = 80 +
40</ CATTRI BUTE>
<CATTRI BUTE | D="189" NAME="L&ounl ; sni ng. Komment ar" ENTI TY="L&ounl ; sni ng"
ATTRI BUTE=" Konment ar " DT="10" SQLDT="12" SQ.PREC="255"
| SNULL="Tr ue" >NULL</ CATTRI BUTE>
<CATTRI BUTE | NTERNALI D="137" DT="4" SQ.DT="4" SQLPREC="10"
| SNULL="f al se" >3</ CATTRI BUTE>
<CATTRI BUTE | D="173" NAME="Matemati ktal . Tal" ENTI TY="Matemati ktal" ATTRI BUTE="Tal "
DT="10" SQLDT="12" SQLPREC="255" | SNULL="True">NULL</ CATTRI BUTE>
</ RON>

The XML document and the XSL stylesheet below are fed to the XSL processor. This
creates the RDF document.

<xsl >
<rul e>
<root/>
<! [CDATA[
11>)
<?xm version="1.0"?>
<rdf >
<chi l dren/ >
</rdf>
</rul e>

<!-- Don’t display header -->

<rul e>
<target-el ement type="RON position="first-of-type"/>
<enpty/ >

</rul e>

<rul e>
<target-el ement type="CATTRI BUTE">
<attribute name="1D"' val ue="190"/>
</target-el erent >
<sel ect - el enent s>
<target-el ement type="A"/>
</ sel ect - el ement s>
</rul e>

<rul e>
<target-el ement type="A"/>
<! [CDATA]

<edu: Exerci se | D="]] ><eval >get Attri but e(’ HREF') </ eval ><! [CDATA[" >
1>
</rul e>

<rul e>
<target-el ement type="ROWN/>

<! [CDATA[
<!-- Instance of class edu:Exercise -->]]>

<sel ect - el enent s>
<target-el ement type="CATTRI BUTE">
<attribute name="1D"' val ue="190"/>
</target-el erent >
</ sel ect - el emrent s>

<! [CDA
setect - el enent s>

<target-el ement type="CATTRI BUTE">
<attribute name="1D"' val ue="199"/>

</target-el ement >

</ sel ect - el enent s>

<I[CDATAl </ dc:title>

11>

The stylesheet rule identifies an
element in the Multimedia Broker
internal XML format. These
elements are replaced by RDF
statements by the XSL processor .

<t arget - el emen pe="CATTRI BUTE" >
<attribute name="1D"' val ue="106"/>
</target-el ement >
</ sel ect - el enment s>
]<]| [CDATA[<" </ dc: cr eat or >
>

<!'[CDATAl <dc:date>]]>
<sel ect - el ement s>
<target-el ement type="CATTRI BUTE">

<attribute name="1D"' val ue="176"/>
</target-el erent >
</ sel ect - el emrent s>
]<]| [CDATA[</ dc: Dat e>
>

<![CDATAl <dc:relation rdf:resource="xxx"/>

11>

<! [CDATA[<edu:id>]]>
<sel ect - el enent s>
<target-el ement type="CATTRI BUTE">
<attribute nanme="1D"' val ue="105"/>
</target-el erent >
</ sel ect - el emrent s>
]<]| [CDATA[</ edu: i d>
>

<![CDATAl <edu:l evel >]]>
<sel ect-el ements> <target-el ement type="CATTRI BUTE">
<attribute name="ID" val ue="175"/>
</target-el erent >
</ sel ect - el ement s>
]<]| [CDATA[</ edu: | evel >
>

<I [CDATA[<edu: category>]]>
<sel ect - el ement s>
<target-el ement type="CATTRI BUTE">
<attribute name="I1D" val ue="123"/>
</target-el erent >
</ sel ect - el emrent s>
]<]I [CDATA[</ edu: cat egor y>
>

<! [CDATAl <edu: subject>]]>
<sel ect - el ement s>
<target-el ement type="CATTRI BUTE">
<attribute name="1D"' val ue="125"/>
</target-el erent >
</ sel ect - el ement s>
]<]| [CDATA[</ edu: subj ect >
>

<I [CDATA[<edu: prerequisites>]]>
<sel ect - el ement s>
<target-el ement type="CATTRI BUTE" >
<attribute name="1D"' val ue="193"/>
</target-el erent >
</ sel ect - el ement s>
]<]| [CDATA[</ edu: prerequi si tes>
>

<I [CDATA[<edu: content>
<rdf: Descri pti on>
<edu:text>]]>
<sel ect - el ement s>
<target-el ement type="CATTRI BUTE">
<attribute name="ID"' val ue="108"/>
</target-el erent >
</ sel ect - el emrent s>
<! [CDATA[</ edu: t ext >
<edu: i mage resource="]]>
<sel ect - el ement s>
<target-el ement type="CATTRI BUTE">
<attribute name="ID" val ue="192"/>
</target-el erent >
</ sel ect - el ement s>
<!'[CDATA["/ >
<edu: sol uti on>]]>
<sel ect - el ement s>
<target-el ement type="CATTRI BUTE">
<attribute name="ID" val ue="196"/>
</target-el erent >
</ sel ect - el ement s>
<! [CDATA[</ edu: sol uti on>
</rdf: Descripti on>
</ edu: cont ent >
1>

<! [CDATA[</ edu: Exer ci se>
>

</rul e>

<rul e>
<target-el ement type="RESULT"/>
<chi | dren/ >

</rul e>

<rul e>
<targem el ement type="QUERY"/>
<chil dren/ >

</rul e>

</ xsl >

The XSL processor produces the following output after processing the XML document and
stylesheet above:

<r df : RDF>
<edu: Exercise ID =
"http://127.0.0. 1/ VNDat abaser/ Edu/ VNCont ent Server . asp?l NFOPRCD_I D=19&Pr odl d= 3" >
<dc:title>Probl emexercise: Problem2</dc:title>
<dc: creat or >Pet er Rosengren<"</dc: creator>
<dc: dat e>1998- 12- 09</ dc: dat e>

<dc:relation rdf:resourc e= :
"http://127.0.0. 1/ VNDat abaser / Edu/ VNCogg-ent Server asy This refers to the d= 33"/>
<edu: i d>3</ edu: i d> math book which

<edu: | evel >M ddl e</ edu: | evel > ; fem
<edu: cat egor y>Tr ä na Probl em ö sni ng</ edu: this exercise is a
<edu: subj ect >Fracti ons and pot ency</ edu: subj ect > part of
<edu: prerequi sites>The four ways of counting</edu: |
<edu: cont ent >
<rdf: Descripti on>
<edu: Text>A rope is 120 cm The rope is to be cut into two parts. One of the
parts shall be twice as long as the other. State the |lenghts of the two
parts. </ edu: Text >
<edu: | mage resource =
"D ö | net pubö wwwr oot ö VNDat abaser ö Eduö Bl obö 0331-
31.gif"/>
<edu: sol uti on>120 = 80 + 40</edu: sol uti on>
</rdf: Description>
</ edu: cont ent >
</ edu: Exerci se>
<r df : RDF>

APPENDIX D. THE RDFCLIENT SOFTWARE

This appendix provides some additional information about the RdfClient software that was
developed as a part of this project.

SYSTEM REQUIREMENTS
* Java Virtual Machine 1.2 or later
* IBM’s XML4j (XML for Java) 1.1.4 or later
* IBM’s RDFforXMI. November 1998

THE RDFFORXML PARSER CLASSES

The main classes for building the RDF data model are:

| RDFObject |
RDF —contains—@ (virtual base { has value
class) |

| RDFContainer
rq (virtual base —contains RDFDescription —contains RDFProperty
i class)
contains
contains
String (O——has value
RDFAlternatives RDFSequence RDFBag

Figure 41: The RDF parser’s class hierarchy

APPENDIX E. INSTRUCTIONAL MANAGEMENT SYSTEM - IMS

The Instructional Management System Project (IMS) is an investment membership by a number of
US academic, commercial and government organizations dedicated to facilitating the growth of
distributed learning on the Internet IMSSPEC The IMS specification is a huge document covering
the technical details for an online learning system. Here is the list of requirements, just to give
you a feel of the complexity of IMS: Group Management, Personal Profile Management, Activity
Management, Assessment and Certification Management, Content Management, Commerce and Licensing
Management, Security Management, Technical Administration Managenment IMSREQ,

We are mainly concerned with the metadata parts of IMS. The metadata elements are based on
Dublin Core, but include additional elements with semantics for associating and aggregating
resources to form complex structures. They can be found at [IMSMETA].

The IMS Metadata Specification consists of several parts: Repository System, Dictionaries and
Schema Librarees.

REPOSITORY SYSTEM

The Tiered”? Repository System [TIERS] is a hierarchy of Repositories. A Repository is a place
whete dictionaries, schema libraries, and a list of entities are maintained.

DICTIONARY

The Dictionary [IMSDIC] contains definitions for a number of fields that are used to describe
resources. An example of such a dictionary is the Dublin Core, which is described elsewhere in this
document. The dictionaries in IMS are the same as the vocabularies used in RDF. Examples of
fields in the Dublin Core dictionary are Title, Subject and Creator.

SCHEMA LIBRARY

A Schema Library 1s a collection of metadata structures called Schemas. All schemas are detived
from The Master Schema [IMSMS] defined by the IMS metadata specification. The schemas are
organized after OOD (Object Oriented Design) principles by allowing inheritance from other
schemas. This is illustrated by the example in the following section.

A SIMPLIFIED IMS METADATA STRUCTURE EXAMPLE

We have a master schema, which is a collection of fields from our dictionary. The master schema
in our example contains the fields Identifier, Title, Language, Granularity and Status. The fields in the
master schema have different levels of ob/gation. The (m) after a field indicates that this field is
mandatory for all schemas derived from this master schema. An (o) indicates that a field is
optional. In our example, the fields Identifier, Title and Language are mandatory.

We derive My Base Schema from the master schema. My Base Schema contains a subset of the
tields provided in the master schema. We have chosen not to include the field Granularity, which
was marked as optional. Note that in My Base Schema, we have made the S7azus field mandatory.
This llustrates an important rule: We are allowed to make our base schema more restrictive (with

22 Tiered means “arranged in layers”.

more fields marked as mandatory). However, the derived schema can never be made less
restrictive. My Base Schema serves as our Base Schema. It is not used directly but is inherited (and
extended) by more specific schemas such as My Image Schema and My Book Schema in the figure

below.

Master Schema:
Identifier (m)
Title (m)
Language (m)
Granularity (o)
Status (0)
Publisher (o)
Size (0)

derived from

My Base Schema:
\ Identifier (m)
Title (m)

Language (m)
Status (m)

inherits

/

inherits

Y

My Image Schema:
Identifier (m)

Title (m)

Language (m)
Status (m)
Publisher (o)

Size (0)

My Book Schema:
Identifier (m)

Title (m)
Language (m)
Status (m)
Creator (m)

My Repository
Schema
Library

Figure 42: This is a simplified example of a Master Schema, a Base Schema derived from the
Master Schema. My Base Schema doesn’t contain all the fields from the Master Schema. It
contains a selection of fields. Note that My Base Schema is more restrictive than the Master
Schema, making the field Status mandatory. My Book Schema inberits from My Base Schema,
adding the field Creator, which is marked as mandatory. My Image Schema adds the fields

Publisher and Size.

The rule that we only can make schemas more restrictive (but not less) applies to inheritance as

well.

Now that we have defined a schema library we can make instances of our schemas to describe a
particular image or book:

Instances of Book

Identifier: ISBN-xxxx

Title: My Early Life
Language: English

Status: Available

Creator: Winston Churchill

Identifier: ISBN-yyyy
Title: Liberalism and the

Social Problem
Language: English

Status: Available

Creator: Winston Churchill

Instance of Image

Identifier: xyz0123
Title: D-day by night
Language: N/A
Status: Available

Size: 1 342 353 bytes

Publisher: John Smith Ltd

Figure 43: Metadata instances of the schemas Book and Image.

Please note that this is a simplified example. The IMS Schema Library (the schema library in the
IMS Repository) requires many more fields from the dictionary. In reality My Depository would

have to include these fields (and more) if it were to inherit from the IMS Repository. The next
figure shows a hierarchy of repositories. My Repository has inherited dictionaries and schema
library from the IMS Repository. The organization responsible for My Repository may extend the
dictionaries with additional fields. However, they are not allowed to define new fields for
metadata that could be expressed with the parent’s dictionaries (in this case the IMS
Repository’s).

IMS Repository

Dictionaries
Schema Library

My Repository

Dictionaries
Schema Library

A

Steven'’s Publishing

Repository
Dictionaries
Schema Library

JP Math Book

Subsidiary
Dictionaries
Schema Library

Figure 44: The Tiered Repository System. Each Repository inberits Dictionaries and Schema
Library from its parent Repository. Usually a company or organization is responsible for the
maintenance of a Repository. The inberitance of dictionaries and schemas ensures some level of
interoperability. A metadata tool capable of parsing IMS metadata will at least understand the
parts that e.g. My Repository has inherited from the IMS Repository.

THE IMS MASTER SCHEMA

When we extend schemas with inheritance, adding additional fields, we must still follow the
structure imposed by the master schema. The master schema structure was not shown in our
simple example. It is needed because fields from the dictionary may have different semantics
depending on where (in what context) they appear in the master schema.

“The Schema Table uses a context notation to indicate that one element is contained under
another element.” [IMSMS]

The following is an extract from the IMS Master Schema:

Gener al
I dentifier
Title
Characteristics
Language
Descri ption

<...cut...>

Discipline
Description

<...cut...>

The field Description is defined by its context. In this extract Description appears in the context of
Characteristics as will as Discipline. 1f we inherit from a schema (e.g. My Book Schema) and add new
tields that exist in the IMS Master Schema, we must follow the structure imposed by this schema.
This makes it possible for parsers that know about the IMS Master Schema to understand My
Book Schema. We are allowed to use fields from our own dictionaries as well, but they must be
other than those in the IMS Master Schema.

THE IMS SCHEMA LIBRARY

The Schema Library in the IMS repository currently contains 5 schema (4 of which are called
Types). They are IMS Meta-Data Master Schema, IMS Base Type, IMS' Item Type, IMS Module Type and
IMS Tool Type. The IMS Base Type contain the minimum required (matked as mandatory) in the
master schema. The base schema is not used directly but is inherited by the Item, Module and
Tool types.

IMS ITEM TYPE

“The IMS Item Type is intended to describe a single element such as a picture, an audio clip,
a video clip, a text block, or HTML file. An item can contain more than one file (e.g. multiple
images), but is not intended to hold contents of a complete educational nature.” [IMSSETS]

IMS MODULE TYPE

“The IMS Module Type of metadata describes learning resources with a particular educational
value or purpose. A module may consist of a single or multiple elements or learning resources.
Examples of a module include a course, a topic, an assessment, an assighment or an activity.”

[IMSSETS]

IMS TOOL TYPE

The IMS Tool Type of metadata describes a learning resource that provides a function for the
user. Examples of a tool include a word processor, calculator, statistical analysis package, or

composition guide. A tool may be domain or task specific or the tool may serve a general
purpose. [IMSSETS]

REFERENCES

[IMSDIC] Wason, T., IMS Metadata Dictionary, University of North Carolina, 3-Apr-1998,
http://www.imsproject.org/technical/Metadata/DID170.html

[IMSMETA] Educom: IMS Metadata Specification, http://www.imsproject.org/md overview.html

[IMSREQ] Educom: Educom’s IMS Design Requirements, 19-Dec-1997,
http://www.imsproject.org/reqv2/index.html

[IMSMS] Wason, T., IMS Meta-Data Master Schema, University of North Carolina, 22-Jul-1998,
http://www.imsproject.org/technical/Metadata/library/DID173.html

[IMSSPEC] Educom: EDUCOM/NLII Instructional Management Systems Specification Document, Version 0.5,
29-Apr-1998, http://www.imsproject.org/specs/spec?.pdf

[IMSSETS] IMS Metadata Set v 1.1.0, University of North Carolina,
http://www.imsproject.org/metadata_sets.html

[TIERS] Wason, T., TIERS Atchitecture, University of North Catolina, 16-Nov-1997,
http://www.imsproject.org/technical/Metadata/Tiers/did162.html

APPENDIX F. SOFTWARE TOOLS

SIRPAC (W3C)

The SiIRPAC homepage at W3C gives the following introduction: “This program compiles
RDF/XML documents into the 3-tuples of the corresponding RDF data model. The documents
can reside on local file system or at a URI on the Web. Also, the parser can be configured to
automatically fetch corresponding RDF schemas from the declared namespaces. This version is
suitable for embedded use as well as command line use. SIRPAC builds on top of the Simple API
to XML documents (SAX).”

Tty it out at: http://www.w3.org/RDF/Implementations/SIRPAC

XMLFORJAVA (IBM)

IBM offers a free validating parser for XML written in 100% pure Java. Validating means that it
checks the XML document against the DTD and reports any errors. Many other parsers currently
don’t read the DTD.

The parser comes with full source code and may be downloaded from:

http:/ /www.alphaworks.ibm.com/formula.nsf/toolpreview/7BC35F3E4E69996A882565A7
00035C56

RDFFORXML (IBM)

RDF for XML is an RDF processor written in Java for building, querying, and manipulating
RDF structures and reading and writing them in XML forms. The current implementation
conforms to the working draft dated 10/8/98 of the RDF Syntax and Model working group of
the W3C.

A free download is available at:

http://www.alphaworks.ibm.com/formula.nsf/alpharequirements /28 EFAC3644211 AD888
2565E10059AE39#1nstall

INTERNET EXPLORER 5 (MICROSOFT)

The newest version of Internet Explorer (currently the second beta release) contains an XML
parser, an XSL processor and a DCD schema validator.

Microsoft will be happy to tell you more at http://www.microsoft.com

COMMUNICATOR 4.5 (NETSCAPE)

Communicator’s “What’s Related” feature send RDF descriptions back to Netscape’s servers
to track users movements on the net.

http://www.netscape.com

XML STYLER (ARBORTEXT)

XML Styler is a tool for creating XSL stylesheets. It can be freely downloaded from
http://www.arbortext.com/xmlstyler/index.htm.

