
25 January 1996

1

Implementation and
Analyses of the
Mobile-IP Protocol

Fredrik Broman and Fredrik Tarberg

Thesis report for a masters degree in Computer Science at the
Department of Teleinformatics, Royal Institute of Technology,
Stockholm, Sweden.

Abstract

This report is the result of a masters degree project conducted at the Department of
Teleinformatics at the Royal Institute of Technology during the autumn 1995. The
area investigated is the Mobile Internet Protocol, especially its implementation and
efficiency.

The thesis work is divided into three areas. The first area includes the development
and implementation of a Management Information Base for the Mobile-IP
protocol. The second area deals with the porting of a Mobile-IP implementation for
SunOS to MachOS and Solaris. The last area covers the tests done to measure the
throughput and latency of the protocol.

“If you would not be forgotten, as soon as you are dead & rotten, either
write things worth reading, or do things worth writing.”
Benjamin Franklin

Implementation and Analyses of the Mobile-IP Protocol 2

1.0 Introduction 5
1.1 Background 5
1.2 Problem statement and project specification5

2.0 The Walkstation II Project 7
2.1 The system 7
2.2 The Mobile INTernet Router (MINT) 7

3.0 The Mobile-IP protocol 9
3.1 Introduction 9
3.2 The Protocol 10

3.2.1 Requirements and Goals10
3.2.2 Overview of Protocol Events 10
3.2.3 Agent Discovery and Solicitation 11
3.2.4 Registration 11
3.2.5 Forwarding Datagrams to the Mobile Node12

4.0 Network Management 14
4.1 SNMP 14
4.2 MIB 15

5.0 The Mobile-IP MIB 17
5.1 The Mobile Node 17

5.1.1 Mobile Node objects 20
5.1.2 List of Home Agents 20
5.1.3 Mobile Node Registration Table 21
5.1.4 Mobile Node Pending Registration Table 21

5.2 The Foreign Agent 22
5.2.1 Foreign Agent objects 24
5.2.2 List of Care-of Addresses25
5.2.3 Foreign Agent Registration Table 25
5.2.4 Foreign Agent Pending Registration Table 25

5.3 The Home Agent 26
5.3.1 Home Agent objects 28
5.3.2 Home Agent Mobility Binding Table 28
5.3.3 List of Authorized Nodes 29

6.0 Testing the SunOS implementation 30
6.1 Installation 30
6.2 The environment 30
6.3 Configuration 31
6.4 Running the system32

7.0 The SNMP implementation 33
7.1 The system 33
7.2 The SNMP agent 33

7.2.1 The functions 33
7.2.2 The protocol 34

7.3 Changes to the Mobile-IP implementation34
7.3.1 Structures 34
7.3.2 Functions 35

7.4 Configuration 35
7.5 Mobile-IP Watcher 35

Implementation and Analyses of the Mobile-IP Protocol 3

7.5.1 How to usemipwatcher 35

8.0 Program development for the MINT 38
8.1 The system 38
8.2 Booting a MINT 38
8.3 Compiling programs for the MINT 42

8.3.1 Stand-alone programs42
8.3.2 Compiling the Operating System42
8.3.3 Compiling Unix Applications 43

8.4 Remote debugging using the GNU Debugger 44
8.4.1 Stand-alone programs44
8.4.2 UNIX processes 45

9.0 Porting the Mobile-IP code 46
9.1 Porting to Solaris 2.4 46
9.2 Porting to the MINT 46

9.2.1 Booting a MINT 46
9.2.2 RFS - Remote File Sharing47
9.2.3 Running our program 47
9.2.4 A file transfer program 48
9.2.5 Reading ethernet frames49
9.2.6 Unexpected problems 50
9.2.7 Summary of changes50

10.0 Analysis of the Mobile-IP protocol 51
10.1Delay 51

10.1.1Artigonn to explorer 51
10.1.2Artigonn to dumburken 52
10.1.3Dumburken to anxiety (HA -> FA) 52
10.1.4Anxiety to explorer (FA -> MN) 53
10.1.5Artigonn to the Mobile Node 53
10.1.6Conclusions 54

10.2Delay caused by encapsulation/decapsulation54
10.2.1The Home Agent 54
10.2.2The Foreign Agent 55
10.2.3Conclusions regarding the delay 56

10.3Registration 56
10.3.1The first registration 56
10.3.2Conclusions 58

10.4Throughput 58
10.4.1Mobile-IP 59
10.4.2SunOS 59
10.4.3Conclusion 60

10.5Summary 60

11.0 Conclusions 62

Appendix A The CMU-SNMP package 64
A.1 Introduction 64
A.2 How to obtain the library 64
A.3 Writing an agent 64

A.3.1 The data structures 64
A.3.2 The functions 65

Implementation and Analyses of the Mobile-IP Protocol 4

Appendix B The SNMP code 73
B.1 Changes to internal structures 73

B.1.1 struct mobileip_host 73
B.1.2 struct fa_deencap_entry 73
B.1.3 struct fa_saved_regstate 73
B.1.4 struct mobileip_agent 74
B.1.5 struct pending_request 74

B.2 Mobile-IP code 75
B.2.1 snmp_init.c 75
B.2.2 snmp_magic.h 76
B.2.3 statistics.h 78
B.2.4 statistics.c 80
B.2.5 snmp.h 80
B.2.6 snmp.c 80

B.3 SNMP Agent code 103
B.3.1 snmp_vars.c 103
B.3.2 mipmib.c 106

Appendix C The Solaris Code 114
C.1 dlpi.c 114

Appendix D The MINT Code 119
D.1 lowbpf.c 119

Appendix E State diagrams 129
E.1 The Home Agent 129
E.2 The Foreign Agent 130
E.3 The Mobile Node 132

Appendix F Mobile-IP Watcher 134

Appendix G The Mobile-IP MIB 140

References 160

Intr oduction

Implementation and Anal yses of the Mobile-IP Pr otocol 5

1.0 Intr oduction

1.1 Backgr ound

Mobile communication is an area which is rapidly developing. Cellular telephones
have become, at least in Sweden, a common feature for many people as the price of
cellular telephones have been subsidized by the telephone operators. Even though
cellular phones are well suited to voice communication the provided bandwidth is
too small to get an acceptable data transmission rate for computers. As computers
become less expensive and smaller in size people will expect their mobile computer
equipment to support communication mobility.

The Walkstation Project [4] is one of the research activities at the Department of
Teleinformatics and Ericsson Radio Systems. The aim is to allow users of portable
laptop computers to move around while retaining all possibilities that a fixed
network connection provides. This is done by providing mobile users with a high
capacity packet radio based cellular network.

How to efficiently support mobile wireless Internet access and how to provide the
mobile users with transparent access to the Internet information are still open
questions. The efforts to integrate mobile communication and support mobility on
the Internet are being undertaken by the Internet Engineering Task Force (IETF)
and is part of the Walkstation Project. This will result in a standard protocol called
Mobile-IP in the near future. Mobile-IP is an abbreviation of “Mobile Internet
Protocol”. It was originally proposed by Dr. John Ioannidis and Prof. Gerald
Maguire Jr. from Columbia University (now professor at KTH). As there were
multiple proposals for such a standard, an Internet Engineering Task Force (IETF)
‘Working Group for Mobile IP’ was formed in June 1992 to develop a single
Mobile-IP protocol. The goal is to allow transparent routing of IP data packets to
and from mobile hosts.

1.2 Problem statement and pr oject specification

The title of this degree project is “Implementation and Analyses of the Mobile-IP
Protocol”, and it has involved several different areas related to the Mobile-IP
protocol. While the specification for the Mobile-IP protocol was not yet fixed by the
IETF when this project started, one of the tasks was to examine the effects of
implementation choices and test them. We also had to examine how the protocol
works (for example “Is the functionality complete?”, “What is the performance
limited by?”, “What extension should be made?”).

Our work included the following tasks:

• Understand the Mobile-IP Protocol draft and look at the implementation written
by Anders Klements.

• Define a Mobile-IP Management Information Base (MIB).

• Incorporate support for Network Management (SNMP) into Anders Klemets’
Mobile-IP implementation.

• Port the implementation to:

a. The MINT (Mobile INTernet) router and the MachOS

b. Solaris

• Plan a series of experiments:

a. Throughput and latency measurements - for a fixed basestation and stationary
“mobile”.

Introduction

Implementation and Analyses of the Mobile-IP Protocol 6

b. Handoff measurements for a mobile between two basestations. This should
not only explore the wireless traffic but also the traffic on the infrastructure.

• Make a series of measurements and do an analysis of these experiments.

The Walkstation II Project

Implementation and Analyses of the Mobile-IP Protocol 7

2.0 The Walkstation II Project

The purpose of the Walkstation II project is to investigate a complete radio based
cellular system for interactive mobile multimedia applications, and the project
includes aspects of VLSI design, radio communication, network protocols and
mobile applications. The three main components of the project are the Mobile
Internet Router (MINT) [6, 7, 8], the Radio Transceiver and the Mobile-IP protocol
[5].

2.1 The system

The cellular, wireless LAN that will be the result of the Walkstation II project
consists of Base Stations and Mobile Stations. Every cell in the network is covered
by a Base Station with a (Spread Spectrum) Radio Transceiver. The Base Station is
also connected to a wired network. The Mobile Stations will be able to connect to
the Internet through a Base Station. Even though this wireless LAN looks like any
other cellular system there is one major difference. There is no top down hierarchy
as in found in, for example, GSM and DECT where the Base Stations control the
allocation of the radio resources. The radio channel is a shared media which can be
used by any Station to send information whenever the channel is free, and it is
immediately released afterwards. From this perspective the system more closely
resembles an ethernet than a cellular mobile telephone communication system. It is
also possible to send data from one Mobile Station to another within the same cell
without going though a Base Station.

2.2 The Mobile INTernet Router (MINT)

One of the goals of the Walkstation II project was to incorporate all communication
hardware and software into one device called the MINT. The advantages of this
design decision are that the MINT can be made compatible with many different
types of Mobile Hosts and no changes have to be made in the operating system of
the Mobile Host. In addition, all computations necessary for communication can be
done by the MINT and do not have to burden the Mobile Host. Also, by putting all
mobile functionality into one device it is transparent to the user (and their
computer).

The Mobile INTernet Router is designed to be a small, lightweight router that can
be plugged into the back of any computer. The basic architecture of the MINT is
shown in Figure1. Today the size of a MINT is approximately 32x27x13 cm, but
the intension is to make it fit on a PCMCIA card.

The MINT consists of a 25 MHz MC68030 processor, 1 Mbyte of ROM, 8 Mbyte
of RAM, with two serial, one parallel, one SCSI and two Ethernet interfaces. In
addition, there is a prototyping area with access to the processor bus and the two
ethernet controllers. Basically the MINT can be viewed as a three component
device; one connection to the host backbone (an ethernet network), one interface to
a wireless LAN and a processing part in between to handle the communication
protocol. This architecture was designed to be used both with Mobile Hosts and
Base Stations.

The MINT hardware was developed in a pre-project in conjunction with HP Labs,
Palo Alto. Today there are 8 MINTs up and running. The operating system currently
used on the MINTs is a version of the Mach 3.0 operating system, ported by Anders
Klemets[18].

The Walkstation II Project

Implementation and Analyses of the Mobile-IP Protocol 8

Figure 1. The MINT

LAN

Parallel

Serial

Serial

SCSI

Radio
part

Ethernet
card

Ethernet
card

In
te

rn
al

 b
us

The Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 9

3.0 The Mobile-IP protocol

When Mobile Nodes are to be introduced on the Internet, the present version of the
network layer protocol (Internet Protocol version 4) is no longer enough. New
functionality has to be implemented to handle the new situation. This problem was
encountered in the Student Electronic Notebook project [12] and as a result a
Mobile Internet Protocol (Mobile*IP [10]) was suggested. Today the work on
standardizing Mobile-IP is conducted by the Mobile-IP Working Group of the
Internet Engineering Task Force [5].

3.1 Introduction

The protocol used at the network layer on the Internet, the Internet Protocol (IP),
was designed with two assumptions in mind. First that a node’s point of attachment
remains fixed, and secondly that a node’s IP address identifies the network to which
it is attached. Routing of datagrams is based on the network number portion of the
node’s IP address. For example, a datagram destined to the computer with the IP
address 130.237.215.110 is sent to the network with the network number
130.237.215.

If a node could move around on the Internet without changing its IP address it
would no longer be possible to correctly route datagrams to it. To overcome this
problem, the Mobile Internet Protocol was introduced. There are basically three
entities defined in the protocol. These are the Mobile Node (MN), the Home Agent
(HA) and the Foreign Agent (FA). A Mobile Node is a host or a router that changes
its point of attachment from one network or subnetwork to another without
changing its IP address. The Mobile Node has one network called the home
network. The Home Agent, which can be a host or a router, is located on the home
network. The task of the Home Agent is to maintain a table of the current location
of all its Mobile Nodes, and relay datagrams to their present location. All datagrams
destined to a Mobile Node are caught on the home network by the Home Agent and
sent to a Foreign Agent who relays the data to the Mobile Node. A Foreign Agent is
a host or a router on the foreign network that takes care of the Mobile Node while it
is away from home. When the Mobile Node wishes to make a connection to the
Internet while away from home, it contacts the closest Foreign Agent who sends a
registration request to the Mobile Node’s Home Agent. When the Home Agent gets
the request it knows where the Mobile Node is located at present and to which
Foreign Agent it should relay the datagrams destined to the Mobile Node. The
address of the Foreign Agent acts as a care-of address of the Mobile Node.

Figure 2. The entities in the Mobile-IP protocol

Internet
sender

FAMN

HA

The Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 10

3.2 The Protocol

3.2.1 Requirements and Goals
In [5] the following aspects were considered important in designing the protocol.

• A Mobile Node using its home address shall be able to communicate with other
nodes despite changing its point of physical attachment.

• Implementation of the protocol shall not cause a Mobile Node to be unable to
communicate with other nodes that do not implement these mobility functions.

• No protocol enhancements are required in hosts or routers that are not providing
any of the mobility functions.

• A Mobile Node shall provide authentication in its registration messages.

The link by which the Mobile Node is directly attached to the Internet is likely to be
bandwidth limited and experience a higher rate of errors than traditional wired
networks. Moreover, Mobile Nodes are more likely to be battery powered, and
minimizing power consumption is important. Therefore, only a few administrative
messages should be sent between a Mobile Node and an agent, and the size of these
messages should be kept as short as possible.

3.2.2 Overview of Protocol Events
The following is a rough outline of the sequence of events that a Mobile Node goes
through as given in [5]. See Figure3.

• Mobility agents (Home Agents and Foreign Agents) advertise their presence via
Agent Advertisements (see Section3.2.3).

• A Mobile Node receives these advertisements and determines whether it is on its
home subnet or a foreign subnet.

• The Mobile Node, if it detects that it has moved to a foreign subnet (either from
its home subnet or from another foreign subnet), obtains a care-of address on the
foreign subnet. The care-of address can either be obtained from the
advertisements, or by some other assignment mechanism (for example DHCP
[13]).

• The Mobile Node then registers its new care-of address with its Home Agent,
possibly via a Foreign Agent (see Section3.2.4).

• Packets sent to the Mobile Node’s home address are received by the Home Agent
and relayed (possibly through a Foreign Agent) to the Mobile Node via
encapsulation, using the care-of address as the new destination (see
Section3.2.5).

The Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 11

.

3.2.3 Agent Discovery and Solicitation
To communicate with a Foreign or Home Agent, a Mobile Node must learn either
the IP address or the link address of that agent. It is assumed that a link-layer
connection has been established between the agent and the Mobile Node. The
method used to establish such a link-layer connection is not specified in this
protocol. After establishing a link-layer connection, the Mobile Node learns
whether there are any agents available. If the address of any agent matches the
Mobile Node’s stored address for its Home Agent, the Mobile Node is at home.

The Mobile Node can get information about Mobile Agents either by receiving an
ICMP Router Advertisement or by sending an ICMP Router Solicitation. To the
ICMP Router Advertisement, information is added to indicate that the router serves
as a mobility agent.

3.2.4 Registration
The registration function exchanges information between a Mobile Node and its
Home Agent. The information sent from the Mobile Node is the new care-of
address to which the Home Agent is supposed to send the datagrams destined to the
Mobile Node. If a Mobile Node itself is assigned a care-of address, it can act
without a Foreign Agent, and register or deregister directly with a Home Agent by
the exchange of only 2 messages stated by the protocol:

• The Mobile Node sends a registration request to a Home Agent, asking it to
provide service.

Figure 3. The messages sent when a Mobile Node register with a Home Agent through a Foreign Agent

Mobile Node (MN) Foreign Agent (FA) Home Agent (HA)

Advertisement

Registration request

Registration reply

Registration reply

Registration request

The Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 12

• The Home Agent sends a registration reply to the Mobile Node, granting or
denying service.

When the care-of address is associated with a Foreign Agent, the Foreign Agent
acts as a relay between the Mobile Node and the Home Agent. This extended
registration process involves the exchange of 4 messages:

• The Mobile Node sends a registration request to the prospective Foreign Agent to
begin the registration process.

• The Foreign Agent relays the request to the Home Agent, asking the Home
Agent to register the Mobile Node at the Foreign Agent’s care-of address.

• The Home Agent sends a registration reply to the Foreign Agent to grant or deny
service.

• The Foreign Agent relays the registration reply to the Mobile Node to inform it
of the disposition of its request.

The registration messages use the User Datagram Protocol (UDP) header [14]. A
non-zero UDP checksum should be included in the header, and checked by each
recipient. An administrative domain may require a visiting Mobile Node to register
via a Foreign Agent. This facility is envisioned for service providers with packet
filtering fire-walls, or visiting policies which require exchanges of authorization.

It is possible for a Mobile Node to have more than one care-of address at any given
time. This can be useful when a Mobile Node moves within range of multiple
cellular systems. When the Home Agent allows simultaneous bindings, it will
encapsulate a separate copy of each arriving datagram to each care-of address, and
the Mobile Node will receive multiple copies of its datagrams. This is not a problem
since IP explicitly allows duplication of datagrams.

3.2.5 Forwarding Datagrams to the Mobile Node
The way in which IP packets are relayed from the Home Agent to the Mobile Node
is by IP in IP encapsulation [15], also called “tunneling”. This means that when the
Home Agent receives an IP packet destined to a Mobile Node it puts the IP packet
in a new IP packet (by adding an IP header) with the destination field set to the care-
of address of that Mobile Node (see Figure4).

Figure 4. IP in IP encapsulation

IP Header

IP Payload

IP Header

IP Payload

Outer IP Header

The Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 13

When the Foreign Agent receives the IP packet it decapsulates it by removing the
outer IP packet and sending the original packet to the Mobile Node. The general
encapsulation case is shown in Figure5.

Encapsulation is a way to re-address datagrams. Another method would be to use
the IP Source Route option in the IP protocol (see [20]), which lets the sender
specify a path that the IP datagram must follow. There are however several technical
reasons to prefer encapsulation over source routing, according to the encapsulation
draft [15]:

• There are unsolved security problems associated with the use of source routing.

• Current internet routers exhibit performance problems when forwarding packets
which use the IP source routing option.

• Too many internet hosts process source routing options incorrectly.

• Firewalls may exclude source-routed packets.

• Insertion of an IP source route option may complicate the processing of
authentication information by the source and/or destination of a datagram,
depending on how the authentication is specified to be performed.

• It is considered impolite for intermediate routers to make modifications to the
packets which they did not originate.

There are, of course, some disadvantages with the encapsulation technique too. For
instance, encapsulated packets are normally longer than source routed packets.

Figure 5. The general encapsulation case

Source
Encapsulator
(Home Agent)

Decapsulator
(Foreign Agent)

Destination
(Mobile Node)

Network Management

Implementation and Analyses of the Mobile-IP Protocol 14

4.0 Network Management

A computer network consists of many different components, for example routers,
hubs, bridges and hosts. As the complexity of a system grows, the need for
monitoring and controlling the different entities increases. This problem was
recognized by vendors of network equipment, and as a result they developed
strategies to manage their products. Of course different manufacturers came up with
different solutions, and that led to problems for managers who administrated
systems that consisted of equipment from different vendors. A standard was needed,
and at the end of the eighties a standard was developed based on something called
the Internet-standard Network Management Framework. This framework included
a set of rules for describing management information, an initial set of managed
objects, and a protocol used to exchange management information (the Simple
Network Management Protocol [19]).

A network management systems consists of four components:

• one or moremanaged nodes, each containing anagent which runs the
management software;

• at least onenetwork management station (NMS) on which one or more network
management applications (often calledmanagers) reside;

• a network managementprotocol (for example SNMP) which is used by the
manager and the agents to exchange management information; and

• aManagement Information Base (MIB) that specifies what variables the network
elements maintain.

The communication can happen in two ways: the manager asks the agent for a
specific value, or the agent telling the manager that something important has
happened. Also, the manager should be able toset variables in the agent in addition
to reading values from it.

Note that the network management system can be thought of as a client/server
system, where the management application (the manager) is theclient which is
sending questions and commands to the agent (theserver).

4.1 SNMP

The Simple Network Management Protocol (SNMP) [19] emerged from the IETF
(Internet Engineering Task Force) as a result of a recommendation from IAB
(Internet Activity Board) concerning the standardization of network management.
The philosophy behind the protocol was that it should be simple and focus on the
areas of fault management and configuration management. However, the protocol
proved to be very flexible and suitable for all kinds of network management.

In general, an SNMP interaction consists of a request of some kind, followed by a
response. See Figure6.

Network Management

Implementation and Analyses of the Mobile-IP Protocol 15

SNMP defines only five types of messages that are exchanged between the manager
(the client) and an agent (the server):

1. Fetch the value of one or more variables: theget-request operator.

2. Fetch the next variable: theget-next-request operator.

3. Set the value of a variable: theset-request operator.

4. Return the value of a variable: theget-response operator. This is the mes-
sage returned by the agent to the manager in response to theget-request,
get-next-request, andset-request operators.

5. Notify the manager when something happens on the agent: thetrap operator.

The first three messages are sent from the manager to the agent, and the last two are
from the agent to the manager. The messages are sent in UDP packets.

4.2 MIB

The Management Information Base, or MIB, is a description of the information
maintained by the agent that the manager can query or set. Each object in the MIB
is given a name and is also defined by a unique sequence of integers separated by
decimal points. This sequence of integers is called theobject identifier, and it is
allocated by some organization that has responsibility for a group of identifiers. The
objects are arranged in a tree structure similar to a filesystem (see Figure7). For
example the name corresponding to 1.3.6.1.2.1.4 is iso.org.dod.internet.mgmt.mib-
2.ip, and is the object identifier pointing to the Internet Protocol (IP) group.

A MIB definition resembles a definition of a data structure in a programming
language. It is a description of which variables can be accessed and what data types
they have. An example of a MIB definition can be found in Appendix G, which is a
description of our MIB for the Mobile-IP protocol. MIBs are described using a
subset of the Abstract Syntax Notation One (ASN.1).

Figure 6. SNMP request-response interaction (based on [11] p. 243)

time

request

response

manager network agent

Network Management

Implementation and Analyses of the Mobile-IP Protocol 16

Figure 7. Object identifiers in the Management Information Base (based on [20] page 365)

root

ccitt(0)

internet(1)

dod(6)

org(3)

join-iso-ccitt(2)iso(1)

directory(1) experimental(3)mgmt(2) private(4)

mib-2(1)

security(5) snmpV2(6)

system(1) icmp(5) udp(7)at(3)interfaces(2) ip(4) tcp(5) . . .

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 17

5.0 The Mobile-IP MIB

One task of our degree project was to analyse the performance of the Mobile-IP
protocol, and in order to do so we needed to get out certain variable values from the
protocol implementation while it was running. This can be accomplished with a
network management system. Unfortunately there did not exist any MIB for this
new protocol, so our first task was to define a Mobile-IP MIB ourselves. We
examined the protocol draft [5] and the implementation made by Anders Klemets
[3] and tried to figure out which values we needed to make our measurements. The
result is described in the figures and tables below, and the complete MIB definition
described in Abstract Syntax Notation One (ASN.1) can be found in Appendix G.

Figure8 shows some of the objects that we suggest should be in the Mobile-IP
MIB, and these objects are further described in Table1.

5.1 The Mobile Node

The first subgroup in the Mobile-IP MIB is the Mobile Node. Figure9 shows the
Case Diagram for that object. A Case diagram (named after a Professor Case) is a
simplified diagram that shows the flow of management information in a protocol
layer. The horizontal lines represents counters.

Figure 8. The Mobile-IP MIB

Field Name MIB Object Label Datatype Description

1 Mobile Node mipMN OBJECT
IDENTIFIER

The Mobile Node subgroup

2 Foreign Agent mipFA OBJECT
IDENTIFIER

The Foreign Agent subgroup

3 Home Agent mipHA OBJECT
IDENTIFIER

The Home Agent subgroup

4 Type mipType BIT STRING A bit vector indicating whether this entity
is acting as a Mobile Node, a Home Agent
and/or a Foreign Agent

Table 1: The objects in the Mobile-IP MIB

mip

mipMN

mipFA

mipHA

mipType

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 18

Below is a picture of the objects that belong to the Mobile Node (Figure10) and
after that is a table which describes all the variables (Table2). From the picture we
can see that there are two tables defined in this subgroup; mnRegTable (a table of
current registrations for the Mobile Node) and mnPendRegTable (a table of pending
registrations). These tables are more carefully described in Table4 and Table5. The
Mobile Node also has a list of potential Home Agents, mnHomeAgentList, which is
described in Table3.

The following sections in the chapter will follow the same pattern as this one; a
Case diagram, a picture of the subgroup, a table describing the variables and
separate tables for each of the table variables.

Figure 9. Case Diagram for the Mobile Node

mnDecaps

mnErrCount

mnAuthCount

mnSolCount

mnAdvCount

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 19

Figure 10. The Mobile Node subgroup

mip

mipType

mipHA

mipFA

mipMN

mnDiscards

mnDecaps

mnSolTS

mnSolCount

mnErrCount

mnAuthCount

mnErrAddr

mnErrCodet

mnErrTS

mnRegTable

mnHomeAgentList

mnAdvCount

mnAdvAddr

mnAdvSeqNo

mnAdvTS
mnRegLifetime

mnRegReqTS

mnRegReplTS

mnRegFlags

mnRegHA

mnRegFA

mnInvReplCount

mnPendRegTable

mnPendRegReqTS

mnPendReqs

mnPendRegFlags

mnPendRegHA

mnPendRegFA

mnAdvFlags

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 20

5.1.1 Mobile Node objects

5.1.2 List of Home Agents

Field Name MIB Object Label Datatype Description

1 Home Agent List mnHomeAgentList SEQUENCE OF
MNHAEntry

The Mobile Node’s list of Home Agents.
See Table3

2 Registration Table mnRegTable SEQUENCE OF
MnRegEntry

The Mobile Node’s registration table. See
Table4

3 Pending Registration
Table

mnPendRegTable SEQUENCE OF
MnPendRegEntry

The Mobile Node’s pending registration
table. See Table5

4 Advertisement AddressmnAdvAddr IpAddress The IP address in the last received agent
advertisement

5 Advertisement
Sequence Number

mnAdvSeqNo INTEGER
(0..65535)

The sequence number in the last received
agent advertisement

6 Advertisement Flags mnAdvFlags Bit String The flags field in the last received agent
advertisement

7 Advertisement Time
Stamp

mnAdvTS Counter The time when the last agent
advertisement was received

8 Advertisement CountermnAdvCount Counter The total number of agent advertisements
received

9 Error Address mnErrAddr IpAddress The IP address from which the last error
message was received

10 Error Code mnErrCode INTEGER (0..255) The error code in the last received error
message

11 Error Time Stamp mnErrTS Counter The time when the last error message was
received

12 Error Counter mnErrCount Counter The total number of error messages
received

13 Authentication
Exception Counter

mnAuthCount Counter The total number of authentication
exceptions discovered in the MN

14 Invalid Reply Counter mnInvReplCount Counter The total number of invalid replies

15 Solicitation Time
Stamp

mnSolTS Counter The time when the last agent solicitation
message was sent

16 Solicitation Counter mnSolCount Counter The total number of agent solicitations
sent

17 Decapsulations mnDecaps Counter The number of IP-packets decapsulated at
the Mobile Node

18 Discards mnDiscards Counter The number of encapsulated packets
discarded at the Mobile Node

Table 2: The objects in the Mobile Node subgroup

Field Name MIB Object Label Datatype Description

1 Home Agent mnHALAddr IpAdddress The IP address of a Home Agent

Table 3: The Mobile Node’s list of Home Agents. Just a list of IP addresses.

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 21

5.1.3 Mobile Node Registration Table

5.1.4 Mobile Node Pending Registration Table

Field Name MIB Object Label Datatype Description

1 Home Agent mnRegHA IpAddress The IP-address of the Home Agent

2 Foreign Agent mnRegFA IpAddress The IP-address of the Foreign Agentt

3 Registration Request
Time Stamp

mnRegReqTS Counter The time when the first registration
request was sent

4 Registration Reply
Time Stamp

mnRegReplTS Counter The time when the registration reply was
received

5 Flags mnRegFlags Bit String The flags field that was used in the
request

6 Lifetime mnRegLifetime Integer The remaining lifetime for this
registration

Table 4: The Mobile Node’s Registration Table

Field Name MIB Object Label Datatype Description

1 Home Agent mnPendRegHA IpAddress The IP-address of the Home Agent

2 Foreign Agent mnPendRegFA IpAddress The IP-address of the Foreign Agent

3 Registration Request
Time Stamp

mnPendRegReqTS Counter The time when the first registration
request was sent

4 Registration RequestsmnPendRegReqs Integer The number of registration requests sent

5 Flags mnPendRegFlags Bit String The flags field that was used in the
request

Table 5: The Mobile Node’s Pending Registration Table

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 22

5.2 The Foreign Agent

Figure 11 shows the Case Diagram for the Foreign Agent.

Figure 11. Case Diagram for the Foreign Agent

faDecaps

faRegReqRec

faAdvCount

faSolCount

faErrSentCount

faErrRecCount

faAuthCount

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 23

Figure 12. The Foreign Agent subgroup

mip

mipType

mipHA

mipFA

mipMN

faRegReqsRec

faAuthCount

faDecaps

faDiscards

faErrSentCount

faErrSentTS

faErrRecCount

faErrRecTS

faErrSentAddr

faErrSentCode

faSolCount

faSolTS

faErrRecAddr

faErrRecCode

faCOAList

faRegTable

faAdvTS

faAdvSeqNo

faAdvCount

faSolAddr

faRegMN

faRegHA

faRegReqTS
faPendRegTable

faRegReplTS

faRegLifetime

faPendRegMN

faPendRegHA

faAdvFlags

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 24

5.2.1 Foreign Agent objects

Field Name MIB Object Label Datatype Description

1 COA List faCOAList SEQUENCE OF
FaCOAEntry

The Foreign Agent’s list of care-of
address, if any. See Table7

2 Registration Table faRegTable SEQUENCE OF
FaRegEntry

The Foreign Agent’s registration table.
See Table8

3 Pending Registration
Table

faPendRegTable SEQUENCE OF
FaPendRegEntry

The Foreign Agent’s pending registration
table. See Table9

4 Advertisement
Sequence Number

faAdvSeqNo INTEGER
(0..65535)

The sequence number in the last sent
agent advertisement

5 Advertisement Flags faAdvFlags Bit String The flags field in the last sent agent
advertisement

6 Advertisement Time
Stamp

faAdvTS Counter The time when the last agent
advertisement was sent

7 Advertisement CounterfaAdvCount Counter The total number of agent advertisements
sent

8 Solicitation Address faSolAddr IpAddress The IP address in the last received agent
solicitation message

9 Solicitation Time
Stamp

faSolTS Counter The time when the last agent solicitation
message was received

10 Solicitation Counter faSolCount Counter The total number of agent solicitations
received

11 Error Received AddressfaErrorRecAddr IpAddress The IP address from which the last error
message was received

12 Error Received Code faErrRecCode INTEGER (0..255) The error code in the last received error
message

13 Error Received Time
Stamp

faErrRecTS Counter The time when the last error message was
received

14 Error Received CounterfaErrRecCount Counter The total number of error messages
received

15 Error Sent Address faErrorSentAddr IpAddress The IP address to which the last error
message was sent

16 Error Sent Code faErrSentCode INTEGER (0..255) The error code in the last sent error
message

17 Error Sent Time StampfaErrSentTS Counter The time when the last error message was
sent

18 Error Sent Counter faErrSentCount Counter The total number of error messages sent

19 Authentication
Exception Counter

faAuthCount Counter The total number of authentication
exceptions

20 Registration Requests
Received

faRegReqsRec Counter The total number of registration requests
received

21 Decapsulations faDecaps Counter The number of IP-packets decapsulated at
the Foreign Agent

22 Discards faDiscards Counter The number of encapsulated packets
discarded at the Foreign Agent

Table 6: The objects in the Foreign Agent subgroup

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 25

5.2.2 List of Care-of Addresses

5.2.3 Foreign Agent Registration Table

5.2.4 Foreign Agent Pending Registration Table

Field Name MIB Object Label Datatype Description

1 Care-Of Address faCOAddr IpAddress The Care-of Address

Table 7: The Foreign Agent’s list of Care-of addresses

Field Name MIB Object Label Datatype Description

1 Mobile Node faRegMN IpAddress The IP-address of the visiting Mobile
Node

2 Home Agent faRegHA IpAddress The IP-address of the Mobile Node’s
Home Agent

3 Registration Request
Time Stamp

faRegReqTS Counter The time when the first registration
request was sent

4 Registration Reply
Time Stamp

faRegReplTS Counter The time when the registration reply was
received

5 Lifetime faRegLifetime Integer (0..65535) The remaining lifetime for this
registration

Table 8: The Foreign Agent’s Registation Table

Field Name MIB Object Label Datatype Description

1 Mobile Node faPendRegMN IpAddress The IP-address of the visiting Mobile
Node

2 Home Agent faPendRegHA IpAddress The IP-address of the Mobile Node’s
Home Agent

Table 9: The Foreign Agent’s Pending Registation Table

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 26

5.3 The Home Agent

Figure 13 shows the Case Diagram for the Home Agent.

Figure 13. Case Diagram for the Home Agent

haEncaps

haBroadcastsRec

haBroadcastsSent

haRegReqRec

haAdvCount

haErrCounthaSolCount

haAuthCount

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 27

Figure 14. The Home Agent subgroup

mip

mipType

mipHA

mipFA

mipMN

haBroadcastsSent

haEncaps

haBroadcastsRec

haRegReqsRec

haAuthCount

haErrTS

haErrCount

haErrCode

haSolCount

haErrAddr

haAuthNodeList

haAdvSeqNo

haBindingTable

haSolTS

haSolAddr

haAdvTS

haAdvCount

haBindingLifetime

haBindingMN

haBindingCOA

haAdvFlags
haBindingFlags

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 28

5.3.1 Home Agent objects

5.3.2 Home Agent Mobility Binding Table

Field Name MIB Object Label Datatype Description

1 Mobility Binding TablehaBindingTable SEQUENCE OF
HaBindingEntry

The Home Agent’s mobility binding
table. See Table11

2 Authorized Node List haAuthNodeList SEQUENCE OF
HaANEntry

The Home Agent’s list of authorized
Mobile Nodes. See Table12

3 Advertisement
Sequence Number

haAdvSeqNo Integer (0..65535) The sequence number in the last sent
agent advertisement

4 Advertisement Flags haAdvFlags Bit String The flags field in the last sent agent
advertisement

5 Advertisement Time
Stamp

haAdvTS Counter The time when the last agent
advertisement was sent

6 Advertisement CounterhaAdvCount Counter The total number of agent advertisements
sent

7 Solicitation Address haSolAddr IpAddress The IP address from which the last agent
solicitation message was received

8 Solicitation Time
Stamp

haSolTS Counter The time when the last agent solicitation
message was received

9 Solicitation Counter haSolCount Counter The total number of agent solicitation
messages received

10 Error Address haErrAddr IpAddress The IP address from which the last error
message was sent

11 Error Code haErrCode INTEGER (0..255) The error code in the last sent error
message

12 Error Time Stamp haErrTS Counter The time when the last error message was
sent

13 Error Counter haErrCount Counter The total number of error messages sent

14 Authentication
Exception Counter

haAuthCount Counter The total number of authentication
exceptions

15 Registration Requests
Received

haRegReqsRec Counter The number of registration requests
received at the Home Agent

16 Encapsulations haEncaps Counter The number of IP-packets encapsulated at
the Home Agent

17 Broadcasts Received haBroadcastsRec Counter The number of broadcast packets received

18 Broadcasts Sent haBroadcastsSent Counter The number of broadcast packets
forwarded to Mobile Nodes

Table 10: The objects in the Home Agent subgroup

Field Name MIB Object Label Datatype Description

1 Mobile Node haBindingMN IpAddress The home address of the Mobile Node

2 COA haBindingCOA IpAddress The care-of address of the Mobile Node

3 Lifetime haBindingLifetime Integer (0.65535) The lifetime for this registration

4 Flags haBindingFlags Bit String The flags field for this registration

Table 11: The Home Agent’s Mobility Binding Table

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 29

5.3.3 List of Authorized Nodes

Field Name MIB Object Label Datatype Description

1 Authorized Node haANAddr IpAddress The IP address of an authorized mobile
Node

Table 12: The Home Agent’s list of Authorized Mobile Nodes

Testing the SunOS implementation

Implementation and Analyses of the Mobile-IP Protocol 30

6.0 Testing the SunOS implementation

Before we started to port Anders Klemets’ implementation of the Mobile-IP
protocol to the MINT and Solaris, we thought that it would be a good idea to see
how it worked on its original platform: SunOS 4.1.

This chapter contains a quite detailed description of what we did, to make it
possible for others to reproduce these tests.

6.1 Installation

We downloaded version 7 of Klemets’ implementation from

ftp://sics.se/archive/mobile-ip/

and compiled it, just typingmake. This produced an executable file calledxmipd,
which is the Mobile-IP daemon. This program is used to start both the Foreign
Agent and the Home Agent, as well as the Mobile Node, but with different
configuration files. For example, to start a Foreign Agent you type

xmipd fa.cfg

where fa.cfg is the configuration file for a foreign agent. More about the
configuration files below. Note that the implementation uses the Network Interface
Tap (/dev/nit), which requires you to have root access (to open the device).

6.2 The environment

 In the lab we had two subnetworks and a couple of Sun SparcStations that we could
use for these tests. The configuration is shown in Figure15.

The netmask for the 215 subnet is0xffffff00 (255.255.255.0), but for the 216
subnet it is0xffffffe0 (255.255.255.224), which means that the 216 subnet is

Figure 15. The subnetworks and the workstations in the lab

kista-gw

it-gw

130.237.215

130.237.216.128

(netmask 0xffffff00)

(netmask 0xffffffe0)

dumburken
(HA)

anxiety
(FA)

explorer
(MN)

(130.237.215.61) (130.237.216.146)

(130.237.216.150)

Testing the SunOS implementation

Implementation and Anal yses of the Mobile-IP Pr otocol 31

itself subdivided into eight different sections. The three most significant bits in the
last byte of the IP address determines which section we are dealing with (see
below).

130.237.216.Y =
10000010.11101101.11011000.XXX*****

We are using the subnet that has IP-addresses in the range 130.237.216.128 to
130.237.216.159.

6.3 Configuration

All three daemons (HA, FA and MN) have to be configured with IP addresses
different from the real IP addresses on the computers where they are running, so we
gave them addresses which were not used by any other computers in the department
but still had the right network number. These addresses were then used in the
configuration files for the different entities. The syntax of the configuration
commands is described in the filesREADME and README.config which are
included in the Mobile-IP package by Anders Klemets. We will shortly describe the
configuration setup that we used in our tests. Below is the configuration file for a
Mobile Node.

myipaddr 130.237.216.146
ha 130.237.216.150
key 130.237.216.150 t n 12345 this_is_a_secret
key 130.237.216.150 r n 13588 this_is_another_secret
lifetime 40
interface le0 8:1:20:1:2:3 130.237.216.146 255.255.255.224
route add default 130.237.215.1 1

The commandmyipaddr establishes the IP address of the Mobile Node. This IP
address does not belong to any fixed computer. The actual IP address for the
workstation “explorer”, where the Mobile Node is running, is 130.237.215.41.

Theha command specifies the IP address of the Home Agent. (This address should
correspond tomyipaddr in the configuration file for the Home Agent). This also
indicates that this configuration file is describing a Mobile Node. Every
configuration file must contain one of the commandsha, fa ormh.

Thekey command is used for authentication purposes. Here you specify the secret
key to be used when communicating with a certain IP address, in our case the IP
address of the Home Agent. The letter “t” indicates that this key will be used when

XXX IP-addresses

000 0-31

001 32-63

010 64-95

011 96-127

100 128-159

101 160-191

110 192-223

111 224-255

Testing the SunOS implementation

Implementation and Analyses of the Mobile-IP Protocol 32

transmitting packets only, while a letter “r” meansreceiving. The third argument,
which here is an “n”, says thatnonces will be used for replay protection, instead of
timestamps (“t”). The fourth argument is a pseudo random Security Parameter Index
and the last argument is the authentication key, given as a character string. More
details about these arguments can be found in theREADME.config file
mentioned above.

Lifetime sets the maximum value of the registration lifetime, in seconds. This
value is used in the registration requests sent from this Mobile Node.

Theinterface command is used to configure a physical network interface. The
first argument is the name of the real interface on our computer which is “le0”, the
ethernet interface. Next argument is the hardware address to use. Since we do not
want to interfere with the normal IP traffic to our workstation, we use a made up
ethernet address. This will make the packets that we are interested in to go to our
separate protocol stack in user space. Any valid ethernet address can be used, as
long as it is not used by another interface on the same network. As all Sun
computers with Lance ethernet cards have ethernet addresses starting with 8:0:20, it
was safe for us to use addresses starting with 8:1:20. The third argument is the IP
address that is to be used on this interface. This should be the same value as the
myipaddr value, and not the real IP address of the interface. The last argument is
the netmask to be used with this IP address.

The last command in our configuration file is theroute add command which
adds an entry to the IP routing table. Here we specify the default router to be used
from the Mobile Node.

Note, a much safer method of assigning new ethernet link addresses, that simply
making up an ethernet address, is to apply for your own set of addresses. The
Institute of Electrical and Electronics Engineers, Inc. has been designated by the
ISO Council to act as the registration authority for the implementation of
International Standards in the ISO/IEC 8802 series. For further details contact:

IEEE Registration Authority
IEEE Standards Department
445 Hoes Lane, P.O. Box 1331
Piscataway NJ 08844-1331
phone: (908)562-3813
Fax: (909)562-1571
Email: i.ringel@ieee.org

6.4 Running the system

We started up the different entities as described in Figure15, that is the Home
Agent at dumburken, the Foreign Agent at anxiety and the Mobile Node at explorer.
To see that it really was working, we used theping command to send a packet
from a workstation on another subnet (the workstation artigonn on the subnet
130.237.213) to the IP address of the Mobile Node. The ping test was successful.

We later used the SunOS implementation and the configuration described here quite
a lot when we were doing the performance tests. More about this in Section10.0.

The SNMP implementation

Implementation and Analyses of the Mobile-IP Protocol 33

7.0 The SNMP implementation

To implement the Network Management functions that we needed in the Mobile-IP
code, we used the cmu-snmp2.1.2 package. There were several reasons for choosing
this tool. Firstly it is available for free from the Carnegie Mellon University (CMU)
and secondly it is widely used.

7.1 The system

The environment we used to test our system was the same as the one described in
Section6.2 on page30 with the difference that on each of the SparcStations we
were running an SNMP agent as well (as the MobileIP code). To monitor the
different components we used our own manager program, calledmipwatcher,
which is described in Section7.5.

There are three types of entities in our system; the SNMP Manager, the SNMP
Agent and the Mobile-IP daemon as shown in Figure16. The communication
protocol between the Manager and the Agent is SNMPv2. Between the Agent and
the Mobile-IP daemon we created a simple request-reply protocol to run over UDP.
In our system the Agent and the Mobile-IP daemon run on the same computer but
they could as easily run on different ones as described in Section7.4. The Agent is
thus a proxy agent.

7.2 The SNMP agent

The SNMP agent was implemented using the cmu-snmp2.1.2 package. The code in
the agent is rather simple. For a basic understanding of the cmu-snmp2.1.2 see
Appendix A.

7.2.1 The functions
There are a few functions worth mentioning. Insnmp.c connect_mipd is called to
open a UDP socket for the communication with the mipd. The address is given by
snmp_addr and the port number bysnmp_port. Both can be changed using switches
on the command line as described in Section7.4. Since all variables in the Mobile-
IP MIB are very similar in type, there are only three lookup functions.var_mip
takes care of all simple variables,var_miptype handles the miptype variable and
var_mipEntry looks up all tables and lists. Thevar_miptype function could be
included invar_mip, but is separately defined for improved readability. Basically all
three lookup functions work as follows. First a check is made to see if we can
handle this request. If so, a packet is sent to the Mobile-IP daemon (xmipd) asking it
to retrieve the variable asked for, and then wait for an answer. If no answer is
returned withinTimeOutTime seconds, retransmit the request, but no more than
NumOfRetrans times.

Figure 16. SNMP communication

Mobile-IP
(xmipd)

SNMP Agent
(snmpd)

SNMP Manager
(mipwatcher)

The SNMP implementation

Implementation and Analyses of the Mobile-IP Protocol 34

To send a packet to xmipd a call is made to theSendReadReq function. First, build a
readpacket containing (in order) the R/W value, the magic value, the exact value
and the clength value. Ifcurrent, which is the matching prefix in the subtreelist, is
not NULL include it next in the packet. If current is not NULL also put in the
rlength and the requested OID (request). When the packet is done, send it to
MIPsock.

After the request is sent, a call toGetResp is made to wait for a response from mipd.
GetResp waits TimeOutTime seconds for a response, and if none is received
TIMEOUT is returned. If a packet is returned from mipd, first check theerror value.
If it is non-zero, this is an error packet which only includes the error code and
GetResp just returns the error code. However, if error is zero, the found value length
is fetched and the value put into*value. If the caller ofGetResp is interested in the
length of the value, that isvlength is not NULL, put the length into*vlength. Next,
get the length field of the found OID. If it is non zero, get the OID from the packet
and update*olength and*oidfound.

7.2.2 The protocol
To communicate between the SNMP agent and the Mobile-IP daemon (xmipd), a
simple request-reply protocol over UDP was implemented. A request sent from the
agent to xmipd looks like this. The first byte indicates whether this is a read or write
request. A read request is indicated by the value 1 and a write by 2. The next byte is
the magic number hint found by the agent. Then the exact value occupies the third
byte and the length of thevp->name field, given in bytes, the fourth. If xmipd is not
interested in thevp->name, this last field can be set to zero. It is then automatically
assumed that there is no more data in the packet. If thevp->name is to be included
in the request, it follows the length field. After that, the length field of the requested
OID, also in bytes, occupies one byte. If it is not zero, then the requested OID is put
at the end of the packet.

A response from xmipd to the agent has the following structure. The first byte is the
error code. If an error was encountered during the lookup of a variable, the error
code should be set to a non-zero value and no more data is expected in the packet by
the agent. If the lookup of a variable was a success, then the following byte is the
length, in bytes, of the value found. After that the value itself is included. The next
byte is the length, in bytes, of the OID returned. This value can be zero if the agent
does not need the found OID, and then this is the last byte in the packet. Otherwise
the OID occupies the last bytes in the packet.

7.3 Changes to the Mobile-IP implementation

To be able to get information concerning the state of a Mobile-IP daemon, code had
to be added to collect statistics, store interesting values and to communicate with
the SNMP agent. One design decision made was to run the Mobile-IP daemon and
the SNMP agent as separate processes. This was to facilitate the porting of the
Mobile-IP code to the MINT, but also to be able to run the SNMP agent on a
different machine if so desired. To incorporate the agent into the Mobile-IP daemon
should not be a difficult process.

7.3.1 Structures
To store the collected statistics, a global variablemipstat was created. Its definition
can be found in Appendix B.2.3. Basically it has one entry for every simple variable
in the Mobile-IP MIB.

The SNMP implementation

Implementation and Anal yses of the Mobile-IP Pr otocol 35

Most of the data of interest to the tables and lists in the MIB were already contained
in different structures in the code. Though some changes had to be made and they
are pointed out in Appendix B.1.

7.3.2 Functions
The functionality added is basically a number of functions to get a request from the
SNMP agent, fetch the variable asked for and send a reply. All new functions
written are contained in the filessnmp.c andsnmp_init.c. Almost all other changes
to the original Mobile-IP implementation involve simply updating themipstat
variable and thus can easily be found.

The order of events is roughly that in ioListenForPackets a call is made to
snmp_socket_init to open a UDP socket to use for the communication to the SNMP
agent. Then we wait for packets to arrive at that socket in the functionbsdNITInput
and when it does,snmpHandleReq is called to take care of the request. The only job
of the snmpHandleReq function is to read the request from the socket and get the
first byte to determine whether this is a read or write request and call the
corresponding function. When a read request is received, it is up to
snmpHandleReadReq to extract the rest of the information from the packet,
determine which variable is asked for, fetch the value and callsnmpSend to send an
answer. If, during the variable lookup, an error is discovered,snmpERROR sends
the corresponding error packet to the SNMP agent. The functionsnmpSend calls
snmpMakeReply to make a reply packet, and then sends that packet. When done, we
wait for more requests.

7.4 Configuration

One command has been added to the configure file for the xmipd program. If for
some reason the port number used for listening for requests form the SNMP agent is
occupied it can be changed by the command ‘Port number’, where number is the
new port. The default port is 0xFFD3.

If you want the SNMP agent to run on a different machine than the Mobile-IP
daemon you can start snmpd with the switch [-ma ipaddress], where ipaddress is the
IP address of the computer on which the Mobile-IP daemon is running. Also, if the
port on which the Mobile-IP daemon is listening for requests has been changed, the
switch [-mp newport] tells the snmpd about it.

7.5 Mobile-IP W atcher

Mobile-IP Watcher, or mipwatcher, is an SNMP manager program that we have
created to be able to monitor the different entities in the Mobile-IP protocol and to
display it in a nice format. It is based on thesnmpwalk application in the CMU
SNMP package. Mipwatcher calls the snmpwalk program with certain parameters,
and displays the formatted result in a window on the screen. The program is written
in the script language Tcl/Tk, and needs the applicationwish to run.

The source code for our program can be found in Appendix F.

7.5.1 How to use mipwatcher
Before you start the program, make sure that you have set the environment variable
MIBFILE to point to the MIB file that you want to use. The program will not start if
the MIBFILE variable is not set.

To start the program, go to the directory where mipwatcher is located and simply
typemipwatcher. If this does not work, it is probably because it cannot find the

The SNMP implementation

Implementation and Analyses of the Mobile-IP Protocol 36

wish program, which is assumed to be in the/usr/local/bin directory. This
can be helped by changing the path on the first line in themipwatcher file to
point to the executable wish on the current system.

The first screen to appear when you start the program will look like Figure17.

Here you choose which entity you want to monitor. Simply press one of the buttons
“Mobile Node”, “Foreign Agent” or “Home Agent”, or choose “Quit” if you want
to exit the program. If you choose one of the first three alternatives, a new window
will appear that asks you to enter the IP address of the snmp agent (Figure18),
which is probably the same address as where the corresponding mip daemon is
located.

Enter the IP address (textual names works fine) and press return. Now the monitor
window appears, which will look a bit different depending on which entity you have
chosen to watch. Below is the screenshot from the Mobile Node (Figure19).

Figure 17. Main menu

Figure 18. Enter the IP address

The SNMP implementation

Implementation and Analyses of the Mobile-IP Protocol 37

Here you will see all the variables in the MIB which belongs to the selected entity.
The scalar variables are listed in one window, and each table variable has a window
of its own, which makes it easy to read the information. The information is by
default updated every fifth second, but this interval can be changed by changing the
variableg(delay) in the program source.

Figure 19. Mobile Node monitor window

Program development for the MINT

Implementation and Analyses of the Mobile-IP Protocol 38

8.0 Program development for the MINT

This chapter will in detail describe how to proceed when making programs for use
in the MINT environment, regarding both user programs and the operating system
for the MINT.

8.1 The system

Here is a picture describing our working environment (Figure20).

Anxiety is a SPARCstation 10 running SunOS 4.1.4, which is connected via a serial
line to one of the serial ports on a MINT. This is used for remote debugging of
programs running on the MINT. Kista-gw, it-gw and ccs-mgs are routers.
Nucmed20 is a Hewlett Packard workstation that is acting as a boot server for the
MINTs. When a MINT is booted, it fetches the programs from this computer using
Bootp[26] and TFTP[25]. Ccs-rfs is a Toshiba PC running MachOS 2.6, which has
a serial connection to the console port of the MINT that we are interested in (for
example mint3). From this machine you can give commands to the built-in PROM
monitor inside the MINT. This computer also acts as a file server for the MINTs. A
MINT should be able to access the files on the Toshiba via RFS (Remote File
Sharing).

8.2 Booting a MINT

This section will explain how to boot a MINT, assuming the working environment
described in the section above (Section8.1).

First you will have to log in to the Toshiba (ccs-rfs), which should be connected
through a serial cable to the console port of the MINT you want to boot. The login

Figure 20. The subnetworks and the workstations in the lab

kista-gwit-gw

130.237.216

130.237.216

(netmask 0xffffffe0)

(netmask 0xffffffe0)

(215.110)

(216.183)
ccs-mgs

(216.150)

130.237.215
(netmask 0xffffff00)

(216.144)

Serial line

anxiety

nucmed20

ccs-rfs mint3

Router

Ethernet

Program development for the MINT

Implementation and Analyses of the Mobile-IP Protocol 39

can be done locally at the machine, or remote via telnet, which can look like the
example below (where all inputs from the user are printed in bold).

anxiety:~> telnet 130.237.216.164
Trying 130.237.216.164 ...
Connected to 130.237.216.164.
Escape character is ‘^]’.
ccs-rfs.electrum.kth.se TCP Telnet service.

2.6 MSD Mach (ccs-rfs.electrum.kth.se) (ttyP0)

login: d91-fta
Password:

When the login is done, you can start a kermit program, which lets you connect to a
MINT via a serial link. Tell the program which line and speed to use by using the
commands “set line” and “set speed”:

% kermit
C-Kermit, 4F(077) 1 Apr 89, 4.2 BSD
Type ? for help
C-Kermit> set line /dev/tty02
Warning, read access to lock directory denied
C-Kermit> set speed 9600
/dev/tty02: 9600 baud

Now you can connect to the MINT by giving the “conn” command:

C-Kermit> conn
Connecting thru /dev/tty02, speed 9600.
The escape character is CTRL-\ (28).
Type the escape character followed by C to get back,
or followed by ? to see other options.

If the MINT has not been resetted before, now is the time to do that. By pushing the
reset button on the MINT, the following text should appear on you screen:

MINT KTH/HPL, vers 2.3
@

If it does not appear on your screen, try hitting the return key once. The “@”
character is the prompt. Now you can type commands to the built-in EPROM
monitor. Typing a “?” will list the commands that are available in this version of the
monitor:

@?
A -> ALTER bytes
B -> BOOT using TFTP
D -> DISPLAY bytes

Program development for the MINT

Implementation and Analyses of the Mobile-IP Protocol 40

G -> Go to address (LOADENTRY default)
I -> Re-INITIALIZE monitor
L -> LIST files in ramdisk
M -> Byte alter using LONG (32 bit) accesses
P -> PRINT environment variables
R -> Registers and flag display
S -> SET environment variables
T -> TRACE using remote GDB
U -> USE stored registers and go to addreess
W -> Byte alter using WORD (16 bit) accesses

The “p” command is quite useful. It displays the values of the environment
variables, which you also can set with the “s” command.

@p
Debug 0x0
GDBdebug 0x0
Console 0x0
LANCE A
Loadstart 0x40000000
Loadentry 0x40000000
Runflag 0x1
Bootflag 0x1
Bootfile
Bootdevice net
Availmem 0x7c0000
EtheraddrA 08:00:09:00:69:63
EtheraddrB 08:00:09:03:04:c6
Hostname
IPaddr 0.0.0.0
Subnetmask 0.0.0.0
Gateway 0.0.0.0
DNSserver 0.0.0.0

Now you need to set the variable “bootfile” to the name of the file that you want to
download. The files that you can download are presently stored in the directory
/usr5/tftpdir on the machine nucmed20. To boot a MINT you can use the file
mach.boot . After the variable “bootfile” is set, you type “b” to download the file.

@set bootfile mach.boot
@b

MINT bootp downloader:
Got Bootp reply from 130.237.216.144 (00:00:0c:00:29:94)
Our IP address is 130.237.216.183
Our subnet mask is 255.255.255.224
Our gateway is 130.237.216.163
Our DNS server is 130.237.212.6
Our hostname is mint3
TFTP server is 130.237.216.144 (00:00:0c:00:29:94)
Suggested boot file name is ‘/mintbootfile’
Downloading file ‘mach.boot’ from host 130.237.216.144

Program development for the MINT

Implementation and Analyses of the Mobile-IP Protocol 41

Image size: 0x232cfc bytes
Loading to: 0x40000000
Entry point: 0x40000000
|xx
xxx|
Downloaded 2305276 bytes
MINT Mach_3.0 VERSION(MK84): Thu Jan 18 11:29:16 MET 1996; kernel/STD+WS-
debug (anxiety.electrum.kth.se)

vm_page_bootstrap: 1228 free pages
pit0: at MC68901 timer 0, time = 0 secs : 0 nsecs, resolution = 10000000
nsecs
le0: at LANCE Ethernet 0: 8-0-9-0-69-63
le1: at LANCE Ethernet 1: 8-0-9-3-4-c6
ram0: at Ramdisk Controller 0 addr = 0x40041538, size = 1474560 bytes
ram1: at Ramdisk Controller 1 addr = 0xf0007448, size = 737280 bytes
Server directory? [/dev/ram0/mach_servers]
(default pager): Added paging file /dev/ram0/mach_servers/paging_file
(bootstrap): loading unix symbols from /dev/ram0/mach_servers/startup
(bootstrap): loading emulator symbols from /dev/ram0/mach_servers/emulator
(startup): server_dir(/mach_servers) on root.
(startup): emulator_path(/mach_servers/emulator)
(startup): first_program(/mach_servers/mach_init)
Mach_3.0 VERSION(UX42): Fri Dec 15 15:26:50 MET 1995; server/STD+WS
(anxiety.electrum.kth.se)

Availale memory = 4.58 megabytes
Unix tables: 1.10 megabytes
Unix buffer cache: 65 buffers 0.50 megabytes
flowat=126, fhiwat=226, ilowat=6, ihiwat=6
Base is Thu Jan 18 05:27:03 1996
Current time is Wed Dec 31 19:01:14 1969
This is strange -- CHECK AND RESET THE DATE!
Time is set to Thu Jan 18 05:27:03 1996
Automatic reboot in progress...
Thu Jan 18 05:27:11 EST 1996
Thu Jan 18 05:27:11 EST 1996
ufs_mount: file system not cleaned -- mounting anyways
flowat=29, fhiwat=58, ilowat=3, ihiwat=3
checking quotas: done.
starting system logger
standard daemons:.
starting network daemons: inetd.
starting local daemons:.
starting cmucs/mach daemons:.
Thu Jan 18 05:27:20 EST 1996

3.0 MACH (mint3.electrum.kth.se) (console)

login:

From the printout above you can see how the Mach operating system is loaded, and
the Unix server is started. Then you can log in to the MINT, just as on any ordinary

Program development for the MINT

Implementation and Analyses of the Mobile-IP Protocol 42

Unix system. [Do you want to tell the reader what possible accounts there are? Or
where they have to look to find out what accounts there are or to add more?]

8.3 Compiling programs for the MINT

If you want to develop programs for the MINT, there are several things you have to
keep in mind. The MINT has a Motorola MC68030 processor, so the code you write
must be compiled for that architecture. The normal procedure is to use a cross-
compiler, and Anders Klemets has made a version of the Gnu Compiler (gcc) that
runs under SunOS on a SPARCstation and produces machine code that can be run
on a MINT. This compiler (together with a cross-assembler and a cross-linker) can
be found in thebin directory under the mint root directory, which is
/afs/it.kth.se/misc/projects/walkstation/mint/. Under this
directory you will find almost all the files that are needed when working in the
MINT environment, but it can sometimes be hard to find exactly what you are
looking for, because there are about 27 000 files and subdirectories stored here. To
help you find a particular file, you can look at the textfile calledfiles, which is a
listing of all the subdirectories and files under the mint directory. The best way to
find something is to load the file ‘files’ into emacs, and use the search-functions
to find what you are looking for.

8.3.1 Stand-alone programs
A stand-alone program is a program that runs on the bare machine, without any
support from an operating system. How such a program is compiled for a MINT is
described by Anders Klemets in Appendix B in a master thesis report by Pascal
Guerin[27].

8.3.2 Compiling the Operating System
To be able to run some standard applications on a computer, an operating system is
needed. Mach 3.0 from Carnegie Mellon University (CMU) was the choice for the
MINT. Why this OS was chosen, and how it was ported to the MINT is described in
the paper “Mach 3.0 as an Operating System for the MINT” [18]. On top of Mach a
Unix server (called UX) is run, which makes it possible to run ordinary BSD Unix
programs on the MINT. In theory, all you have to do is to re-compile your favourite
BSD Unix programs with the cross-compiler, and they should immediately work on
the MINT. How this is done is described in Section8.3.3.

The rest of this section describes how to compile the operating system itself. This is
useful to know if you have to introduce changes in the operating system kernel or
the unix server, but otherwise it can probably be skipped.

There are a number of different parts that are needed to be able to create a running
Unix system on the MINT. The first of them is the Mach micro kernel, which can be
compiled by using the script calledcckern in the mint root directory
(/afs/it.kth.se/misc/projects/walkstation/mint/). This script
sets up a number of environment variables, and starts a special make program,
calledodemake. The programodemake works on two directory trees at the same
time, one referred to asbasedir, and the other asmasterbase. Masterbase contains
all the original source files, and in basedir you put the modified source files. Basedir
will also contain all object files after the compilation. For the MINT environment,
the following values will be true:

masterbase = /afs/it.kth.se/misc/projects/walkstation/mint/mk-84/
basedir = /afs/it.kth.se/misc/projects/walkstation/mint/mint-mk84/

Program development for the MINT

Implementation and Analyses of the Mobile-IP Protocol 43

You should never change any of the files in the mk-84 directory, but instead copy
them to the corresponding location in the mint-mk84 directory and change them
there.

Apart from the normal files that are needed to build the Mach kernel, a special file
calledram.o is linked into the kernel when building it for the MINT. This file is an
image of a small RAM file system, which is used as the root filesystem when
starting the Unix server. This is necessary because the MINTs are diskless, and the
Unix server needs to read and write several system files when booting. The file
ram.o can be created by using a script called something like ccramdisk in the
mint directory. This is a very ugly script that takes the contents of a floppy disk,
which contains the file system and the necessary files, adds a small header and
places the resulting file (ram.o) in the correct directory (which ismint/objs).

The files on the ramdisk must of course be compiled for the MINT architecture.
Source codes and binaries for several standard Unix programs, e.g.,ls, mkdir
andkill, can be found under the directorysup-i386. A useful command if you
do not know which architecture a program is compiled for, is thefile command.
For example, this is how it should look when executing thefile command on an
ls program compiled for the MINT:

anxiety:~/mint/sup-i386/src/bin>file ls
ls: mc68020 demand paged

Another part of the system which has to be compiled is the Unix server, called ux.
This is done by using theccux script. This script produces a file called
vmunix.UX42.STD+WS which is places in the directoryspecial under the
mint root directory. This file should be copied to themach_servers directory on
the floppy disk containing the RAM filesystem, but it must be renamed to
startup.

For the kernel to be able to start the Unix server, it needs a bootstrap program. This
program is piggy-backed at the end of the mach kernel, and it can be compiled by
using the scriptccbootstrap.

The normal sequence of steps to compile a complete system for the MINT can be
described as follows:

• Compile the Unix Server (with theccux command). Copy the program to the
floppy disk.

• Compile the Bootstrap program (ccbootstrap).

• Compile the ramdisk (ccramdisk). The file ram.o will now contain the
contents of the floppy disk, which is your new Unix Server and some Unix
commands.

• Compile the kernel (cckern). Apart from the kernel itself, the script produces a
bootable file which contains the bootstrap program and the ramdisk. This file,
called mach.boot, should be put in the bootdirectory for the MINT
(/usr5/tftpdir on the computer nucmed20, which is the TFTP server),
where it can be downloaded and used to a boot a MINT.

8.3.3 Compiling Unix Applications
When you compile Unix programs for the MINT, there are a few things that you
must remember. Firstly, use the correct compiling tools, this means the cross-
compiling versions of gcc (the compiler), ld (the linker) and as (the assembler).

Program development for the MINT

Implementation and Analyses of the Mobile-IP Protocol 44

Secondly, find the correct include files and library files. At present, there is no
single include directory, but the include files are spread over at least four
different directories. The situation is the same for the library files, but there is a
directory calledlibs under the mint root directory which contains soft links to a
few of the most commonly used library files. Here is an example of a simple
Makefile that can be used when compiling Unix programs for the MINT:

MINT = /afs/it.kth.se/misc/projects/walkstation/mint

CC = $(MINT)/bin/gcc
AS = $(MINT)/bin/as
LD = $(MINT)/bin/ld

I1 = $(MINT)/mintmk84/export/sun4_mach_X_mint/include
I2 = $(MINT)/mach-i386/include
I3 = $(MINT)/mint-mach/src/ux/server
I4 = $(MINT)/sup-mk82/src/ux/server

LIB = $(MINT)/lib

CFLAGS = -Wa,-mc68030 -msoft-float -nostdlib -nostdinc -I$(I1) -I$(I2)\
 -I$(I3) -I$(I4) -Dmint

OBJS = hello.c

all: $(OBJS)
$(CC) $(CFLAGS) -o hello $(OBJS) $(LIB)/crt0.o $(LIB)/libc.a

The flag -Wa,-mc68030 tells the assembler that it should be prepared for
mc68030 assembler code instructions. Since the MINT does not have a floating
point unit, the-msoft-float flag tells the assembler to convert all floating point
operations to calls to software library routines.

You must also tell the compiler not to use the standard include and library files (the
switches-nostdinc and-nostdlib), and instead specify the correct library
files to use. Almost all programs need thecrt0.o andlibc.a files.

8.4 Remote debugging using the GNU Debugger

When developing software there is one thing you can be sure of; your program will
contain undesirable features, sometimes referred to as bugs. Luckily there are tools
to help the programmer find these. One tool is the GNU DeBugger (GDB). Apart
from being an excellent debugging program, GDB has the ability to remotely
control the execution of a program, i.e. GDB can run on one machine and debug a
program on another.

A version of GDB is provided for use with the MINT. With it comes an
initialization file, .gdbinit, that defines a command called mint-restart which
initializes the MINT for remote debugging. If the file.gdbinit is in the user’s root
directory, GDB will load it automatically and execute mint-restart when necessary.

8.4.1 Stand-alone programs
On our first trials using GDB we tried to use it to control the Mach kernel on the
MINT. The reason for doing this was that the remote file system (RFS) for the

Program development for the MINT

Implementation and Analyses of the Mobile-IP Protocol 45

MINT was not working properly. Below is a step by step description on what to do
to make GDB work.

Login on the MINT as described in Section8.2. When you get a prompt, do the
following:

@set bootfile mach.boot
@set runflag 0
@b

Settingrunflag to 0 informs the monitor that it should NOT start the program
when the downloading process has finished. Default is 1. When the file is
downloaded you can start the program. The following command starts the program
and generates a breakpoint on the first instruction which gives control to GDB.

@T

Next, start gdb on anxiety.

anxiety> gdb -b 9600 mach.boot
GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type “show copying” to see the conditions.
There is absolutely no warranty for GDB; type “show warranty” for details.
GDB 4.11 (sparc-sun-sunos4.1.1 --target m68k-unknown-aout),
Copyright 1993 Free Software Foundation, Inc..
(gdb) target remote /dev/ttya

When GDB returns you should be all set to debug the program.

8.4.2 UNIX processes
Anders Klemets has made a version of GDB that should be executable on a MINT,
but it is probably not a good idea to try to use that one because it is quite large,
which means that there is not much space left in the memory for the program you
want to debug. A better idea is to run GDB remotely (as mentioned above). GDB
supports remote debugging, but there are some hardware specific routines that have
to be written before you can start debugging your program. These routines are used
to handle interrupts and to generate breakpoints, which will make GDB able to take
control of the program execution. Fortunately, theses routines were already written
for the MINT by Klemets, but for some reason we were never able to get it to work
properly. The problem was that we were not able to find some essential include files
when we tried to incorporate the GDB support in our own program.

Porting the Mobile-IP code

Implementation and Analyses of the Mobile-IP Protocol 46

9.0 Porting the Mobile-IP code

As part of our degree project we have ported the Mobile-IP code written by Anders
Klemets for SunOS to two platforms; Solaris 2.4 and to the MINT (which runs a
Unix server on top of MachOS 3). The reason for porting the code to Solaris is that
the Department of Teleinformatics, where the work is conducted, will change their
operating system from SunOS to Solaris in a near future.

The two ports have much in common. There are basically two parts of the code that
have to change when moving from one UNIX to another, and those are the snmp
daemon and the code handling the sending and receiving of ethernet frames. The
rest of the code is standard C-code using standard UNIX commands.

9.1 Porting to Solaris 2.4

The Mobile-IP code for SunOS uses a device called the Network Interface Tap (/
dev/nit) to get access to the ethernet packets sent on a network. This device is
not supported in Solaris 2, which meant that we had to re-write the low-level
routines that read and write ethernet frames. The means of getting direct access to
the datalink-level frames in Solaris is by the Data Link Provider Interface (DLPI).
This is a stream interface that provides the same functionality as the Network
Interface Tap on SunOS and therefore the changes in the code are isolated to a few
files. The filesbsdnit.h andbsdnit.c are replaced bydlpi.h anddlpi.c.
The filedlpi.c contains three functions; one for attaching a generic interface to a
physical one, one for reading ethernet frames and one for writing ethernet frames,
all with the same functionality as the ones in the SunOS code. In the file
dlcommon.c there are several functions to help the programmer setting up the
DLPI interface, heavily used by our code. For more information on how to use the
DLPI read “How to Use DLPI” by Neal Nuckolls[28].

The only problem encountered during the porting was the filtering mechanism,
pfmod. We did not get the filter to work properly so the filtering is done as
following. The interface is configured to accept all ethernet frames, except the
multicast addresses that we are not interested in. The multicast addresses of interest
are added in the functionosJoinGroup in the fileos.c. When an ethernet frame is
received, a test is made to check whether it has our ethernet address, or if this is a
multicast or broadcast frame. All multicast frames received should be kicked
upstairs since the interface only accepts multicast addresses that we are interested
in. This is a minor improvement over the SunOS implementation whereall
multicast frames are read and filtering is done in user-space.

The snmp code was changed to work under Solaris by using the patch to cmu2.1.2
written by Yuri Rabover.

9.2 Porting to the MINT

The port of the Mobile-IP code to the MINT was one of the major parts of our
degree project. Much time was spent not only with the port itself, but with
understanding the MINT environment and the MINT operating system, and trying
to get basic things to work (like booting a MINT).

9.2.1 Booting a MINT
At first we were not able to boot the MINT. This was because all the MINTs had
been moved from one network to a new one, and all the network configuration files
were wrong. For instance, the file/etc/hosts had to be updated with the new IP

Porting the Mobile-IP code

Implementation and Analyses of the Mobile-IP Protocol 47

addresses for the MINTs and the file servers, and the IP addresses of the name
servers had to be corrected in the file/etc/resolv.conf.

9.2.2 RFS - Remote File Sharing
The MINTs have no hard disk or floppy disk drive, but only a small filesystem in the
ram memory where a few important files are stored. Except from the Unix kernel
itself and a few files that are used when booting the MINT, there are also a handful
of useful user commands in the/bin directory. To be able to access files that are
not in the ramdisk, the MINTs have support for something called Remote File
Sharing (RFS). Remote File Sharing works like this. You create a small file which
only contains an IP address. This file will function as link to a directory on a remote
computer which is acting as an RFS server (see Figure21). Now it is possible to
access files on the other computer just as if they were on the local one. All disk
operations that are issued on an RFS file are put in a packet and sent to the RFS
server, which will process the command and send back the result, completely
transparent to the user.

In our lab the Toshiba computer (calledccs-rfs), which is located on the same
subnet as the MINTs, was going to act as the RFS server. On this machine we
intended to put our own programs (for example the Mobile-IP program), which the
MINT then could get access to. Unfortunately this never worked, and we were never
able to locate exactly where the problem was. We tried to debug the MINT kernel,
and found the routines that should support the RFS functionality, but it seemed that
the commands that were supposed to be sent to the RFS server were never sent out
on the network.

After a few attempts to get the RFS to work, we started to think about other ways to
make a MINT get access to external programs.

9.2.3 Running our program
The first and obvious solution was to put the program we wanted to run on the
ramdisk. Then we should be able to start the program after we had booted the
MINT, because the program would already be in the MINT’s ram memory. The
disadvantage of this method is that after every change in our program we have to

Figure 21. Remote File Sharing

/

bin/
dev/
etc/
mach_servers/
tmp/
usr/
RFS/

ramdisk

MINT

/

afs/
bin/
dev/
etc/
home/
RFS/
...

ccs-rfs

Por ting the Mobile-IP code

Implementation and Anal yses of the Mobile-IP Pr otocol 48

copy the program to the ramdisk and re-compile the whole MINT kernel, because
the ramdisk is included in the kernel image. This procedure takes too much time to
be useful.

Another problem was also that the ramdisk was almost full and our Mobile-IP
program was too big to fit, even though its size was just around 100 kb. To
overcome this problem we looked at the possibility of adding another ramdisk to the
kernel, but after a few attempts we abandoned this idea because there was too much
to change in the kernel code and we really would not gain that much of doing it.

Our next idea was to put a small file transfer program on the ramdisk, which could
be used to fetch our Mobile-IP program after the MINT had booted. Then, of
course, we again had the problem that the ramdisk did not have enough free space to
store our program, but this could be circumvented by removing several programs
from the ramdisk after the MINT had booted. The things that can be removed are
for instance several programs and files in the/etc directory that are used only at
start-up time.

9.2.4 A file transf er pr ogram
We compiled a version of the most commonly used file transfer program, ftp, for the
MINT. First we had some problems to link the program, because it used floating
point operations and the processor in the MINT does not have any floating point
unit. This means that all floating point operations should be converted to software
library routines, but according to a text written by Anders Klemets no such routines
are currently available for the MINT. When we examined where the floating point
variables were used in the ftp program, we discovered that they were used only in a
small routine that displayed some information on the screen, and that these floating
point variables easily could be substituted by integers. Now we were able to make
an executable version of ftp for the MINT architecture, but unfortunately the
resulting executable file was a little bit to large (around 76 Kb) to take up valuable
space on the ramdisk. After trying the program on the MINT we also discovered
that it was not very stable either, and crashed a bit to often.

Then we tried to compile a version of tftp (trivial file transfer protocol). This
resulted in an executable file with a size of 37 Kb, which was better than the ftp, but
not good enough. We tried the tftp program on the MINT, but were not able to
contact the tftp server, so we gave that up and decided to write our own file transfer
program.

We wrote a very simple file transfer program, which we called fssftp (Fredrik’s
super simple file transfer program). This includes a client part that is run on the
MINT, and a server that runs on a workstation. The protocol is very simple and not
very efficient, and the implementation is not optimized in any way, but it works and
fulfils our purpose. The executable program for the MINT was only 9 Kb in size,
which was quite alright. We put the program in the/bin directory on the MINT’s
ramdisk.

The syntax of the fssftp command is this:

fssftp ip-address src-filename [dest-filename]

When you for example want to fetch the Mobile-IP program (called xmipd) from a
workstation to the MINT, you write like this on the MINT:

fssftp 130.237.215.110 xmipd

Porting the Mobile-IP code

Implementation and Analyses of the Mobile-IP Protocol 49

This assumes that an fssftp server has been started in the directory containing the
file xmipd on the workstation with the IP address 130.237.215.110 (which is the
computer anxiety). The fssftp server is started by typing the commandfssftpd.

Now we had a way of transferring the Mobile-IP code to the MINT. The standard
procedure when we developed the program was to first boot the MINT, then remove
all the programs in the/etc directory on the ramdisk to make some space, and
then download the Mobile-IP code. When we made any changes in the code it was
quite easy to download the new version of the code (without having to re-boot the
MINT).

9.2.5 Reading ethernet frames
The most difficult part of the port from SunOS to the MINT was how we should be
able to read raw ethernet frames from the network. In the SunOS implementation
this is done by opening a device called/dev/nit, the Network Interface Tap.
That interface is SunOS specific and does not exist in the Unix version that is used
on the MINT, which is a BSD Unix. Fortunately, BSD has a similar type of device
called the BSD Packet Filter (BPF), which can be accessed by opening/dev/
bpf0, /dev/bpf1 and so on ([29], [30]). This lets you associate a device with a
network interface (for example the ethernet interface) and install a filter to receive
incoming packets selectively.

After some studying of the source code for the MINT mach kernel and the Unix
server, we got the impression that there was support for BPF on the MINT. We
modified the Mobile-IP code to open the bpf device instead of/dev/nit, and
changed the routines for reading and writing ethernet frames. We also had to modify
the code which defined the filter, because the filter code for nit and bpf are not
compatible. The filter for BPF is written as a machine code program for a pseudo-
machine. Here is an example of what a filter program could look like:

lhd [12]
jeq #ETHERTYPE_IP, L1, L3

L1: ld [26]
and #0xffffff00
jeq #0x82edd700, L2, L3

L2: ret #TRUE
L3: ret #0

This particular filter accepts all IP packets from the network 130.237.215.

Unfortunately we did not have any workstation running BSD Unix, so the first time
we could try our code was when we downloaded the program to the MINT. This
resultet in the error message “Can’t open /dev/bpf”. A quick look in the/dev
directory on the ramdisk revealed that there was no file called/dev/bpf0 or
similar. This was a setback.

We added a bpf device in the/dev directory, but then we needed to add routines in
the Unix server for opening and reading that special device, because this was not
implemented. After a few attempts to use code from other BSD Unix
implementations (for example netbsd), we realised that this problem must have been
encountered before, and someone might already have solved it.

After some research on the Internet and a few postings in different newsgroups and
mailing-lists, a solution began to appear. It seemed that BPF already was
implemented, not in the Unix server, but in the underlying Mach kernel. No/dev/
bpf was needed, instead we had to re-write the routines for opening and reading

Porting the Mobile-IP code

Implementation and Analyses of the Mobile-IP Protocol 50

ethernet frames so that they used system calls to the Mach operating system. This
was not exactly what we had expected, but some example code showed us how to do
it, and it was not that difficult to implement. This meant that the Mobile-IP program
was no longer a pure Unix program, but a mix of Unix and Mach. Examples of
Mach system calls that we are using are:

• device_open()
To open the ethernet interface.

• device_set_status()
To set the interface in promiscuous mode.

• device_set_filter()
To configure the packet filter.

• mach_msg()
To read an ethernet frame.

• device_write_request()
To write an ethernet frame.

Though BPF was implemented in the kernal, there were some problems with the
system calls. Two things could not be achived, and those were to put the interface
into promiscuous mode and to set a non trivial filter on the interface. This means
that the implementation will not work for all possible cases, but it should work for
example when a MINT is acting as a Home Agent.

9.2.6 Unexpected problems
Once the MINT port could be tested an unexpected problem with the routine that
calculates the checksum for the packets was discovered. This routine is used by
several protocols, for example IP, UDP, ICMP and IGMP. We had earlier noticed
that the checksum routine in the Mobile-IP code for SunOS did not calculate the
correct checksum for UDP packets which had an odd number of bytes, but this was
fixed by always setting the checksum to zero (which is allowed, but not very pretty).
On the MINT, the checksum routine did not work at all, because it was optimized
for the SPARC architecture and the program made several assumptions about the
hardware which was not true when running on a Motorola 68030 in the MINT. We
had to replace the ckecksum routine with a new one, but that was not optimized.
The checksum routine is rather heavily used, and should actually be modified for
each CPU to be as fast as possible. Even though this new routine was supposed to
be platform independent it still does not work for UDP (but it does work for the
other protocols). This probably has to do with the calculation of the checksum for
the pseudo header which for some reason is not correct.

9.2.7 Summary of changes
The filesbsdnit.c and bsdnit.h in the SunOS version of the Mobile-IP
program has been replaced by the fileslowbpf.c andlowbpf.h. In the file
lowether.c the calls to bsdNITInput and bsdNITSendRaw have been replace by
calls to bpfInput and bpfSendRaw, and inxlowiface.c the call to bsdNITattach
has been replace by bpfAttach. Also, some minor changes have been made in the
file targetdefs.h.

Analysis of the Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 51

10.0 Analysis of the Mobile-IP protocol

To analyse the performance of the Mobile-IP protocol, or at least the particular
implementation that we have, we have done a few experiments. These experiments
and the conclusions we have drawn will be described in this chapter.

10.1 Delay

In our first experiment we wanted to measure the time it took for a packet to travel
from a fixed host (the workstation artigonn) to a mobile node on a foreign network,
compared with the time when the Mobile Node (MN) was at home. We used a
modified version of the programping to do the measurements. Normally ping just
displays the time in milliseconds, but we wanted it to display microseconds too, so
we had to modify the source and compile our own version.

Ping sends an ICMP ECHO_REQUEST packet to a host, and then waits for an
ICMP ECHO_RESPONSE. We used a data size of 1000 bytes and set the count flag
to 1000 packets.

10.1.1 Artigonn to explorer
In the first part of this experiment we measured the time to send a packet directly
between two fixed hosts; artigonn and explorer (see Figure22). This measurement
will be used later when we calculate the time to reach the Mobile Node.

Results:
Minimum time = 6.8 ms
Maximum time = 25.2 ms

Figure 22. A ping from artigonn to anxiety

kista-gw

it-gw

dumburken
(HA)

explorer
(MN)

anxiety
(FA)

artigonn

213

215

216

host

router

Analysis of the Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 52

Average round trip time = 7.1 ms
Standard deviation = 1.0 ms

The interesting value here is of course the average round trip time, which is
approximately 7 ms. This is the time it takes for a packet to travel from the sender
(artigonn) to the receiver (explorer) and back.

10.1.2 Artigonn to dumburken
Here we wanted to measure the time for sending a packet to the Mobile Node when
it is at home. The home network for our (virtual) Mobile Node is the 216 net, so we
sent the packets to a host on that network; dumburken. See Figure 23.

Results:
Minimum time = 7.0 ms
Maximum time = 15.4 ms
Average round trip time = 7.2 ms
Standard deviation = 0.4 ms

Here we can see that the round trip time is just a little longer than in the previous
experiment, which could be expected, because we have one more router to pass on
our way.

10.1.3 Dumburken to anxiety (HA -> FA)
We also wanted to know how long it takes to send a packet from the machine the
Home Agent is running on (which is dumburken) to the machine on which the
Foreign Agent is running (anxiety), and these are the results we got:

Figure 23. A ping from artigonn to dumburken

kista-gw

it-gw

dumburken
(HA)

explorer
(MN)

anxiety
(FA)

artigonn

213

215

216

Analysis of the Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 53

Results:
Minimum time = 5.3 ms
Maximum time = 9.6 ms
Average round trip time = 5.6 ms
Standard deviation = 0.4 ms

10.1.4 Anxiety to explorer (FA -> MN)
Also the time it takes for a packet to travel from anxiety (the Foreign Agent) to
explorer (the Mobile Node) was of interest.

Results:
Minimum time = 3.0 ms
Maximum time = 8.6 ms
Average round trip time = 3.1 ms
Standard deviation = 0.3 ms

10.1.5 Artigonn to the Mobile Node
This experiment measured the time to ping the Mobile Node. The host explorer is
acting as a Mobile Node and is assigned the IP address 130.237.216.146. We
performed two versions of this experiment to see whether there were any
differences between the two encapsulation methods minimal encapsulation and IP
in IP.

This is what happens; Artigonn sends a packet to the Mobile Node’s home network
(which is the 216 net) where the packet is captured by the Home Agent
(dumburken). The Home Agent encapsulates the packet and sends it to the Foreign
Agent (anxiety) where it is decapsulated. Then the Foreign Agent forwards the
packet to the Mobile Node (explorer), and finally the Mobile Node sends a reply to
artigonn, which issued the ping command. See Figure24.

Figure 24. A ping from artigonn to the Mobile Node

kista-gw

it-gw

dumburken
(HA)

explorer
(MN)

anxiety
(FA)

artigonn

213

215

216

Analysis of the Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 54

Results (IP in IP encapsulation):
Minimum time = 14.7 ms
Maximum time = 27.7 ms
Average round trip time = 16.3 ms
Standard deviation = 1.4 ms

Results (Minimal encapsulation):
Minimum time = 15.6 ms
Maximum time = 26.3 ms
Average round trip time = 16.4 ms
Standard deviation = 1.4 ms

This experiment shows that there are almost no difference in performance between
the two encapsulation methods.

10.1.6 Conclusions
The time to send a packet from the workstation artigonn on the 213 net to the
Mobile Node when it is away from home can be calculated from the results in
Section10.1.1 and Section10.1.5. Since there was no statistical determined
difference between the encapsulation methods, the figures from IP in IP is used. The
total round trip time was 16.3 ms, but this includes both the time to send the ICMP
ECHO_REQUEST packet to the Mobile Node and to send the ICMP
ECHO_REPLY packet from the Mobile Node back to artigonn. From part one of
the experiment we see that the round trip time to ping anxiety from artigonn is 7.1
ms, which means that the time to send a packet in one of the directions is
approximately half of that (which is 3.6 ms).

This implies that the time for a packet to travel from artigonn to the Mobile Node at
explorer (via the HA and FA) is approximately (16.3 - 3.6) = 12.7 ms. This is
roughly 3.5 times the time to send a packet to the Mobile Node when it is at home
(Section10.1.2) which is 7.2 / 2 = 3.6 ms.

An increase in time by a factor 3.5 is about what we had expected. When you send a
packet directly to a host, the total time will be a sum of the transmission time and
the propagation time (including the delay caused by the routers), but when a Home
Agent is forwarding the packet to a Mobile Node on a foreign network (via a
Foreign Agent), you will have three times the transmission time (at the sender, at the
Home Agent and at the Foreign Agent), the propagation time will be longer and
there will be some delay due to protocol handling (including packet encapsulation
and decapsulation). The delay caused by the Mobile-IP protocol administration will
be further examined in the following experiments.

10.2 Delay caused by encapsulation/decapsulation

The Mobile-IP protocol introduces a number of new places causing delay in the
communication between two parties. In Section10.1 we measured the total
overhead time the protocol caused in the communication between a stationary host
(artigonn) and a Mobile Node (explorer). In this section we will look more closely
at the different entities in the process and how they contribute to the overhead.

10.2.1 The Home Agent
When a Home Agent receives a packet that is destined for one of the Mobile Nodes
which it is serving, there are basically two operations it has to do. First, lookup the
Mobile Node in the registration table to get its care-of address, and then encapsulate
the packet and send it.

Analysis of the Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 55

We have made two experiments to measure the time spent by the Home Agent from
that it has received a packet until the packet is encapsulated but not yet sent. The
difference between the two measurements were that in the first one IP in IP
encapsulation was used and in the second one minimal encapsulation. The setup
was the same as in Figure24 and we sent 350 ECHO_REQUESTS of size 1000
bytes from artigonn to the Mobile Node.

Results (IP in IP encapsulation):
Minimum time = 2.8 ms
Maximum time = 6.0 ms
Average = 3.9 ms
Standard deviation = 0.4 ms

Results (Minimal encapsulation):
Minimum time = 2.5 ms
Maximum time = 5.1 ms
Average = 2.9 ms
Standard deviation = 0.3 ms

As can be seen above there is a difference between the two encapsulation method by
1 ms. This difference though did not show in the overall delay measured in
Section10.1.5.

10.2.2 The Foreign Agent
As with the Home Agent, the Foreign Agent has to do two things when receiving a
packet. First, check if this packet should be forwarded, and if so, decapsulate and
send it.

As in Section10.2.1, two experiments were conducted. They both measured the
time spent by the Foreign Agent handling the packet from the moment it receives
the packet to when it has decapsulated the packet but not yet sent it. The two
experiments differed as to which encapsulation method was used. Once again, the
setup was the one in Figure24 and the 350 ECHO_REQUESTS of size 1000 bytes
were sent from artigonn to the Mobile Node (via the Home Agent and the Foreign
Agent).

Results (IP in IP encapsulation):
Minimum time = 2.3 ms
Maximum time = 4.6 ms
Average = 2.8 ms
Standard deviation = 0.5 ms

Results (Minimal encapsulation):
Minimum time = 2.1 ms
Maximum time = 6.1 ms
Average = 3.0 ms
Standard deviation = 0.7 ms

The difference between the two encapsulation methods was rather small, around 0.2
ms. However, the time it took todecapsulate a packet was about the same as the
time to encapsulate it (Section10.2.1). This seems reasonable, because the two
operations are rather similar in complexity.

Anal ysis of the Mobile-IP pr otocol

Implementation and Anal yses of the Mobile-IP Pr otocol 56

10.2.3 Conc lusions regar ding the dela y
In the limited experiments that we have done, we could see that the time to
administer a packet at the Home Agent and the foreign Agent constitute a large part
of the total time to deliver the packet to the Mobile Node. This share of the total
time will of course decrease when sending packets longer distances, but there are
still time to save by optimizing this part of the code. It can be a good idea to
incorporate support for tunnelling into the operating system kernel to speed things
up, which has already been done in for instance Linux.

We also saw that there was not much difference between the two encapsulation
methods that were used in our implementation.

10.3 Registration

Apart from the additional latency that the Mobile-IP protocol introduces, there are
another time value of interest from the Mobile Node’s point of view. That is the
time to get a connection after it had booted, or after it had arrived at a foreign
network. This time includes the time to get information about which Foreign Agents
that are currently available, and the time to set up the connection by registering with
the Home Agent (via the Foreign Agent).

10.3.1 The fir st registration
This experiment measured some time values of interest when a Mobile Node first
gets started on a new, foreign subnet. The setup is described in Figure25, and it is
the same that we have used in the previous experiments.

First the Home Agent and the Foreign Agent were started. Then we started the
Mobile Node, and the following data were collected (see Figure26 for explanation):

• the time from the first solicitation sent by the Mobile Node until it got an agent
advertisement (a)

• the number of solicitations sent by the Mobile Node before an agent
advertisement was received

• the time from the first registration request was sent by the Mobile Node until a
valid registration reply was received (b)

Figure 25. Registrations

kista-gw

it-gw

dumburken
(HA)

anxiety
(FA)

explorer
(MN)

215

216

Analysis of the Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 57

• the time between the first solicitation and the first valid registration reply. This
indicates how long it takes for a Mobile Node to get a working connection after
coming to a new network (c).

• the number of registration requests sent until the registration process was
completed

(Solicitations are sent by the Mobile Node when it wants to know if there are any
agents available, for instance when a mobile computer is connected to a new
network. Agent advertisements are sent by the Home Agents and Foreign Agents to
announce their presence.)

Figure 26. Sequence diagram for making a connection

Mobile Node Foreign Agent Home Agent

solicitation

advertisement

registration request

registration request

registration reply

registration reply

(a)

(b)

(c)

Analysis of the Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 58

Each experiment was conducted 20 times, and the results are shown in Table13.

10.3.2 Conclusions
The number of registration requests before a valid reply is received by the Mobile
Node deserves a comment. Surprisingly this value is always 2. The reason for this is
that when a Mobile Node first is started it has not yet agreed with the Home Agent
on which nonce value to use. Therefore the first registration request is rejected
because the Home Agent did not receive the nonce value it expected.

It should also be noted that over 98% of the time trying to get a connection is spent
during the first phase where the Mobile Node is trying to contact a Foreign Agent.
This is unexpected. Part of the explanation is that there are a number of packets that
has to be sent before the first registration request can be transmitted. The order of
events is like this; first the Mobile Node sends a Agent Solicitation (as a broadcast
message). When this packet has been received and processed by the Foreign Agent,
it sends an ARP request to get the Mobile Nodes ethernet address. The Mobile
Node answers with an ARP reply. Now the Foreign Agent can send an Agent
Advertisement to the correct ethernet address. When the Mobile Node has received
the Agent Advertisement it knows the IP address of the Foreign Agent, but then it
has to send an ARP request to get its ethernet address. Finally the Foreign Agent
sends an ARP reply to the Mobile Node which now can send its first registration
request. Another part of the explanation probably has to do with the large number of
solicitations that has to be sent before an agent advertisement is received (a mean
value of approximately 4). Why this happens has to be further examined, and it is
important to find out whether this is a fundamental problem with the Mobile IP
protocol itself or if it has to do with the particular implementation that we are using.

The extremely low minimal value measured between the first solicitation and the
first advertisement was caused by the fact that during that particular test the Foreign
Agent sent a multicast Agent Advertisement a very short time after that the Mobile
Node had been started and thus there was no need for the Mobile Node to send any
Agent Solicitations at all.

10.4 Throughput

Another aspect of the Mobile-IP implementation that is of interest is what the
throughput is. The question is how many packets per second we can send to the
Mobile Node when we are tunneling the packets, compared to the rate that a
stationary system could handle. To get an idea of the efficiency of the code four
different measurements were conducted.

The time (ms) from
first solicitation to
first advertisement
(a)

The time (ms) from
first request to first
valid reply (b)

The time (ms) from
first solicitation to
first valid
registration reply
(c)

The number of
solicitations sent
before an
advertisement

The number of
registration
requests sent before
first valid reply.

mean 1 015 11 1 038 3.95 2

std. dev. 396 2 396 1.54 0

min. 9 10 32 2 2

max. 1 996 16 2 017 6 2

Table 13: Registrations

Analysis of the Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 59

10.4.1 Mobile-IP
In the first two experiments the setup was the same as in Figure24. The goal was to
see how many packets would get through from artigonn to the Mobile Node with
different number of packets per second. On artigonn a small program was run that
sent 10000 UDP packets of size 1000 bytes to the Mobile Node (via the Home
Agent and the Foreign Agent).

The experiments were performed five times each. The difference between the two
experiments was the rate with which the packets were sent. In the first experiment
the 10000 packets were sent over a period of 200 seconds, and in the second
experiment 13 seconds (as fast as possible). The result is displayed in Table14 and
in Table15.

In the first experiment we see that all packets arrived at the Home Agent, and a very
small number was lost between the Home Agent and the Foreign Agent.

From Table15 we can see that a lot of packets were lost at the Home Agent. This is
because the Home Agent did not manage to take care of all incoming packets. The
packets that actually were taken care of were delivered almost without any loss to
the Foreign Agent and then to the Mobile Node.

10.4.2 SunOS
In the next two experiments (experiment 3 and 4) the purpose was to see if the
number of packets lost would be grater or smaller if we sent the UDP packets the
same route using the network code in SunOS 4.1.4. The same computers were used
as in Figure24. On artigonn the same program as above was running which sent

Figure 27. Throughput experiment

packets received
by the HA

packets received
by the FA

packets received
by the MN

mean 10000 9 997.8 9 996.6

std. dev. 0 2.3 2.6

min. 10000 9 995 9 994

max. 10000 10000 10000

Table 14: Throughput experiment 1

packets received
by the HA

packets received
by the FA

packets received
by the MN

mean 1 987.0 1 986.0 1 985.8

std. dev. 334.5 334.1 334.0

min. 1 397 1 397 1 397

max. 2 186 2 185 2 185

Table 15: Throughput experiment 2

Foreign
Agent

Mobile
Node

Home
AgentSender

Analysis of the Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 60

10000 UDP packets of size 1000 bytes. On dumburken, a simple program received
the packets from artigonn and sent them on to anxiety. On anxiety the same program
sent the packets to explorer where the packets were collected. In experiment number
three 10000 packets were sent during 200 seconds and in experiment number four
during 13 seconds. The result is in Table16 and Table17.

These results are almost identical to the results in experiment one (Table14), which
means that both the Mobile-IP code and the SunOS code does not have any
problems with receiving the packets at the slow rate.

In this experiment we see quite a lot of packages are lost, but not as many as in
experiment two (Table15).

10.4.3 Conclusion
When comparing experiments one and three we see that there is no significant
difference between them. However between experiment two and four there is a
noticeable difference. SunOS can handle about 300 packets more than the Mobile-
IP implementation. The reason for this is that the Home Agent running the Mobile-
IP code must do some more processing of the incoming packets due to the Mobile-
IP protocol administration (for example check the list of registered Mobile Nodes
and encapsulate the packets), but also the fact that the Mobile-IP code runs in user-
space and not in the operating system kernel contribute to the lower performance.
Incorporation of the Mobile-IP code into the kernel would probably speed things
up.

Another way of looking at the numbers is that when we are using the SunOS code
about 23% of the 10000 packets reach their destination, compared to 20% when
running the Mobile-IP code. This difference is not that big.

10.5 Summary

The measurements that we have done on the Mobile-IP code have been
accomplished by using both our own network management program (mipwatcher)

packets received
by dumburken

packets received
by anxiety

packets received
by explorer

mean 10000 9 998.4 9 998.4

std. dev. 0 0.5 0.5

min. 10000 9 998 9 998

max. 10000 9 999 9 999

Table 16: Throughput experiment 3

packets received
by the HA

packets received
by the FA

packets received
by the MN

mean 2 333.4 2 288.4 2 285.8

std. dev. 37.1 50.8 52.5

min. 2 297 2 235 2 228

max. 2 396 2 360 2 360

Table 17: Throughput experiment 4

Analysis of the Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 61

to get some values, and by modifying the code itself to print other values. The time
intervals that we were interested in have been measured by registering the system
clock at different points in time.

There are several factors that can have influenced the correctness of our
measurements. For instance, when we are doing the ping experiment, the time to
send a packet from one computer to another is of course dependent on how much
traffic there is on the network at the same time, and what the queues at the routers
look like. We tried to minimize the error by doing the same experiment many times
and calculating the average, but there will still be differences in the time
measurements depending on the time of the day when the experiment is done. This
means that there is not much point in looking at the exact values, but more at the
relations between the different time intervals.

Another problem is that the computers where we are running the Mobile-IP code
are normal workstations, where a lot of different processes are running at the same
time. This makes it hard to measure for example the time it takes to encapsulate or
decapsulate a packet.

Conclusions

Implementation and Analyses of the Mobile-IP Protocol 62

11.0 Conclusions

This master thesis project has included several areas around the not yet standardized
Mobile-IP protocol, and has produced a few different kinds of results.

First of all, a Management Information Base (MIB) was written for the Mobile-IP
protocol, something which had not been done before. Support for network
management (SNMP) and this MIB was implemented using the CMU snmp2.1.2
package and incorporated into Anders Klemets Mobile-IP code. At the end of our
thesis work four Internet drafts ([31, 32, 33, 34]) describing a Mobile-IP MIB were
published by the Mobile-IP working group of the Internet Engineering Task Force.
This official Mobile-IP MIB is based on our initial MIB, and we are mentioned in
the acknowledgements.

The next step was to understand the Mobile-IP implementation made by Anders
Klemets for the SunOS operating system. Once this was achieved, the work on the
two ports of the implementation began. Porting the code from SunOS to Solaris was
not that difficult. The only part to change was the low level routines that is used for
reading ethernet frames from the network. In the SunOS implementation this is
done by accessing something called the Network Interface Tap, but this interface is
not supported in the Solaris operating system. Here we had to use another interface
called the Data Link Provider Interface (DLPI) which of course is not compatible
with the Network Interface Tap.

Porting the code to the MINT was a bit more difficult. Most of the time was spent
trying to understand the MINT environment. There were also some initial problems
when we first tried to boot a MINT, and later when we wanted to transfer the
Mobile-IP program to the MINT. The lack of documentation about the
programming environment and the operating system for the MINT has resulted in
several documents written by us, which in detail describes what we did and how we
did it. This should hopefully help a person that is interested in developing other
applications for the MINT in the future. The port of the Mobile-IP code itself
resulted in one major and one minor change from the SunOS version. The major
change was the same as for the Solaris port; the part of the code that is reading and
writing ether frames. This could be done neither as in the SunOS implementation,
nor as in the Solaris port. Unfortunately it could not be done by using the Berkeley
Packet Filter either, something that we had hoped for. Instead we had to abandon the
pure Unix code and use some underlying MachOS system calls. Here we used
something called the Mach Packet Filter, which is an extension of the Berkeley
Packet Filter. At last we got the MINT implementation to run.

To summarise the porting part we can say that there really was not that much to
change between the different versions that we made. When porting the SunOS code
to MachOS, we made modifications of a few routines in five of the around 90 files
included in the implementation. Almost all important changes was made in just one
of the files; the file containing the routines for reading and writing ethernet frames.
This should encourage people to port the implementation to other platforms as well.

Another part of our degree project was to test the Mobile-IP implementation and
analyse the protocol. The testing of the Mobile-IP code was done by running the
Mobile-IP code on workstations in our lab running SunOS or Solaris, and the tests
revealed two interesting results. The first was that the handling of packets by the
Home Agent and the Foreign Agent was a significant part of the overall delay
caused by the Mobile-IP protocol. The second was, that of the time spent by a
Mobile Node trying to establish a new connection with its Home Agent almost all

Conclusions

Implementation and Analyses of the Mobile-IP Protocol 63

of it was spent getting a connection with the Foreign Agent. We do not know if this
problem is due to the specific implementation of the Mobile-IP protocol that we are
using, or if it is a fundamental problem with the protocol itself. To answer this
question, further tests with other implementations should be made. Unfortunately
there is hard to get another implementation to test at the moment, because the
vendors that have made their own implementations of the protocol (for example
IBM, Sun and Motorola) are not willing to release their code right now.

Finally we would like to thank all the people who has helped us during our degree
project, especially Chip Maguire who has been of great support.

/ Fredrik & Fredrik, February 1996

The CMU-SNMP package

Implementation and Analyses of the Mobile-IP Protocol 64

Appendix A The CMU-SNMP package

A.1 Introduction

The CMU-SNMP library is a public domain, no guarantee library of SNMP
functions from Carnegie Mellon University. It is available via anonymous ftp and
written in the C language. Even though it is limited in its functionality it served our
purposes well since all we needed was a tool to create an SNMP agent.

Except the library, the distribution also contains several applications which serve as
excellent examples for using the library to create an SNMP manager. These include
applications for getting and setting variables, walking through an agent’s MIB, and
a couple of applications for getting sets of variables. These applications, although
somewhat useful in themselves, are very good sources and great starting points for
writing your own applications. For further instructions on how to use the library to
build a manager, read the document “Using the Carnegie Mellon University (CMU)
SNMP Library To Build an SNMP Manager” [22].

The reason for including this appendix in our report is that we found that there was
little or no information on how to use the library to generate an SNMP agent.
Below, a few pointers and examples will be given to show how to use the package to
create an SNMP agent.

A.2 How to obtain the library

The library is available from URL:
ftp://lancaster.andrew.cmu.edu/pub/snmp-dist/
Do not forget the README file.

A.3 Writing an agent

Before you write your snmp agent, you first have to define a MIB (Management
Information Base). The following text assumes that this is already done. There are
plenty of good books on how to write a MIB, for example “The Simple Book” by
M. T. Rose [11].

There is mainly one file in the package that is of interest when writing an agent, and
that is agent/snmp_vars.c. That file contains implementations of the
standard components for an agent as given in RFC 1213 [24], which can serve as
examples.

A.3.1 The data structures
Lets look at the data structures of interest. First there are several different structures
called variableX, where X is an integer defining the length of the object identifier.

struct variable2 {
u_char magic; /* passed to function as a hint */
char type; /* type of variable */
u_short acl; /* access control list for variable */
u_char *(*findVar)();/* function that finds variable */
u_char namelen; /* length of name below */
oid name[2]; /* object identifier of variable */

};

The first field calledmagic is a number that can help the programmer to identify the
requested variable. Its function will be clear as we go along.

The CMU-SNMP package

Implementation and Analyses of the Mobile-IP Protocol 65

The type field is one of the types that a MIB variable can have according to RFC
1212 [23]. Though we found that the type SEQUENCE, which is similar to a struct
in C language, can not be used as an instantiated variable.

Theacl field indicates the access rights of the variable. The different access rights
that are allowed are RONLY, RWRITE and NOACCESS.

When the agent receives an snmp request it must have a way of getting or setting the
value of the requested variable. This functionality is supplied by the function
pointed to by thefindVar variable. The implementation of findVar functions will be
discussed below.

Thename field is the only field that differ among the different variableX structures.
An older version of the CMU package used the structure “variable” defined in
snmp_vars.h, which reserves space for an object identifier (OID) with 32 sub-
ids. When writing this newer version of CMU, the author ofsnmp_vars.c
decided to create structures with less OID space, presumably in an effort to reduce
the size of the compile-time data structures. Thus the “variable2” structure is
identical to the “variable” structure, with the only difference that it has room for just
2 sub-ids. The system group variables will need only 2 sub-ids for instance names,
e.g. “.3.0” for sysUpTime.0. The tcp group needs 13 sub-ids, since after the tcp
group id (1.3.6.1.2.1.6) you can need up to 13 more sub-ids to specify a valid
instance. E.g., you need 3 more sub-ids to define thetcpConnState object under the
tcp group, .13.1.1, and then 10 more sub-ids to specify an instance of this object:
A.B.C.D.X.E.F.G.H.Y where A.B.C.D is the local IP address, X is the local port,
E.F.G.H is the remote IP address, and Y is the remote port. So, when defining
variables, use a variableX structure big enough to hold all the instance sub-ids in a
valid name.

All variables with a common OID prefix are put in a variable list. You‘ll find plenty
of them in thesnmp_vars.c file. For example the variableat_variable is a list of
three variable2 that all have the prefix “1.3.6.1.2.1.3.1.1”. The prefix itself is defined
in thesubtree structure discussed below, while the last part of the oid that identifies
a variable is put in the name field.

The second structure of interest is thesubtree structure. It contains an OID prefix
which applies to all variables in the associated variable list. The way the subtree is
used is rather self-evident if you look at how it is done in thesnmp_vars.c file.
There is one variable calledsubtrees which is a list where all the subtrees are
defined. One thing to notice is that all the OID fields in the subtree list have to be
unique and no OID can be a prefix to another OID, e.g. it is not valid to have one
OID prefix called “1.2” and another called “1.2.1”.

struct subtree {
oid name[16]; /* objid prefix of subtree */
u_char namelen; /* number of sub-ids in name above */
struct variable *variables; /* pointer to variables array */
int variables_len; /* number of entries in above array */
int variables_width; /* sizeof each variable entry */

};

A.3.2 The functions
There are two kinds of functions that are of interest;findVar andwriteVar functions.
For every variable added to a variable list there has to be a function that can
correctly retrieve the value of that variable. The findVar field in the variable struct
should point to the corresponding function.

The CMU-SNMP package

Implementation and Analyses of the Mobile-IP Protocol 66

As an example of a findVar function thevar_system() function is shown below, with
comments inserted between the C-code lines.

u_char *
var_system (vp, name, length, exact, var_len, write_method)
 register struct variable *vp; /* IN - pointer to variable entry that
 points here */
 register oid *name; /* IN/OUT - input name requested,
 output name found */
 register int *length; /* IN/OUT - length of input and output
 oid’s */
 int exact; /* IN - TRUE if an exact match was
 requested */
 int *var_len; /* OUT - length of variable or 0 if
 function returned */
 int (**write_method)(); /* OUT - pointer to writeVar,
 otherwise 0 */
{

extern int writeVersion(), writeSystem();
oid newname[MAX_NAME_LEN];
int result;

}

There are several input parameters to the function. Thevp variable is a pointer to the
variableX struct whose OID prefix in the subtree list plus the sub-id in the variableX
struct matched the requested OID. The different fields in the vp variable is used to
identify which variable is requested.

When the function is called, thename variable contains the OID that was ask for by
the management program. When the function returns, the name variable should hold
the OID of the exact variable found. It works like this; suppose the management
program asks for the ipAdEntAddr (1.3.6.1.2.1.4.20.1.1) variable. Since this
variable is a column in a table it is possible to answer with any one of the rows in
that column. When thevar_ipAddrEntry() function that handles theipAdEntAddr
variable has decided which row to return, the name variable will be set to
1.3.6.1.2.1.4.20.1.1.A.B.C.D, where A.B.C.D is an IP-address.

The length variable is the length of the name variable given as the number of sub-
ids. When thefindVar function is called, thelength variable is the length of the
requested OID and when it returns it should be the length of the OID found.

Exact is true when the manager requests an exact match between the OID of the
requested variable and a variable in the agent. That is, ifexact is true, the agent
should only return an answer if it finds an exact match between a variable it knows
of and the requested variable. For example ifnameis .1.3.6.1.2.1.4.2.0 which is the
ipDefaultTTL variable,var_ip()should return the default TTL but if namelooks like
.1.3.6.1.2.1.4.2 it should not. On the other hand ifexact is false then thefindvar
function should return the value whose OID is closest above the requested one,
using thecompare function. Using the same example as above this means that if
nameis .1.3.6.1.2.1.4.2,var_ip() should return the default TTL and set thename
variable to .1.3.6.1.2.1.4.2.0, since this is the instance whose OID is closest above
the requested one (in fact it is the only one). Ifname is .1.3.6.1.2.1.4.2.0 then
var_ip() should return NULL since there is no instance ofipDefaultTTL that has an
OID that is larger than the requested OID.

Var_len is set by the function to the length of the return value in bytes.

The CMU-SNMP package

Implementation and Analyses of the Mobile-IP Protocol 67

If the value can be written as well as read by a manager, thefindVar function must
supply a pointer to awriteVar function that correctly can write a new value to the
variable. More about writeVar functions below.

The return value of thefindVar function should either be NULL, if the request can
not be satisfied, or a char pointer to the value found.

 bcopy((char *)vp->name, (char *)newname, (int)vp->namelen * sizeof(oid));
 newname[8] = 0;
 result = compare(name, *length, newname, (int)vp->namelen + 1);

This piece of code does the following: First thevp->name field is copied to a new
variablenewname. The vp->name variable contains the prefix in the subtree list plus
the sub-id in the variableX struct that was a prefix to the requested variable. For
example, if the a manager tries to fetch the variablesysContact, thevp->namefield
will contain 1.3.6.1.2.1.1 concatenated with .4 for a total of 1.3.6.1.2.1.1.4. After
the copy operation,newname[8] is given the value 0. Lets see why that is done. The
vp->name variable will always have a length of 8 (since the prefix in the subtree list
is 7 ids long and the sub-ids in the system_variables[] are all one id long), and if an
exact match is requested the ninth position in the name variable will be a zero (there
are no tables in the system group so there will never be any key values added at the
end of the OID). The next line of code compares the name variable with the
newname variable. If the name variable is larger, then result = 1. If the newname is
larger, result = -1, and if they are equal, result = 0.

if ((exact && (result != 0)) || (!exact && (result >= 0)))
return NULL;

Now, if exact is true and result is not equal to 0, which means that an exact match
was requested but name and newname were not equal, or an exact match was not
required but the requested OID is longer than any possible OID of a variable this
function can handle, then return NULL.

bcopy((char *)newname, (char *)name, ((int)vp->namelen + 1) *
sizeof(oid));
*length = vp->namelen + 1;
*write_method = 0;
var_len = sizeof(long);/ default length */

When this peace of code is reached it means that we will be able to satisfy the
request. Firstlynewname, which is the OID of the variable we will return, is copied
to name. Then*length is set to the length of the OID in thenamefield. Finally the
*write_methodand the*var_len variables are set to their respectively default
values.

switch (vp->magic) {
case VERSION_DESCR:

*var_len = strlen(version_descr);
*write_method = writeVersion;
return (u_char *)version_descr;

case VERSION_ID:
*var_len = sizeof(version_id);
return (u_char *)version_id;

case UPTIME:
(u_long)long_return = sysUpTime();
return (u_char *)&long_return;

The CMU-SNMP package

Implementation and Analyses of the Mobile-IP Protocol 68

case IFNUMBER:
long_return = Interface_Scan_Get_Count();
return (u_char *) &long_return;

case SYSCONTACT:
*var_len = strlen(sysContact);
*write_method = writeSystem;
return (u_char *)sysContact;

case SYSNAME:
*var_len = strlen(sysName);
*write_method = writeSystem;
return (u_char *)sysName;

case SYSLOCATION:
*var_len = strlen(sysLocation);
*write_method = writeSystem;
return (u_char *)sysLocation;

case SYSSERVICES:
long_return = 72;
return (u_char *)&long_return;

default:
ERROR(““);

}
return NULL;

To find the exact variable requested, a switch is made on thevp->magic number.
The magic number is a user defined number given in the variableX structure for
each variable. It is there for convenience. The same information could be extracted
from thename variable. Lets say thevp->magic number equals SYSCONTACT.
The following lines of code will then be executed. First*var_len, which is the
length of the returned data, is set to the length of thesysContact string, which
contains the name of the system contact and how to get in touch with him. Secondly
the*write_method is set to thewriteSystem function that can handle a change to the
sysContact string. Lastly thesysContact string is returned.

Writing a writeVar function for a table is similar, but there are a few differences
worth pointing out. Thevar_atEntry function will serve as an example.

u_char *
var_atEntry(vp, name, length, exact, var_len, write_method)
 register struct variable *vp; /* IN - pointer to variable entry that
 points here */
 register oid *name; /* IN/OUT - input name requested, output
 name found */
 register int *length; /* IN/OUT - length of input and output
 oid’s */
 int exact; /* IN - TRUE if an exact match was
 requested. */
 int *var_len; /* OUT - length of variable or 0 if function
 returned. */
 int (**write_method)(); /* OUT - pointer to function to set
 variable, otherwise 0 */
{
 /*
 * object identifier is of form:
 * 1.3.6.1.2.1.3.1.1.variable.interface.1.A.B.C.D, where A.B.C.D is IP
 * address.

The CMU-SNMP package

Implementation and Analyses of the Mobile-IP Protocol 69

 * Interface is at offset 10,
 * IPADDR starts at offset 12.
 */
 u_char *cp;
 oid *op;
 oid lowest[16];
 oid current[16];
 static char PhysAddr[6], LowPhysAddr[6];
 u_long Addr, LowAddr;

The arguments to the function are of course the same as above. The main difference
between a function that handles a table and one that only takes care of a variable is
the case when theexact variable is false. When an exact match is requested it is
quite straight forward what to do; if there exists a key value in the table that gives an
exact match, return the corresponding variable. But whenexact if false the
algorithm is slightly different. There are several cases to consider.

• The requested OID looks like 1.3.6.1.2.1.3.1.1.variable, that is a variable in the
table is asked for but no instance is specified. The function should return the first
instance of that variable in the table if there is one, else NULL. The first instance
is the variable in the row whose OID is the smallest (compared usingcompare).

• The requested OID looks like 1.3.6.1.2.1.3.1.1.variable.interface.1.A.B.C.D, that
is both a row and a column in the table are specified. The function should return
the variable whose OID is closest above the requested OID. For example, if the
requested OID has an exact match in the table, return the variable whose OID is
the next OID, usingcompare. If there is no exact match just return the variable
whose OID is closest above the requested one. If there is no next variable, return
NULL.

The variables defined are the following:

• lowest[16], contains the OID found that is closest above the requested OID so far

• current[16], holds the OID which we are working with and is compared to
lowest to see if this one is closer to the requested OID or not, while traversing the
table.

• PhysAddr[6] and LowPhysAddr[6] are the current physical address and the
physical address whose OID is the lowest so far. Same forLowAddr.

 /* fill in object part of name for current (less sizeof instance part) */
 bcopy((char *)vp->name, (char *)current, (int)vp->namelen *sizeof(oid));

Copy vp->name to current to get the first part of our working OID.

 LowAddr = -1; /* Don’t have one yet */

LowAddr is initiated to -1 to indicate that we do not have a lowest address yet. If
LowAddr still is -1 when we have completed our traversal of the table it means that
we got no hit.

 ARP_Scan_Init();

ARP_Scan_Init initializes the table and places us at the first position in the table.

The CMU-SNMP package

Implementation and Analyses of the Mobile-IP Protocol 70

for (;;) {
if (ARP_Scan_Next(&Addr, PhysAddr) == 0) break;
current[10] = 1;/* IfIndex == 1 (ethernet???) XXX */
current[11] = 1;
cp = (u_char *)&Addr;
op = current + 12;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;

This is the main loop. First a call is made to theARP_Scan_Next function to get the
next entry in the table. Observe that this is not a sorted table soARP_Scan_Next just
returns the next entry until the whole table has been returned. Secondly thecurrent
variable is updated with the interfacenumber plus the address received from the
ARP_Scan_Next call.

if (exact) {
 if (compare(current, 16, name, *length) == 0) {

bcopy((char *)current, (char *)lowest, 16 * sizeof(oid));
LowAddr = Addr;
bcopy(PhysAddr, LowPhysAddr, sizeof(PhysAddr));
break; /* no need to search further */

 }

Next a test is made to see if this is an exact request. If it is,current andname are
compared. If they are equal we have found a match and we can quit our search. The
LowAddr is set to the address found in theARP_Scan_Next call. The same with
LowPhysAddr. If the compare fails, take another trip through the loop and get the
next entry in the table.

 } else {
 if ((compare(current, 16, name, *length) > 0) && ((LowAddr ==

-1) || (compare(current, 16, lowest, 16) < 0))) {
bcopy((char *)current, (char *)lowest, 16 * sizeof(oid));
LowAddr = Addr;
bcopy(PhysAddr, LowPhysAddr, sizeof(PhysAddr));

 }

If exact is false we make a test to see if thecurrent OID is larger than the requested
OID and that it is smaller than the closest OID found so far. If so, lowest is set to
current and theLowAddr and theLowPhysAddr are updated accordingly. Then we
continue to go through the table to se if we can find an OID even closer toname.

 }
}
if (LowAddr == -1) return(NULL);

If this test is true it means that we did not find an exact match or that there is no
entry in the table that is above the requested OID.

bcopy((char *)lowest, (char *)name, 16 * sizeof(oid));
*length = 16;
*write_method = 0;
switch(vp->magic) {

The CMU-SNMP package

Implementation and Analyses of the Mobile-IP Protocol 71

 case ATIFINDEX:
*var_len = sizeof long_return;
long_return = 1; /* XXX */
return (u_char *)&long_return;

 case ATPHYSADDRESS:
*var_len = sizeof(LowPhysAddr);
return (u_char *)LowPhysAddr;

 case ATNETADDRESS:
*var_len = sizeof long_return;
long_return = LowAddr;
return (u_char *)&long_return;

 default:
ERROR(““);

}
return NULL;

}

This part is the same as for the non table case previously described.

If a variable is writeable as well as readable, awriteVar() function must be supplied
for that variable. When a write request is received by the snmp agent,thewriteVar()
function will be called three times for each varbind in the packet. The first time
action will have the value RESERVE1. During this pass the type and value of the
variable should be checked to see if they are correct, i. e. they have the correct type,
length etc. Also, if there are other variables in the MIB that depends on this
variable, the new value should be stored in a place where otherwriteVar() functions
can reach it. Note though, that during this first call, the new value should not be
written to the variable. Next, thewriteVar() is called with the action variable set to
RESERVE2. If a variable depends on other variables, now is the time to check if
any of the dependants has stored its new value and retrieve it so it can be used
during the commit phase. If no errors have been returned so far from any of the
writeVar() functions, the third call has the action variable set to COMMIT. The
writeVar should write the new value to the variable and free any resources it has
used during the two previous phases. If an error was detected in either of the two
first writeVar calls, the action variable will have the value FREE. It gives the
writeVar a chance deallocate any resources it has used in the RESERVE1 and
RESERVE2 phases. Of course, in this case, no changes should be made to the
variable.

As an example, thewriteVersion function is shown.

int
writeVersion(action, var_val, var_val_type, var_val_len, statP, name,
name_len)
 int action; /*IN - RESERVE1, RESERVE2, COMMIT, or FREE*/
 u_char *var_val; /*IN - input or output buffer space*/
 u_char var_val_type;/*IN - type of input buffer*/
 int var_val_len; /*IN - input and output buffer len*/
 u_char *statP; /*IN - pointer to local statistic*/
 oid *name; /*IN - pointer to name requested
 int name_len; /*IN - number of sub-ids in the name*/
{

int bigsize = 1000;
u_char buf[sizeof(version_descr)], *cp;
int count, size;

The CMU-SNMP package

Implementation and Analyses of the Mobile-IP Protocol 72

There are a total of seven parameters to awriteVar() function. Theaction variable is
set during each call to the values described above. *var_val is a char pointer to a
buffer containing the new value.var_val_type is the type of the new value. It is there
to make it possible for the function to check that the new value has a correct type.
The type must be one of the types that a MIB variable can have according to RFC
1212 [21].var_val_len is of course the length in bytes of thevar_val variable.name
is the OID of the requested variable andname_len is its length as the number of sub
OID’s.

if (var_val_type != STRING){
 printf(“not string\n”);
 return SNMP_ERR_WRONGTYPE;
}

Check the type of the new value.

if (var_val_len > sizeof(version_descr)-1){
 printf(“bad length\n”);
 return SNMP_ERR_WRONGLENGTH;
}

Check the length of the new value.

size = sizeof(buf);
asn_parse_string(var_val, &bigsize, &var_val_type, buf, &size);
for(cp = buf, count = 0; count < size; count++, cp++){
 if (!isprint(*cp)){
 printf(“not print %x\n”, *cp);
 return SNMP_ERR_WRONGVALUE;
 }
}

Check the value of the new value.

buf[size] = 0;
if (action == COMMIT){
 strcpy(version_descr, buf);
}

If action has the value COMMIT, write the new value to theversion_descr variable.

return SNMP_ERR_NOERROR;
}

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 73

Appendix B The SNMP code

This appendix includes the code added to the Mobile-IP deamon, the changes made
to the internal structures of the Mobile-IP implementation, marked with sidebars, as
well as the code written on the snmp Agent side.

B.1 Changes to internal structures

The changes are marked with bars.

B.1.1 struct mobileip_host
struct mobileip_host {
 /* The IP address of the MH in question */
 uint32 addr;
 /* The number of currently registered COA’s is kept here.
 * It is zero if the host has deregisterred
 */
 int iCOACnt;
 /* The Care-Of Addresses of this host are in the following field.
 * An unused entry is set to INADDR_ANY.
 */
 uint32 coa[MOBILEIP_COA_MAX];
 /* The flags received in the registration */
 uint8 flags[MOBILEIP_COA_MAX];
 /* The registration timeout timer, one for each COA registration */
 generic_timer_t timer[MOBILEIP_COA_MAX];
 /* The ID to expect in the next registration request */
 uint64 nxtid;
 mh_t next;
};

B.1.2 struct fa_deencap_entry
struct fa_deencap_entry {
 uint32 addr; /* The address of the Mobile Host */

uint32 haaddr; /* The address of the MN’s HA */
 uint32 reqTS; /* The time when the regreq was received */
 uint32 replTS; /* The time when the regrepl was received */
 generic_iface_t gifp; /* The interface to forward packets to */
 generic_timer_t timer; /* The registration timeout timer */
 deencap_t next; /* Pointer to next entry in chain */
};

B.1.3 struct fa_saved_regstate
struct fa_saved_regstate {
 uint64 id; /* ID that was used in registration request */
 uint32 mh; /* IP address of MH that sent request */
 uint32 coa; /* Care-Of Address in registration request */
 uint32 ha; /* Home Agent in registration request */
 uint32 source; /* IP source address of request message */
 uint16 port; /* UDP source port of request message */

uint32 reqTS; /* The time when we got our first regreq */
 generic_iface_t gifp; /* Interface request was received on */
 generic_timer_t timer; /* Expiry timer for this state entry */
 struct udp_cb *udp_cb; /* UDP control block, (transmit socket) */
 regstate_t next; /* pointer to next in chain */

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 74

};

B.1.4 struct mobileip_agent
struct mobileip_agent {
 /* The IP address of the agent in question */
 uint32 addr;
 /* The number of bits in the IP address that are used in forming the
 * network number of the agent. A zero value means that it is unknown.
 */
 unsigned char prefix_length;
 /* A generic interface pointer to the interface on which we learned
 * about this agent. Typically the interface on which the the
 * ICMP Router Advertisement for this agent was received.
 */
 generic_iface_t gifp;
/* The IP address of the home agent. */

 uint32 haaddr;
 /* The time when the first registration request was sent. */
 uint32 reqTS;
 /* The time when the first registration reply was received. */
 uint32 replTS;
 /* The sequence number of the last router advertisement
 * that was received
 */
 uint16 seq;
 /* The Care-Of Address to use with this agent */
 uint32 coa;
 /* The lifetime field in the latest received agent advertisement */
 uint16 lifetime;
 /* A copy of the flags bits in the latest agent advertisement */
 uint16 flags;
 /* The IP address of the preferred router, according to this agent */
 uint32 router;
 /* The registration or registration request retransmit timer */
 generic_timer_t timer;
 agent_t next;
};

B.1.5 struct pending_request
struct pending_request {
 /* A pointer to the foreign agent that the request was sent to */
 agent_t fa;
 /* A pointer to the home agent that the request was sent to */
 homeagent_t ha;
 /* The Care-Of Address to use with this registration */
 uint32 coa;
/* The time when the first registration request was sent. */

 uint32 reqTS;
 /* The number of times the registration request has been retransmitted */
 int iRetransmitCnt;
 /* The current time when the latest agent advertisement was received */
 uint32 time_heard;
 /* A copy of the ID that was used in the request */
 uint64 id;
 /* The flags field that was used in the request */

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 75

 unsigned char byFlags;
 pending_req_t next; /* Next pending request in list */
};

B.2 Mobile-IP code

B.2.1 snmp_init.c
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include “targetdefs.h”
#include <stdio.h>
#include “statistics.h”

int SNMP_socket;
/**
 * This is the socket on which we wait for requests form the*
 * snmpd. *
 **/

boolean_t SNMP_inited = FALSE;
/**
 * SNMP_inited will be true when the socket has been opened.*
 **/

u_short SNMP_port = 0xffd3;
/**
 * snmp_port is the port on which we are waiting for *
 * requests from the snmpd. It can be changed by *
 * starting mipd with option -p n, where n is a new port. *
 **/

/**
 * SNMP_SOCKET_INIT *
 **/
void
snmp_socket_init()
{
 struct sockaddr_in sin;

 SNMP_inited = TRUE;
 bzero((char *)&sin, sizeof(sin));
 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = INADDR_ANY;
 sin.sin_port = SNMP_port;

 debug_printf(“Open snmp socket\n”);
 if ((SNMP_socket = socket(PF_INET ,SOCK_DGRAM ,0))<0) {

perror(“Snmp socket”);
return;

 }
 if (bind(SNMP_socket, (struct sockaddr *)&sin, sizeof(sin))<0) {

perror(“Snmp bind”);
return;

 }

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 76

 debug_printf(“Done!\n”);

}

/**
 * MIPMIPSTAT_INIT *
 **/

void
mipstat_init()
{
 bzero((char *)&mipstat,sizeof(mipstat));
}

B.2.2 snmp_magic.h
/**
 * MOBILE NODE MAGIC NUMBERS *
 **/

#define MNHOMEAGENTLIST 1
#define MNADVADDR 2
#define MNADVSEQNO 3
#define MNADVFLAGS 4
#define MNADVTS 5
#define MNADVCOUNT 6
#define MNERRADDR 7
#define MNERRCODE 8
#define MNERRTS 9
#define MNERRCOUNT 10
#define MNAUTHCOUNT 11
#define MNINVREPLCOUNT 12
#define MNSOLTS 13
#define MNSOLCOUNT 14
#define MNDECAPS 15
#define MNDISCARDS 16

/**
 * MOBILE NODE REGISTRATION TABLE MAGIC NUMBERS *
 **/

#define MNREGHA 17
#define MNREGFA 18
#define MNREGREQTS 19
#define MNREGREPLTS 20
#define MNREGFLAGS 21
#define MNREGLIFETIME 22

/**
 * MOBILE NODE PENDING REGISTRATION TABLE MAGIC NUMBERS *
 **/

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 77

#define MNPENDREGHA 23
#define MNPENDREGFA 24
#define MNPENDREGREQTS 25
#define MNPENDREGREQS 26
#define MNPENDREGFLAGS 27

/**
 * FOREIGN AGENT MAGIC NUMBERS *
 **/

#define FACOALIST 30
#define FAADVSEQNO 31
#define FAADVFLAGS 32
#define FAADVTS 33
#define FAADVCOUNT 34
#define FASOLADDR 35
#define FASOLTS 36
#define FASOLCOUNT 37
#define FAERRRECADDR 38
#define FAERRRECCODE 39
#define FAERRRECTS 40
#define FAERRRECCOUNT 41
#define FAERRSENTADDR 42
#define FAERRSENTCODE 43
#define FAERRSENTTS 44
#define FAERRSENTCOUNT 45
#define FAAUTHCOUNT 46
#define FAREGREQSREC 47
#define FADECAPS 48
#define FADISCARDS 49

/**
 * FOREIGN AGENT REGISTRATION TABLE MAGIC NUMBERS *
 **/

#define FAREGMN 50
#define FAREGHA 51
#define FAREGREQTS 52
#define FAREGREPLTS 53
#define FAREGLIFETIME 54

/**
 * FOREIGN AGENT PENDING REGISTRATION TABLE MAGIC NUMBERS *
 **/

#define FAPENDREGMN 55
#define FAPENDREGHA 56

/**
 * HOME AGENT MAGIC NUMBERS *
 **/

#define HAAUTHNODELIST 60
#define HAADVSEQNO 61

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 78

#define HAADVFLAGS 62
#define HAADVTS 63
#define HAADVCOUNT 64
#define HASOLADDR 65
#define HASOLTS 66
#define HASOLCOUNT 67
#define HAERRADDR 68
#define HAERRCODE 69
#define HAERRTS 70
#define HAERRCOUNT 71
#define HAAUTHCOUNT 72
#define HAREGREQSREC 73
#define HAENCAPS 74
#define HABROADSCASTSREC 75
#define HABROADCASTSSENT 76

/**
 * HOME AGENT BINDING TABLE MAGIC NUMBERS *
 **/

#define HABINDINGMN 77
#define HABINDINGCOA 78
#define HABINDINGLIFETIME 79
#define HABINDINGFLAGS 80
/**
 * MIP TYPE MAGIC NUMBERS *
 **/

#define MIPTYPE 81

B.2.3 statistics.h
#include “targetdefs.h”

typedef uint32 TimeStamp;
typedef uint32 IPaddr;

struct MNstat {
 IPaddr mnAdvAddr;
 uint32 mnAdvSeqNo;
 uint16 mnAdvFlags;
 TimeStamp mnAdvTS;
 uint32 mnAdvCount;
 TimeStamp mnAdvFirst;
 IPaddr mnErrAddr;
 uint32 mnErrCode;
 TimeStamp mnErrTS;
 uint32 mnErrCount;
 uint32 mnAuthCount;
 uint32 mnInvReplCount;
 TimeStamp mnSolTS;
 uint32 mnSolCount;
 TimeStamp mnSolFirst;
 uint32 mnDecaps;
 uint32 mnDiscards;
};

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 79

struct FAstat {
 uint32 faAdvSeqNo;
 uint16 faAdvFlags;
 TimeStamp faAdvTS;
 uint32 faAdvCount;
 IPaddr faSolAddr;
 TimeStamp faSolTS;
 uint32 faSolCount;
 IPaddr faErrRecAddr;
 uint32 faErrRecCode;
 TimeStamp faErrRecTS;
 uint32 faErrRecCount;
 IPaddr faErrSentAddr;
 uint32 faErrSentCode;
 TimeStamp faErrSentTS;
 uint32 faErrSentCount;
 uint32 faAuthCount;
 uint32 faRegReqsRec;
 uint32 faDecaps;
 uint32 faDiscards;
};

struct HAstat {
 uint32 haAdvSeqNo;
 uint16 haAdvFlags;
 TimeStamp haAdvTS;
 uint32 haAdvCount;
 IPaddr haSolAddr;
 TimeStamp haSolTS;
 uint32 haSolCount;
 IPaddr haErrAddr;
 uint32 haErrCode;
 TimeStamp haErrTS;
 uint32 haErrCount;
 uint32 haAuthCount;
 uint32 haRegReqsRec;
 uint32 haEncaps;
 uint32 haBroadcastsRec;
 uint32 haBroadcastsSent;
};

struct mipstatstruct {
 struct MNstat mn;
 struct FAstat fa;
 struct HAstat ha;
#define MN 128
#define FA 64
#define HA 32
 unsigned char miptype;
};

extern struct mipstatstruct mipstat;

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 80

B.2.4 statistics.c
#include “statistics.h”
struct mipstatstruct mipstat;

B.2.5 snmp.h
#include <sys/types.h>

typedef u_long oid;

void mipstat_init();
void snmp_socket_init();
u_long get_timem();

B.2.6 snmp.c
#include “statistics.h”
#include “snmp_magic.h”

#include <sys/types.h>
#include <netinet/in.h>
#include “targetdefs.h”
#include “absiface.h”
#include “abstimer.h”
#include “mipiface.h”
#include “mbuf.h”
#include “io.h”
#include “packet.h”
#include “enet.h”
#include “internet.h”
#include “ip.h”
#include “arp.h”
#include “os.h”
#include “icmp.h”
#include “auth.h”
#include “mip.h”
#include “mh.h”
#include “mhagent.h”
#include “agent.h”
#include “rdiscovery.h”
#include “rdrouter.h”
#include “lowmisc.h”
#include “lowether.h”
#include “udp.h”
#include “ha.h”
#include “fa.h”
#include “snmp.h”

#include <stdio.h>
#include <sys/uio.h>
#include <sys/time.h>
#include <netinet/in.h>

int snmpHandleReadReq(struct sockaddr_in *sin, char *bp);
int snmpHandleWriteReq(struct sockaddr_in *sin, char *bp);
void snmpMakeReply(char error, uint32 vlength, void *value, u_char
olength, oid *oidfound, int *size, char *buf);

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 81

void snmpHandleReq();
int snmpSend(struct sockaddr_in *sin, uint32 vlength, void *value, u_char
olength, oid *oidfound);
int snmpERROR(struct sockaddr_in *sin, char error);

extern mh_t MHlist;
extern deencap_t Deencap_list;
extern regstate_t Savedstate;
extern uint32 myIPaddr;
extern homeagent_t HomeAgents;
extern agent_t Registrations;
extern pending_req_t PendingRegistrations;

extern int SNMP_socket;

/**
 * GET_TIMEM *
 **/
/**
 * This function returns the number of microseconds elapsed *
 * since January 1, 1970 (zero hour). 4 bytes are of cause *
 * not enougth for this purpose but we don’t care since all *
 * we want is a way of measuring the time between two *
 * events. *
 **/
u_long get_timem()
{
 struct timeval tim;
 gettimeofday(&tim, NULL); /* Ask the OS what the time is */
 return (tim.tv_sec*1000000 + tim.tv_usec);
}

/**
 * COMPARE *
 **/
/**
 * Compare() compares two OID’s. If the first OID is bigger *
 * than the second one, 1 is return. If the first OID is *
 * smaller than the second one, -1 is returned. If they are *
 * equal, 0 is returned. An OID is bigger either if it is *
 * longer or if it is lexicographicly larger. *
 **/
int
compare(name1, len1, name2, len2)
 register oid *name1, *name2;
 register int len1, len2;
{
 register int len;

 /* len = minimum of len1 and len2 */
 if (len1 < len2)

 len = len1;
 else

 len = len2;
 /* find first non-matching byte */

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 82

 while(len-- > 0){
 if (*name1 < *name2)
 return -1;
 if (*name2++ < *name1++)
 return 1;

 }
 /* bytes match up to length of shorter string */
 if (len1 < len2)

 return -1; /* name1 shorter, so it is “less” */
 if (len2 < len1)

 return 1;
 return 0; /* both strings are equal */
}

/**
 * SNMPMAKEREPLY *
 **/
/**
 * Ones we have decided which packet type and contents we *
 * shall reply with snmpMakeReply is called to put the *
 * different components into the right place in the packet. *
 **/
void
snmpMakeReply(error ,vlength ,value ,olength , oidfound, size, buf)
char error; /* IN - The error code */
uint32 vlength; /* IN - Length of value in bytes */
void *value; /* IN - The value found */
u_char olength; /* IN - The lenght of the OID found */
oid *oidfound; /* IN - The OID of the variable found, if of interest */
int *size; /* OUT - The size of the packet */
char *buf; /* OUT - The packet to be sent */
{
 char *cp;
 int i;

 cp = buf;
 if (error == 0) {

size = 3 + vlength + olength; / error, vlength, value, olength,
oidfound */

/* Put data into packet */
cp = buf;
cp++ = error; / The first byte is the error code. */
cp++ = vlength; / The second byte is the length of the value feild.

*/
for (i=0;i<vlength;i++) /* Put vlength bytes of data in the value

feild. */
 *cp++ = ((char *)value)[i];
cp++ = olength; / Then we add the length of the found OID. */
if (olength !=0)
 /*
 * If the found OID matters olength is not zero, and we put the OID
 * at the end of the packet.
 */
 for (i=0;i<olength / 4;i++)

/* Use put32 to get the OID’s in network byte order. */

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 83

cp = put32(cp, oidfound[i]);

 }
 else {

/* This is an error packet. It only contains the error code */
*size = 1;
/* Put the error code into the packet */
*cp = error;

 }
 return;
}

/**
 * SNMPSEND *
 **/
/**
 * If we find a variable to return snmpSend is called. *
 * First snmpMakeReply is called to create the return packet*
 * and then the packet is sent to the port and address from *
 * which we got the request. *
 **/
int
snmpSend(sin,vlength, value, olength, oidfound)
struct sockaddr_in *sin; /* IN - The address and port we are to send the
reply to. */
uint32 vlength; /* IN - Length of value in bytes */
void *value; /* IN - The value found */
u_char olength; /* IN - The lenght of the OID found */
oid *oidfound; /* IN - The OID of the variable returned */
{
 int size;
 char buf[200];

 /* Fill the return buffer */
 snmpMakeReply(0, vlength, value, olength, oidfound, &size, buf);
 /* Send the reply */
 if (sendto(SNMP_socket,buf,size,0,(struct sockaddr *)sin, sizeof(struct
sockaddr_in))<=0) {

fprintf(stderr,”Failed to write to SNMP_socket.\n”);
return -1;

 }
 return 0;
}

/**
 * SNMPERROR *
 **/
/**
 * If we do not find a value to return or some other error *
 * occurs, snmpERROR sends an error message to the snmpd. *
 **/
int
snmpERROR(sin, error)

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 84

struct sockaddr_in *sin; /* IN - The address and port we are to send the
error to. */
char error; /* IN - The error code. */
{
 int size;
 char buf[200];

 /* Fill the return packet */
 snmpMakeReply(error, 0, NULL, 0, NULL, &size, buf);
 /* Send the error*/
 if (sendto(SNMP_socket,buf,size,0,(struct sockaddr *)sin, sizeof(struct
sockaddr_in))<=0) {

fprintf(stderr,”Failed to write to SNMP_socket.\n”);
return -1;

 }
 return 0;
}

/**
 * MNHOMEAGENTLIST *
 **/
int
mnHomeAgentList(sin, exact, current, rlength, request)
struct sockaddr_in *sin; /* IN - The address and port we are to send the
reply to. */
u_char exact; /* IN - Is this an exact request or not? */
oid *current; /* IN - The hint from snmpd. */
u_char rlength; /* IN - The length of the request in OIDs. */
oid *request; /* IN - The requested OID. */
{
 homeagent_t ha;
 homeagent_t lowestha;
 oid lowest[16];
 boolean_t found;
 u_char *cp;
 oid *op;

 found = FALSE;
 ha = HomeAgents;

 while (ha != (homeagent_t) NULL) {
cp = (u_char *)&ha->addr;
op = current + 12;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
/*
 * Uppdate the current variable vith the found ha address.
 */

if (exact) {
 if (compare(current, 16, request, rlength) == 0) {

/* We got a hit */
lowestha = ha;

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 85

bcopy((char *)current, (char *)lowest, 16 * sizeof(oid));
found = TRUE;
/* We found a hit and do not need to search any more */
break;

 }
} else {
 if ((compare(current, 16, request, rlength)>0) &&

 ((!found) || (compare(current, 16, lowest, 16)<0))){
/*
 * We have found an entry in the table whose OID is larger
 * than the requested OID and is eigther the first entry
 * that is larger or it is smaller than any other OID that
 * is larger than the requested OID found so far.
 */
lowestha = ha;
bcopy((char *)current, (char *)lowest, 16 * sizeof(oid));
found = TRUE;

 }
}
ha=ha->next;

 }

 if (!found) {
snmpERROR(sin, -1);
return -1;

 }
 snmpSend(sin, sizeof(lowestha->addr), (void *)&lowestha->addr, 16 *
sizeof(oid), lowest);
 return 0;
}

/**
 * MNREGTABLE *
 **/
int
mnRegTable(sin, magic, exact, current, rlength, request)
struct sockaddr_in *sin; /* IN - The address and port we are to send the
reply to. */
u_char magic; /* IN - The requested variable. */
u_char exact; /* IN - Is this an exact request or not? */
oid *current; /* IN - The hint from snmpd. */
u_char rlength; /* IN - The length of the request in OIDs. */
oid *request; /* IN - The requested OID. */
{
 agent_t reg;
 agent_t lowestreg;
 oid lowest[20];
 boolean_t found;
 u_char *cp;
 oid *op;
 uint32 lowestIP;
 int timeleft;

 found = FALSE;
 reg = Registrations;

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 86

 while (reg != (agent_t) NULL) {
op = current + 12;
cp = (u_char *)®->haaddr;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
cp = (u_char *)®->addr;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
/*
 * Uppdate the current variable vith the found agent address
 * and the home agent address.
 */

if (exact) {
 if (compare(current, 20, request, rlength) == 0) {

/* We got a hit */
lowestreg = reg;
bcopy((char *)current, (char *)lowest, 20 * sizeof(oid));
found = TRUE;
/* We found a hit and do not need to search any more */
break;

 }
} else {
 if ((compare(current, 20, request, rlength)>0) &&

 ((!found) || (compare(current, 20, lowest, 20)<0))){
/*
 * We have found an entry in the table whose OID is larger
 * than the requested OID and is eigther the first entry
 * that is larger or it is smaller than any other OID that
 * is larger than the requested OID found so far.
 */
lowestreg = reg;
bcopy((char *)current, (char *)lowest, 20 * sizeof(oid));
found = TRUE;

 }
}
reg=reg->next;

 }
 if (!found) {

snmpERROR(sin, -1);
return -1;

 }
 switch (magic) {
 case MNREGHA:

snmpSend(sin, sizeof(lowestreg->haaddr), (void *)&lowestreg->haaddr,
20 * sizeof(oid), lowest);

return 0;
 case MNREGFA:

snmpSend(sin, sizeof(lowestreg->addr), (void *)&lowestreg->addr, 20 *
sizeof(oid), lowest);

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 87

return 0;
 case MNREGREQTS:

snmpSend(sin, sizeof(lowestreg->reqTS), (void *)&lowestreg->reqTS, 20
* sizeof(oid), lowest);

return 0;
 case MNREGREPLTS:

snmpSend(sin, sizeof(lowestreg->replTS), (void *)&lowestreg->replTS,
20 * sizeof(oid), lowest);

return 0;
 case MNREGFLAGS:

snmpSend(sin, sizeof(lowestreg->flags), (void *)&lowestreg->flags, 20
* sizeof(oid), lowest);

return 0;
 case MNREGLIFETIME:

TIMER_DURATION(lowestreg->timer,timeleft)
 snmpSend(sin, sizeof(timeleft),

 (void *)&timeleft, 20 * sizeof(oid), lowest);
return 0;

 }
}

/**
 * MNPENDREGTABLE *
 **/
int
mnPendRegTable(sin, magic, exact, current, rlength, request)
struct sockaddr_in *sin; /* IN - The address and port we are to send the
reply to. */
u_char magic; /* IN - The requested variable. */
u_char exact; /* IN - Is this an exact request or not? */
oid *current; /* IN - The hint from snmpd. */
u_char rlength; /* IN - The length of the request in OIDs. */
oid *request; /* IN - The requested OID. */
{
 pending_req_t preg;
 pending_req_t lowestpreg;
 oid lowest[20];
 boolean_t found;
 u_char *cp;
 oid *op;
 int valid;
 uint32 lowestIP;
 int timeleft;

 found = FALSE;
 preg = PendingRegistrations;
 while (preg != (pending_req_t) NULL) {

cp = (u_char *)&preg->ha->addr;
op = current + 12;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
cp = (u_char *)&preg->fa->addr;
*op++ = *cp++;

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 88

*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
/*
 * Uppdate the current variable vith the found fa address
 * and the ha address.
 */

if (exact) {
 if (compare(current, 20, request, rlength) == 0) {

/* We got a hit */
lowestpreg = preg;
bcopy((char *)current, (char *)lowest, 20 * sizeof(oid));
found = TRUE;
goto end_of_search6;
/* We found a hit and do not need to search any more */
/*
 * I can not believe it! After years of programing

experience
 * and a Masters in computer sience I still am useing

goto!
 * What will become of me
 */

 }
} else {
 if ((compare(current, 20, request, rlength)>0) &&

 ((!found) || (compare(current, 20, lowest, 20)<0))){
/*
 * We have found an entry in the table whose OID is larger
 * than the requested OID and is eigther the first entry
 * that is larger or it is smaller than any other OID that
 * is larger than the requested OID found so far.
 */
lowestpreg = preg;
bcopy((char *)current, (char *)lowest, 20 * sizeof(oid));
found = TRUE;

 }
}
preg=preg->next;

 }
end_of_search6:
 if (!found) {

snmpERROR(sin, -1);
return -1;

 }
 switch (magic) {
 case MNPENDREGHA:

snmpSend(sin, sizeof(lowestpreg->ha->addr), (void *)&lowestpreg->ha-
>addr, 20 * sizeof(oid), lowest);

return 0;
 case MNPENDREGFA:

snmpSend(sin, sizeof(lowestpreg->fa->addr), (void *)&lowestpreg->fa-
>addr, 20 * sizeof(oid), lowest);

return 0;
 case MNPENDREGREQTS:

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 89

snmpSend(sin, sizeof(lowestpreg->reqTS), (void *)&lowestpreg->reqTS,
20 * sizeof(oid), lowest);

return 0;
 case MNPENDREGREQS:

snmpSend(sin, sizeof(lowestpreg->iRetransmitCnt), (void
*)&lowestpreg->iRetransmitCnt,

 20 * sizeof(oid), lowest);
return 0;

 case MNPENDREGFLAGS:
snmpSend(sin, sizeof(lowestpreg->byFlags), (void *)&lowestpreg-

>byFlags, 20 * sizeof(oid), lowest);
return 0;

 }
}

/**
 * FACOALIST *
 **/
int
faCOAList(sin, exact, current, rlength, request)
struct sockaddr_in *sin; /* IN - The address and port we are to send the
reply to. */
u_char exact; /* IN - Is this an exact request or not? */
oid *current; /* IN - The hint from snmpd. */
u_char rlength; /* IN - The length of the request in OIDs. */
oid *request; /* IN - The requested OID. */
{
 uint32 lowestcoa;
 oid lowest[16];
 boolean_t found;
 u_char *cp;
 oid *op;

 found = FALSE;

 cp = (u_char *)&myIPaddr;
 op = current + 12;
 *op++ = *cp++;
 *op++ = *cp++;
 *op++ = *cp++;
 *op++ = *cp++;
 /*
 * Uppdate the current variable vith the found mh address
 */

 if (exact) {
if (compare(current, 16, request, rlength) == 0) {
 /* We got a hit */
 lowestcoa = myIPaddr;
 bcopy((char *)current, (char *)lowest, 16 * sizeof(oid));
 found = TRUE;
}

 } else {
if (compare(current, 16, request, rlength)>0) {
 /*

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 90

 * Our COA is larger than the requested one.
 */
 lowestcoa = myIPaddr;
 bcopy((char *)current, (char *)lowest, 16 * sizeof(oid));
 found = TRUE;
}

 }

 if (!found) {
snmpERROR(sin, -1);
return -1;

 }
 snmpSend(sin, sizeof(lowestcoa), (void *)&lowestcoa, 16 * sizeof(oid),
lowest);
 return 0;
}

/**
 * FAREGTABLE *
 **/
int
faRegTalbe(sin, magic, exact, current, rlength, request)
struct sockaddr_in *sin; /* IN - The address and port we are to send the
reply to. */
u_char magic; /* IN - The requested variable. */
u_char exact; /* IN - Is this an exact request or not? */
oid *current; /* IN - The hint from snmpd. */
u_char rlength; /* IN - The length of the request in OIDs. */
oid *request; /* IN - The requested OID. */
{
 deencap_t dl;
 deencap_t lowestdl;
 oid lowest[20];
 boolean_t found;
 int j;
 u_char *cp;
 oid *op;
 int timeleft;

 found = FALSE;
 dl = Deencap_list;

 while (dl != (deencap_t) NULL) {
cp = (u_char *)&dl->addr;
op = current + 12;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
cp = (u_char *)&dl->haaddr;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
/*

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 91

 * Uppdate the current variable vith the found ha and
 * mn addresses.
 */

if (exact) {
 if (compare(current, 20, request, rlength) == 0) {

/* We got a hit */
lowestdl = dl;
bcopy((char *)current, (char *)lowest, 20 * sizeof(oid));
found = TRUE;
/* We found a hit and do not need to search any more */
break;

 }
} else {
 if ((compare(current, 20, request, rlength)>0) &&

 ((!found) || (compare(current, 20, lowest, 20)<0))){
/*
 * We have found an entry in the table whose OID is larger
 * than the requested OID and is eigther the first entry
 * that is larger or it is smaller than any other OID that
 * is larger than the requested OID found so far.
 */
lowestdl = dl;
bcopy((char *)current, (char *)lowest, 20 * sizeof(oid));
found = TRUE;

 }
}
dl=dl->next;

 }
 if (!found) {

snmpERROR(sin, -1);
return -1;

 }
 switch (magic) {
 case FAREGMN:

snmpSend(sin, sizeof(lowestdl->addr), (void *)&lowestdl->addr, 20 *
sizeof(oid), lowest);

return 0;
 case FAREGHA:

snmpSend(sin, sizeof(lowestdl->haaddr), (void *)&lowestdl->haaddr, 20
* sizeof(oid), lowest);

return 0;
 case FAREGREQTS:

snmpSend(sin, sizeof(lowestdl->reqTS), (void *)&lowestdl->reqTS, 20 *
sizeof(oid), lowest);

return 0;
 case FAREGREPLTS:

snmpSend(sin, sizeof(lowestdl->replTS), (void *)&lowestdl->replTS, 20
* sizeof(oid), lowest);

return 0;
 case FAREGLIFETIME:

TIMER_DURATION(lowestdl->timer,timeleft)
 snmpSend(sin, sizeof(timeleft),

 (void *)&timeleft, 20 * sizeof(oid), lowest);
return 0;

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 92

 }
}

/**
 * FAPENDREGTABLE *
 **/
int
faRegPendTalbe(sin, magic, exact, current, rlength, request)
struct sockaddr_in *sin; /* IN - The address and port we are to send the
reply to. */
u_char magic; /* IN - The requested variable. */
u_char exact; /* IN - Is this an exact request or not? */
oid *current; /* IN - The hint from snmpd. */
u_char rlength; /* IN - The length of the request in OIDs. */
oid *request; /* IN - The requested OID. */
{
 regstate_t state;
 regstate_t loweststate;
 oid lowest[20];
 boolean_t found;
 int j;
 u_char *cp;
 oid *op;
 int timeleft;

 found = FALSE;
 state = Savedstate;

 while (state != (regstate_t) NULL) {
cp = (u_char *)&state->mh;
op = current + 12;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
cp = (u_char *)&state->ha;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
/*
 * Uppdate the current variable vith the found ha and
 * mn addresses.
 */

if (exact) {
 if (compare(current, 20, request, rlength) == 0) {

/* We got a hit */
loweststate = state;
bcopy((char *)current, (char *)lowest, 20 * sizeof(oid));
found = TRUE;
/* We found a hit and do not need to search any more */
break;

 }
} else {

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 93

 if ((compare(current, 20, request, rlength)>0) &&
 ((!found) || (compare(current, 20, lowest, 20)<0))){
/*
 * We have found an entry in the table whose OID is larger
 * than the requested OID and is eigther the first entry
 * that is larger or it is smaller than any other OID that
 * is larger than the requested OID found so far.
 */
loweststate = state;
bcopy((char *)current, (char *)lowest, 20 * sizeof(oid));
found = TRUE;

 }
}
state=state->next;

 }
 if (!found) {

snmpERROR(sin, -1);
return -1;

 }
 switch (magic) {
 case FAPENDREGMN:

snmpSend(sin, sizeof(loweststate->mh), (void *)&loweststate->mh, 20 *
sizeof(oid), lowest);

return 0;
 case FAPENDREGHA:

snmpSend(sin, sizeof(loweststate->ha), (void *)&loweststate->ha, 20 *
sizeof(oid), lowest);

return 0;
 }
}

/**
 * HABINDINGTABLE *
 **/
int
haBindingTable(sin, magic, exact, current, rlength, request)
struct sockaddr_in *sin; /* IN - The address and port we are to send the
reply to. */
u_char magic; /* IN - The requested variable. */
u_char exact; /* IN - Is this an exact request or not? */
oid *current; /* IN - The hint from snmpd. */
u_char rlength; /* IN - The length of the request in OIDs. */
oid *request; /* IN - The requested OID. */
{
 mh_t mh;
 mh_t lowestmh;
 oid lowest[20];
 int coaddrindex;
 boolean_t found;
 int j;
 u_char *cp;
 oid *op;
 int timeleft;

 found = FALSE;

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 94

 mh = MHlist;

 while (mh != (mh_t) NULL) {
for (j=0; j<MOBILEIP_COA_MAX; j++) {
 if (mh->coa[j] != INADDR_ANY) {

cp = (u_char *)&mh->addr;
op = current + 12;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
cp = (u_char *)&mh->coa[j];
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
/*
 * Uppdate the current variable vith the found mh address

and
 * the care of address.
 */

if (exact) {
 if (compare(current, 20, request, rlength) == 0) {

/* We got a hit */
lowestmh = mh;
coaddrindex = j;
bcopy((char *)current, (char *)lowest, 20 *

sizeof(oid));
found = TRUE;
goto end_of_search;
/* We found a hit and do not need to search any

more */
/*
 * I can not believe it! After years of programing

experience
 * and a Masters in computer sience I still am

useing goto!
 * What will become of me
 */

 }
} else {
 if ((compare(current, 20, request, rlength)>0) &&

 ((!found) || (compare(current, 20, lowest,
20)<0))){

/*
 * We have found an entry in the table whose OID is

larger
 * than the requested OID and is eigther the first

entry
 * that is larger or it is smaller than any other

OID that
 * is larger than the requested OID found so far.
 */
lowestmh = mh;

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 95

coaddrindex =j;
bcopy((char *)current, (char *)lowest, 20 *

sizeof(oid));
found = TRUE;

 }
}

 }
}
mh=mh->next;

 }
end_of_search:
 if (!found) {

snmpERROR(sin, -1);
return -1;

 }
 switch (magic) {
 case HABINDINGMN:

snmpSend(sin, sizeof(lowestmh->addr), (void *)&lowestmh->addr, 20 *
sizeof(oid), lowest);

return 0;
 case HABINDINGCOA:

snmpSend(sin, sizeof(lowestmh->coa[coaddrindex]), (void *)&lowestmh-
>coa[coaddrindex],

 20 * sizeof(oid), lowest);
return 0;

 case HABINDINGLIFETIME:
TIMER_DURATION(lowestmh->timer[coaddrindex],timeleft);
snmpSend(sin, sizeof(timeleft),

 (void *)&timeleft, 20 * sizeof(oid), lowest);
return 0;

 case HABINDINGFLAGS:
snmpSend(sin, sizeof(lowestmh->flags[coaddrindex]), (void

*)&lowestmh->flags[coaddrindex], 20 * sizeof(oid), lowest);
return 0;

 }
}

/**
 * HAAUTHNODELIST *
 **/
int
haAuthNodeList(sin, magic, exact, current, rlength, request)
struct sockaddr_in *sin; /* IN - The address and port we are to send the
reply to. */
u_char magic; /* IN - The requested variable. */
u_char exact; /* IN - Is this an exact request or not? */
oid *current; /* IN - The hint from snmpd. */
u_char rlength; /* IN - The length of the request in OIDs. */
oid *request; /* IN - The requested OID. */
{
 mh_t mh;
 mh_t lowestmh;
 oid lowest[20];
 boolean_t found;
 u_char *cp;

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 96

 oid *op;

 found = FALSE;
 mh = MHlist;

 while (mh != (mh_t) NULL) {
cp = (u_char *)&mh->addr;
op = current + 12;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
/*
 * Uppdate the current variable vith the found mh address.
 */

if (exact) {
 if (compare(current, 16, request, rlength) == 0) {

/* We got a hit */
lowestmh = mh;
bcopy((char *)current, (char *)lowest, 16 * sizeof(oid));
found = TRUE;
/* We found a hit and do not need to search any more */
break;

 }
} else {
 if ((compare(current, 16, request, rlength)>0) &&

 ((!found) || (compare(current, 16, lowest, 16)<0))){
/*
 * We have found an entry in the table whose OID is larger
 * than the requested OID and is eigther the first entry
 * that is larger or it is smaller than any other OID that
 * is larger than the requested OID found so far.
 */
lowestmh = mh;
bcopy((char *)current, (char *)lowest, 16 * sizeof(oid));
found = TRUE;

 }
}
mh=mh->next;

 }
 if (!found) {

snmpERROR(sin, -1);
return -1;

 }
 snmpSend(sin, sizeof(lowestmh->addr), (void *)&lowestmh->addr, 16 *
sizeof(oid), lowest);
 return 0;
}

/**
 * SNMPHANDLEREQ *
 **/
/**
 * When we receive something on the SNMP_socket *

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 97

 * snmpHandleReq is called to take care of the incoming *
 * request. First it reads the packet from the SNMP_socket. *
 * Then it determines whether this is a read or a write *
 * request and calls the corresponding routine. *
 **/
void
snmpHandleReq()
{
 u_char rd;
 char buf[200];
 struct sockaddr_in sin;
 int sinlen = sizeof(sin);

 /*
 * Read the request from SNMP_socket. The address and the port of the
 * sender is put in the sin struct.
 */
 if (recvfrom(SNMP_socket,buf,sizeof(buf),0,&sin,&sinlen)<0) {

fprintf(stderr,”Failed to read from SNMP_socket.\n”);
return;

 }

 rd = buf[0];
 if (rd == 1) /* Read request */

snmpHandleReadReq(&sin,&buf[1]);
 else if (rd == 2) /* Write request */

snmpHandleWriteReq(&sin,&buf[1]);
 else {

snmpERROR(&sin, -1);
return;

 }
}

/**
 * SNMPHANDLEWRITEREQ *
 **/
/**
 * So far no write request are handled. *
 **/
int
snmpHandleWriteReq(sin, bp)
struct sockaddr_in *sin;
char *bp;
{
}
/**
 * SNMPHANDLEREADREQ *
 **/
/**
 * We have received a read request. First, extract the magic*
 * value (the request) and the exact value from the packet. *
 * If the OID supplied by the vp->name variable, in the
 * snmpd, is contained in the packet then clength is larger *
 * than zero and the OID is put in current. Likewise if the *
 * requested OID is in the packet then rlength is larger *

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 98

 * than zero and the OID is put in request.
 **/
int
snmpHandleReadReq(sin, bp)
struct sockaddr_in *sin; /* IN - The address and port we are to send the
reply to. */
char *bp; /* IN - A pointer to the request packet. */
{

 int i,j;
 u_char magic;
 u_char exact;
 u_char clength;
 oid current[20];
 u_char rlength;
 oid request[40]; /* Lets hope that no snmp manager sends a larger
request. */
 oid test; /* Used to convert oid from network byte order to host byte
order */
 char *testp;

 magic = *bp++; /* Get magic from the request. */
 exact = *bp++; /* Get exact from the request. */
 if ((clength = *bp++) != 0) { /* If clength != 0, get the current hint.
*/

clength /= sizeof(oid); /* Convert clength from bytes to the number of
oids */

for (i=0; i<clength; i++) {
 testp = (char *)&test;
 for (j=0; j<4; j++)

*testp++ = *bp++;
 current[i] = ntohl(test);
}
if ((rlength = *bp++) != 0) { /* If rlength != 0, get the requested

OID. */
 rlength /= sizeof(oid); /* Convert rlength from bytes to the number

of oids */
 for (i=0; i<rlength; i++) {

testp = (char *)&test;
for (j=0; j<4; j++)
 *testp++ = *bp++;
request[i] = ntohl(test);

 }
}

 }
 /* This is a horrid case grid. */
 switch ((int)magic) {
/**
 * MOBILE NODE *
 **/
 case MNHOMEAGENTLIST:

return mnHomeAgentList(sin, exact, current, rlength, request);
break;

 case MNREGHA:
 case MNREGFA:

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 99

 case MNREGREQTS:
 case MNREGREPLTS:
 case MNREGFLAGS:
 case MNREGLIFETIME:

return mnRegTable(sin, magic, exact, current, rlength, request);
break;

 case MNPENDREGHA:
 case MNPENDREGFA:
 case MNPENDREGREQTS:
 case MNPENDREGREQS:
 case MNPENDREGFLAGS:

return mnPendRegTable(sin, magic, exact, current, rlength, request);
break;

 case MNADVADDR:
snmpSend(sin, sizeof(mipstat.mn.mnAdvAddr), (void

*)&mipstat.mn.mnAdvAddr, 0, NULL);
break;

 case MNADVSEQNO:
snmpSend(sin, sizeof(mipstat.mn.mnAdvSeqNo), (void

*)&mipstat.mn.mnAdvSeqNo, 0, NULL);
break;

 case MNADVFLAGS:
snmpSend(sin, sizeof(mipstat.mn.mnAdvFlags), (void

*)&mipstat.mn.mnAdvFlags, 0, NULL);
break;

 case MNADVTS:
snmpSend(sin, sizeof(mipstat.mn.mnAdvTS), (void

*)&mipstat.mn.mnAdvTS, 0, NULL);
break;

 case MNADVCOUNT:
snmpSend(sin, sizeof(mipstat.mn.mnAdvCount), (void

*)&mipstat.mn.mnAdvCount, 0, NULL);
break;

 case MNERRADDR:
snmpSend(sin, sizeof(mipstat.mn.mnErrAddr), (void

*)&mipstat.mn.mnErrAddr, 0, NULL);
break;

 case MNERRCODE:
snmpSend(sin, sizeof(mipstat.mn.mnErrCode), (void

*)&mipstat.mn.mnErrCode, 0, NULL);
break;

 case MNERRTS:
snmpSend(sin, sizeof(mipstat.mn.mnErrTS), (void

*)&mipstat.mn.mnErrTS, 0, NULL);
break;

 case MNERRCOUNT:
snmpSend(sin, sizeof(mipstat.mn.mnErrCount), (void

*)&mipstat.mn.mnErrCount, 0, NULL);
break;

 case MNAUTHCOUNT:
snmpSend(sin, sizeof(mipstat.mn.mnAuthCount), (void

*)&mipstat.mn.mnAuthCount, 0, NULL);
break;

 case MNINVREPLCOUNT:

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 100

snmpSend(sin, sizeof(mipstat.mn.mnInvReplCount), (void
*)&mipstat.mn.mnInvReplCount, 0, NULL);

break;
 case MNSOLTS:

snmpSend(sin, sizeof(mipstat.mn.mnSolTS), (void
*)&mipstat.mn.mnSolTS, 0, NULL);

break;
 case MNSOLCOUNT:

snmpSend(sin, sizeof(mipstat.mn.mnSolCount), (void
*)&mipstat.mn.mnSolCount, 0, NULL);

break;
 case MNDECAPS:

snmpSend(sin, sizeof(mipstat.mn.mnDecaps), (void
*)&mipstat.mn.mnDecaps, 0, NULL);

break;
 case MNDISCARDS:

snmpSend(sin, sizeof(mipstat.mn.mnDiscards), (void
*)&mipstat.mn.mnDiscards, 0, NULL);

break;
/**
 * FOREIGN AGENT *
 **/
 case FACOALIST:

return faCOAList(sin, exact, current, rlength, request);
break;

 case FAREGMN:
 case FAREGHA:
 case FAREGREQTS:
 case FAREGREPLTS:
 case FAREGLIFETIME:

return faRegTalbe(sin, magic, exact, current, rlength, request);
break;

 case FAPENDREGMN:
 case FAPENDREGHA:

return faRegPendTalbe(sin, magic, exact, current, rlength, request);
break;

 case FAADVSEQNO:
snmpSend(sin, sizeof(mipstat.fa.faAdvSeqNo), (void

*)&mipstat.fa.faAdvSeqNo, 0, NULL);
break;

 case FAADVFLAGS:
snmpSend(sin, sizeof(mipstat.fa.faAdvFlags), (void

*)&mipstat.fa.faAdvFlags, 0, NULL);
break;

 case FAADVTS:
snmpSend(sin, sizeof(mipstat.fa.faAdvTS), (void

*)&mipstat.fa.faAdvTS, 0, NULL);
break;

 case FAADVCOUNT:
snmpSend(sin, sizeof(mipstat.fa.faAdvCount), (void

*)&mipstat.fa.faAdvCount, 0, NULL);
break;

 case FASOLADDR:
snmpSend(sin, sizeof(mipstat.fa.faSolAddr), (void

*)&mipstat.fa.faSolAddr, 0, NULL);

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 101

break;
 case FASOLTS:

snmpSend(sin, sizeof(mipstat.fa.faSolTS), (void
*)&mipstat.fa.faSolTS, 0, NULL);

break;
 case FASOLCOUNT:

snmpSend(sin, sizeof(mipstat.fa.faSolCount), (void
*)&mipstat.fa.faSolCount, 0, NULL);

break;
 case FAERRRECADDR:

snmpSend(sin, sizeof(mipstat.fa.faErrRecAddr), (void
*)&mipstat.fa.faErrRecAddr, 0, NULL);

break;
 case FAERRRECCODE:

snmpSend(sin, sizeof(mipstat.fa.faErrRecCode), (void
*)&mipstat.fa.faErrRecCode, 0, NULL);

break;
 case FAERRRECTS:

snmpSend(sin, sizeof(mipstat.fa.faErrRecTS), (void
*)&mipstat.fa.faErrRecTS, 0, NULL);

break;
 case FAERRRECCOUNT:

snmpSend(sin, sizeof(mipstat.fa.faErrRecCount), (void
*)&mipstat.fa.faErrRecCount, 0, NULL);

break;
 case FAERRSENTADDR:

snmpSend(sin, sizeof(mipstat.fa.faErrSentAddr), (void
*)&mipstat.fa.faErrSentAddr, 0, NULL);

break;
 case FAERRSENTCODE:

snmpSend(sin, sizeof(mipstat.fa.faErrSentCode), (void
*)&mipstat.fa.faErrSentCode, 0, NULL);

break;
 case FAERRSENTTS:

snmpSend(sin, sizeof(mipstat.fa.faErrSentTS), (void
*)&mipstat.fa.faErrSentTS, 0, NULL);

break;
 case FAERRSENTCOUNT:

snmpSend(sin, sizeof(mipstat.fa.faErrSentCount), (void
*)&mipstat.fa.faErrSentCount, 0, NULL);

break;
 case FAAUTHCOUNT:

snmpSend(sin, sizeof(mipstat.fa.faAuthCount), (void
*)&mipstat.fa.faAuthCount, 0, NULL);

break;
 case FAREGREQSREC:

snmpSend(sin, sizeof(mipstat.fa.faRegReqsRec), (void
*)&mipstat.fa.faRegReqsRec, 0, NULL);

break;
 case FADECAPS:

snmpSend(sin, sizeof(mipstat.fa.faDecaps), (void
*)&mipstat.fa.faDecaps, 0, NULL);

break;
 case FADISCARDS:

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 102

snmpSend(sin, sizeof(mipstat.fa.faDiscards), (void
*)&mipstat.fa.faDiscards, 0, NULL);

break;
/**
 * HOME AGENT *
 **/
 case HABINDINGMN:
 case HABINDINGCOA:
 case HABINDINGLIFETIME:
 case HABINDINGFLAGS:

return haBindingTable(sin, magic, exact, current, rlength, request);
break;

 case HAAUTHNODELIST:
return haAuthNodeList(sin, magic, exact, current, rlength, request);
break;

 case HAADVSEQNO:
snmpSend(sin, sizeof(mipstat.ha.haAdvSeqNo), (void

*)&mipstat.ha.haAdvSeqNo, 0, NULL);
break;

 case HAADVFLAGS:
snmpSend(sin, sizeof(mipstat.ha.haAdvFlags), (void

*)&mipstat.ha.haAdvFlags, 0, NULL);
break;

 case HAADVTS:
snmpSend(sin, sizeof(mipstat.ha.haAdvTS), (void

*)&mipstat.ha.haAdvTS, 0, NULL);
break;

 case HAADVCOUNT:
snmpSend(sin, sizeof(mipstat.ha.haAdvCount), (void

*)&mipstat.ha.haAdvCount, 0, NULL);
break;

 case HASOLADDR:
snmpSend(sin, sizeof(mipstat.ha.haSolAddr), (void

*)&mipstat.ha.haSolAddr, 0, NULL);
break;

 case HASOLTS:
snmpSend(sin, sizeof(mipstat.ha.haSolTS), (void

*)&mipstat.ha.haSolTS, 0, NULL);
break;

 case HASOLCOUNT:
snmpSend(sin, sizeof(mipstat.ha.haSolCount), (void

*)&mipstat.ha.haSolCount, 0, NULL);
break;

 case HAERRADDR:
snmpSend(sin, sizeof(mipstat.ha.haErrAddr), (void

*)&mipstat.ha.haErrAddr, 0, NULL);
break;

 case HAERRCODE:
snmpSend(sin, sizeof(mipstat.ha.haErrCode), (void

*)&mipstat.ha.haErrCode, 0, NULL);
break;

 case HAERRTS:
snmpSend(sin, sizeof(mipstat.ha.haErrTS), (void

*)&mipstat.ha.haErrTS, 0, NULL);
break;

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 103

 case HAERRCOUNT:
snmpSend(sin, sizeof(mipstat.ha.haErrCount), (void

*)&mipstat.ha.haErrCount, 0, NULL);
break;

 case HAAUTHCOUNT:
snmpSend(sin, sizeof(mipstat.ha.haAuthCount), (void

*)&mipstat.ha.haAuthCount, 0, NULL);
break;

 case HAREGREQSREC:
snmpSend(sin, sizeof(mipstat.ha.haRegReqsRec), (void

*)&mipstat.ha.haRegReqsRec, 0, NULL);
break;

 case HAENCAPS:
snmpSend(sin, sizeof(mipstat.ha.haEncaps), (void

*)&mipstat.ha.haEncaps, 0, NULL);
break;

 case HABROADSCASTSREC:
snmpSend(sin, sizeof(mipstat.ha.haBroadcastsRec), (void

*)&mipstat.ha.haBroadcastsRec, 0, NULL);
break;

 case HABROADCASTSSENT:
snmpSend(sin, sizeof(mipstat.ha.haBroadcastsSent), (void

*)&mipstat.ha.haBroadcastsSent, 0, NULL);
break;

/**
 * MIPTYPE *
 **/
 case MIPTYPE:

snmpSend(sin, sizeof(mipstat.miptype), (void *)&mipstat.miptype, 0,
NULL);

break;
 default:

fprintf(stderr,”Ush\n”);
snmpERROR(sin, -1);

 }
}

B.3 SNMP Agent code

Not all of the code in snmp_vars.c was included but only the part that is of interest
to the Mobile-IP MIB.

B.3.1 snmp_vars.c
/**
 * MOBILE NODE VARIABLE *
 **/

struct variable20 mn_variables[] = {
 {MNHOMEAGENTLIST, IPADDRESS, RONLY, var_mipEntry, 3, {1, 1, 1}},
 {MNREGHA, IPADDRESS, RONLY, var_mipEntry, 3, {2, 1, 1}},
 {MNREGFA, IPADDRESS, RONLY, var_mipEntry, 3, {2, 1, 2}},
 {MNREGREQTS, INTEGER, RONLY, var_mipEntry, 3, {2, 1, 3}},
 {MNREGREPLTS, INTEGER, RONLY, var_mipEntry, 3, {2, 1, 4}},
 {MNREGFLAGS, BITSTRING, RONLY, var_mipEntry, 3, {2, 1, 5}},
 {MNREGLIFETIME, INTEGER, RONLY, var_mipEntry, 3, {2, 1, 6}},
 {MNPENDREGHA, IPADDRESS, RONLY, var_mipEntry, 3, {3, 1, 1}},

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 104

 {MNPENDREGFA, IPADDRESS, RONLY, var_mipEntry, 3, {3, 1, 2}},
 {MNPENDREGREQTS, INTEGER, RONLY, var_mipEntry, 3, {3, 1, 3}},
 {MNPENDREGREQS, INTEGER, RONLY, var_mipEntry, 3, {3, 1, 4}},
 {MNPENDREGFLAGS, BITSTRING, RONLY, var_mipEntry, 3, {3, 1, 5}},
 {MNADVADDR, IPADDRESS, RONLY, var_mip, 1, {4}},
 {MNADVSEQNO, INTEGER, RONLY, var_mip, 1, {5}},
 {MNADVFLAGS, BITSTRING, RONLY, var_mip, 1, {6}},
 {MNADVTS, INTEGER, RONLY, var_mip, 1, {7}},
 {MNADVCOUNT, COUNTER, RONLY, var_mip, 1, {8}},
 {MNERRADDR, IPADDRESS, RONLY, var_mip, 1, {9}},
 {MNERRCODE, INTEGER, RONLY, var_mip, 1, {10}},
 {MNERRTS, INTEGER, RONLY, var_mip, 1, {11}},
 {MNERRCOUNT, COUNTER, RONLY, var_mip, 1, {12}},
 {MNAUTHCOUNT, COUNTER, RONLY, var_mip, 1, {13}},
 {MNINVREPLCOUNT, COUNTER, RONLY, var_mip, 1, {14}},
 {MNSOLTS, INTEGER, RONLY, var_mip, 1, {15}},
 {MNSOLCOUNT, COUNTER, RONLY, var_mip, 1, {16}},
 {MNDECAPS, COUNTER, RONLY, var_mip, 1, {17}},
 {MNDISCARDS, COUNTER, RONLY, var_mip, 1, {18}}
};

/**
 * FOREIGN AGENT VARIABLE *
 **/

struct variable20 fa_variables[] = {
 {FACOALIST,IPADDRESS, RONLY, var_mipEntry, 3, {1, 1, 1}},
 {FAREGMN, IPADDRESS, RONLY, var_mipEntry, 3, {2, 1, 1}},
 {FAREGHA, IPADDRESS , RONLY, var_mipEntry, 3, {2, 1, 2}},
 {FAREGREQTS, INTEGER, RONLY, var_mipEntry, 3, {2, 1, 3}},
 {FAREGREPLTS, INTEGER, RONLY, var_mipEntry, 3, {2, 1, 4}},
 {FAREGLIFETIME, INTEGER, RONLY, var_mipEntry, 3, {2, 1, 5}},
 {FAPENDREGMN, IPADDRESS, RONLY, var_mipEntry, 3, {3, 1, 1}},
 {FAPENDREGHA, IPADDRESS , RONLY, var_mipEntry, 3, {3, 1, 2}},
 {FAADVSEQNO, INTEGER, RONLY, var_mip, 1, {4}},
 {FAADVFLAGS, BITSTRING, RONLY, var_mip, 1, {5}},
 {FAADVTS, INTEGER, RONLY, var_mip, 1, {6}},
 {FAADVCOUNT, COUNTER, RONLY, var_mip, 1, {7}},
 {FASOLADDR, IPADDRESS, RONLY, var_mip, 1, {8}},
 {FASOLTS, INTEGER, RONLY, var_mip, 1, {9}},
 {FASOLCOUNT, COUNTER, RONLY, var_mip, 1, {10}},
 {FAERRRECADDR, IPADDRESS, RONLY, var_mip, 1, {11}},
 {FAERRRECCODE, INTEGER, RONLY, var_mip, 1, {12}},
 {FAERRRECTS, INTEGER, RONLY, var_mip, 1, {13}},
 {FAERRRECCOUNT, COUNTER, RONLY, var_mip, 1, {14}},
 {FAERRSENTADDR, IPADDRESS, RONLY, var_mip, 1, {15}},
 {FAERRSENTCODE, INTEGER, RONLY, var_mip, 1, {16}},
 {FAERRSENTTS, INTEGER, RONLY, var_mip, 1, {17}},
 {FAERRSENTCOUNT, COUNTER, RONLY, var_mip, 1, {18}},
 {FAAUTHCOUNT, COUNTER, RONLY, var_mip, 1, {19}},
 {FAREGREQSREC, COUNTER, RONLY, var_mip, 1, {20}},
 {FADECAPS, COUNTER, RONLY, var_mip, 1, {21}},
 {FADISCARDS, COUNTER, RONLY, var_mip, 1, {22}}
};

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 105

/**
 * HOME AGENT VARIABLE *
 **/

struct variable20 ha_variables[] = {
 {HABINDINGMN, IPADDRESS, RONLY, var_mipEntry, 3, {1, 1, 1}},
 {HABINDINGCOA, IPADDRESS, RONLY, var_mipEntry, 3, {1, 1, 2}},
 {HABINDINGLIFETIME, INTEGER, RONLY, var_mipEntry, 3, {1, 1, 3}},
 {HABINDINGFLAGS, BITSTRING, RONLY, var_mipEntry, 3, {1, 1, 4}},
 {HAAUTHNODELIST, IPADDRESS, RONLY, var_mipEntry, 3, {2, 1, 1}},
 {HAADVSEQNO, INTEGER, RONLY, var_mip, 1, {3}},
 {HAADVFLAGS, BITSTRING, RONLY, var_mip, 1, {4}},
 {HAADVTS, INTEGER, RONLY, var_mip, 1, {5}},
 {HAADVCOUNT, COUNTER, RONLY, var_mip, 1, {6}},
 {HASOLADDR, IPADDRESS, RONLY, var_mip, 1, {7}},
 {HASOLTS, INTEGER, RONLY, var_mip, 1, {8}},
 {HASOLCOUNT, COUNTER, RONLY, var_mip, 1, {9}},
 {HAERRADDR, IPADDRESS, RONLY, var_mip, 1, {10}},
 {HAERRCODE, INTEGER, RONLY, var_mip, 1, {11}},
 {HAERRTS, INTEGER, RONLY, var_mip, 1, {12}},
 {HAERRCOUNT, COUNTER, RONLY, var_mip, 1, {13}},
 {HAAUTHCOUNT, COUNTER, RONLY, var_mip, 1, {14}},
 {HAREGREQSREC, COUNTER, RONLY, var_mip, 1, {15}},
 {HAENCAPS, COUNTER, RONLY, var_mip, 1, {16}},
 {HABROADSCASTSREC, COUNTER, RONLY, var_mip, 1, {17}},
 {HABROADCASTSSENT, COUNTER, RONLY, var_mip, 1, {18}}
};

/**
 * MIP TYPE VARIABLE *
 **/
struct variable11 miptype_variables[] = {
 {MIPTYPE, BITSTRING, RONLY, var_miptype, 0, {1}}

 /*
 * Sorry about the bad code but I hade to set a 0 length
 * feild to be able to construct the subtree in a correct
 * manner
 */
};

struct subtree subtrees[] = {
{{MOBILENODE}, 9, (struct variable *)mn_variables,
 sizeof(mn_variables)/sizeof(*mn_variables),
 sizeof(*mn_variables)},
{{FOREIGNAGENT}, 9, (struct variable *)fa_variables,
 sizeof(fa_variables)/sizeof(*fa_variables),
 sizeof(*fa_variables)},
{{HOMEAGENT}, 9, (struct variable *)ha_variables,
 sizeof(ha_variables)/sizeof(*ha_variables),
 sizeof(*ha_variables)},
{{MIP_MIB, 4}, 9, (struct variable *)miptype_variables,
 sizeof(miptype_variables)/sizeof(*miptype_variables),
 sizeof(*miptype_variables)}

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 106

};

B.3.2 mipmib.c
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <errno.h>
#include <sys/uio.h>

#include “asn1.h”
#include “mipmib.h”
#include “snmp_impl.h”
#include “snmp_vars.h”

#define TIMEOUT -133
/**
 * CONNECT_MIPD *
 **/
int connect_mipd();

/**
 * snmp_addr is the IP address to which snmpd should send *
 * it’s requests to the mipd. The default value is loopback.*
 * It can be changed by running snmpd with the switch *
 * -ma A.B.C.D. *
 **/
u_long snmp_addr = htonl(INADDR_LOOPBACK);

/**
 * snmp_port is the port on which the mipd is waiting for a *
 * connection request from us. It can be changed by *
 * starting snmpd with option -mp n, where n is a new port. *
 **/
u_short snmp_port = htons(0xffd3); /* 65491 */

/**
 * The socket to the mipd. *
 **/
static int MIPsock = -1;

/**
 * The number of seconds between retransmits. The default *
 * value is 1. *
 **/
int TimeOutTime = 1;

/**
 * The number of times a request is retransmitted to the *
 * mipd. The default value is 1. Note that the manager *
 * might retransmitting it’s requests to us which will make *
 * us send another packet to the mipd. *
 **/
int NumOfRetrans = 1;

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 107

static u_long longreturn;

/**
 * LOOKUP FUNCTIONS *
 **/

/**
 * VAR_MIP *
 **/
u_char *var_mip(vp, name, length, exact, var_len, write_method)
 register struct variable *vp; /* IN - pointer to variable entry that
points here */
 register oid *name; /* IN/OUT - input name requested, output name
found */
 register int *length; /* IN/OUT - length of input and output oid’s */
 int exact; /* IN - TRUE if an exact match was
requested. */
 int *var_len; /* OUT - length of variable or 0 if
function returned. */
 int (**write_method)(); /* OUT - pointer to function
to set variable, otherwise 0 */
{
 oid newname[MAX_NAME_LEN];
 int result;
 int ret,retransmits;
 unsigned char flagsret[3];

 retransmits = 0;

 /*
 * Copy the name from the variable (vp->name) to newname.
 * Set the last id to zero (get the instance).
 * If an exact match is required and not found or if the requested
 * oid id longer than any we no of return NULL.
 * Else copy newname (including the trailing zero) to name,
 * set the right length and switch on the magic number to fetch
 * the correct value for the requested variable
 */

 bcopy((char *)vp->name, (char *)newname, (int)vp->namelen *
sizeof(oid));
 newname[10] = 0;
 result = compare(name, *length, newname, (int)vp->namelen + 1);
 if ((exact && (result != 0)) || (!exact && (result >= 0)))

return NULL;
 bcopy((char *)newname, (char *)name, ((int)vp->namelen + 1) *
sizeof(oid));
 *length = vp->namelen + 1;
 write_method = 0; / There is no write_method() for the mip_vars */

 /*
 * Send an request to the mipd and await a response. If GetResp timesout
 * retransmit NumOfRetrans times and then give up.
 */

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 108

 do {
if (SendReq(1, vp->magic, exact, 0, NULL, NULL, NULL)<0)
 /* Failed to send a read request to the mipd */
 return NULL;
switch (vp->magic) {
case MNADVFLAGS:
case FAADVFLAGS:
case HAADVFLAGS:
 if ((ret = GetResp(NULL, &flagsret[1], 0, NULL)) == 0){

*var_len = sizeof(flagsret);
/* Return the received value */
return flagsret;

 }
 else

retransmits++;
 break;
default:
 if ((ret = GetResp(NULL, &longreturn, 0, NULL)) == 0) {

*var_len = sizeof(longreturn);
longreturn = ntohl(longreturn);
/* Return the received value */
return (u_char *)&longreturn;

 }
 else

retransmits++;
}

 } while ((retransmits < NumOfRetrans) && (ret == TIMEOUT));
 if (ret < 0)

/* We didn’t get a response from mipd. */
return NULL;

};

/**
 * VAR_MIPTYPE *
 **/
u_char *var_miptype(vp, name, length, exact, var_len, write_method)
 register struct variable *vp; /* IN - pointer to variable entry that
points here */
 register oid *name; /* IN/OUT - input name requested, output name
found */
 register int *length; /* IN/OUT - length of input and output oid’s */
 int exact; /* IN - TRUE if an exact match was
requested. */
 int *var_len; /* OUT - length of variable or 0 if
function returned. */
 int (**write_method)(); /* OUT - pointer to function
to set variable, otherwise 0 */
{
 oid newname[MAX_NAME_LEN];
 int result;
 u_char typeret[2];
 int ret,retransmits;
 retransmits = 0;

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 109

 bcopy((char *)vp->name, (char *)newname, (int)vp->namelen *
sizeof(oid));
 newname[9] = 0;
 result = compare(name, *length, newname, (int)vp->namelen + 1);
 if ((exact && (result != 0)) || (!exact && (result >= 0)))

return NULL;
 bcopy((char *)newname, (char *)name, ((int)vp->namelen + 1) *
sizeof(oid));
 *length = vp->namelen + 1;
 *write_method = 0;

 if (SendReq(1, vp->magic, exact, 0, NULL, NULL, NULL)<0)
/* Failed to send data to mipd. */
return NULL;

 if (GetResp(NULL, &typeret[1], NULL, NULL)<0)
/* mipd sent an error */
return NULL;

 *var_len = sizeof(typeret);
 return typeret;
};

/**
 * VAR_MIPENTRY *
 **/
u_char *var_mipEntry(vp, name, length, exact, var_len, write_method)
 register struct variable *vp; /* IN - pointer to variable entry that
points here */
 register oid *name; /* IN/OUT - input name requested, output name
found */
 register int *length; /* IN/OUT - length of input and output oid’s */
 int exact; /* IN - TRUE if an exact match was
requested. */
 int *var_len; /* OUT - length of variable or 0 if
function returned. */
 int (**write_method)(); /* OUT - pointer to function
to set variable, otherwise 0 */
{
 int ret,retransmits;
 unsigned char flagsret[2];

 retransmits = 0;
 write_method = 0;

 do {
if (SendReq(1, vp->magic, exact, vp->namelen, vp->name, *length,

name)<0)
 /* Failed to send a read request to the mipd */
 return NULL;
switch (vp->magic) {
case MNREGFLAGS:
case MNPENDREGFLAGS:
case HABINDINGFLAGS:
 if ((ret = GetResp(NULL, &flagsret[1], length, name)) == 0){

*var_len = sizeof(flagsret);
/* Return the received value */

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 110

return flagsret;
 }
 else

retransmits++;
 break;
default:
 if ((ret = GetResp(NULL, &longreturn, length, name)) == 0) {

*var_len = sizeof(longreturn);
longreturn = ntohl(longreturn);
/* Return the received value */
return (u_char *)&longreturn;

 }
 else

retransmits++;
}

 } while ((retransmits < NumOfRetrans) && (ret == TIMEOUT));
 if (ret < 0)

/* We didn’t get a response from mipd. */
return NULL;

};

/**
 * CONNECT_MIPD *
 **/
/**
 * This function is called in snmpd.c and opens a UDP socket*
 * for the communikation with the mipd. The address to the *
 * mipd is given by snmp_addr, and the post number by *
 * snmp_port. *
 **/
int
connect_mipd()
{
 int test;
 struct sockaddr_in sin;

 fprintf(stderr,”\nOpening mipd socket ...\n”);
 if ((MIPsock = socket(PF_INET, SOCK_DGRAM, 0)) < 0) {

fprintf(stderr,”Can’t create socket\n”);
return -1;

 }
 bzero((char *)&sin, sizeof(sin));
 sin.sin_addr.s_addr = snmp_addr;
 sin.sin_family = AF_INET;
 sin.sin_port = snmp_port;
 if (connect(MIPsock,(struct sockaddr *)&sin, sizeof(sin))<0) {

fprintf(stderr,”Couldn’t connect to mipd\n”);
return -1;

 }
 fprintf(stderr,”Done!\n”);
 return 0;
};

/**

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 111

 * SENDREQ *
 **/
/**
 * First, build a readpacket containing (in order) the R/W *
 * value, the magic value, the exact value and the clength *
 * value. If current != NULL include it next in the packet. *
 * If current is not NULL also put in the rlength and the *
 * requested OID (request). *
 * When the packet is done, send it to MIPsock. *
 **/
int
SendReq(rw, magic, exact, clength, current, rlength, request)
u_char rw; /* Read = 1, Write = 2 */
u_char magic;
u_char exact;
u_char clength; /* Lenght of current */
oid *current; /* The vp->name value */
u_char rlength; /* Length of the request OID */
oid *request; /* The requested oid */
{
 char buf[150];
 char *bufp,*cp;
 struct iovec iov[6];
 int i,j,len;
 oid temp;

 bufp = buf;
 bufp[0] = rw;
 bufp[1] = magic;
 bufp[2] = exact;
 bufp[3] = clength * sizeof(oid);
 bufp += 4;
 len = 4;
 if (current != NULL) {

for (i=0;i<clength;i++) {
 (long)temp = htonl((long)current[i]);
 cp = (char *)&temp;
 for (j=0;j<4;j++) {

*bufp++ = *cp++;
 }
}
len += (clength * sizeof(oid));
*bufp++ = rlength * sizeof(oid);
len++;
for (i=0;i<rlength;i++) {
 temp = htonl(request[i]);
 cp = (char *)&temp;
 for (j=0;j<4;j++) {

*bufp++ = *cp++;
 }
}
len += (rlength * sizeof(oid));

 }
 if (write(MIPsock,buf,len)<=0) {

/* Couldn’t write to MIPsock. */

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 112

return -1;
 }
 /* Successful write */
 return 0;
}

/**
 * GETRESP *
 **/
/**
 * Wait TimeOutTime seconds for an answer from mipd. If non *
 * is received, return TIMEOUT. If a packet is returned form*
 * mipd, first check the error value. If error is not zero *
 * the packet will only contain the error value, there fore *
 * just return the error. If on the other hand error is *
 * zero, get the length feild of the returned value is read.*
 * If the caller of GetResp is interested in the length of *
 * the return value uppdate *vlength. Then read valuelength *
 * bytes from the packet into *value. Get the found OID *
 * length. If it is non zero get the OID and uppdate *
 * olength and oidfound. *
 **/
int
GetResp(vlength, value, olength, oidfound)
u_char *vlength; /* OUT--The lenght of the value feild in bytes */
void *value; /* OUT--The variable requested */
int *olength; /* OUT--The length of the returned oid */
oid *oidfound; /* OUT--The oid returned */
{
 u_char buf[150]; /* This means that value can not be bigger than 64 bytes
*/
 char error;
 u_char valuelength;
 u_char oidlength;
 u_char *bufp;
 int len,i; /* Debug */
 fd_set readfds;
 struct timeval timeout;

 FD_ZERO(&readfds);
 FD_SET(MIPsock,&readfds);
 timeout.tv_sec = TimeOutTime;
 timeout.tv_usec = 0;

 if (select(FD_SETSIZE, &readfds, NULL, NULL, &timeout)>0) {
if ((len =read(MIPsock, buf, sizeof(buf)))<=0) {
 /* Couldn’t read from MIPsock. */
 perror(“GetResp”);
 return -1;
}
bufp = buf;
if ((error = (int)bufp[0])<0) {
 return (int)error;
}
else {

The SNMP code

Implementation and Analyses of the Mobile-IP Protocol 113

 valuelength = bufp[1]
 if (vlength != NULL)

vlength = valuelength; / If the length of the return
value is of interest */

 bufp += 2;
 bcopy((char *)bufp, (char *)value, valuelength);

 bufp += valuelength;
 oidlength = bufp[0];
 if (oidlength != 0) {

*olength = oidlength/4;
bufp += 1;
bcopy((char *)bufp, (char *)oidfound, oidlength);

 }
}
/* Successful read */
return 0;

 }
 /* Eighter an error on the socker or a timeout */
 return TIMEOUT;
}

The Solaris Code

Implementation and Analyses of the Mobile-IP Protocol 114

Appendix C The Solaris Code

In this appendix the important changes to the Mobile-IP code done for the Solaris
port is included.

C.1 dlpi.c

#include “targetdefs.h”
#include “absiface.h”
#include “absmem.h”
#include “abstimer.h”
#include “dlpi.h”
#include “mbuf.h”
#include “packet.h”
#include “enet.h”
#include <stdio.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/stropts.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <sys/dlpi.h>
#include <sys/pfmod.h>
#include “dltest.h”
#include “internet.h”
#include “ip.h”
#include “arp.h”
#include “os.h”
#include <sys/fcntl.h>

#define EADDR_LEN6
#define ETHERLEN 14
#define DLPI_DEVDIR “/dev/”

extern int SNMP_socket;
extern void snmpHandleReq();

static char Ether_bdcst[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };

dlpiAttach(unsigned char *hwaddr, generic_iface_t gifp)
{
 struct strioctl si;
 struct ifreq ifr;
 int fd,i;
 struct dlpi_if *dlpip;
 struct iface_os *os;

 long buf[MAXDLBUF]; /* aligned on long */
 int ppa;
 int sap;
 union DL_primitives *dlp;
 struct packetfilt pf;

The Solaris Code

Implementation and Analyses of the Mobile-IP Protocol 115

 register u_short *fwp = pf.Pf_Filter;
 struct strbuf data;
 int flags;
 char *p, devname[512], *device;

 sap = 0;
 device = gifp->szName;

 /*
 * Split the device name into type and unit number.
 * Won`t work for devicenumbers larger than 9.
 */
 if ((p = (char *)strpbrk(device, “0123456789”)) == NULL) {
 fprintf(stderr,”No such device: %s\n”,device);
 exit(1);
 }

 strcpy(devname, DLPI_DEVDIR);
 strncat(devname, device, p - device);
 ppa = atoi(p);

 if((fd = open(devname, O_RDWR)) == -1) {
 fprintf(stderr,”Can’t open %s\n”,devname);
 exit(1);
 }
 /* Init all datastructures. */
 os = (struct iface_os *) gifp->os;
 os->link = LINK_ETHER;

 dlpip = (struct dlpi_if *) DALLOC(sizeof(struct dlpi_if));

 bcopy(hwaddr, os->hwaddr, EADDR_LEN);
 dlpip->sock = fd;
 os->low_os = (void *) dlpip;

 /* Attach. */
 dlattachreq(fd, ppa);
 dlokack(fd, buf);

 /* Receive all SAP`s */
 dlpromisconreq(fd, DL_PROMISC_SAP);
 dlokack(fd, buf);
 /* Receive all ether-addresses */
 dlpromisconreq(fd, DL_PROMISC_PHYS);
 dlokack(fd, buf);

 /* Bind. */
 dlbindreq(fd, sap, 0, DL_CLDLS, 0, 0);
 dlbindack(fd, buf);

#ifdef 0
 /* Couldn`t get the filter working. */

The Solaris Code

Implementation and Analyses of the Mobile-IP Protocol 116

 /* Build filter. */
 for (i=0; i<EADDR_LEN; i += 2) { /* EADDR_LEN == 6 */
 /* Check for own address */
 *fwp++ = ENF_PUSHWORD + i/2;
 *fwp++ = ENF_PUSHLIT | ENF_CAND ;
 *fwp++ = *((u_short *) &hwaddr[i]);
 }
 pf.Pf_FilterLen = fwp - &pf.Pf_Filter[0];
 if (strioctl(fd, PFIOCSETF, -1, sizeof(struct packetfilt), (char
*)&pf)<0){
 perror(“packetfilter”);
 exit(1);
 }
#endif
 /* Raw mode. */
 if (strioctl(fd, DLIOCRAW, -1, 0, NULL)<0)
 syserr(“DLIOCRAW”);

 /* Join all-hosts multicast group */
 osJoinGroup(gifp, INADDR_ALLHOSTS);

 /* Flush the read side of the Stream. */
 if (ioctl(fd, I_FLUSH, FLUSHR) < 0)
 syserr(“I_FLUSH”);
 return fd;
}

int
dlpiInput(generic_iface_t *gifpp, unsigned char *buf, int len, int
timeout)
{
 struct strbuf data;
 struct dlpi_if *dlpip;
 struct iface_os *os;
 mcast_t mcast;
 fd_set readfds;
 generic_iface_t gifp;
 int res, flags,i;
 struct timeval tim, *tp;

 if(timeout > 0) {
 tim.tv_sec = timeout;
 tim.tv_usec = 0;
 tp = &tim;
 } else
 tp = (struct timeval *) NULL;

 FD_ZERO (&readfds);

 /* Add all DLPI descriptors to the file descriptor set */
 gifp = get_first_iface();
 while(gifp != (generic_iface_t) NULL) {
 os = (struct iface_os *) gifp->os;
 if(os->low_os != NULL) {

The Solaris Code

Implementation and Analyses of the Mobile-IP Protocol 117

 dlpip = (struct dlpi_if *) os->low_os;
 FD_SET(dlpip->sock, &readfds);
 }
 gifp = get_next_iface(gifp);
 }

 /* Add the SNMP_socket to the file descriptor set */
 FD_SET(SNMP_socket, &readfds);

 /* wait for an incoming packet */
 if(select(FD_SETSIZE, &readfds, NULL, NULL, tp) > 0) {
 /* find which on which file descriptor there is an available packet */
 gifp = get_first_iface();
 while(gifp != (generic_iface_t) NULL) {
 os = (struct iface_os *) gifp->os;
 if(os->low_os != NULL) {

dlpip = (struct dlpi_if *) os->low_os;
if(FD_ISSET(dlpip->sock, &readfds)) {
 data.buf = buf;
 data.maxlen = len;
 data.len = 0;
 flags = 0;
 res = getmsg(dlpip->sock, NULL, &data, &flags);
 if (res == -1)
 perror(“getmsg”);

 /* Process the packet. */
 /* Since I didn’t manage to get the filter working,
 * we must check the destination address.
 */
 if ((bcmp(data.buf,os->hwaddr, EADDR_LEN)==0) || (data.buf[0] & 1))

{
 *gifpp = gifp;
 return data.len;
 }
}

 }
 gifp = get_next_iface(gifp);
 }
 if(FD_ISSET(SNMP_socket, &readfds))
 /* Received something on the SNMP_socket */
 snmpHandleReq();

 /* Received something else? */
 return 0;
 }
 /* We were interrupted, probably by SIGALRM */
 return -1;
}

/* Send raw packet (caller provides header) */
void
dlpiSendRaw(generic_iface_t gifp, unsigned char *pbuf, int len)
{
 struct strbuf proto, data;

The Solaris Code

Implementation and Analyses of the Mobile-IP Protocol 118

 struct sockaddr sock;
 struct dlpi_if *dlpip;
 struct iface_os *os;

 os = (struct iface_os *) gifp->os;
 dlpip = (struct dlpi_if *) os->low_os;

 if (write(dlpip->sock, pbuf, len)<0)
 perror(“write”);
}

The MINT Code

Implementation and Analyses of the Mobile-IP Protocol 119

Appendix D The MINT Code

In this appendix the important changes to the Mobile-IP code done for the MINT
port is included.

D.1 lowbpf.c

#include <stdio.h>
#include <mach.h>
#include <cthreads.h>
#include <errno.h>
#include <mach_init.h>
#include <mach_error.h>
#include <device/device.h>
#include <device/bpf.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/udp.h>
#include <netinet/if_ether.h>
#include <arpa/inet.h>
#include <netdb.h>
#include “absiface.h”
#include “absmem.h”
#include “abstimer.h”
#include “lowbpf.h”
#include “targetdefs.h”
#include “mbuf.h”
#include “enet.h”
#include “internet.h”
#include “ip.h”
#include “arp.h”
#include “os.h”

/* Link level protocol identifiers for use in the packet header */
#define LINK_NONE 0 /* No link level header, assuming IP */
#define LINK_ETHER 1 /* 14 byte Ethernet header */
#define LINK_INTERNAL 2 /* Internal Ethernet link to upper engine
*/

#ifndef BUFSIZE
#define BUFSIZE 1024
#endif

#define MSG_TIMEOUT 500

#define MAX_NUM_IFACES 16

#define TURN_PROMISC_OFF 0
#define TURN_PROMISC_ON 1

The MINT Code

Implementation and Analyses of the Mobile-IP Protocol 120

extern int SNMP_socket;

struct iface
{
 char name[IFNAMSIZ];
 struct in_addr ip_addr;
 char *mac_addr;
};

struct iface_pipe
{
 mach_port_t input_port;
 mach_port_t output_port;
};

struct iface *get_iface_info();
void hex_dump();
/*
 * bpfAttach
 */
bpfAttach(unsigned char *hwaddr, generic_iface_t gifp)
{
 mach_port_t filter_port;
 mach_port_t if_port = MACH_PORT_NULL;
 struct iface_pipe *if_pipe;
 char *ip_addr_str;
 kern_return_t rc;

 char *if_name;
 struct iface_os *os;

 if_name = gifp->szName;
 if (open_interface(if_name, &if_port))

{
 fprintf(stderr, “Unable to open interface <%s>, aborting...\n”,

if_name);
 exit(1);
}

 if (config_interface(if_name, if_port, TURN_PROMISC_ON))
{
 fprintf(stderr, “Unable to configure interface <%s>.\n”,

 if_name);
 exit(1);
}

 if (config_filter(if_port, &filter_port, hwaddr))
{
 fprintf(stderr, “Unable to configure filter for port 1 (%s).\n”,

 if_name);
 exit(1);
}

 os = (struct iface_os *)gifp->os;
 os->link = LINK_ETHER;

The MINT Code

Implementation and Analyses of the Mobile-IP Protocol 121

 bcopy(hwaddr, os->hwaddr, EADDR_LEN);
 if_pipe = (struct iface_pipe *)DALLOC(sizeof(struct iface_pipe));
 if_pipe->input_port = filter_port;
 if_pipe->output_port = if_port;
 os->low_os = (void *) if_pipe;

 osJoinGroup(gifp, INADDR_ALLHOSTS);
}
/*
 * open_interface
 */
int open_interface(char *if_name, mach_port_t *if_port)
{
 struct iface *if_1;
 struct net_status if_stat;
 natural_t if_stat_count;
 mach_port_t device_port;
 kern_return_t rc;

 if ((if_1 = get_iface_info((struct in_addr *)NULL, if_name, 1)) ==
(struct iface *)NULL)

{
 fprintf(stderr, “open_interfaces(): Unable to get interface info

for <%s>\n”, if_name);
 return(1);
}

 device_port = mach_master_device_port();

 rc = device_open(device_port, D_READ, if_1->name, if_port);
 fprintf(stderr,”Opened interface if_name = %s, if_1->name =
%s\n”,if_name, if_1->name);

 if (rc != D_SUCCESS)
{
 fprintf(stderr, “open_interfaces(): device_open(%s) returned <0x%x,

%d>\n”,
 if_1->name, rc, rc);

 return(1);
}

 /*
 * Get status and address from interface.
 */

 if_stat_count = NET_STATUS_COUNT;
 rc = device_get_status(*if_port,

 NET_STATUS,
 (dev_status_t)&if_stat,
 &if_stat_count);

 if (rc != D_SUCCESS)
{
 fprintf(stderr, “open_interfaces(): device_get_status(%s) failed,

rc is <0x%x, %d>\n”,
 if_1->name, rc, rc);

The MINT Code

Implementation and Analyses of the Mobile-IP Protocol 122

 (void) device_close(*if_port);
 (void) mach_port_deallocate(mach_task_self(), *if_port);
 return (1);
}

 return(0);
}
/*
 * config_filter
 */
int config_filter(mach_port_t if_port, mach_port_t *filter_port, unsigned
char *hwaddr)
{
 kern_return_t rc;
 struct bpf_insn bpfilter[NET_MAX_BPF];
 bpf_insn_t bpfp = bpfilter;
 int idx = 0;
 static priority = 1;
 /*
 * The filter
 */

 /*
 * Allocate a new port with a send right and receive right.
 * Keep the send right and send the receive right to the proxy task.
 */
 rc = mach_port_allocate(mach_task_self(),

 MACH_PORT_RIGHT_RECEIVE,
 filter_port);

 if (rc != KERN_SUCCESS)
{
 fprintf(stderr, “config_null_filter(): mach_port_allocate():”, rc);
 (void)device_close(if_port);
 return(1);
}

 rc = mach_port_insert_right(mach_task_self(),
 *filter_port,

*filter_port,

MACH_MSG_TYPE_MAKE_SEND);
 if (rc != KERN_SUCCESS)

{
 fprintf(“config_null_filter(): mach_port_insert_right():”, rc);
 (void) mach_port_destroy(mach_task_self(), *filter_port);
 (void) device_close(if_port);
 return(1);
}

 /*
 * Build the filter
 */
 idx = 0;

The MINT Code

Implementation and Analyses of the Mobile-IP Protocol 123

 /*
 * XXX BPF type tag for kernel.
 */
 /* Since the interface fore som reason does not enter
 * promiscius mode, the below filter has not been tested
 * properly.
 */
 idx++;
 BPF_INSN_STMT(bpfp, BPF_BEGIN, 0);
 /*
 idx++;
 BPF_INSN_STMT(bpfp, BPF_LD+BPF_B+BPF_ABS, 0);
 idx++;
 BPF_INSN_JUMP(bpfp, BPF_JMP+BPF_JSET+BPF_K, 0x1, 4, 0);
 idx++;
 BPF_INSN_STMT(bpfp, BPF_LD+BPF_W+BPF_ABS, 2);
 idx++;
 BPF_INSN_JUMP(bpfp, BPF_JMP+BPF_JEQ+BPF_K, 0x0, 0, 3);
 idx++;
 BPF_INSN_STMT(bpfp, BPF_LD+BPF_H+BPF_ABS, 0);
 idx++;
 BPF_INSN_JUMP(bpfp, BPF_JMP+BPF_JEQ+BPF_K, 0x0, 0, 1);
 */
 idx++;
 BPF_INSN_STMT(bpfp, BPF_RET+BPF_K, -1);
 /*
 idx++;
 BPF_INSN_STMT(bpfp, BPF_RET+BPF_K, 0);
 */
 /* Patch */
 /* Insert our ethernet address into the right place
 * in the filter.
 */
 /*
 bcopy((char *)&hwaddr[2],(char *)&bpfilter[4].k,4);
 bcopy((char *)hwaddr,(char *)&bpfilter[6].k,2);
 */
 rc = device_set_filter(if_port,

 *filter_port,
 MACH_MSG_TYPE_MAKE_SEND,
 (priority++ %

NET_HI_PRI), /* priority */
 (filter_array_t)bpfilter,
 (idx*sizeof(struct

bpf_insn))/sizeof(filter_t));
 if (rc != D_SUCCESS)

{
 fprintf(stderr, “config_filter(): device_set_filter failed, rc is

<0x%x, %d>.\n”, rc, rc);
 return(rc);
}

 return(0);
}
/*

The MINT Code

Implementation and Analyses of the Mobile-IP Protocol 124

 * get_interface_info
 */
struct iface *get_iface_info(iface_ip_addr, iface_name_str, how)
struct in_addr *iface_ip_addr;
char *iface_name_str;
int how;
{
 struct ifconf ifc;
 struct ifreq *ifr;
 struct iface *ifp;
 struct sockaddr_in netaddr;
 struct sockaddr_in *saddr;
 int s, i;

 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
{
 fprintf(stderr, “get_iface_info(): Error, socket() returned

<%d>.\n”, s);
 return((struct iface *)NULL);
}

 if ((ifc.ifc_buf = (caddr_t)malloc(MAX_NUM_IFACES * sizeof(struct
ifreq))) == (caddr_t)NULL)

{
 fprintf(stderr, “get_iface_info(): Error, malloc(%d) failed!\n”,

(MAX_NUM_IFACES * sizeof(struct ifreq)));
 return((struct iface *)NULL);
}

 ifc.ifc_len = MAX_NUM_IFACES * sizeof(struct ifreq);

 if (ioctl(s, SIOCGIFCONF, (caddr_t)&ifc) < 0)
{
 fprintf(stderr, “get_iface_info(): ioctl(%d, SIOCGIFCONF) failed,

errno is <%d>\n”,
 s, errno);

 return((struct iface *)NULL);
}

 ifr = ifc.ifc_req;

 for (i=0; i < MAX_NUM_IFACES; i++)
if (!strncmp(iface_name_str, ifr[i].ifr_name, IFNAMSIZ))
 break;

 if (i == MAX_NUM_IFACES)
{
 fprintf(stderr, “get_iface_info(): ran out of interfaces...\n”);
 return((struct iface *)NULL);
}

 if ((ifp = (struct iface *)malloc(sizeof(struct iface))) == (struct
iface *)NULL)

{

The MINT Code

Implementation and Analyses of the Mobile-IP Protocol 125

 fprintf(stderr, “get_iface_info(): Error, malloc(%d) failed!\n”,
sizeof(struct iface));

 return((struct iface *)NULL);
}

 strncpy(ifp->name, ifr[i].ifr_name, IFNAMSIZ);

 saddr = (struct sockaddr_in *)&(ifr[i].ifr_addr);
 bcopy((char *)&(saddr->sin_addr), (char *)&(ifp->ip_addr), sizeof(struct
in_addr));

 return(ifp);
}
/*
 * config_interface
 */
int config_interface(char *iface, mach_port_t iport, int promisc_flag)
{
 int s;
 struct ifreq ifr;

 /*
 * turn on promiscuous mode...
 */
 {

struct net_status if_stat;
natural_t if_stat_count;
kern_return_t rc;

if_stat_count = NET_STATUS_COUNT;
rc = device_get_status(iport,

 NET_STATUS,
 (dev_status_t)&if_stat,
 &if_stat_count);

if (rc != D_SUCCESS)
 {

fprintf(stderr, “config_interface(): Oops,
device_get_status(%s) failed, rc is <0x%x, %d>\n”,

 iface, rc, rc);
return (1);

 }

if (!(if_stat.flags & IFF_UP))
 {

fprintf(stderr, “config_interface(): Interface <%s> isn’t
up, aborting.\n”,

 iface);
return(1);

 }

printf(“Interface status = <0x%x>\n”, if_stat.flags);
printf(“Setting promiscuous mode...\n”);

if (promisc_flag)
 if_stat.flags |= IFF_PROMISC;

The MINT Code

Implementation and Analyses of the Mobile-IP Protocol 126

else
 if_stat.flags &= ~IFF_PROMISC;

printf(“Setting Interface status = <0x%x>\n”,if_stat.flags);

if_stat_count = NET_STATUS_COUNT;
rc = device_set_status(iport,

 NET_STATUS,
 (dev_status_t)&if_stat,
 if_stat_count);

if (rc != D_SUCCESS)
 {

fprintf(stderr, “config_interface():
device_get_status(%s) failed, rc is <0x%x, %d>\n”,

 iface, rc, rc);
return (1);

 }

if_stat_count = NET_STATUS_COUNT;
rc = device_get_status(iport,

 NET_STATUS,
 (dev_status_t)&if_stat,
 &if_stat_count);

if (rc != D_SUCCESS)
 {

fprintf(stderr, “device_get_status(%s) failed, rc is
<0x%x, %d>\n”,

 iface, rc, rc);
return (1);

 }
printf(“Interface status = <0x%x>\n”,if_stat.flags);

 }

 return(0);
}
/*
 * bpfInput
 */
int bpfInput(generic_iface_t *gifpp, unsigned char *buf, int timeout)
{
 struct bpf_if *bpfp;
 struct iface_os *os;
 generic_iface_t gifp;
 int res;
 struct timeval tim, *tp;
 mcast_t mcast;
 struct iface_pipe *if_pipe;
 static struct net_rcv_msg msg_buf;
 register net_rcv_msg_t msg;
 mach_msg_size_t max_msg_size = NET_RCV_MAX;
 kern_return_t kr;
 int len, data_len;
 u_char *header;

 msg = &msg_buf;

The MINT Code

Implementation and Analyses of the Mobile-IP Protocol 127

 gifp = get_first_iface();
 while (gifp != (generic_iface_t)NULL) {

os = (struct iface_os *)gifp->os;
if (os->low_os != NULL) {
 if_pipe = (struct iface_pipe *)os->low_os;
 kr = mach_msg(&msg->msg_hdr, (MACH_RCV_MSG | MACH_RCV_TIMEOUT),

0, max_msg_size,
if_pipe->input_port,
timeout, MACH_PORT_NULL);

 if (kr == MACH_MSG_SUCCESS) {
/* copy packet header to buf */
bcopy((char *)msg->header, buf, ETHERLEN);

/* copy packet data to buf */
data_len = msg->packet_type.msgt_number - sizeof(struct

packet_header);
bcopy((char *)msg->packet+sizeof(struct packet_header),

buf+ETHERLEN, data_len);

len = ETHERLEN+data_len;

if (*(char *)buf & 0x1) {
 /* broadcast or multicast */
 if(!bcmp(Ether_bdcst, buf, EADDR_LEN)) {

/* accept broaddcast packets */
*gifpp = gifp;
fprintf(stderr,”Broadcast\n”);
return len;

 }
 mcast = os->groups;
 while(mcast != (mcast_t) NULL) {

/* accept multicast packet, if we are member */
if(!bcmp(mcast->hwaddr, buf, EADDR_LEN)) {
 *gifpp = gifp;
 return len;
}
mcast = mcast->next;

 }
} else {
 /* Accept packet addressed to unicast address */
 *gifpp = gifp;
 fprintf(stderr,”Unicast\n”);
 return len;
}

 } else
return 0;

}
gifp = get_next_iface(gifp);

 }
}
/*
 * bpfSendRaw
 */
void bpfSendRaw(generic_iface_t gifp, unsigned char *pbuf, int len)
{

The MINT Code

Implementation and Analyses of the Mobile-IP Protocol 128

 struct iface_os *os;
 struct iface_pipe *if_pipe;
 kern_return_t kr;

 fprintf(stderr,”bpfSendRaw() on iface %s\n”,gifp->szName);
 hex_dump(pbuf,len);
 os = (struct iface_os *)gifp->os;
 if_pipe = (struct iface_pipe *)os->low_os;
 kr = device_write_request(if_pipe->output_port, MACH_PORT_NULL,

0, 0,
(char *)pbuf,
len);

 if (kr != KERN_SUCCESS)
fprintf(stderr, “bpfSendRaw(): Warning, device_write_request failed,

kr is <0x%x>\n”, kr);
}

int
check_snmp(int timeout)
{
 fd_set readfds;
 int res, flags;
 struct timeval tim, *tp;

 if(timeout > 0) {
 tim.tv_sec = 0;
 tim.tv_usec = timeout;
 tp = &tim;
 } else
 tp = (struct timeval *) NULL;
 FD_ZERO (&readfds);
 /* Add the SNMP_socket to the file descriptor set */
 FD_SET(SNMP_socket, &readfds);
 /* wait for an incoming packet */
 if(select(FD_SETSIZE, &readfds, NULL, NULL, tp) > 0) {

if(FD_ISSET(SNMP_socket, &readfds)) /* Not needed but... */
 /* Received something on the SNMP_socket */
 snmpHandleReq();
return 0;

 }
 /* We were interrupted, probably by SIGALRM */
 return -1;
}

State diagrams

Implementation and Analyses of the Mobile-IP Protocol 129

Appendix E State diagrams

This appendix includes the state machines of the different entities in the Mobile-IP
specification giving a more complete view of how the protocol works. In the
diagrams only messages that results in a state change are present. Other legal
transitions are possible, but they would not effect the state of the system.

The following definitions are used: rec() means that the entity receives a message,
send() that it sends one and forw() that it forwards the message to another entity.
State transitions with other types of labels are transitions where no messages are
sent. The types of messages are:

• adv - agent advertisement

• sol - agent solicitation

• req - registration request

• rep - reply (positive or negative)

• PosRep - positive reply

• NegRep - negative reply

• DeReg - deregistration request

• pckt - any packet that is not directly part of the protocol

• Breq - broadcast registration request

• Bcast - broadcast/multicast packet

E.1 The Home Agent

This is the state diagram describing the behaviour of the Home Agent.

Figure 28. State diagram describing the Home Agent

rec(sol)

43

1 2

send(rep)

rec(req)

Sent all
messages

rec(Bcast)

send(pckt)

rec(msg)

send(msg) send(adv)

send(adv)

0

State diagrams

Implementation and Analyses of the Mobile-IP Protocol 130

The transition between 2 and 0 calledSent all messages indicates that the Home
Agent has sent the broadcast message to all Mobile Nodes that requested broadcast
messages in their registration as described in section 8.6 of the Mobile-IP
specification [5].

E.2 The Foreign Agent

Figure29 shows the state diagram for the Foreign Agent.

State State description

0 The Home Agent is waiting for messages to respond to, or it can send
agent advertisements.

1 The HA received a registration request, decides whether to accept the
request or not and sends the corresponding reply to the FA or MN.

2 A broadcast packet is received on the home network. The HA
encapsulates the packet and sends it to all MNs that has requested that
service.

3 A packet is received that has to be encapsulated and sent to one of the
Home Agent’s Mobile Nodes.

4 An agent solicitation is received, and an agent advertisement is sent.

Table 18: State description of the Home Agent

Figure 29. Statediagram describing the Foreign Agent

2

13

4

5

rec(req)

send(NegRep)

forw(req)

0
rec(pckt)

forw(pckt)

rec(rep)

forw(rep)

send(NegRep)

rec(ICMP-error)

re
c(

so
l)

se
nd

(a
dv

)

send(adv)

Silent discard

Unknown ID

State diagrams

Implementation and Analyses of the Mobile-IP Protocol 131

State State description

0 The Foreign Agent is waiting for messages to respond to, or it can send
agent advertisements.

1 The FA has received a registration request from a MN and has to decide
whether to accept the request or not. In the former case it forwards the
request to the HA and in the latter case it sends a negative reply to the
MN.

2 The FA has received a packet that has to be encapsulated and forwarded
to a MN. If the FA knows of the MN it sends the packet there, otherwise
it silently discards the packet.

3 A registration reply is received. If the reply does not match the
registration identification of its most recent registration request to the
sender the message is silently discarded. Otherwise the reply is
forwarded to the correct MN.

4 As a result of a registration request sent to a HA an ICMP-error is
received. A reply with code 40 (unknown home agent address) is sent to
the corresponding MN.

5 The FA receives an agent solicitation and responds with an agent
advertisement.

Table 19: State description of the Foreign Agent

State diagrams

Implementation and Analyses of the Mobile-IP Protocol 132

E.3 The Mobile Node

Here is the state diagram for the Mobile Node.

Figure 30. Statediagram describing the Mobile Node

State State description

0 In this state the MN begins the process of registration. It can do one of
several things. If the MN is at its home network and doesn’t know the
address of any of its Home Agents it can send a registration request to the
directed broadcast address (and go to state 6). If the MN is visiting a
foreign network and already has obtained a care-of address it can proceed
directly to state 2. Else it waits for an agent advertisement (from a foreign
agent) or tries to get one by sending agent solicitations.

1 The MN now knows its care-of address and sends a registration request
to one of its Home Agents.

Table 20: State description of the Mobile Node

01

4

52

3

send(pckt)

rec(adv)

send(req)

se
nd

(r
eq

)

re
c(

P
os

R
ep

)

R
ep

ly
 n

ot
ac

ce
pt

ed

rec(NegRep)

Reply
accepted

send(sol)

rec(pckt)

Change/add FA
(handover)

send(DeReg)

Keep old
binding

Known
Care-of Addr

6

send(Breq)

re
c(

re
p)

send(Breq)

State diagrams

Implementation and Analyses of the Mobile-IP Protocol 133

2 The MN is now waiting for a registration reply. If it receives a negative
reply the registration process starts all over. Else it keeps sending
requests until it gets a positive reply.

3 When a positive reply is received, the MN determines whether the reply
matches the registration identification of its most recently sent
registration request to that HA. If not, the reply is silently discarded.

4 In this state the MN has got a valid registration with a HA and can send
and receive packets as usual. The send(pckt) and rec(pckt) are not part of
the Mobile-IP specification but rather there to indicate that the MN is
working.

5 For some reason the MN wants to register with a new FA. It can either
deregister with its old FA or add the new FA.

6 When the MN receives a reply from an Agent that is prepared to act as a
HA for the MN, then, since the MN must be on its home network, it can
go directly to state 4.

State State description

Table 20: State description of the Mobile Node

Mobile-IP Watcher

Implementation and Analyses of the Mobile-IP Protocol 134

Appendix F Mobile-IP Watcher

#!/usr/local/bin/wish -f

Check that the environment variable MIBFILE is set
if {[regexp MIBFILE [array names env]] == 0} {

puts “Error: You must set the environment variable MIBFILE”
exit

}

#**
Globala variabler
#**
set g(snmpwalk) “./snmpwalk”
#set g(snmpwalk) /afs/it.kth.se/home/d91/d91-fbr/mobile-ip/mib/cmu-snmp2/apps/
snmpwalk
The delay in milliseconds
set g(delay) 5000
set g(ipaddress) dumburken
set g(mnID) “.1.3.6.1.4.1.933.3.1”
set g(faID) “.1.3.6.1.4.1.933.3.2”
set g(haID) “.1.3.6.1.4.1.933.3.3”

#**
textFrame
Creates a labelled textwidget with scrollbar
Input: win - path name to a frame
title - the label above the text widget
ncols - the width of the text widget
nrows - the height of the text widget
Output: a pointer to the text widget
#**
proc textFrame {win title ncols nrows} {

label $win.l -text $title
pack $win.l -side top -fill x
frame $win.f
text $win.f.t -height $nrows -width $ncols -relief sunken -bd 2 -

yscrollcommand “$win.f.sb set”
scrollbar $win.f.sb -orient vertical -relief sunken -command “$win.f.t

yview”
pack $win.f.t -side left -fill y
pack $win.f.sb -side right -fill y
pack $win.f -side left -fill x -fill y
return $win.f.t

}

#**
Mobile Node
#**
proc mobileNode {} {

global g
wm title . “Mobile Node: $g(ipaddress)”

Mobile-IP Watcher

Implementation and Analyses of the Mobile-IP Protocol 135

frame .f
frame .f.f1
frame .f.f1.a
set varT [textFrame .f.f1.a “Variables” 40 15]
pack .f.f1.a -side top -fill y

frame .f.f1.b
set halT [textFrame .f.f1.b “Home Agent List” 40 5]
pack .f.f1.b -side top -fill y

pack .f.f1 -side left -fill y

frame .f.f2
set regT [textFrame .f.f2 “Registration Table” 40 20]
pack .f.f2 -side left -fill y

frame .f.f3
set pendRegT [textFrame .f.f3 “Pending Registration Table” 40 12]
pack .f.f3 -side left -fill y

pack .f

button .b -text Quit -pady 5 -command exit
pack .b -side bottom -fill x

update

Parsa inmatningen och skriv till de olika fonstren
while 1 {

Sudda fonster
$varT delete 0.0 end
$halT delete 0.0 end
$regT delete 0.0 end
$pendRegT delete 0.0 end

Anropa snmpwalk
catch {set vars [exec $g(snmpwalk) $g(ipaddress) noAuth $g(mnID)]}

vars

Dela upp resultatet i rader
set rowlist [split $vars \n]
foreach row $rowlist {

if {[regexp mipMN.* $row tmp]} {
set tmp [string range $tmp 6 end]
set wordlist [split $tmp .]
set key [lindex $wordlist 0]
if {$key == “mnHomeAgentList”} {

$halT insert end “[lindex $tmp 3]\n”
} elseif {$key == “mnRegTable”} {

regexp =.* $tmp tmp
$regT insert end “[lindex $wordlist 2] $tmp\n”

} elseif {$key == “mnPendRegTable”} {
regexp =.* $tmp tmp
$pendRegT insert end “[lindex $wordlist 2] $tmp\n”

} else {

Mobile-IP Watcher

Implementation and Analyses of the Mobile-IP Protocol 136

$varT insert end “$tmp\n”
}

} else {
$varT insert end “$row\n”

}
}
update
after $g(delay)

}
}

#**
Foreign Agent
#**
proc foreignAgent {} {

global g
wm title . “Foreign Agent: $g(ipaddress)”

Make windows
frame .f
frame .f.f1
frame .f.f1.a
set varT [textFrame .f.f1.a “Variables” 44 19]
pack .f.f1.a -side top -fill y

frame .f.f1.b
set coaT [textFrame .f.f1.b “Care-Of Address List” 44 5]
pack .f.f1.b -side top -fill y
pack .f.f1 -side left -fill y

frame .f.f2
set regT [textFrame .f.f2 “Registration Table” 40 0]
pack .f.f2 -side left -fill y

frame .f.f3
set pendRegT [textFrame .f.f3 “Pending Registration Table” 40 0]
pack .f.f3 -side left -fill y

pack .f

Quit-button
button .b -text Quit -command exit
pack .b -side bottom -fill x

update

while 1 {
Sudda fonster
$varT delete 0.0 end
$coaT delete 0.0 end
$regT delete 0.0 end
$pendRegT delete 0.0 end

Anropa snmpwalk

Mobile-IP Watcher

Implementation and Analyses of the Mobile-IP Protocol 137

catch {set vars [exec $g(snmpwalk) $g(ipaddress) noAuth $g(faID)]}
vars

Parsa inmatningen och skriv till de olika fonstren
set rowlist [split $vars \n]
foreach row $rowlist {

if {[regexp mipFA.* $row tmp]} {
set tmp [string range $tmp 6 end]
set wordlist [split $tmp .]
set key [lindex $wordlist 0]
if {$key == “faCOAList”} {

$coaT insert end “[lindex $tmp 3]\n”
} elseif {$key == “faRegTable”} {

regexp =.* $tmp tmp
$regT insert end “[lindex $wordlist 2] $tmp\n”

} elseif {$key == “faPendRegTable”} {
regexp =.* $tmp tmp
$pendRegT insert end “[lindex $wordlist 2] $tmp\n”

} else {
$varT insert end “$tmp\n”

}
} else {

$varT insert end “$row\n”
}

}
update
after $g(delay)

}
}

#**
Home Agent
#**
proc homeAgent {} {

global g
wm title . “Home Agent: $g(ipaddress)”

frame .f
frame .f.f1
set varT [textFrame .f.f1 “Variables” 40 0]
pack .f.f1 -side left -fill y

frame .f.f2
frame .f.f2.a
set bindT [textFrame .f.f2.a “Mobility Binding Table” 44 16]
pack .f.f2.a -side top
frame .f.f2.b
set authT [textFrame .f.f2.b “Authorized Node List” 44 4]
pack .f.f2.b -side bottom

pack .f.f2 -side right -fill y

pack .f

button .b -text Quit -command exit

Mobile-IP Watcher

Implementation and Analyses of the Mobile-IP Protocol 138

pack .b -side bottom -fill x

update

set a [exec ls]

while 1 {
$varT delete 0.0 end
$bindT delete 0.0 end
$authT delete 0.0 end

Anropa snmpwalk
catch {set vars [exec $g(snmpwalk) $g(ipaddress) noAuth $g(haID)]}

vars

Parsa inmatningen och skriv till de olika fonstren
set rowlist [split $vars \n]
foreach row $rowlist {

if {[regexp mipHA.* $row tmp]} {
set tmp [string range $tmp 6 end]
set wordlist [split $tmp .]
if {[lindex $wordlist 0] == “haBindingTable”} {

regexp =.* $tmp tmp
$bindT insert end “[lindex $wordlist 2] $tmp\n”

} elseif {[lindex $wordlist 0] == “haAuthNodeList”} {
$authT insert end “[lindex $tmp 3]\n”

} else {
$varT insert end “$tmp\n”

}
} else {

$varT insert end “$row\n”
}

}
update
after $g(delay)

}
}

#**
inputAddress
Asks for the IP-address where the snmp daemon is running, and sets
the global variable g(ipaddress) to that value
#**
proc inputAddress {} {

global g

frame .t
label .t.l -text “IP Address:”
entry .t.e -width 15 -relief sunken -textvariable g(ipaddress)
bind .t.e <Return> {

destroy .t
}

pack .t.l .t.e -side left

Mobile-IP Watcher

Implementation and Analyses of the Mobile-IP Protocol 139

pack .t -padx 10 -pady 10

focus .t.e
tkwait window .t

}

#**
First menu
From here you choose witch entity you will monitor
#**
wm title . “Mobile-IP Watcher”
. configure -bd 2

frame .m1
label .m1.l1 -text “Mobile-IP Watcher” -font -*-Helvetica-Bold-R-Normal-*-180-*
label .m1.l2 -text “Choose an entity to monitor”
pack .m1.l1 .m1.l2 -side top -fill x
pack .m1

frame .m2
button .m2.b1 -text “Mobile Node” -padx 5 -pady 5 -command {

destroy .m1 .m2
set g(ipaddress) explorer
inputAddress
mobileNode

}
button .m2.b2 -text “Home Agent” -padx 5 -pady 5 -command {

destroy .m1 .m2
set g(ipaddress) dumburken
inputAddress
homeAgent

}
button .m2.b3 -text “Foreign Agent” -padx 5 -pady 5 -command {

destroy .m1 .m2
set g(ipaddress) anxiety
inputAddress
foreignAgent

}

button .m2.b4 -text “Quit” -padx 5 -pady 5 -command exit
pack .m2.b1 .m2.b3 .m2.b2 .m2.b4 -side left
pack .m2

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 140

Appendix G The Mobile-IP MIB

-- Mobile IP MIB
-- version 0.79
-- by Fredrik Tarberg and Fredrik Broman, KTH
-- 1995-11-17

-- HISTORY
-- v 0.79 Changed all timestamps from INTEGER to COUNTER
-- v 0.78 Corrected the flags field for advertisements
-- v 0.77 Changed the datatype for mnRegFlags and mnPendRegFlags from
-- INTEGER to BIT STRING.
-- Added mnAdvFlags, faAdvFlags, haAdvFlags and haBindingFlags.
-- v 0.75 Replaced all TimeStamp with INTEGER
-- v 0.71 Introduced version number

RFC1155-SMI DEFINITIONS ::= BEGIN;
nullOID OBJECT IDENTIFIER ::= { ccitt 0 }
internet OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1 }
directory OBJECT IDENTIFIER ::= { internet 1 }
mgmt OBJECT IDENTIFIER ::= { internet 2 }
experimental OBJECT IDENTIFIER ::= { internet 3 }
private OBJECT IDENTIFIER ::= { internet 4 }
enterprises OBJECT IDENTIFIER ::= { private 1 }

END

CMU-MIB DEFINITIONS ::= BEGIN;
Proteon OBJECT IDENTIFIER ::= { enterprises 1 }
IBM OBJECT IDENTIFIER ::= { enterprises 2 }
cmu OBJECT IDENTIFIER ::= { enterprises 3 }
Unix OBJECT IDENTIFIER ::= { enterprises 4 }
ACC OBJECT IDENTIFIER ::= { enterprises 5 }
TWG OBJECT IDENTIFIER ::= { enterprises 6 }
Cayman OBJECT IDENTIFIER ::= { enterprises 7 }
PSI OBJECT IDENTIFIER ::= { enterprises 8 }
Cisco OBJECT IDENTIFIER ::= { enterprises 9 }
NSC OBJECT IDENTIFIER ::= { enterprises 10 }
HP OBJECT IDENTIFIER ::= { enterprises 11 }
Epilogue OBJECT IDENTIFIER ::= { enterprises 12 }
UTK OBJECT IDENTIFIER ::= { enterprises 13 }
BBN OBJECT IDENTIFIER ::= { enterprises 14 }
Xylogics OBJECT IDENTIFIER ::= { enterprises 15 }
Timeplex OBJECT IDENTIFIER ::= { enterprises 16 }
Canstar OBJECT IDENTIFIER ::= { enterprises 17 }
Wellfleet OBJECT IDENTIFIER ::= { enterprises 18 }
TRW OBJECT IDENTIFIER ::= { enterprises 19 }
MIT OBJECT IDENTIFIER ::= { enterprises 20 }
EON OBJECT IDENTIFIER ::= { enterprises 21 }
Spartacus OBJECT IDENTIFIER ::= { enterprises 22 }
Excelan OBJECT IDENTIFIER ::= { enterprises 23 }
Spider OBJECT IDENTIFIER ::= { enterprises 24 }
NSFNET OBJECT IDENTIFIER ::= { enterprises 25 }
HLS OBJECT IDENTIFIER ::= { enterprises 26 }
Xyplex OBJECT IDENTIFIER ::= { enterprises 33 }
Cray OBJECT IDENTIFIER ::= { enterprises 34 }

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 141

Sun OBJECT IDENTIFIER ::= { enterprises 42 }
Synoptics OBJECT IDENTIFIER ::= { enterprises 45 }
DEC OBJECT IDENTIFIER ::= { enterprises 36 }
TGV OBJECT IDENTIFIER ::= { enterprises 58 }
Apple OBJECT IDENTIFIER ::= { enterprises 63 }
NAT OBJECT IDENTIFIER ::= { enterprises 86 }
SNMP-Research OBJECT IDENTIFIER ::= { enterprises 99 }
FTP OBJECT IDENTIFIER ::= { enterprises 121 }
Shiva OBJECT IDENTIFIER ::= { enterprises 166 }
Transarc OBJECT IDENTIFIER ::= { enterprises 257 }
Lexcel OBJECT IDENTIFIER ::= { enterprises 379 }
Teleinformatics_Lab OBJECT IDENTIFIER ::= {enterprises 933}

END

--
-- MOBILE-IP MIB --
--

MOBILE-IP-MIB DEFINITIONS ::= BEGIN

IMPORTS
mgmt, NetworkAddress, IpAddress, Counter, Gauge, TimeTicks

FROM RFC1155-SMI
OBJECT-TYPE

FROM RFC-1212
PhysAddress

FROM RFC1213-MIB;

mip OBJECT IDENTIFIER ::= {Teleinformatics_Lab 3}

mipMN OBJECT IDENTIFIER ::= { mip 1 }
mipFA OBJECT IDENTIFIER ::= { mip 2 }
mipHA OBJECT IDENTIFIER ::= { mip 3 }

mipType OBJECT-TYPE
SYNTAX BIT STRING {

mobileNode(0), -- acting as a Mobile Node
foreignAgent(1), -- acting as a Foreign Agent
homeAgent(2) -- acting as a Home Agent

}
ACCESS read-write
STATUS mandatory
DESCRIPTION

“The indication of whether this entity is acting as a
Mobile node, a Home Agent and/or a Foreign Agent.”

::= { mip 4 }

--
-- The Mobile Node
--

--

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 142

-- Mobile Node Home Agent List
--

mnHomeAgentList OBJECT-TYPE
SYNTAX SEQUENCE OF MnHAEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“The Mobile Node’s list of Home Agents”
::= { mipMN 1 }

mnHAEntry OBJECT-TYPE
SYNTAX MnHAEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“Information about one of the Home Agents”
INDEX { mnHALAddr }
::= { mnHomeAgentList 1 }

MnHAEntry ::=
SEQUENCE {

mnHALAddr
IpAddress

}

mnHALAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The IP address of a Home Agent”
::= { mnHAEntry 1 }

--
-- Mobile Node Registration Table
--

mnRegTable OBJECT-TYPE
SYNTAX SEQUENCE OF MnRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“The Mobile Node’s registration table”
::= { mipMN 2 }

mnRegEntry OBJECT-TYPE
SYNTAX MnRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“Information about a registration”
INDEX { mnRegHA, mnRegFA }
::= { mnRegTable 1 }

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 143

MnRegEntry ::=
SEQUENCE {

mnRegHA
IpAddress,

mnRegFA
IpAddress,

mnRegReqTS
TimeTicks,

mnRegReplTS
COUNTER,

mnRegFlags
BIT STRING,

mnRegLifetime
INTEGER

}

mnRegHA OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The IP-address of the Home Agent”
::= { mnRegEntry 1 }

mnRegFA OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The IP-address of the Foreign Agent”
::= { mnRegEntry 2 }

mnRegReqTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The time when the first registration request was
sent”

::= { mnRegEntry 3 }

mnRegReplTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The time when the registration reply was received”
::= { mnRegEntry 4 }

mnRegFlags OBJECT-TYPE
SYNTAX BIT STRING {

S(0), -- retain prior mobility bindings
B(1), -- forward broadcasts
D(2), -- mn decapsulates itself
M(3), -- minimal encapsulation

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 144

G(4) -- GRE encapsulation
}

ACCESS read-only
STATUS mandatory
DESCRIPTION

“The flags field that was used in the request”
::= { mnRegEntry 5 }

mnRegLifetime OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The remaining lifetime for this registration”
::= { mnRegEntry 6 }

--
-- Mobile Node Pending Registration Table
--

mnPendRegTable OBJECT-TYPE
SYNTAX SEQUENCE OF MnPendRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“The Mobile Node’s pending registration table”
::= { mipMN 3 }

mnPendRegEntry OBJECT-TYPE
SYNTAX MnPendRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“Information about a pending registration”
INDEX { mnPendRegHA, mnPendRegFA }
::= { mnPendRegTable 1 }

MnPendRegEntry ::=
SEQUENCE {

mnPendRegHA
IpAddress,

mnPendRegFA
IpAddress,

mnPendRegReqTS
COUNTER,

mnPendRegReqs
INTEGER,

mnPendRegFlags
BIT STRING

}

mnPendRegHA OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 145

DESCRIPTION
“The IP-address of the Home Agent”

::= { mnPendRegEntry 1 }

mnPendRegFA OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The IP-address of the Foreign Agent”
::= { mnPendRegEntry 2 }

mnPendRegReqTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The time when the first registration request was
sent”

::= { mnPendRegEntry 3 }

mnPendRegReqs OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of registration requests sent”
::= { mnPendRegEntry 4 }

mnPendRegFlags OBJECT-TYPE
SYNTAX BIT STRING {

S(0), -- retain prior mobility bindings
B(1), -- forward broadcasts
D(2), -- mn decapsulates itself
M(3), -- minimal encapsulation
G(4) -- GRE encapsulation

}
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The flags field that was used in the request”
::= { mnPendRegEntry 5 }

--
-- MN Advertisement
--

mnAdvAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The IP address in the last received agent
advertisement”

::= { mipMN 4 }

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 146

mnAdvSeqNo OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The sequence number in the last received agent
advertisement”

::= { mipMN 5 }

mnAdvFlags OBJECT-TYPE
SYNTAX BIT STRING {

R(0), -- Foreign agent registration required
B(1), -- Busy bit
H(2), -- Offers service as Home Agent
F(3), -- Offers service as Foreign Agent
M(4), -- Offers minimal encapsulation
G(5) -- Offers GRE encapsulation

}
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The flags in the last received agent advertisement”
::= { mipMN 6 }

mnAdvTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The time when the last agent advertisement was
received”

::= { mipMN 7 }

mnAdvCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of agent advertisements received”
::= { mipMN 8 }

--
-- MN Error
--

mnErrAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The IP address from which the last error message was
received”

::= { mipMN 9 }

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 147

mnErrCode OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The error code in the last received error message”
::= { mipMN 10 }

mnErrTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The time when the last error message was received”
::= { mipMN 11 }

mnErrCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of error messages received”
::= { mipMN 12 }

--

mnAuthCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of authentication exceptions”
::= { mipMN 13 }

mnInvReplCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of invalid replies”
::= { mipMN 14 }

--
-- MN Solicitation
--

mnSolTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The time when the last agent solicitation message was
sent”

::= { mipMN 15 }

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 148

mnSolCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of agent solicitations sent”
::= { mipMN 16 }

--

mnDecaps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The number of IP-packets decapsulated at the Mobile
Node”

::= { mipMN 17 }

mnDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The number of IP-packets discarded at the Mobile Node”
::= { mipMN 18 }

--
-- The Foreign Agent
--

--
-- Foreign Agent Care-Of-Address List
--

faCOAList OBJECT-TYPE
SYNTAX SEQUENCE OF FaCOAEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“The Foreign Agents’s list of care-of address, if any”
::= { mipFA 1 }

faCOAEntry OBJECT-TYPE
SYNTAX FaCOAEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“Information about a COA Address”
INDEX { faCOAddr }
::= { faCOAList 1 }

FaCOAEntry ::=

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 149

SEQUENCE {
faCOAddr

IpAddress
}

faCOAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The Care-of address”
::= { faCOAEntry 1 }

-- Foreign Agent Registration Table

faRegTable OBJECT-TYPE
SYNTAX SEQUENCE OF FaRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“The Foreign Agent’s registration table”
::= { mipFA 2 }

faRegEntry OBJECT-TYPE
SYNTAX FaRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“Information about a visiting Mobile Node”
INDEX { faRegMN, faRegHA }
::= { faRegTable 1 }

FaRegEntry ::=
SEQUENCE {

faRegMN
IpAddress

faRegHA
IpAddress,

faRegReqTS
COUNTER,

faRegReplTS
COUNTER,

faRegLifetime
INTEGER (0..65535)

}

faRegMN OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The home IP-address of the visiting Mobile Node”
::= { faRegEntry 1 }

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 150

faRegHA OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The IP-address of the Home Agent”
::= { faRegEntry 2 }

faRegReqTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The time when the first registration request was
sent”

::= { faRegEntry 3 }

faRegReplTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The time when the registration reply was received”
::= { faRegEntry 4 }

faRegLifetime OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The remaining lifetime for this registration”
::= { faRegEntry 5 }

--
-- Foreign Agent Pending Registration Table
--

faPendRegTable OBJECT-TYPE
SYNTAX SEQUENCE OF FaPendRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“The Foreign Agent’s pending registration table”
::= { mipFA 3 }

faPendRegEntry OBJECT-TYPE
SYNTAX FaPendRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“Information about a pending registration”
INDEX { faPendRegMN, faPendRegHA }
::= { faPendRegTable 1 }

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 151

FaPendRegEntry ::=
SEQUENCE {

faPendRegMN
IpAddress,

faPendRegHA
IpAddress

}

faPendRegMN OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The home IP-address of a visiting Mobile Node”
::= { faPendRegEntry 1 }

faPendRegHA OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The IP-address of the Home Agent”
::= { faPendRegEntry 2 }

--
-- FA Advertisement
--

faAdvSeqNo OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The sequence number in the last sent agent
advertisement”

::= { mipFA 4 }

faAdvFlags OBJECT-TYPE
SYNTAX BIT STRING {

R(0), -- Foreign agent registration required
B(1), -- Busy bit
H(2), -- Offers service as Home Agent
F(3), -- Offers service as Foreign Agent
M(4), -- Offers minimal encapsulation
G(5) -- Offers GRE encapsulation

}
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The sequence number in the last sent agent
advertisement”

::= { mipFA 5 }

faAdvTS OBJECT-TYPE
SYNTAX COUNTER

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 152

ACCESS read-only
STATUS mandatory
DESCRIPTION

“The sequence number in the last sent agent
advertisement”

::= { mipFA 6 }

faAdvCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The sequence number in the last sent agent
advertisement”

::= { mipFA 7 }

--
-- FA Solicitation
--

faSolAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The IP address in the last received agent
solicitation message”

::= { mipFA 8 }

faSolTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The time when the last agent solicitation message was
received”

::= { mipFA 9 }

faSolCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of agent solicitation messages
received”

::= { mipFA 10 }

--
-- FA Error messages received
--

faErrRecAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 153

DESCRIPTION
“The IP address from which the last error message was
received”

::= { mipFA 11 }

faErrRecCode OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The error code in the last received error message”
::= { mipFA 12 }

faErrRecTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The time when the last error message was received”
::= { mipFA 13 }

faErrRecCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of error messages received”
::= { mipFA 14 }

--
-- FA Error messages sent
--

faErrSentAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The IP address to which the last error message was
sent”

::= { mipFA 15 }

faErrSentCode OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The error code in the last sent error message”
::= { mipFA 16 }

faErrSentTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 154

“The time when the last error message was sent”
::= { mipFA 17 }

faErrSentCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of error messages sent”
::= { mipFA 18 }

--

faAuthCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of authentication exceptions”
::= { mipFA 19 }

faRegReqsRec OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The number of registration requests received at the
Foreign Agent”

::= { mipFA 20 }

faDecaps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The number of IP-packets decapsulated at the Foreign
Agent”

::= { mipFA 21 }

faDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The number of IP-packets discarded”
::= { mipFA 22 }

--
-- The Home Agent
--

--

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 155

-- Home Agent Mobility Binding Table
--

haBindingTable OBJECT-TYPE
SYNTAX SEQUENCE OF HaBindingEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“The Home Agent’s mobility binding table”
::= { mipHA 1 }

haBindingEntry OBJECT-TYPE
SYNTAX HaBindingEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“Information about a mobility binding”
INDEX { haBindingMN, haBindingCOA }
::= { haBindingTable 1 }

HaBindingEntry ::=
SEQUENCE {

haBindingMN
IpAddress,

haBindingCOA
IpAddress,

haBindingLifetime
INTEGER (0..65535),

haBindingFlags
BIT STRING

}

haBindingMN OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The Mobile Node’s home IP-address”
::= { haBindingEntry 1 }

haBindingCOA OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The Mobile Node’s care-of address”
::= { haBindingEntry 2 }

haBindingLifetime OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The lifetime for the registration”
::= { haBindingEntry 3 }

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 156

haBindingFlags OBJECT-TYPE
SYNTAX BIT STRING {

S(0), -- retain prior mobility bindings
B(1), -- forward broadcasts
D(2), -- mn decapsulates itself
M(3), -- minimal encapsulation
G(4) -- GRE encapsulation

}
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The flags field for this registration”
::= { haBindingEntry 4 }

--
-- Authorized Node List
--

haAuthNodeList OBJECT-TYPE
SYNTAX SEQUENCE OF HaANEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“The Home Agent’s list of authorized mobile nodes”
::= { mipHA 2 }

haANEntry OBJECT-TYPE
SYNTAX HaANEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION

“Information about an authorized mobile node”
INDEX { haANAddr }
::= { haAuthNodeList 1 }

HaANEntry ::=
SEQUENCE {

haANAddr
IpAddress

}

haANAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The IP address of an authorized mobile node”
::= { haANEntry 1 }

--
-- HA Advertisement
--

haAdvSeqNo OBJECT-TYPE

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 157

SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The sequence number in the last sent agent
advertisement”

::= { mipHA 3 }

haAdvFlags OBJECT-TYPE
SYNTAX BIT STRING {

R(0), -- Foreign agent registration required
B(1), -- Busy bit
H(2), -- Offers service as Home Agent
F(3), -- Offers service as Foreign Agent
M(4), -- Offers minimal encapsulation
G(5) -- Offers GRE encapsulation

}
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The flags in the last sent agent advertisement”
::= { mipHA 4 }

haAdvTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The time when the last agent advertisement was sent”
::= { mipHA 5 }

haAdvCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of agent advertisements sent”
::= { mipHA 6 }

--
-- HA Solicitation
--

haSolAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The IP address from which the last agent solicitation
message was received”

::= { mipHA 7 }

haSolTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 158

STATUS mandatory
DESCRIPTION

“The time when the last agent solicitation message was
received”

::= { mipHA 8 }

haSolCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of agent solicitation messages
received”

::= { mipHA 9 }

--
-- HA Error
--

haErrAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The IP address from which the last error message was
received”

::= { mipHA 10 }

haErrCode OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The error code in the last received error message”
::= { mipHA 11 }

haErrTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The time when the last error message was received”
::= { mipHA 12 }

haErrCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of error messages received”
::= { mipHA 13 }

--

haAuthCount OBJECT-TYPE

The Mobile-IP MIB

Implementation and Analyses of the Mobile-IP Protocol 159

SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of authentication exceptions”
::= { mipHA 14 }

haRegReqsRec OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The number of registration requests received”
::= { mipHA 15 }

haEncaps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The number of IP-packets encapsulated”
::= { mipHA 16 }

haBroadcastsRec OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The number of broadcast packets received”
::= { mipHA 17 }

haBroadcastsSent OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The number of broadcast packets forwarded to Mobile Nodes”
::= { mipHA 18 }

END

References

Implementation and Analyses of the Mobile-IP Protocol 160

References

[3] A. Klemets’ latest version of the Mobile-IP implementation available from
ftp://ftp.it.kth.se/pub/klemets/

[4] G. Q. Maguire Jr., M. T. Smith, T. Ohsawa, “Walkstation II project”, 2nd
International Workshop on Mobile Multi-Media Communications Workshop,
Bristol, England, April 1-13, 1995.

[5] C. Perkins, “IP Mobility Support, draft-ietf-mobileip-protocol-14.txt”, Internet
Draft, December 1995.

[6] G. Maguire, F. Reichert, M. Smith, “A Multiport Mobile Internet Router”,
Proceedings of the 44th IEEE Vehicular Technology Conference ‘94, Volume 3,
pages 1435-1439, Stockholm, Sweden, June 1994.

[7] A. Klemets, G. Q. Maguire Jr., F. Reichert, M. T. Smith. “MINT - A Mobile
Internet Router”, First IEEE International Symposium on Global Data Networking,
pages 70-74, Institute of Electrical and Electronics Engineers, Cairo, Egypt,
December 13-15, 1993. Note: Although this paper has the same title as the
following one, they are quite different.

[8] R. Hager, A. Klemets, G. Q. Maguire Jr., M. T. Smith, F. Reichert, “MINT - A
Mobile Internet Router”, Proceedings of the IEEE Vehicular Technology
Conference ‘93, pages 318-321. Institute of Electrical and Electronics Engineers,
May 18-20, 1993.

[9] J. Ioannidis and G. Q. Maguire Jr., “The Design and Implementation of a Mobile
Internetworking Architecture”. USENIX Winter 1993 Technical Conference, pages
491-502. USENIX Association, January 1993.

[10] J. Ioannidis, D. Duchamp, G. Q. Maguire Jr., S. Deering, “Protocols for supporting
Mobile IP hosts”, Internet Draft, June 1992. Available from:
ftp://parcftp.xerox.com/pub/mobile-ip/columbia-draft-
june-92

[11] M. T. Rose, “The Simple Book: An Introduction to Internet Management”, 1994.

[12] D. Duchamp, S. Feiner, G. Q. Maguire Jr., “Software Technology for Wireless
Mobile Computing”, IEEE Network 5(6):12-18, November 1991.

[13] R. Droms, “Dynamic Host Configuration Protocol”, RFC 1541, October 1993.

[14] J. Postel, “User Datagram Protocol”, RFC 768, August 1980.

[15] C. Perkins, “IP Encapsulation within IP, draft-ietf-ip4inip4-01.txt”, Internet Draft,
October 1995.

[16] S. M. Bellovin, “Security Problems in the TCP/IP Protocol Suite”, ACM Computer
Communications Review, 19(2), March 1989.

[17] R. Rivest. “The MD5 Message-Digest Algorithm”, RFC 1321, April 1992.

[18] A. Klemets, “Mach 3.0 as an Operating System for the MINT”, October 1994,
TRITA-IT R 94:20.

[19] J. Case, M. Fedor, M. Schoffstall, J. Davin, “A Simple Network Management
Protocol (SNMP)”, RFC 1157, May 1990.

[20] W. R. Stevens, “TCP/IP Illustrated, Volume 1”, Addison-Wesley, 1994.

[21] M. Oelhafen, “SNMP Application for the MINT Router”, June 1994., URL:
ftp://ftp.it.kth.se/www/documents/labs/ccs/WS/papers/
940630-Oelhafen-A4.ps

[22] Thomas L. Georges, ”Using the Carnegie Mellon University (CMU) SNMP Library

References

Implementation and Analyses of the Mobile-IP Protocol 161

To Build an SNMP Manager”, March 1993, URL:
http://neptune.corp.harris.com/uniforum.html

[23] M. Rose, K. McCloghrie, “Concise MIB Definitions”, RFC 1212, March 1991.

[24] K. McCloghrie, M. Rose, “Management Information Base for Network
Management of TCP/IP-based internets: MIB-II”, RFC 1213, March 1991.

[25] K. Sollins, “THE TFTP PROTOCOL (REVISION 2)”, RFC 1350, July 1992.

[26] B. Croft, J. Gilmore, “BOOTSTRAP PROTOCOL (BOOTP)”, RFC 951,
September 1985.

[27] P. Guerin, “RadioNet Driver Implementation for the Mobile INTernet Router”,
1994, URL:
ftp://ftp.it.kth.se/www/documents/labs/ccs/WS/papers/
940630-Guerin-A4.ps

[28] N. Nuckolls, “How to Use DLPI”, June 1992, URL:
ftp://opcom.sun.ca:/pub/drivers/dltest.tar.gz

[29] S. McCanne, V. Jacobson, “The BSD Packet Filter: A New Architecture for User-
level Packet Capture”, December 1992, URL:
ftp://ftp.ee.lbl.gov/papers/bpf-usenix93.ps.Z

[30] G. R. Wright, W. R. Stevens, “TCP/IP Illustrated, Volume 2”, Addison-Wesley,
1995.

[31] D. Cong, M. Hamlen, C. Perkins, “The Definitions of Managed Objects for the
Home Agent function of IP Mobililty Support”, Internet Draft, December 1995.

[32] D. Cong, M. Hamlen, C. Perkins, “The Definitions of Managed Objects for the
Foreign Agent function of IP Mobililty Support”, Internet Draft, December 1995.

[33] D. Cong, M. Hamlen, C. Perkins, “The Definitions of Managed Objects for the
Mobile Node function of IP Mobililty Support”, Internet Draft, December 1995.

[34] D. Cong, M. Hamlen, C. Perkins, “The Definitions of Managed Objects for the
Security function of IP Mobililty Support”, Internet Draft, December 1995.

