o «i:.s
ﬁ V”é?‘:il"”;\?\ KUNGL TEKNISKA HOGSKOLAN
é{%& KONST é/@é

<)

25 January 1996

Implementation and
Analyses of the
Mobile-IP Protocol

Fredrik Broman and Fredrik Tarberg

Thesis report for a masters degree in Computer Science at the
Department of Teleinformatics, Royal Institute of Technology,
Stockholm, Sweden.

Abstract

This report is the result of a mastergi@d® project conducted at the Department of
Teleinformatics at the Ral Institute of Echnology during the autumn 1995. The
area iwvesticated is the Mobile Internet Protocol, especially its implementation and
efficiency.

The thesis wrk is divided into three areas. The first area includes theloement

and implementation of a Management Information Base for the Mobile-IP
protocol. The second area deals with the porting of a Mobile-IP implementation for
SunOS to MachOS and Solaris. The last arearsathe tests done to measure the
throughput and lategaof the protocol.

“If you would not be fagotten, as soon as youeadlead & otten, either
write things worth eading or do things worth writin
Benjamin Franklin

1.0 Introduction
1.1 Background 5
1.2 Problem statement and project specificatidn

2.0 TheWalkstation Il Project
2.1 The system 7
2.2 The Mobile INTernet Router (MINT) 7

3.0 TheMobile-IP protocol

3.1 Introduction 9

3.2 The Protocol 10
3.2.1 Requirements and Goalsl0
3.2.2 Overview of Protocol Eents 10
3.2.3 Agent Discaery and Solicitation 11
3.2.4 Rayistration 11
3.2.5 Forwarding Datagrams to the Mobile Nodé&2

4.0 Network Management
4.1 SNMP 14
42 MIB 15

5.0 TheMobile-IPMIB

5.1 The Mobile Node 17

5.1.1 Mobile Node objects 20

5.1.2 List of Home Agents 20

5.1.3 Mobile Node Rgistration Bble 21

5.1.4 Mobile Node Pending Rgstration Bble 21
5.2 The Foreign Agent 22

5.2.1 Foreign Agent objects 24

5.2.2 List of Care-of Addresses25

5.2.3 Foreign Agent Registration Bble 25

5.2.4 Foreign Agent Pending Restration Bble 25
5.3 The Home Agent 26

5.3.1 Home Agent objects 28

5.3.2 Home Agent Mobility Binding &ble 28

5.3.3 List of Authorized Nodes 29

6.0 Testing the SUNOS implementation
6.1 Installation 30
6.2 The enironment 30
6.3 Configuration 31
6.4 Running the system32

7.0 The SNMP implementation

7.1 The system 33

7.2 The SNMP agent 33
7.2.1 The functions 33
7.2.2 The protocol 34

7.3 Changes to the Mobile-IP implementatio4
7.3.1 Structures 34
7.3.2 Functions 35

7.4 Configuration 35
7.5 Mobile-IP Watcher 35

14

17

30

33

Implementation and Analyses of the Mobile-IP Protocol

8.0

9.0

10.0

11.0
Appendix A

7.5.1 How to useni pwat cher 35

Program development for the MINT 38
8.1 The system 38
8.2 Booting a MINT 38
8.3 Compiling programs for the MINT 42
8.3.1 Stand-alone programs42
8.3.2 Compiling the Operating Systend2
8.3.3 Compiling Unix Applications 43
8.4 Remote delgging using the GNU Deigger 44
8.4.1 Stand-alone programs44
8.4.2 UNIX processes 45

Porting the Mobile-I P code 46
9.1 Porting to Solaris 2.4 46
9.2 Porting to the MINT 46

9.2.1 Booting a MINT 46

9.2.2 RFS - Remote File Sharingd7

9.2.3 Running our program 47

9.2.4 A file transfer program 48

9.2.5 Reading ethernet framest9

9.2.6 Unexpected problems 50

9.2.7 Summary of changes50

Analysis of the M obile-I P protocol 51

10.1Delay 51
10.1.1Artigonn to eplorer 51
10.1.2Artigonn to dumhirken 52
10.1.Dumhurken to anxiety (HA -> K) 52
10.1.4Anxiety to eplorer (A -> MN) 53
10.1.RArtigonn to the Mobile Node 53
10.1.8Conclusions 54

10.2Delay caused by encapsulation/decapsulatibs
10.2.1The Home Agent 54
10.2.2The Foreign Agent 55
10.2.3onclusions rgarding the delay 56

10.3Rgyistration 56
10.3.1The first rgistration 56
10.3.Zonclusions 58

10.4Throughput 58
10.4.MMobile-IP 59
10.4.25un0OS 59
10.4.3onclusion 60

10.5Summary 60

Conclusions 62

The CMU-SNM P package 64
A.1 Introduction 64
A.2 How to obtain the library 64

A.3 Writing an agent 64
A.3.1 The data structures 64
A.3.2 The functions 65

Implementation and Analyses of the Mobile-IP Protocol

Appendix B The SNMP code 73

B.1 Changesto internal structures 73
B.1.1 struct mobileip_host 73
B.1.2 struct fa_deencap entry 73
B.1.3 struct fa_saved regstate 73
B.1.4 struct mobileip_agent 74
B.1.5 struct pending_request 74

B.2 Mobile-IP code 75
B.2.1 snmp_init.c 75
B.2.2 snmp_magic.h 76
B.2.3 dtatistics.h 78
B.2.4 datistics.c 80
B.2.5 snmp.h 80
B.2.6 snmp.c 80

B.3 SNMP Agent code 103
B.3.1 snmp_vars.c 103
B.3.2 mipmib.c 106

Appendix C The Solaris Code 114
C.1 dipi.c114

Appendix D TheMINT Code 119
D.1 lowbpf.c 119

Appendix E State diagrams 129

E.1 The Home Agent 129
E.2 The Foreign Agent 130
E.3 The Mobile Node 132

Appendix F Mobile-I P Watcher 134
Appendix G TheMobile-IPMIB 140
References 160

Implementation and Analyses of the Mobile-IP Protocol

Intr oduction

1.0 Introduction

1.1 Background

Mobile communication is an area which is rapidlyeleping. Cellular telephones

have become, at least in Sweden, a common feature foy pemple as the price of
cellular telephones ka been subsidized by the telephone operatorsn Evough
cellular phones are well suited toize communication the priled bandwidth is

too small to get an acceptable data transmission rate for computers. As computers
become lessxpensie and smaller in size people wikkpect their mobile computer
equipment to support communication mobility

The Walkstation Project [4] is one of the researchvitads at the Department of
Teleinformatics and Ericsson Radio Systems. The aim is tw akers of portable
laptop computers to me around while retaining all possibilities that aefix
network connection prades. This is done by pviling mobile users with a high
capacity pacét radio based cellular netvk.

How to eficiently support mobile wireless Internet access amd tooprovide the
mobile users with transparent access to the Internet information are still open
questions. The &drts to intgrate mobile communication and support mobility on
the Internet are being underéak by the Internet Engineeringdk force (IETF)
and is part of the Wlkstation Project. This will result in a standard protocol called
Mobile-IP in the near future. Mobile-IP is an abbation of “Mobile Internet
Protocol”. It was originally proposed by Drohn loannidis and Prof. Gerald
Maguire Jr from Columbia Uniersity (nav professor at KTH). As there were
multiple proposals for such a standard, an Internet Engineeasigrce (IETF)
‘Working Group for Mobile IP’ was formed in June 1992 towedop a single
Mobile-IP protocol. The goal is to allotransparent routing of IP data patkto
and from mobile hosts.

1.2 Problem statement and pr oject specification

The title of this dgree project is “Implementation and Analyses of the Mobile-IP
Protocol”, and it has wolved seeral diferent areas related to the Mobile-IP
protocol. While the specification for the Mobile-IP protocalsmot yet fird by the
IETF when this project started, one of the tasles wo @amine the décts of
implementation choices and test theme Wso had toxamine hav the protocol
works (for kample “Is the functionality complete?”, “What is the performance
limited by?”, “What &tension should be made?”).

Our work included the follaring tasks:

* Understand the Mobile-IP Protocol draft and look at the implementation written
by Anders Klements.

* Define a Mobile-IP Management Information Base (MIB).

* Incorporate support for Netwk Management (SNMP) into Anders Klemets’
Mobile-IP implementation.

¢ Port the implementation to:
a. The MINT (Mobile INTernet) router and the MachOS
b. Solaris

* Plan a series ofxperiments:

a. Throughput and lateganeasurements - for a & basestation and stationary
“mobile”.

Implementation and Anal yses of the Mobile-IP Pr otocol 5

Introduction

b. Handof measurements for a mobile betweer thasestations. This should
not only explore the wireless tr&€ but also the trdic on the infrastructure.

* Make a series of measurements and do an analysis of ttp@ents.

Implementation and Analyses of the Mobile-IP Protocol 6

The Walkstation Il Project

2.0 The Walkstation Il Project

The purpose of the ®lkstation Il project is to westigate a complete radio based
cellular system for interae® mobile multimedia applications, and the project
includes aspects of VLSI design, radio communication, ortvprotocols and
mobile applications. The three main components of the project are the Mobile
Internet Router (MINT) [6, 7, 8], the Radisahscerer and the Mobile-IP protocol

[5].

2.1 The system

The cellulay wireless LAN that will be the result of thealkstation Il project
consists of Base Stations and Mobile Stationgrfeell in the netark is covered

by a Base Station with a (Spread Spectrum) Radiasteier. The Base Station is

also connected to a wired netk. The Mobile Stations will be able to connect to

the Internet through a Base StationeBvhough this wireless LAN looks &kary

other cellular system there is one majofaténce. There is no topda hierarcly

as in found in, for xeample, GSM and DECT where the Base Stations control the
allocation of the radio resources. The radio channel is a shared media which can be
used by ap Station to send information wherms the channel is free, and it is
immediately released afteands. From this perspeati the system more closely
resembles an ethernet than a cellular mobile telephone communication system. It is
also possible to send data from one Mobile Station to another within the same cell
without going though a Base Station.

2.2 The Mobile INTernet Router (MINT)

One of the goals of the &lkstation Il project \&s to incorporate all communication
hardware and softare into one déce called the MINT The adantages of this
design decision are that the MINT can be made compatible witly diffarent
types of Mobile Hosts and no changeséh# be made in the operating system of
the Mobile Host. In addition, all computations necessary for communication can be
done by the MINT and do not¥mato urden the Mobile Host. Also, by putting all
mobile functionality into one dgce it is transparent to the user (and their
computer).

The Mobile INTernet Router is designed to be a small, lightweight router that can
be plugged into the back of ymeomputer The basic architecture of the MINT is
shavn in Figurel. Today the size of a MINT is approximately 32x27x13 cot, b
the intension is to makit fit on a PCMCIA card.

The MINT consists of a 25 MHz MC68030 procesdoMbyte of FOM, 8 Mbyte

of RAM, with two serial, one parallel, one SCSI andt#thernet integces. In
addition, there is a prototyping area with access to the procass@nd the to
ethernet controllers. Basically the MINT can bewsdd as a three component
device; one connection to the host backbone (an ethernebr@iwne interéice to

a wireless LAN and a processing part in between to handle the communication
protocol. This architecture ag designed to be used both with Mobile Hosts and
Base Stations.

The MINT hardvare was deeloped in a pre-project in conjunction with HP Labs,
Palo Alto. Today there are 8 MINTs up and running. The operating system currently
used on the MINTSs is avsion of the Mach 3.0 operating system, ported by Anders
Klemets[18].

Implementation and Analyses of the Mobile-IP Protocol 7

The Walkstation Il Project

I N O I

Parallel
Radio
part
Serial
A Serial
SCSI
n
>
o]
©
£ Ethernet
% card
= jt———p
-« Ethernet
card

Figurel. The MINT

Implementation and Analyses of the Mobile-IP Protocol

The Mobile-IP protocol

3.0

The Mobile-IP protocol

3.1

When Mobile Nodes are to be introduced on the Internet, the pressidnvof the
network layer protocol (Internet Protocokssion 4) is no longer enough. We
functionality has to be implemented to handle the sguation. This problem as
encountered in the Student Electronic Notebook project [12] and as a result a
Mobile Internet Protocol (Mobile*IP [10]) as suggested.o@lay the werk on
standardizing Mobile-IP is conducted by the Mobile-IPriihg Group of the
Internet Engineeringask Force [5].

Introduction

The protocol used at the netik layer on the Internet, the Internet Protocol (IP),
was designed with tavassumptions in mind. First that a nadgbint of attachment
remains fixed, and secondly that a nosléP address identifies the netk to which

it is attached. Routing of datagrams is based on theorletwumber portion of the
nodes IP address.d¥ example, a datagram destined to the computer with the IP
address 130.237.215.110 is sent to the oedtwwith the netwrk number
130.237.215.

If a node could mee around on the Internet without changing its IP address it
would no longer be possible to correctly route datagrams tm itvdrcome this
problem, the Mobile Internet Protocola® introduced. There are basically three
entities defined in the protocol. These are the Mobile Node (MN), the Home Agent
(HA) and the Breign Agent (R). A Mobile Node is a host or a router that changes
its point of attachment from one netik or subnetwrk to another without
changing its IP address. The Mobile Node has one anktwalled the home
network. The Home Agent, which can be a host or a rpigdocated on the home
network. The task of the Home Agent is to maintain a table of the current location
of all its Mobile Nodes, and relay datagrams to their present location. All datagrams
destined to a Mobile Node are caught on the homeanktiay the Home Agent and
sent to a Breign Agent who relays the data to the Mobile Nodeoreign Agent is

a host or a router on the foreign netkthat taks care of the Mobile Node while it

is avay from home. When the Mobile Node wishes to enakconnection to the
Internet while avay from home, it contacts the closesréign Agent who sends a
registration request to the Mobile Nodd1ome Agent. When the Home Agent gets
the request it knes where the Mobile Node is located at present and to which
Foreign Agent it should relay the datagrams destined to the Mobile Node. The
address of thed¥eign Agent acts as a care-of address of the Mobile Node.

sender

HA

MN — FA

Figure 2. The entitiesin the Mobile-IP protocol

Implementation and Analyses of the Mobile-IP Protocol 9

The Mobile-IP protocol

3.2 The Protocol

3.2.1 Requirements and Goals
In [5] the following aspects were considered important in designing the protocol.

* A Mobile Node using its home address shall be able to communicate with other
nodes despite changing its point of/pital attachment.

* Implementation of the protocol shall not cause a Mobile Node to be unable to
communicate with other nodes that do not implement these mobility functions.

* No protocol enhancements are required in hosts or routers that arevigingro
ary of the mobility functions.

* A Mobile Node shall preide authentication in its gistration messages.

The link by which the Mobile Node is directly attached to the Internetatylik be
bandwidth limited and»@erience a higher rate of errors than traditional wired
networks. More@er, Mobile Nodes are more Hty to be battery pmered, and
minimizing paver consumption is important. Therefore, only & dministratie
messages should be sent between a Mobile Node and an agent, and the size of these
messages should begt as short as possible.

3.2.2 Overview of Protocol Events
The following is a rough outline of the sequence wdrds that a Mobile Node goes
through as gien in [5]. See Figur8.

* Mobility agents (Home Agents anaieign Agents) adartise their presence via
Agent Adwertisements (see Secti@r2.3).

¢ A Mobile Node receies these adrtisements and determines whether it is on its
home subnet or a foreign subnet.

* The Mobile Node, if it detects that it has vad to a foreign subnet (either from
its home subnet or from another foreign subnet), obtains a care-of address on the
foreign subnet. The care-of address can either be obtained from the
adwertisements, or by some other assignment mechanismxd@onpée DHCP
[13)]).

* The Mobile Node then gisters its n& care-of address with its Home Agent,
possibly via a Breign Agent (see Secti@?2.4).

* Paclets sent to the Mobile Nodehome address are reaa by the Home Agent
and relayed (possibly through erBign Agent) to the Mobile Node via
encapsulation, using the care-of address as the destination (see
Section3.2.5).

Implementation and Analyses of the Mobile-IP Protocol 10

The Mobile-IP protocol

Mobile Node (MN) Foreign Agent (FA) Home Agent (HA)

Advertisement

Registration request

Registration request

\

Registration reply

| ——

Registration reply

y \j y

Figure 3. The messages sent when a Mobile Node register with a Home Agent through a Foreign Agent

3.2.3 Agent Discovery and Solicitation
To communicate with adfeign or Home Agent, a Mobile Node must learn either
the IP address or the link address of that agent. It is assumed that a link-layer
connection has been established between the agent and the Mobile Node. The
method used to establish such a link-layer connection is not specified in this
protocol. After establishing a link-layer connection, the Mobile Node learns
whether there are gwragents wailable. If the address of ynragent matches the
Mobile Nodes stored address for its Home Agent, the Mobile Node is at home.

The Mobile Node can get information about Mobile Agents either byviagean
ICMP Router Adertisement or by sending an ICMP Router Solicitatiom.tie
ICMP Router Adertisement, information is added to indicate that the routeeserv
as a mobility agent.

3.2.4 Registration
The raistration function xchanges information between a Mobile Node and its
Home Agent. The information sent from the Mobile Node is the pare-of
address to which the Home Agent is supposed to send the datagrams destined to the
Mobile Node. If a Mobile Node itself is assigned a care-of address, it can act
without a reign Agent, and ggster or dergister directly with a Home Agent by
the exchange of only 2 messages stated by the protocol:

* The Mobile Node sends agistration request to a Home Agent, asking it to
provide service.

Implementation and Analyses of the Mobile-IP Protocol 11

The Mobile-IP protocol

* The Home Agent sends agistration reply to the Mobile Node, granting or
derying service.

When the care-of address is associated witloraifin Agent, the éreign Agent
acts as a relay between the Mobile Node and the Home Agent. xtbisded
registration process wolves the rchange of 4 messages:

* The Mobile Node sends agistration request to the prospsgetForeign Agent to
begin the rgistration process.

e The Foreign Agent relays the request to the Home Agent, asking the Home
Agent to rgister the Mobile Node at thefeign Agent care-of address.

* The Home Agent sends agistration reply to thedreign Agent to grant or dgn
service.

* The Foreign Agent relays the gestration reply to the Mobile Node to inform it
of the disposition of its request.

The raistration messages use the User Datagram Protocol (UDP) header [14]. A
non-zero UDP checksum should be included in the headdrchec&d by each
recipient. An administrate domain may require a visiting Mobile Node tgister

via a Foreign Agent. Thisdcility is ervisioned for service praders with packt
filtering fire-walls, or visiting policies which requirexehanges of authorization.

It is possible for a Mobile Node to Veamore than one care-of address gtg@ven
time. This can be useful when a Mobile Nodevew within range of multiple
cellular systems. When the Home Agent wBosimultaneous bindings, it will
encapsulate a separate gaf each arsiing datagram to each care-of address, and
the Mobile Node will recee multiple copies of its datagrams. This is not a problem
since IP gplicitly allows duplication of datagrams.

3.25 Forwarding Datagrams to the Mobile Node
The way in which IP pacéts are relayed from the Home Agent to the Mobile Node
is by IP in IP encapsulation [15], also called “tunneling”. This means that when the
Home Agent recees an IP paak destined to a Mobile Node it puts the IP pck
in a nav IP paclet (by adding an IP header) with the destination field set to the care-
of address of that Mobile Node (see Figdye

Outer IP Header

IP Header IP Header

IP Payload IP Payload

Figured4. IPin IP encapsulation

Implementation and Analyses of the Mobile-IP Protocol 12

The Mobile-IP protocol

When the Breign Agent recges the IP paak it decapsulates it by rewing the
outer IP pack&t and sending the original patkto the Mobile Node. The general
encapsulation case is stiin Figure5.

Encapsulator Decapsulator Destination

Source — | (Home Agent) [™| (Foreign Agent) P~ (Mobile Node)

Figure 5. The general encapsulation case

Encapsulation is a ay to re-address datagrams. Another methodldvbe to use

the IP Source Route option in the IP protocol (see [20]), which lets the sender
specify a path that the IP datagram must falldhere are hgever seeral technical
reasons to prefer encapsulatiar@iosource routing, according to the encapsulation
draft [15]:

* There are unsobd security problems associated with the use of source routing.

e Current internet routersckibit performance problems when fawding packts
which use the IP source routing option.

* Too maly internet hosts process source routing options incorrectly
* Firewalls may &clude source-routed paets.

* Insertion of an IP source route option may complicate the processing of
authentication information by the source and/or destination of a datagram,
depending on he the authentication is specified to be performed.

* |t is considered impolite for intermediate routers to enakodifications to the
paclets which thg did not originate.

There are, of course, some disaiatages with the encapsulation technique too. F
instance, encapsulated patk are normally longer than source routed peck

Implementation and Analyses of the Mobile-IP Protocol 13

Network Management

4.0 Network Management

A computer netwrk consists of mandifferent components, forxample routers,
hubs, bridges and hosts. As the comipjeof a system gmes, the need for
monitoring and controlling the dédrent entities increases. This problenasw
recognized by endors of netark equipment, and as a result ythdeveloped
strat@ies to manage their products. Of courstediint manudcturers came up with
different solutions, and that led to problems for managers who administrated
systems that consisted of equipment frorfedént \vendors. A standardas needed,

and at the end of the eighties a standaad d&eloped based on something called
the Internet-standard Network Management Framework. This framevork included

a set of rules for describing management information, an initial set of managed
objects, and a protocol used trchange management information (the Simple
Network Management Protocol [19]).

A network management systems consists of four components:

e one or moremanaged nodes, each containing aragent which runs the
management softave;

* at least on@etwork management station (NMS) on which one or more nedwk
management applications (often calleghagers) reside;

* a netwrk managemenprotocol (for example SNMP) which is used by the
manager and the agents teleange management information; and

* aManagement Information Base (MIB) that specifies whatariables the netark
elements maintain.

The communication can happen inotways: the manager asks the agent for a
specific \alue, or the agent telling the manager that something important has
happened. Also, the manager should be abdetteariables in the agent in addition

to reading alues from it.

Note that the netark management system can be thought of as a cliemfserv
system, where the management application (the manager) dig¢hewhich is
sending questions and commands to the agensditier).

4.1 SNMP

The Simple Netwrk Management Protocol (SNMP) [19] emed from the IETF
(Internet Engineering ask Force) as a result of a recommendation from IAB
(Internet Actvity Board) concerning the standardization of rekwmanagement.
The philosopk behind the protocol as that it should be simple and focus on the
areas of dult management and configuration managementeAm, the protocol
proved to be ery flexible and suitable for all kinds of netwk management.

In general, an SNMP interaction consists of a request of some kindyddlloy a
response. See Figube

Implementation and Analyses of the Mobile-IP Protocol 14

Network Management

\/

manager network agent
request ————~
~
~
~
~
~
~
_»
time
-——— response
~
~
~
-~
~
-
~
4—‘

Figure 6. SNM P request-response inter action (based on [11] p. 243)

4.2

SNMP defines only fiw types of messages that axelenged between the manager
(the client) and an agent (the senv

1. Fetch the alue of one or moreaviables: theyet - r equest operator
2. Fetch the net variable: theget - next - r equest operator

3. Set the wlue of a @riable: theset - r equest operator
4

. Return the alue of a ariable: theget - r esponse operator This is the mes-
sage returned by the agent to the manager in responseg®ttheequest ,
get - next - r equest, andset - r equest operators.

5. Notify the manager when something happens on the agemt: #peoperator

The first three messages are sent from the manager to the agent, and tloesleest tw
from the agent to the manag&he messages are sent in UDP pésk

MIB

The Management Information Base, or MIB, is a description of the information
maintained by the agent that the manager can query or set. Each object in the MIB
is given a name and is also defined by a unique sequence gdriteparated by
decimal points. This sequence of oes is called thebject identifier and it is
allocated by some ganization that has responsibility for a group of identifiers. The
objects are arranged in a tree structure similar to a filesystem (see Bigtwe
example the name corresponding to 1.3.6.1.2.1.4 is gsdad.internet.mgmt.mib-

2.ip, and is the object identifier pointing to the Internet Protocol (IP) group.

A MIB definition resembles a definition of a data structure in a programming
language. It is a description of whichriables can be accessed and what data types
they have. An xample of a MIB definition can be found in Appendix G, which is a
description of our MIB for the Mobile-IP protocol. MIBs are described using a
subset of the Abstract Syntax Notation One (ASN.1).

Implementation and Analyses of the Mobile-IP Protocol

15

Network Management

root
ccitt(0) iso(1) join-iso-ccitt(2)
org(3)
dod(6)
r———-"-""-"""—-"-"-"\\" 0 " 0 00— 00— 0 _V— 0 = —_ —_ = A
: internet(1) :
| / \ |
| directory(1) mgmt(2) experimental(3) private(4) security(5) snmpV2(6) |
I I
I | I
I mib-2(1) I
I I
I I
I I
: system(1) interfaces(2) at(3) ip(4) icmp(5) tcp(5) udp(7) :
NN AN AN NN
I I
L - |
Figure 7. Object identifiers in the Management Irdrmation Base (based on [20] page 365)
Implementation and Analyses of the Mobile-IP Protocol 16

The Mobile-IP MIB

5.0 The Mobile-IP MIB

One task of our dgee project &s to analyse the performance of the Mobile-IP
protocol, and in order to do so we needed to get out cedaable \alues from the
protocol implementation while it & running. This can be accomplished with a
network management system. Unfortunately there did rist @ry MIB for this

new protocol, so our first task ag to define a Mobile-IP MIB oursels.
examined the protocol draft [5] and the implementation made by Anders Klemets
[3] and tried to figure out whichalues we needed to nekur measurements. The
result is described in the figures and tablesvaedmd the complete MIB definition
described in Abstract Syntax Notation One (ASN.1) can be found in Appendix G.

Figure8 shavs some of the objects that we suggest should be in the Mobile-IP
MIB, and these objects are further describedabld?l.

mipMN —
mipFA —
mip
mipHA —
mipType
Figure 8. The Mobile-IP MIB
#|Field Name MIB Object L abel Datatype Description
1|Mobile Node mipMN OBJECT The Mobile Node subgroup
IDENTIFIER
2|Foreign Agent mipFA OBJECT The Foreign Agent subgroup
IDENTIFIER
3|Home Agent mipHA OBJECT The Home Agent subgroup
IDENTIFIER
4|Type mipType BIT STRING A bit vector indicating whether this entity

and/or a Foreign Agent

is acting as a Mobile Node, a Home Agent

Table 1: The objects in the Mobile-IP MIB

5.1 The Mobile Node

The first subgroup in the Mobile-IP MIB is the Mobile Node. Figuighavs the

Case Diagram for that object. A Case diagram (named after a Professor Case) is a
simplified diagram that sk the flav of management information in a protocol
layer The horizontal lines represents counters.

Implementation and Analyses of the Mobile-IP Protocol

17

The Mobile-IP MIB

—L mnAuthCount

—1 mnAdvCount

—1— mnErrCount

—r— mnDecaps mnSolCount ——

I v .

Figure 9. Case Diagram for the Mobile Node

Below is a picture of the objects that belong to the Mobile Node (Fitkend

after that is a table which describes all taeables (able2). From the picture we
can see that there areauwables defined in this subgroup; mgRable (a table of
current rgistrations for the Mobile Node) and mnPendRable (a table of pending
registrations). These tables are more carefully describedtleZ and Bble5. The
Mobile Node also has a list of potential Home Agents, mnHomeAgentList, which is
described in @ble3.

The following sections in the chapter will follothe same pattern as this one; a
Case diagram, a picture of the subgroup, a table describingatfebles and
separate tables for each of the tatdgables.

Implementation and Analyses of the Mobile-IP Protocol 18

The Mobile-IP MIB

—{ mnHomeAgentList |

mnRegHA
—{ mnRegTable I
I mnRegFA |
—| mnPendRegTable I—
I mnRegReqTS |
mnAdvAddr
I I mnRegRepITS |
| mnAdvSegNo | I |
P mipMN mnRegFlags
| —{ mnAdvFlags | |
r— = = = = A I mnRegLifetime |
r— - - — — | Jl_ 4 mipFA | —{ MnAdvTS |
mip L L— — — — — 4
Lo T A —{ mnAdvCount | I mnPendRegHA |
r oA mipHA |
: Lo] —{ mnErrAddr | I mnPendRegFA |
r— - - — 1
L4 mipType | —{ mnErrCodet | ImnPendRegReqTS|
L - — — — |
—{ MnEnNTS | I mnPendReqs |
—| mnErrCount | I mnPendRegFlags |
—{ mnAuthCount |
—| mninvReplCount |
—{ mnSolTS |
—{ mnSolCount |
—{ mnDecaps |
—| mnDiscards |
Figure 10. The Mobile Node subgroup
Implementation and Analyses of the Mobile-IP Protocol 19

The Mobile-IP MIB

ee

=]

ent

ved

nts

or

was

dat

5.1.1 Mobile Node objects
#|Field Name MIB Object L abel Datatype Description
1|{Home Agent List mnHomeAgentList |SEQUENCE OF |The Mobile Node’s list of Home Agent
MNHAEnNtry See Tabls&
2|Registration Table mnRegTable SEQUENCE OF |The Mobile Node’s registration table. S
MnRegEntry Table4
3|Pending Registration |[mnPendRegTable SEQUENCE OF |The Mobile Node’s pending registratig
Table MnPendRegEntry |table. See Tablg
4|Advertisement AddressnnAdvAddr IpAddress The IP address in the last received ag
advertisement
5|Advertisement mnAdvSegNo INTEGER The sequence number in the last rece
Sequence Number (0..65535) agent advertisement
6|Advertisement Flags |mnAdvFlags Bit String The flags field in the last received age
advertisement
7|Advertisement Time |mnAdvTS Counter The time when the last agent
Stamp advertisement was received
8|Advertisement CountemnAdvCount Counter The total number of agent advertiseme
received
9|Error Address mnErrAddr IpAddress The IP address from which the last er
message was received
10|Error Code mnErrCode INTEGER (0..255)| The error code in the last received err
message
11|Error Time Stamp mMnEnTS Counter The time when the last error message
received
12|Error Counter mnErrCount Counter The total number of error messages
received
13|Authentication mnAuthCount Counter The total number of authentication
Exception Counter exceptions discovered in the MN
14|Invalid Reply Counter|mninvReplCount Counter The total number of invalid replies
15|Solicitation Time mnSolTS Counter The time when the last agent solicitati
Stamp message was sent
16|Solicitation Counter |mnSolCount Counter The total number of agent solicitationg
sent
17|Decapsulations mnDecaps Counter The number of IP-packets decapsulate
the Mobile Node
18|Discards mnDiscards Counter The number of encapsulated packets

discarded at the Mobile Node

Table 2: The objects in the Mobile Node subgroup

5.1.2 List of Home Agents

#

Field Name

MIB Object L abel

Datatype

Description

1

Home Agent

mnHALAddr

IpAdddress

The IP address of a Home Agent

Table 3: The Mobile Nods'list of Home Agents. Just a list of IP addresses.

Implementation and Analyses of the Mobile-IP Protocol

20

The Mobile-IP MIB

5.1.3 Mobile Node Registration Table

#|Field Name MIB Object L abel Datatype Description
1|{Home Agent mnRegHA IpAddress The IP-address of the Home Agent
2|Foreign Agent mnRegFA IpAddress The IP-address of the Foreign Agentt
3|Registration Request |[mnRegReqTS Counter The time when the first registration
Time Stamp request was sent
4|Registration Reply |mnRegRepITS Counter The time when the registration reply w
Time Stamp received
5|Flags mnRegFlags Bit String The flags field that was used in the
request
6|Lifetime mnRegLifetime Integer The remaining lifetime for this
registration

Table 4: The Mobile Node'Reistration Eble

5.1.4 Mobile Node Pending Registration Table

Table 5: The Mobile Nods’Pending Rgistration Rble

#|Field Name MIB Object L abel Datatype Description
1|Home Agent mnPendRegHA IpAddress The IP-address of the Home Agent
2|Foreign Agent mnPendRegFA IpAddress The IP-address of the Foreign Agent
3|Registration Request [mnPendRegReqTS |Counter The time when the first registration

Time Stamp reguest was sent
4|Registration RequestsmnPendRegReqs Integer The number of registration requests sent
5|Flags mnPendRegFlags Bit String The flags field that was used in the

request

Implementation and Analyses of the Mobile-IP Protocol

21

The Mobile-IP MIB

5.2 The Foreign Agent

Figure 11 shows the Case Diagram for the Foreign Agent.

A 1T A A
faErrSentCount —
—1— faRegReqRec
faAuthCount —
faSolCount
.
—r— faAdvCount
— faErrRecCount
faDecaps ——
I .y - _J_d________ | A

Figure 11. Case Diagram for the Foreign Agent

Implementation and Analyses of the Mobile-IP Protocol

22

The Mobile-IP MIB

faCOAList
o) —{ faRegTable }— _{]:EZZ'\HAZ |
;— 4L ~ miphN _JI t— faPendRegTable |- | aregrers |
F————— - L] mipFA | | faAdvSeaNo | — faRegReplTS |
L _nip_ _ JL _: r—— — — — - [fAdvrlags | | faRegLifetime |
rd mpHA 1] faAdvTs |
!_ '|: - :. - — - f‘ —{ faAdvCount | —{ faPendRegMN |
8 mipType |
L — 4 — faSolddr | L— faPendRegHA |
— fasolTs |
— fasolCount |
—{ faErrRecAddr |
—| faErRecCode |
—| faEmRecTS |
— faErrRecCount |
—{ faErrSentAddr |
— faErrSentCode |
—| faEmrSentTS |
— faErrSentCount |
— faAuthCount |
— faRegReqgsRec |
—{ faDecaps |
L faDiscards |
Figure 12. The Foreign Agent subgroup
Implementation and Analyses of the Mobile-IP Protocol 23

The Mobile-IP MIB

nts

ent

5.2.1 Foreign Agent objects
#|Field Name MIB Object L abel Datatype Description
1|COA List faCOAList SEQUENCE OF |The Foreign Agent’s list of care-of
FaCOAEntry address, if any. See Table
2|Registration Table |faRegTable SEQUENCE OF |The Foreign Agent's registration table
FaRegEntry See Tabl&
3|Pending Registration [faPendRegTable SEQUENCE OF |The Foreign Agent’s pending registrati
Table FaPendRegEntry |table. See Tabl@
4|Advertisement faAdvSeqNo INTEGER The sequence number in the last sent
Sequence Number (0..65535) agent advertisement
5|Advertisement Flags |faAdvFlags Bit String The flags field in the last sent agent
advertisement
6|Advertisement Time [faAdvTS Counter The time when the last agent
Stamp advertisement was sent
7|Advertisement CountefaAdvCount Counter The total number of agent advertiseme
sent
8|Solicitation Address |faSolAddr IpAddress The IP address in the last received ag
solicitation message
9|Solicitation Time faSolTS Counter The time when the last agent solicitati
Stamp message was received
10|Solicitation Counter |faSolCount Counter The total number of agent solicitationg
received
11|Error Received AddresiErrorRecAddr IpAddress The IP address from which the last er

message was received

or

12

Error Received Code

faErrRecCode

INTEGER (0..255)

The error code in the last received err
message

was

was

ent

sts

dat

13|Error Received Time |faErrRecTS Counter The time when the last error message
Stamp received
14|Error Received CountdaErrRecCount Counter The total number of error messages
received
15|Error Sent Address |faErrorSentAddr IpAddress The IP address to which the last error
message was sent
16|Error Sent Code faErrSentCode INTEGER (0..255)| The error code in the last sent error
message
17|Error Sent Time StampgaErrSentTS Counter The time when the last error message
sent
18|Error Sent Counter |faErrSentCount Counter The total number of error messages s
19| Authentication faAuthCount Counter The total number of authentication
Exception Counter exceptions
20|Registration RequestsfaRegReqsRec Counter The total number of registration reque
Received received
21|Decapsulations faDecaps Counter The number of IP-packets decapsulate
the Foreign Agent
22|Discards faDiscards Counter The number of encapsulated packets

discarded at the Foreign Agent

Table 6: The objects in theFeign Agent subgroup

Implementation and Analyses of the Mobile-IP Protocol

24

The Mobile-IP MIB

5.2.2 List of Care-of Addresses

#|Field Name

MIB Object L abel Datatype

Description

=Y

Care-Of Address

faCOAddr IpAddress

The Care-of Address

Table 7: The Breign Agens list of Care-of addresses

5.2.3 Foreign Agent Registration Table

#|Field Name MIB Object L abel Datatype Description
1|Mobile Node faRegMN IpAddress The IP-address of the visiting Mobile
Node
2|Home Agent faRegHA IpAddress The IP-address of the Mobile Node’s
Home Agent
3|Registration Request [faRegReqTS Counter The time when the first registration
Time Stamp request was sent
4|Registration Reply |faRegRepITS Counter The time when the registration reply w
Time Stamp received
5|Lifetime faRegLifetime Integer (0..65535)| The remaining lifetime for this
registration

Table 8: The Breign Agents Rayistation Bble

5.2.4 Foreign Agent Pending Registration Table

#|Field Name MIB Object L abel Datatype Description

1|Mobile Node faPendRegMN IpAddress The IP-address of the visiting Mobile
Node

2|Home Agent faPendRegHA IpAddress The IP-address of the Mobile Node's
Home Agent

Table 9: The Breign Agents Pending Rgistation Bble

Implementation and Analyses of the Mobile-IP Protocol

25

The Mobile-IP MIB

5.3 The Home Agent

Figure 13 shows the Case Diagram for the Home Agent.

—r— haRegRegRec

haSolCount

haBroadcastsRec

'

haBroadcastsSent ——

haEncaps ——

haAuthCount —

—+— haAdvCount

haErrCount ——

I v __ y_.v_______ v . ___ Y.

Figure 13. Case Diagram for the Home Agent

Implementation and Analyses of the Mobile-IP Protocol

26

The Mobile-IP MIB

—{ haBindingTable }—

—{ haAuthNodeList |

—{ haBindingMN |
—{ haBindingCOA |
—{ haBindingLifetime |

haAdvSegNo |

haAdvFlags

haAdvTS

haAdvCount

haSolAddr

haSolTS

r— - - — A
- mipMN |
| L - - — — J
r— - - — A
T T T Ly mipFA |
mip L o _ a
L — — — — — 4
I mipHA
I = — = 1
LA mipType I

Figure 14. The Home Agent subgroup

haErrAddr

haErrCode

haErTS

haErrCount

I .

|
|
|
|
|
haSolCount |
|
|
|
|
|

haAuthCount

—| haRegReqsRec |

haEncaps |

1

—{ haBroadcastsRec |

—{ haBroadcastsSent |

—{ haBindingFlags |

Implementation and Analyses of the Mobile-IP Protocol

27

The Mobile-IP MIB

nts

ent

or

was

ent

dat

ived

5.3.1 Home Agent objects
#|Field Name MIB Object L abel Datatype Description
1|Mobility Binding TablghaBindingTable SEQUENCE OF |The Home Agent’s mobility binding
HaBindingEntry |table. See Tablgl
2|Authorized Node List |haAuthNodeList SEQUENCE OF |The Home Agent’s list of authorized
HaANEntry Mobile Nodes. See Tabl
3|Advertisement haAdvSegNo Integer (0..65535) | The sequence number in the last sent
Sequence Number agent advertisement
4|Advertisement Flags |haAdvFlags Bit String The flags field in the last sent agent
advertisement
5|Advertisement Time [haAdvTS Counter The time when the last agent
Stamp advertisement was sent
6|Advertisement CountehaAdvCount Counter The total number of agent advertiseme
sent
7|Solicitation Address |haSolAddr IpAddress The IP address from which the last ag
solicitation message was received
8|Solicitation Time haSolTS Counter The time when the last agent solicitati
Stamp message was received
9|Solicitation Counter |haSolCount Counter The total number of agent solicitation
messages received
10|Error Address haErrAddr IpAddress The IP address from which the last er
message was sent
11|Error Code haErrCode INTEGER (0..255)| The error code in the last sent error
message
12|Error Time Stamp haErTS Counter The time when the last error message
sent
13|Error Counter haErrCount Counter The total number of error messages s
14|Authentication haAuthCount Counter The total number of authentication
Exception Counter exceptions
15|Registration RequestshaRegReqgsRec Counter The number of registration requests
Received received at the Home Agent
16|Encapsulations haEncaps Counter The number of IP-packets encapsulate
the Home Agent
17|Broadcasts Received |haBroadcastsRec Counter The number of broadcast packets rece
18|Broadcasts Sent haBroadcastsSent |Counter The number of broadcast packets

forwarded to Mobile Nodes

Table 10: The objects in the Home Agent subgroup

5.3.2 Home Agent Mobility Binding Table

e

#|Field Name MIB Object L abel Datatype Description

1|Mobile Node haBindingMN IpAddress The home address of the Mobile Node
2|COA haBindingCOA IpAddress The care-of address of the Mobile Nog
3|Lifetime haBindingLifetime Integer (0.65535) |The lifetime for this registration
4|Flags haBindingFlags Bit String The flags field for this registration

Table 11: The Home AgestMobility Binding Table

Implementation and Analyses of the Mobile-IP Protocol

28

The Mobile-IP MIB

5.3.3 List of Authorized Nodes

3+

Field Name MIB Object L abel Datatype

Description

=Y

Authorized Node haANAddr IpAddress

The IP address of an authorized mobi
Node

Table 12: The Home Agestlist of Authorized Mobile Nodes

Implementation and Analyses of the Mobile-IP Protocol

29

Testing the SunOS implementation

6.0 Testing the SunOS implementation
Before we started to port Anders Klemets’ implementation of the Mobile-IP
protocol to the MINT and Solaris, we thought that duld be a good idea to see
how it worked on its original platform: SunOS 4.1.
This chapter contains a quite detailed description of what we did, te mhak
possible for others to reproduce these tests.

6.1 Installation
We davnloaded ersion 7 of Klemets’ implementation from
ftp://sics.selarchive/ nobile-ip/
and compiled it, just typingake. This produced anxecutable file calledni pd,
which is the Mobile-IP daemon. This program is used to start bothdireighk
Agent and the Home Agent, as well as the Mobile Nodg, viith different
configuration files. & example, to start adfeign Agent you type
xmipd fa.cfg
where f a. cf g is the configuration file for a foreign agent. More about the
configuration files bels. Note that the implementation uses the Nekninterface
Tap (dev/ ni t), which requires you to ke root access (to open thevide).

6.2 The environment

In the lab we had tvsubnetwrks and a couple of Sun SparcStations that we could
use for these tests. The configuration isashim Figurel5.

kista-gw

anxiety explorer
(FA) (MN)

(130.237.215.61) (130.237.216.146)

130.237.215

it-gw

(netmask Oxf f f f f f 00)

130.237.216.128

(130.237.216.150) (netmask Oxf f f f f f e0)

dumburken
(HA)

Figure 15. The subnetworks and the workstationsin the lab

The netmask for the 215 subneDisf f f f f f 00 (255.255.255.0), ut for the 216
subnet it isOxf f f f f f e0 (255.255.255.224), which means that the 216 subnet is

Implementation and Analyses of the Mobile-IP Protocol 30

Testing the SunOS implementation

itself subdvided into eight diierent sections. The three most significant bits in the
last byte of the IP address determines which section we are dealing with (see
belaw).

130. 237.216. Y =
10000010. 11101101. 11011000. XXX* * ***

XXX | P-addresses
000 0-31

001 32-63

010 64-95

011 96-127

100 128-159
101 160-191
110 192-223
111 224-255

We are using the subnet that has IP-addresses in the range 130.237.216.128 to
130.237.216.159.

6.3 Configuration

All three daemons (HA, A&~ and MN) hae to be configured with IP addresses
different from the real IP addresses on the computers whegraréheunning, so we
gave them addresses which were not used gyo#mer computers in the department
but still had the right netark number These addresses were then used in the
configuration files for the ddrent entities. The syntax of the configuration
commands is described in the filBEADME and README. conf i g which are
included in the Mobile-IP package by Anders Klemets.Will shortly describe the
configuration setup that we used in our tests. \Batothe configuration file for a

Mobile Node.
nyi paddr 130. 237.216. 146
ha 130. 237. 216. 150
key 130.237.216.150 t n 12345 this_is_a_secret
key 130. 237.216.150 r n 13588 this_is_another _secret

lifetinme 40
interface | e0 8:1:20:1:2:3 130.237.216. 146 255. 255. 255. 224
route add default 130.237.215.1 1

The commandryi paddr establishes the IP address of the Mobile Node. This IP
address does not belong toyadfixed computer The actual IP address for the
workstation “explorer”, where the Mobile Node is running, is 130.237.215.41.

Theha command specifies the IP address of the Home Agent. (This address should
correspond taryi paddr in the configuration file for the Home Agent). This also
indicates that this configuration file is describing a Mobile NodeenEv
configuration file must contain one of the commamalsf a or mh.

Thekey command is used for authentication purposes. Here you specify the secret
key to be used when communicating with a certain IP address, in our case the IP
address of the Home Agent. The letter “t” indicates that #yisakll be used when

Implementation and Anal yses of the Mobile-IP Pr otocol 31

Testing the SunOS implementation

transmitting paclets only while a letter “r’" meanseceiving. The third agument,
which here is an “n”, says thatnces will be used for replay protection, instead of
timestamps (“t”). The fourth agument is a pseudo random SecuritydMmeter Inde
and the last gument is the authenticatiomyk given as a character string. More
details about these gquments can be found in thBEADME. confi g file
mentioned abee.

Li feti me sets the maximumalue of the rgistration lifetime, in seconds. This
value is used in the gestration requests sent from this Mobile Node.

Thei nt er f ace command is used to configure aygpital netvork interface. The
first agument is the name of the real interé on our computer which is “le0”, the
ethernet intedce. Nat agument is the hardave address to use. Since we do not
want to interfere with the normal IP tfiafto our workstation, we use a made up
ethernet address. This will malthe packts that we are interested in to go to our
separate protocol stack in user spacey ®Ralid ethernet address can be used, as
long as it is not used by another inteé on the same netvk. As all Sun
computers with Lance ethernet cardseéhathernet addresses starting with 8:0:20, it
was safe for us to use addresses starting with 8:1:20. The thinchemt is the IP
address that is to be used on this irtesf This should be the sam@ue as the
nyi paddr value, and not the real IP address of the iaterf The last gument is
the netmask to be used with this IP address.

The last command in our configuration file is theut e add command which
adds an entry to the IP routing table. Here we specify treuliebuter to be used
from the Mobile Node.

Note, a much safer method of assigning reghernet link addresses, that simply
making up an ethernet address, is to apply for youn eet of addresses. The
Institute of Electrical and Electronics Engineers, Inc. has been designated by the
ISO Council to act as the gistration authority for the implementation of
International Standards in the ISO/IEC 8802 seriesfiiither details contact:

IEEE Raistration Authority
IEEE Standards Department
445 Hoes Lane,.©. Box 1331
Piscatavay NJ 08844-1331
phone: (908)562-3813

Fax: (909)562-1571

Email: iringel@ieee.qr

6.4 Running the system

We started up the dédrent entities as described in Figdf that is the Home
Agent at dumbrken, the Breign Agent at anxiety and the Mobile Nodexilerer.
To see that it really as working, we used th@i ng command to send a pastk
from a workstation on another subnet (therkstation artigonn on the subnet
130.237.213) to the IP address of the Mobile Node. The ping éssswccessful.

We later used the SunOS implementation and the configuration described here quite
a lot when we were doing the performance tests. More about this in SH&:@on

Implementation and Analyses of the Mobile-IP Protocol 32

The SNMP implementation

7.0 The SNMP implementation

To implement the Netark Management functions that we needed in the Mobile-IP
code, we used the cmu-snmp2.1.2 package. There weralseasons for choosing
this tool. Firstly it is gailable for free from the Carge Mellon Unversity (CMU)

and secondly it is widely used.

7.1 The system

The enironment we used to test our systermswthe same as the one described in
Section6.2 on pag&0 with the diference that on each of the SparcStations we
were running an SNMP agent as well (as the MobilelP code)mdnitor the
different components we used owrromanager program, called pwat cher,
which is described in Sectiahb.

There are three types of entities in our system; the SNMP MarthgeENMP
Agent and the Mobile-IP daemon as whoin Figurel6. The communication
protocol between the Manager and the Agent is SNMPv2. Between the Agent and
the Mobile-IP daemon we created a simple request-reply protocol tveuatubP

In our system the Agent and the Mobile-IP daemon run on the same comguter b
they could as easily run on f#frent ones as described in Secfioh. The Agent is

thus a proxy agent.

SNMP Manager SNMP Agent Mobile-IP

(mipwatcher) (snmpd) (xmipd)

Figure 16. SNMP communication

7.2 The SNMP agent

The SNMP agent as implemented using the cmu-snmp2.1.2 package. The code in
the agent is rather simpleof~a basic understanding of the cmu-snmp2.1.2 see
Appendix A.

7.2.1 The functions
There are a fe functions vorth mentioning. Irsnnp. ¢ connect_mipd is called to
open a UDP soak for the communication with the mipd. The addressviergby
snmp_addr and the port number lspmp_port. Both can be changed using switches
on the command line as described in Seclign Since all ariables in the Mobile-
IP MIB are \ery similar in type, there are only three lookup functioms. mip
takes care of all simpleariables,var_miptype handles the miptypeaviable and
var_mipEntry looks up all tables and lists. Thar_miptype function could be
included invar_mip, but is separately defined for immexd readabilityBasically all
three lookup functions ark as follavs. First a check is made to see if we can
handle this request. If so, a patls sent to the Mobile-IP daemon (xmipd) asking it
to retrieve the ariable askd for and then wit for an answerlf no answer is
returned withinTimeOutTime seconds, retransmit the requesif ho more than
NumOfRetrans times.

Implementation and Analyses of the Mobile-IP Protocol 33

The SNMP implementation

To send a paak to xmipd a call is made to tendReadReq function. First, bild a
readpackt containing (in order) the R/Malue, the magicalue, the ract \alue
and the clengthalue. If current, which is the matching prefix in the subtreelist, is
not NULL include it ne&t in the packt. If current is not NULL also put in the
rlength and the requested OlDeQuest). When the padakt is done, send it to
MIPsock.

After the request is sent, a call@etResp is made to it for a response from mipd.
GetResp waits TimeOutTime seconds for a response, and if none is vecei
TIMEOUT is returned. If a paét is returned from mipd, first check tieor value.

If it is non-zero, this is an error pakwhich only includes the error code and
GetResp just returns the error code. Wever, if error is zero, the foundalue length

is fetched and thealue put intd*value. If the caller ofGetResp is interested in the
length of the alue, that isdength is not NULL, put the length intbviength. Next,

get the length field of the found OID. If it is non zero, get the OID from theepack
and updaté olength and* oidfound.

7.2.2 The protocol
To communicate between the SNMP agent and the Mobile-IP daemon (xmipd), a
simple request-reply protocover UDP vas implemented. A request sent from the
agent to xmipd looks lig this. The first byte indicates whether this is a read or write
request. A read request is indicated by thiee 1 and a write by 2. Thextdyte is
the magic number hint found by the agent. Then Xaetealue occupies the third
byte and the length of thgp->name field, given in bytes, the fourth. If xmipd is not
interested in thep->name, this last field can be set to zero. It is then automatically
assumed that there is no more data in thegiatikthevp->name is to be included
in the request, it folls the length field. After that, the length field of the requested
OID, also in bytes, occupies one byte. If it is not zero, then the requested OID is put
at the end of the paek

A response from xmipd to the agent has the falig structure. The first byte is the
error code. If an error @ encountered during the lookup ofaiable, the error
code should be set to a non-zeatue and no more data ispected in the paek by
the agent. If the lookup of axiable vas a success, then the faliag byte is the
length, in bytes, of thealue found. After that thealue itself is included. The re
byte is the length, in bytes, of the OID returned. Thisi@ can be zero if the agent
does not need the found OID, and then this is the last byte in thet patherwise
the OID occupies the last bytes in the pck

7.3 Changes to the Mobile-IP implementation

To be able to get information concerning the state of a Mobile-IP daemon, code had
to be added to collect statistics, store interestalges and to communicate with

the SNMP agent. One design decision maese t@ run the Mobile-IP daemon and

the SNMP agent as separate processes. Tésstov hcilitate the porting of the
Mobile-IP code to the MINThut also to be able to run the SNMP agent on a
different machine if so desiredo Thcorporate the agent into the Mobile-IP daemon
should not be a ditult process.

7.3.1 Structures
To store the collected statistics, a globaliablemipstat was created. Its definition
can be found in Appendix B.2.3. Basically it has one entryveryesimple ariable
in the Mobile-IP MIB.

Implementation and Analyses of the Mobile-IP Protocol 34

The SNMP implementation

Most of the data of interest to the tables and lists in the MIB were already contained
in different structures in the code. Though some changes had to be madeyand the
are pointed out in Appendix B.1.

7.3.2 Functions
The functionality added is basically a number of functions to get a request from the
SNMP agent, fetch theaviable askd for and send a replAll new functions
written are contained in the filsamp.c andsnmp_init.c. Almost all other changes
to the original Mobile-IP implementationviolve simply updating themipstat
variable and thus can easily be found.

The order of eents is roughly that inoListenForPackets a call is made to
snmp_socket_init to open a UDP soek to use for the communication to the SNMP
agent. Then we ait for paclets to arre at that soat in the functiorbsdNITInput
and when it doesnmpHandleReq is called to tak care of the request. The only job
of the snmpHandleReq function is to read the request from the sicknd get the
first byte to determine whether this is a read or write request and call the
corresponding function. When a read request is vedeiit is up to
snmpHandleReadReq to extract the rest of the information from the petk
determine which ariable is aséd for, fetch the alue and calénmpSend to send an
answer If, during the wariable lookup, an error is disgered,snmpERROR sends
the corresponding error pastkto the SNMP agent. The functisnmpSend calls
snmpMakeReply to male a reply paost, and then sends that patkWhen done, we
wait for more requests.

7.4 Configuration

One command has been added to the configure file for the xmipd program. If for

some reason the port number used for listening for requests form the SNMP agent is
occupied it can be changed by the command ‘Port number’, where number is the
new port. The dedult port is OxFFD3.

If you want the SNMP agent to run on afédiEnt machine than the Mobile-IP
daemon you can start snmpd with the switch [-ma ipaddress], where ipaddress is the
IP address of the computer on which the Mobile-IP daemon is running. Also, if the
port on which the Mobile-IP daemon is listening for requests has been changed, the
switch [-mp n&vport] tells the snmpd about it.

7.5 Mobile-IP W atcher

Mobile-IP Watcher or mi pwat cher, is an SNMP manager program that weeha
created to be able to monitor thefelient entities in the Mobile-IP protocol and to
display it in a nice format. It is based on gm®npwal k application in the CMU
SNMP package. Mipatcher calls the snmpalk program with certain parameters,
and displays the formatted result in a wivwdan the screen. The program is written
in the script language Tcl/Tk, and needs the applicaiarh to run.

The source code for our program can be found in Appendix F.

7.5.1 Howtouse ni pwat cher
Before you start the program, neagure that you lva set the anronment \ariable
MIBFILE to point to the MIB file that you ant to use. The program will not start if
the MIBFILE variable is not set.

To start the program, go to the directory where raigiver is located and simply
typeni pwat cher . If this does not wark, it is probably because it cannot find the

Implementation and Anal yses of the Mobile-IP Pr otocol 35

The SNMP implementation

wi sh program, which is assumed to be in thesr /| ocal / bi n directory This
can be helped by changing the path on the first line invithmwat cher file to
point to the gecutable wish on the current system.

The first screen to appear when you start the program will loelEigurel?.

Mobile-IP Watcher

Mobile-IP Watcher

Choose an entity to monitor

Mobhile Mode | Foreign Agent | Home Agent | Quit |

Figure 17. Main menu

Here you choose which entity yowamt to monitor Simply press one of theutions
“Mobile Node”, “Foreign Agent” or “Home Agent”, or choose “Quit” if youawt

to exit the program. If you choose one of the first three alterestia n& window

will appear that asks you to enter the IP address of the snmp agent (Bpure
which is probably the same address as where the corresponding mip daemon is
located.

Mobile-IP Watcher

IP Address: |e=plorer

Figure 18. Enter the IP address

Enter the IP address xteal names wrks fine) and press return. Wahe monitor
window appears, which will look a bit dérent depending on which entity yowka
chosen to watch. Belav is the screenshot from the Mobile Node (FigL@g.

Implementation and Analyses of the Mobile-IP Protocol 36

The SNMP implementation

Hobile Mode: 0

Variables Registration Table Pending Registration Table
modkdvaddr. 0 = Ipaddress: 130,237,215 61 | A |mrRegHa = Ipaddress: 130,237 216,150 N N
mnddvseqio. 0 = 272 nnFegfd = Ipaddress: 130, 237.215.61
mnhdwTS. 0 = 1687964332 mrRegReqTs = 1681051440
mnddvCount. 0 = 4 mnFegReplTS = 1682001821
mnErcaddr. 0 = Ipaddress: 130. 237215 61 mnFegFlags = 402673565
mnErcCode. 0 = 133 nnFeglifetine = 20
mnErcTS. 0 = 1646004750

mnErcount. 0 1
mnAuthCount. 0 = 0
mnInvReplGount. 0 = 0
mnsolTs. 0 = 1645902356
mnsolCount. 0 = 1
mrlecaps. 0 =
mnliscards. 0

(=11

0

Home Agent List
130. 237, 216. 150 s

Quit |I

Figure 19. Mobile Node monitor window

Here you will see all theariables in the MIB which belongs to the selected entity
The scalar ariables are listed in one wingpand each tableaviable has a windw

of its avn, which malks it easy to read the information. The information is by
default updated\eery fifth second, &t this interal can be changed by changing the
variableg(del ay) in the program source.

Implementation and Analyses of the Mobile-IP Protocol 37

Program development for the MINT

ccs-mgs

(netmask Oxf f f f f f €0)

nucmed20
(216.144)

8.0 Program development for the MINT
This chapter will in detail describe Wdo proceed when making programs for use
in the MINT ervironment, rgarding both user programs and the operating system
for the MINT.
8.1 The system
Here is a picture describing oupvking ervironment (Figure20).
; ; 130.237.215
t-gw Kista-gw (215.110)| (netmask Oxf f £ 00)
anxiety
130.237.216

130.237.216
(216.150) (216.183) (netmask Oxf f f f f f e0)
ccs-rfs mint3 —— Ethernet
---- Serial line

Figure 20. The subnetworks and the workstationsin the lab

8.2

Anxiety is a SRRCstation 10 running SunOS 4.1.4, which is connected via a serial
line to one of the serial ports on a MINThis is used for remote dadpging of
programs running on the MINTKista-gw it-gw and ccs-mgs are routers.
Nucmed?20 is a Helett Packard verkstation that is acting as a boot sarfor the
MINTs. When a MINT is booted, it fetches the programs from this computer using
Bootp[26] and TFTP[25]. Ccs-rfs is @3hiba PC running MachOS 2.6, which has

a serial connection to the console port of the MINT that we are interested in (for
example mint3). From this machine you camegcommands to theulit-in PROM
monitor inside the MINTThis computer also acts as a file seffor the MINTs. A
MINT should be able to access the files on thshiba via RFS (Remote File
Sharing).

Booting a MINT

This section will &plain hav to boot a MINT assuming the arking ervironment
described in the section al®(Sectior8.1).

First you will hare to log in to the @shiba (ccs-rfs), which should be connected
through a serial cable to the console port of the MINT yantwo boot. The login

Implementation and Analyses of the Mobile-IP Protocol 38

Program development for the MINT

can be done locally at the machine, or remote via telnet, which can leothék
example belar (where all inputs from the user are printed in bold).

anxiety:~> tel net 130.237.216. 164
Trying 130.237.216.164 ...

Connected to 130.237.216.164.

Escape character is ‘.
ccs-rfs.electrum.kth.se TCP Telnet service.

2.6 MSD Mach (ccs-rfs.electrum.kth.se) (ttyP0)

login: dol-fta

Password:
When the login is done, you can startearkit program, which lets you connect to a
MINT via a serial link. €ll the program which line and speed to use by using the
commands “set line” and “set speed”:

% kermi t

C-Kermit, 4F(077) 1 Apr 89, 4.2 BSD

Type ? for help

C-Kermit> set line /dev/tty02
Warning, read access to lock directory denied
C-Kermit> set speed 9600

/dev/tty02: 9600 baud

Now you can connect to the MINT byvig the “conn” command:

C-Kermit> conn

Connecting thru /dev/tty02, speed 9600.

The escape character is CTRL-\ (28).

Type the escape character followed by C to get back,
or followed by ? to see other options.

If the MINT has not been resetted beforeyng the time to do that. By pushing the
reset lntton on the MINTthe folloving text should appear on you screen:

MINT KTH/HPL, vers 2.3

@
If it does not appear on your screen, try hitting the retusn dnce. The @
character is the prompt. Moyou can type commands to thaeilbin EPROM
monitor Typing a “?” will list the commands that areadlable in this ersion of the
monitor:

@

A -> ALTER bytes
B -> BOOT using TFTP
D -> DISPLAY bytes

Implementation and Analyses of the Mobile-IP Protocol 39

Program development for the MINT

G -> Go to address (LOADENTRY default)

| -> Re-INITIALIZE monitor

L -> LIST files in ramdisk

M -> Byte alter using LONG (32 bit) accesses

P -> PRINT environment variables

R -> Registers and flag display

S -> SET environment variables

T -> TRACE using remote GDB

U -> USE stored registers and go to addreess

W -> Byte alter using WORD (16 bit) accesses

The “p” command is quite useful. It displays thelues of the enronment
variables, which you also can set with the “s” command.

@

Debug 0x0

GDBdebug 0x0

Console 0x0

LANCE A

Loadstart 0x40000000
Loadentry 0x40000000
Runflag Ox1

Bootflag 0x1

Bootfile

Bootdevice net

Availmem 0x7c0000
EtheraddrA 08:00:09:00:69:63
EtheraddrB 08:00:09:03:04:c6
Hostname

IPaddr 0.0.0.0

Subnetmask 0.0.0.0
Gateway 0.0.0.0
DNSserver 0.0.0.0

Now you need to set thearkiable “bootfile” to the name of the file that yoam to
download. The files that you canwloload are presently stored in the directory
Jusr5/tftpdir on the machine nucmed2® Hoot a MINT you can use the file
mach.boot . After the \ariable “bootfile” is set, you type “b” to dmload the file.

@et bootfile mach. boot
@

MINT bootp downloader:

Got Bootp reply from 130.237.216.144 (00:00:0¢:00:29:94)
Our IP address is 130.237.216.183

Our subnet mask is 255.255.255.224

Our gateway is 130.237.216.163

Our DNS server is 130.237.212.6

Our hostname is mint3

TFTP server is 130.237.216.144 (00:00:0c:00:29:94)
Suggested boot file name is ‘/mintbootfile’

Downloading file ‘mach.boot’ from host 130.237.216.144

Implementation and Analyses of the Mobile-IP Protocol 40

Program development for the MINT

| mge size: 0x232cfc bytes

Loadi ng to: 0x40000000

Entry point: 0x40000000

[XXXXXXXXXXXXKXXXXXXXKXXXXXXXKXXXXXXXKKXXXXXXKKKXX XXX XXX XXX XXXXK XX XXX XXX KX
XXX|

Downl oaded 2305276 bytes

M NT Mach_3.0 VERSI ON(MK84): Thu Jan 18 11:29:16 MET 1996; kernel / STDHW5-
debug (anxiety. el ectrum kth. se)

vm page_boot strap: 1228 free page
pitO: at MC68901 tiner O, tine =
nsecs

| e0: at LANCE Et hernet 0: 8-0-9-0-69-63

| el: at LANCE Ethernet 1: 8-0-9-3-4-c6

ranD: at Randi sk Controller 0 addr = 0x40041538, size
ranil: at Randi sk Controller 1 addr = 0xf0007448, size
Server directory? [/dev/ranD/ mach_servers]

(default pager): Added paging file /dev/ranD/ mach_servers/paging file
(boot strap): | oading unix synbols from/dev/ranD/ nach_servers/startup
(boot strap): |oadi ng enul ator synbols from/dev/ranD/ mach_servers/enul at or
(startup): server_dir(/mach_servers) on root.

(startup): enul ator_path(/mach_servers/emul at or)

(startup): first_progran(/mach_servers/nmach_init)

Mach_3.0 VERSI ON(UX42): Fri Dec 15 15:26:50 MET 1995; server/ STD+W5

(anxi ety. el ectrum kt h. se)

S
0 secs : 0 nsecs, resolution = 10000000

1474560 bytes
737280 bytes

Avail al e menory = 4. 58 negabytes

Uni x tables: 1.10 negabytes

Uni x buffer cache: 65 buffers 0.50 negabytes
fl owat =126, fhiwat =226, il owat=6, ihiwat=6
Base is Thu Jan 18 05:27:03 1996

Current tine is Wed Dec 31 19:01:14 1969
This is strange -- CHECK AND RESET THE DATE!
Time is set to Thu Jan 18 05:27:03 1996

Aut omati ¢ reboot in progress..

Thu Jan 18 05:27:11 EST 1996

Thu Jan 18 05:27:11 EST 1996

ufs nmount: file systemnot cleaned -- nounting anyways
fl owat =29, fhiwat=58, ilowat=3, ihiwat=3
checki ng quot as: done.

starting system | ogger

standard daenons:.

starting network daenons: inetd.

starting | ocal daenons:.

starting cnmucs/ mach daenons: .

Thu Jan 18 05:27:20 EST 1996

3.0 MACH (mint3.electrumkth.se) (console)

| ogi n:

From the printout above you can see how the Mach operating system is loaded, and
the Unix server is started. Then you can log in to the MINT, just ason any ordinary

Implementation and Analyses of the Mobile-IP Protocol 41

Program development for the MINT

Unix system. [Do you ant to tell the reader what possible accounts there are? Or
where thg have to look to find out what accounts there are or to add more?]

8.3 Compiling programs for the MINT

If you want to deelop programs for the MINTthere are seral things you hzae to

keep in mind. The MINT has a Motorola MC68030 processmthe code you write
must be compiled for that architecture. The normal procedure is to use a cross-
compiler and Anders Klemets has madeeasion of the Gnu Compiler (gcc) that
runs under SunOS on a/ARCstation and produces machine code that can be run
on a MINT. This compiler (together with a cross-assembler and a cross)licén

be found in thebi n directory under the mint root directorywhich is
[afs/it.kth.se/ msc/projects/wal kstation/nint/. Under this
directory you will find almost all the files that are needed wherkiwg in the

MINT ernvironment, lot it can sometimes be hard to findaetly what you are
looking for, because there are about 27 000 files and subdirectories storecbhere. T
help you find a particular file, you can look at theftkee calledf i | es, which is a
listing of all the subdirectories and files under the mint direciing best &y to

find something is to load the filéi‘l es’ into emacs, and use the search-functions

to find what you are looking for

8.3.1 Stand-alone programs
A stand-alone program is a program that runs on the bare machine, witfiout an
support from an operating system.wsuch a program is compiled for a MINT is
described by Anders Klemets in Appendix B in a master thesis reporadnalP
Guerin[27].

8.3.2 Compiling the Operating System
To be able to run some standard applications on a computeperating system is
needed. Mach 3.0 from Cagie Mellon Uniersity (CMU) was the choice for the
MINT. Why this OS vas chosen, and twit was ported to the MINT is described in
the paper “Mach 3.0 as an Operating System for the MINT” [18]. On top of Mach a
Unix sener (called UX) is run, which mals it possible to run ordinary BSD Unix
programs on the MINTIn theory all you hae to do is to re-compile youafourite
BSD Unix programs with the cross-compijland thg should immediately ark on
the MINT. How this is done is described in Sect®3.3.

The rest of this section describesshim compile the operating system itself. This is
useful to knav if you have to introduce changes in the operating systemek or
the unix serer, but otherwise it can probably be skipped.

There are a number of téfent parts that are needed to be able to create a running
Unix system on the MINTThe first of them is the Mach micretkel, which can be
compiled by using the script calledckern in the mint root directory
(/afs/it.kth.se/m sc/projects/wal kstation/m nt/). This script

sets up a number of @Wronment \ariables, and starts a special magkogram,
calledodemake. The progranodenmake works on tvo directory trees at the same
time, one referred to dmsedir, and the other asasterbase. Masterbase contains

all the original source files, and in basedir you put the modified source files. Basedir
will also contain all object files after the compilatioor Fhe MINT ewrironment,

the followving values will be true:

mast erbase = /[afs/it.kth.se/msc/projects/wal kstation/mn nt/nk-84/
basedir = [afs/it.kth.se/nisc/projects/wal kstation/m nt/m nt-nk84/

Implementation and Analyses of the Mobile-IP Protocol 42

Program development for the MINT

You should neer change anof the files in the mk-84 directgrijput instead cop
them to the corresponding location in the mint-mk84 directory and change them
there.

Apart from the normal files that are neededuddothe Mach kernel, a special file
calledr am o is linked into the krnel when bilding it for the MINT. This file is an

image of a small RAM file system, which is used as the root filesystem when
starting the Unix seer. This is necessary because the MINTs are diskless, and the
Unix sener needs to read and writeveeal system files when booting. The file
ram o can be created by using a script called somethiegckk andi sk in the

mint directory This is a ery ugly script that tads the contents of a flopmlisk,

which contains the file system and the necessary files, adds a small header and
places the resulting file &m 0) in the correct directory (which i@ nt / obj s).

The files on the ramdisk must of course be compiled for the MINT architecture.
Source codes and binaries fovaml standard Unix programs, e.d.s, nkdi r

andki | | , can be found under the direct@yp- i 386. A useful command if you

do not knev which architecture a program is compiled, fisrthef i | e command.

For example, this is he it should look when &ecuting the i | e command on an

| s program compiled for the MINT

anxi ety: ~/ m nt/sup-i 386/ src/bi n>filels
I's: nc68020 dermand paged

Another part of the system which has to be compiled is the Unirrsealled ux.
This is done by using thecux script. This script produces a file called
viuni x. UX42. STD+WS which is places in the directolgpeci al under the
mint root directory This file should be copied to thech_ser ver s directory on
the flopy disk containing the RAM filesystem,ub it must be renamed to
startup.

For the lernel to be able to start the Unix samit needs a bootstrap program. This
program is piggy-badad at the end of the machkrkel, and it can be compiled by
using the scriptcboot st r ap.

The normal sequence of steps to compile a complete system for the MINT can be
described as follos:

* Compile the Unix Serr (with theccux command). Cop the program to the
floppy disk.

* Compile the Bootstrap programdboot st r ap).

e Compile the ramdiskc(cr andi sk). The fileram o will now contain the
contents of the floppdisk, which is your ng Unix Sener and some Unix
commands.

* Compile the krnel €cker n). Apart from the krnel itself, the script produces a
bootable file which contains the bootstrap program and the ramdisk. This file,
called nmach. boot, should be put in the bootdirectory for the MINT
(/fusr5/tftpdir on the computer nucmed20, which is the TFTP e@rv
where it can be denloaded and used to a boot a MINT

8.3.3 Compiling Unix Applications
When you compile Unix programs for the MINfhere are a f@ things that you
must rememberFirstly, use the correct compiling tools, this means the cross-
compiling \ersions of gcc (the compiler), Id (the lerl and as (the assembler).

Implementation and Analyses of the Mobile-IP Protocol 43

Program development for the MINT

Secondly find the correct include files and library files. At present, there is no
single i ncl ude directory but the include files are spreadeo at least four
different directories. The situation is the same for the library filgsthere is a
directory called i bs under the mint root directory which contains soft links to a
few of the most commonly used library files. Here is aangple of a simple
Makefile that can be used when compiling Unix programs for the MINT

M NT = /afs/it.kth.se/nisc/projects/wal kstation/nint

CC = $(M NT)/ bi n/ gcc

AS = $(M NT)/ bi n/ as

LD = $(MNT)/bin/ld

1 = $(MNT)/ nmi nt mk84/ export/sun4_nmach_X m nt/incl ude
12 = $(M NT)/ mach-i 386/ i ncl ude

I3 = $(M NT)/ nint-nmach/ src/ ux/server

14 = $(M NT)/sup-nk82/ src/ ux/ server

LIB=$(MNT)/lib

CFLAGS = -W4, -nt68030 -nsoft-float -nostdlib -nostdinc -1$(11) -13(12)\
-1$(13) -1$(14) -Dnint

OBJS = hello.c

all: $(0BJS)
$(CC) $(CFLAGS) -0 hello $(0BIS) $(LIB)/crt0.0 $(LIB)/libc.a

The flag - W4, - nt68030 tells the assembler that it should be prepared for
mc68030 assembler code instructions. Since the MINT does metahfloating
point unit, the nsof t - f| oat flag tells the assembler to a@nt all floating point
operations to calls to sofaxe library routines.

You must also tell the compiler not to use the standard include and library files (the
switches- nost di nc and- nost dl i b), and instead specify the correct library
files to use. Almost all programs need thié¢ 0. o andl i bc. a files.

8.4 Remote debugging using the GNU Debugger

When deeloping softvare there is one thing you can be sure of; your program will
contain undesirable features, sometimes referred tagss buckily there are tools

to help the programmer find these. One tool is the GNU DeBugger (GDB). Apart
from being an xcellent debgging program, GDB has the ability to remotely
control the gecution of a program, i.e. GDB can run on one machine angydeb
program on another

A version of GDB is preided for use with the MINT With it comes an
initialization file, .gdbinit, that defines a command called mint-restart which
initializes the MINT for remote delgyging. If the file.gdbinit is in the uses root
directory GDB will load it automatically andxecute mint-restart when necessary

8.4.1 Stand-alone programs
On our first trials using GDB we tried to use it to control the Mamiméd on the
MINT. The reason for doing thisas that the remote file system (RFS) for the

Implementation and Analyses of the Mobile-IP Protocol 44

Program development for the MINT

MINT was not verking properly Below is a step by step description on what to do
to male GDB work.

Login on the MINT as described in Secti®. When you get a prompt, do the
following:

@et bootfile mach. boot
@et runflag O

@
Settingr unf | ag to O informs the monitor that it should NGstart the program
when the dwnloading process has finished. Baf is 1. When the file is
downloaded you can start the program. The feifgy command starts the program
and generates a breakpoint on the first instruction whies giontrol to GDB.

ar

Next, start gdb on anxiety

anxiety> gdb -b 9600 mach. boot

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type “show copying” to see the conditions.
There is absolutely no warranty for GDB; type “show warranty” for details.
GDB 4.11 (sparc-sun-sunos4.1.1 --target m68k-unknown-aout),
Copyright 1993 Free Software Foundation, Inc..

(gdb) target renote /dev/ttya

When GDB returns you should be all set toudgthe program.

8.4.2 UNIX processes
Anders Klemets has made arsion of GDB that should beecutable on a MINT
but it is probably not a good idea to try to use that one because it is qgée lar
which means that there is not much space left in the memory for the program you
want to debig. A better idea is to run GDB remotely (as mentionedeodDB
supports remote dabging, lut there are some hardve specific routines thatve
to be written before you can start dglging your program. These routines are used
to handle interrupts and to generate breakpoints, which wiler@ikB able to tad
control of the programxecution. Brtunately theses routines were already written
for the MINT by Klemets, bt for some reason we werevee able to get it to ark
properly The problem as that we were not able to find some essential include files
when we tried to incorporate the GDB support in omn @rogram.

Implementation and Analyses of the Mobile-IP Protocol 45

Porting the Mobile-IP code

9.0 Porting the Mobile-IP code

As part of our dgree project we he ported the Mobile-IP code written by Anders
Klemets for SunOS to twplatforms; Solaris 2.4 and to the MINT (which runs a
Unix sener on top of MachOS 3). The reason for porting the code to Solaris is that
the Department of &leinformatics, where theosk is conducted, will change their
operating system from SunOS to Solaris in a near future.

The two ports hae much in common. There are basically farts of the code that
have to change when mimg from one UNIX to anothemland those are the snmp
daemon and the code handling the sending andviegeof ethernet frames. The
rest of the code is standard C-code using standard UNIX commands.

9.1 Porting to Solaris 2.4

The Mobile-IP code for SunOS uses a&ide called the Netark Interface Bp (

dev/ ni t) to get access to the ethernet psksent on a netwk. This deice is

not supported in Solaris 2, which meant that we had to re-write théevel
routines that read and write ethernet frames. The means of getting direct access to
the datalink-lgel frames in Solaris is by the Data Link #der Interfice (DLPI).

This is a stream inteate that praides the same functionality as the Netl
Interface Bp on SunOS and therefore the changes in the code are isolatedto a fe
files. The filedbsdni t . h andbsdni t . ¢ are replaced bgll pi . h anddl pi . c.

The filedl pi . ¢ contains three functions; one for attaching a generic atero a
physical one, one for reading ethernet frames and one for writing ethernet frames,
all with the same functionality as the ones in the SunOS code. In the file
dl conmon. ¢ there are seral functions to help the programmer setting up the
DLPI interface, hedily used by our code.d¥ more information on e to use the

DLPI read “Hav to Use DLPI” by Neal NuakIs[28].

The only problem encountered during the portingswhe filtering mechanism,
pfmod. W& did not get the filter to evk properly so the filtering is done as
following. The interéce is configured to accept all ethernet framgsem the
multicast addresses that we are not interested in. The multicast addresses of interest
are added in the functiarsJoinGroup in the fileos. c. When an ethernet frame is
receved, a test is made to check whether it has our ethernet address, or if this is a
multicast or broadcast frame. All multicast frames nexekishould be kickd
upstairs since the intexfe only accepts multicast addresses that we are interested
in. This is a minor impreement @er the SunOS implementation whead
multicast frames are read and filtering is done in-space.

The snmp code as changed to vk under Solaris by using the patch to cmu2.1.2
written by Yri Rabaer.

9.2 Porting to the MINT

The port of the Mobile-IP code to the MINTa® one of the major parts of our
degree project. Much time &s spent not only with the port itselfutbwith
understanding the MINT eitonment and the MINT operating system, and trying
to get basic things toavk (like booting a MINT).

9.2.1 Booting a MINT
At first we were not able to boot the MINThis was because all the MINTs had
been meed from one netork to a nev one, and all the netwk configuration files
were wrong. Br instance, the fileet ¢/ host s had to be updated with thevnéP

Implementation and Analyses of the Mobile-IP Protocol 46

Porting the Mobile-IP code

addresses for the MINTs and the file sesy and the IP addresses of the name
seners had to be corrected in the filet ¢/ r esol v. conf .

9.2.2 RFS - Remote File Sharing
The MINTs hae no hard disk or flogpdisk drive, tut only a small filesystem in the
ram memory where avieimportant files are stored. Except from the Unéxriel
itself and a fe files that are used when booting the M|Nfiere are also a handful
of useful user commands in théi n directory To be able to access files that are
not in the ramdisk, the MINTs fa support for something called Remote File
Sharing (RFS). Remote File Sharingrks like this. You create a small file which
only contains an IP address. This file will function as link to a directory on a remote
computer which is acting as an RFS ser{see Figur@1). Now it is possible to
access files on the other computer just as if there on the local one. All disk
operations that are issued on an RFS file are put in &fpankl sent to the RFS
sener, which will process the command and send back the result, completely
transparent to the user

MINT
ccs-rfs
ramdisk afs/

. bin/
bin/ dev/
dev/ / etc/
etc/ home/

/ mach_servers/ » RFS/
tmp/
usr/

RFS/

Figure 21. Remote File Sharing

In our lab the ®shiba computer (calledlcs- r f s), which is located on the same
subnet as the MINTSs, a8 going to act as the RFS snOn this machine we
intended to put ourven programs (forxample the Mobile-IP program), which the
MINT then could get access to. Unfortunately thigemenorked, and we were mer
able to locatexactly where the problemas. W tried to debg the MINT lernel,
and found the routines that should support the RFS functigralitjt seemed that
the commands that were supposed to be sent to the RS were neer sent out
on the netwrk.

After a fav attempts to get the RFS t@ik, we started to think about otheays to
malke a MINT get access txiernal programs.

9.2.3 Running our program
The first and olous solution vas to put the program weawted to run on the
ramdisk. Then we should be able to start the program after we had booted the
MINT, because the programould already be in the MIN$’ ram memoryThe
disadwantage of this method is that afteesy change in our program weveato

Implementation and Analyses of the Mobile-IP Protocol 47

Porting the Mobile-IP code

copy the program to the ramdisk and re-compile the whole MIEmdd, because
the ramdisk is included in thesknel image. This procedure &ktoo much time to
be useful.

Another problem ws also that the ramdiskas almost full and our Mobile-IP
program vas too big to fit, ¥en though its size as just around 100 kblo
overcome this problem we loe# at the possibility of adding another ramdisk to the
kernel, lut after a fev attempts we abandoned this idea because tres¢os much

to change in thedenel code and we reallyonld not gin that much of doing it.

Our net idea vas to put a small file transfer program on the ramdisk, which could
be used to fetch our Mobile-IP program after the MINT had booted. Then, of
course, we agjn had the problem that the ramdisk did neehenough free space to
store our program,ub this could be circumented by remaing several programs
from the ramdisk after the MINT had booted. The things that can beveehawe

for instance seeral programs and files in thet ¢ directory that are used only at
start-up time.

9.2.4 Afile transf er program
We compiled a &rsion of the most commonly used file transfer program, ftp, for the
MINT. First we had some problems to link the program, because it used floating
point operations and the processor in the MINT does nat hey floating point
unit. This means that all floating point operations should beectad to softare
library routines, bt according to a & written by Anders Klemets no such routines
are currently wailable for the MINT When we ramined where the floating point
variables were used in the ftp program, we disced that the were used only in a
small routine that displayed some information on the screen, and that these floating
point variables easily could be substituted by gietes. Nov we were able to mak
an «ecutable ersion of ftp for the MINT architecture,ub unfortunately the
resulting eecutable file s a little bit to lage (around 76 Kb) to takup \aluable
space on the ramdisk. After trying the program on the MINT we alsoveissb
that it was not ery stable eitheand crashed a bit to often.

Then we tried to compile aewsion of tftp (trvial file transfer protocol). This
resulted in anxecutable file with a size of 37 Kb, whiclag/better than the ftpub

not good enough. Wtried the tftp program on the MINBut were not able to
contact the tftp seer, so we gve that up and decided to write owvrofile transfer

program.

We wrote a ery simple file transfer program, which we called fssftp (Freslrik’
super simple file transfer program). This includes a client part that is run on the
MINT, and a semr that runs on aevkstation. The protocol isevy simple and not

very eficient, and the implementation is not optimized iy w@y, but it works and

fulfils our purpose. Thexecutable program for the MINTag only 9 Kb in size,
which was quite alright. W put the program in thiebi n directory on the MINTS
ramdisk.

The syntax of the fssftp command is this:
fssftp i p-address src-filename [dest-fil enane]

When you for gample vant to fetch the Mobile-IP program (called xmipd) from a
workstation to the MINTyou write like this on the MINT

fssftp 130.237.215.110 xmi pd

Implementation and Anal yses of the Mobile-IP Pr otocol 48

Porting the Mobile-IP code

This assumes that an fssftp serhas been started in the directory containing the
file xmipd on the wrkstation with the IP address 130.237.215.110 (which is the
computer anxiety). The fssftp senis started by typing the commafnsisf t pd.

Now we had a \ay of transferring the Mobile-IP code to the MINThe standard
procedure when we deloped the programas to first boot the MINTthen remwae
all the programs in théet ¢ directory on the ramdisk to maksome space, and
then devnload the Mobile-IP code. When we madg ahanges in the code itas
quite easy to denload the ne version of the code (without iag to re-boot the
MINT).

9.2.5 Reading ethernet frames
The most dificult part of the port from SunOS to the MINTagrhev we should be
able to read ma ethernet frames from the neiek. In the SunOS implementation
this is done by opening a\dee called/ dev/ ni t, the Netvork Interface Bp.
That interfice is SunOS specific and does nagtan the Unix ersion that is used
on the MINT which is a BSD Unix. &rtunately BSD has a similar type of dee
called the BSD &clet Filter (BPF), which can be accessed by openidgv/
bpf 0,/ dev/ bpf 1 and so on ([29], [30]). This lets you associate dcdewith a
network interface (for @ample the ethernet intade) and install a filter to reeei
incoming packts selectiely.

After some studying of the source code for the MINT maetméd and the Unix
sener, we got the impression that theraavsupport for BPF on the MINT\Ve
modified the Mobile-IP code to open the bptide instead of dev/ nit, and
changed the routines for reading and writing ethernet framesl$d had to modify

the code which defined the filtdvecause the filter code for nit and bpf are not
compatible. The filter for BPF is written as a machine code program for a pseudo-
machine. Here is arxample of what a filter program could lookdik

| hd [12]

jeq #ETHERTYPE_ I P, L1, L3
L1: I d [26]

and #Oxffffff00

jeq #0x82edd700, L2, L3
L2: ret #TRUE
L3: ret #0

This particular filter accepts all IP patk from the netark 130.237.215.

Unfortunately we did not v ary workstation running BSD Unix, so the first time
we could try our code as when we denloaded the program to the MINThis
resultet in the error message “Ctanpen /de/bpf’. A quick look in the/ dev
directory on the ramdisk vealed that there &g no file called dev/ bpf 0 or
similar. This was a setback.

We added a bpf dée in the/ dev directory but then we needed to add routines in
the Unix serer for opening and reading that specialide, because thisas not
implemented. After a fe attempts to use code from other BSD Unix
implementations (forxeample netbsd), we realised that this problem must baen
encountered before, and someone might already $ai\ed it.

After some research on the Internet andvagestings in diierent nevsgroups and
mailing-lists, a solution ly@an to appearlt seemed that BPF alreadyasv
implemented, not in the Unix senybut in the underlying Macheknel. No/ dev/

bpf was needed, instead we had to re-write the routines for opening and reading

Implementation and Analyses of the Mobile-IP Protocol 49

Porting the Mobile-IP code

ethernet frames so that thased system calls to the Mach operating system. This
was not gactly what we hadx@ected, bt some gample code shwed us hw to do

it, and it was not that diffcult to implement. This meant that the Mobile-IP program
was no longer a pure Unix programytka mix of Unix and Mach. Examples of
Mach system calls that we are using are:

* device_open()
To open the ethernet intade.

* device_set_status()
To set the integfce in promiscuous mode.

* device_set filter()
To configure the paek filter.

* mach_msg()
To read an ethernet frame.

* device_write_request()
To write an ethernet frame.

Though BPF was implemented in theeknal, there were some problems with the
system calls. Wo things could not be ackdd, and those were to put the inked
into promiscuous mode and to set a nowidtifilter on the intedice. This means
that the implementation will notavk for all possible casesuybit should vork for
example when a MINT is acting as a Home Agent.

9.2.6 Unexpected problems
Once the MINT port could be tested an xpected problem with the routine that
calculates the checksum for the petskvas disceered. This routine is used by
several protocols, forxample IR UDR ICMP and IGMPWe had earlier noticed
that the checksum routine in the Mobile-IP code for SunOS did not calculate the
correct checksum for UDP paztls which had an odd number of bytad, this was
fixed by alvays setting the checksum to zero (which isvedid, hut not \ery pretty).
On the MINT, the checksum routine did nobrk at all, because itas optimized
for the SRRC architecture and the program madeesal assumptions about the
hardware which vas not true when running on a Motorola 68030 in the MN\&
had to replace the ekksum routine with a meone, lut that vas not optimized.
The checksum routine is rather tidaused, and should actually be modified for
each CPU to be aadt as possible. En though this e routine vas supposed to
be platform independent it still does nobnk for UDP (lut it does werk for the
other protocols). This probably has to do with the calculation of the checksum for
the pseudo header which for some reason is not correct.

9.2.7 Summary of changes
The filesbsdnit.c andbsdnit. h in the SunOS ersion of the Mobile-IP
program has been replaced by the flleswbpf. c andl owbpf . h. In the file
| owet her . ¢ the calls to bsdNITInput and bsdNITSendRzeve been replace by
calls to bpflnput and bpfSendRaand inx| owi f ace. ¢ the call to bsdNIdttach
has been replace by bpfAttach. Also, some minor changesksen made in the
filet ar get def s. h.

Implementation and Analyses of the Mobile-IP Protocol 50

Analysis of the Mobile-IP protocol

10.0 Analysis of the Mobile-IP protocol

To analyse the performance of the Mobile-IP protocol, or at least the particular
implementation that we ke, we hae done a f& experiments. Thesexperiments
and the conclusions wevedravn will be described in this chapter

10.1 Delay

In our first &periment we \anted to measure the time it took for a pdhk trael
from a fixed host (the wrkstation artigonn) to a mobile node on a foreign oety
compared with the time when the Mobile Node (MNgswat home. W used a
modified \ersion of the programi ng to do the measurements. Normally ping just
displays the time in millisecondsyitowe wanted it to display microseconds too, so
we had to modify the source and compile onnaersion.

Ping sends an ICMP ECHO_RBE@ST packt to a host, and thenaits for an
ICMP ECHO_RESPONSE. ®Wused a data size of 1000 bytes and set the count flag
to 1000 pacéts.

10.1.1 Artigonn to explorer
In the first part of this)geriment we measured the time to send a gtadkectly
between tw fixed hosts; artigonn ancm@orer (see Figur@2). This measurement
will be used later when we calculate the time to reach the Mobile Node.

213 I:I router
B O host
[, oS

Kkista-gw : 215

anxiety explorer
(FA) (MN)

t-gw 216

dumburken
(HA)
Results:

Minimum time = 6.8 ms
Maximum time = 25.2 ms

Figure 22. A ping from artigonn to anxiety

Implementation and Analyses of the Mobile-IP Protocol 51

Analysis of the Mobile-IP protocol

10.1.2

Averageroundtriptime= 7.1 ms
Standard deviation = 1.0 ms

The interesting value here is of course the average round trip time, which is
approximately 7 ms. Thisis the time it takes for a packet to travel from the sender
(artigonn) to the receiver (explorer) and back.

Artigonn to dumburken

Here we wanted to measure the time for sending a packet to the Mobile Node when
it isat home. The home network for our (virtual) Mobile Node is the 216 net, so we
sent the packets to a host on that network; dumburken. See Figure 23.

213

215

anxiety explorer
(FA) (MN)

216

Figure 23. A ping from artigonn to dumburken

10.1.3

Results:

Minimumtime= 7.0 ms
Maximum time = 15.4 ms
Averageroundtriptime= 7.2 ms
Standard deviation = 0.4 ms

Here we can see that the round trip time is just a little longer than in the previous
experiment, which could be expected, because we have one more router to pass on
our way.

Dumburken to anxiety (HA -> FA)

We aso wanted to know how long it takes to send a packet from the machine the
Home Agent is running on (which is dumburken) to the machine on which the
Foreign Agent is running (anxiety), and these are the results we got:

Implementation and Analyses of the Mobile-IP Protocol 52

Analysis of the Mobile-IP protocol

Results:

Minimum time = 5.3 ms
Maximum time = 9.6 ms
Averageround trip time= 5.6 ms
Standard daation = 0.4 ms

10.1.4 Anxiety to explorer (FA -> MN)
Also the time it taks for a pacht to trarel from anxiety (the &reign Agent) to
explorer (the Mobile Node) as of interest.

Results:

Minimum time = 3.0 ms
Maximum time = 8.6 ms
Averageroundtriptime= 3.1 ms
Standard daation = 0.3 ms

10.1.5 Artigonn to the Mobile Node
This experiment measured the time to ping the Mobile Node. The kpkirer is
acting as a Mobile Node and is assigned the IP address 130.237.216€146. W
performed tw versions of this periment to see whether there werey an
differences between the dvencapsulation methods minimal encapsulation and IP
inIP.

This is what happens; Artigonn sends a gat& the Mobile Nods’home netark
(which is the 216 net) where the patkis captured by the Home Agent
(dumhurken). The Home Agent encapsulates the gaakd sends it to theoFeign
Agent (anxiety) where it is decapsulated. Then tbeeign Agent fonards the
paclet to the Mobile Node fplorer), and finally the Mobile Node sends a reply to
artigonn, which issued the ping command. See Figdre

213
ki:sta-gw _______________________________ 215
anxiety explorer
; (FA) (MN)
e : 216
dumburken
(HA)

Figure 24. A ping from artigonn to the M obile Node

Implementation and Analyses of the Mobile-IP Protocol 53

Analysis of the Mobile-IP protocol

Results (1P in | P encapsulation):
Minimum time = 14.7 ms
Maximum time = 27.7 ms
Averageround trip time= 16.3 ms
Standard déation = 1.4 ms

Results (Minimal encapsulation):
Minimum time = 15.6 ms
Maximum time = 26.3 ms
Averageround trip time= 16.4 ms
Standard déation = 1.4 ms

This experiment shas that there are almost nofdifence in performance between
the two encapsulation methods.

10.1.6 Conclusions
The time to send a paekfrom the werkstation artigonn on the 213 net to the
Mobile Node when it isway from home can be calculated from the results in
Section10.1.1 and Sectioh0.1.5. Since there ag no statistical determined
difference between the encapsulation methods, the figures from IP in IP is used. The
total round trip time s 16.3 ms, Ut this includes both the time to send the ICMP
ECHO_REQEST packt to the Mobile Node and to send the ICMP
ECHO_REPY paclet from the Mobile Node back to artigonn. From part one of
the periment we see that the round trip time to ping anxiety from artigonn is 7.1
ms, which means that the time to send a ehdk one of the directions is
approximately half of that (which is 3.6 ms).

This implies that the time for a pastito trarel from artigonn to the Mobile Node at

explorer (via the HA and &) is approximately (16.3 - 3.6) = 12.7 ms. This is
roughly 3.5 times the time to send a petdlo the Mobile Node when it is at home
(Section10.1.2) which is 7.2 /2 = 3.6 ms.

An increase in time by aéftor 3.5 is about what we haxpected. When you send a
paclet directly to a host, the total time will be a sum of the transmission time and
the propagtion time (including the delay caused by the routetg)yhen a Home
Agent is forvarding the paddt to a Mobile Node on a foreign netk (via a
Foreign Agent), you will hee three times the transmission time (at the seatiéne
Home Agent and at theoFeign Agent), the propagjon time will be longer and
there will be some delay due to protocol handling (including gtaekcapsulation

and decapsulation). The delay caused by the Mobile-IP protocol administration will
be further gamined in the follwing experiments.

10.2 Delay caused by encapsulation/decapsulation

The Mobile-IP protocol introduces a number ofvnglaces causing delay in the
communication between tw parties. In Sectioh0.1 we measured the total
overhead time the protocol caused in the communication between a stationary host
(artigonn) and a Mobile Nodexlorer). In this section we will look more closely

at the diferent entities in the process andvibiey contritute to the werhead.

10.2.1 The Home Agent
When a Home Agent reagis a packt that is destined for one of the Mobile Nodes
which it is serving, there are basicallyawperations it has to do. First, lookup the
Mobile Node in the rgistration table to get its care-of address, and then encapsulate
the packt and send it.

Implementation and Analyses of the Mobile-IP Protocol 54

Analysis of the Mobile-IP protocol

We have made tw experiments to measure the time spent by the Home Agent from
that it has recged a packt until the packt is encapsulatedubnot yet sent. The
difference between the owmeasurements were that in the first one IP in IP
encapsulation as used and in the second one minimal encapsulation. The setup
was the same as in Figu2é and we sent 350 ECHO_RHBGSTS of size 1000
bytes from artigonn to the Mobile Node.

Results (1P in | P encapsulation):
Minimum time = 2.8 ms
Maximum time = 6.0 ms
Average = 3.9 ms

Standard déation = 0.4 ms

Results (Minimal encapsulation):
Minimum time = 2.5 ms
Maximum time = 5.1 ms
Average= 2.9 ms

Standard daation = 0.3 ms

As can be seen ab®there is a diérence between the twencapsulation method by
1 ms. This diference though did not shoin the werall delay measured in
Section10.1.5.

10.2.2 The Foreign Agent
As with the Home Agent, theoFeign Agent has to do wthings when receing a
paclet. First, check if this paek should be forarded, and if so, decapsulate and
send it.

As in Sectionl0.2.1, tvo experiments were conducted. Hhboth measured the
time spent by thedfeign Agent handling the paskfrom the moment it reogs
the packt to when it has decapsulated the padkit not yet sent it. The tv
experiments diered as to which encapsulation methagswased. Once am, the
setup vas the one in Figur&4 and the 350 ECHO_RE(ESTS of size D00 bytes
were sent from artigonn to the Mobile Node (via the Home Agent andotieéghR
Agent).

Results (1P in | P encapsulation):
Minimum time = 2.3 ms
Maximum time = 4.6 ms
Average= 2.8 ms

Standard daation = 0.5 ms

Results (Minimal encapsulation):
Minimum time = 2.1 ms
Maximum time = 6.1 ms
Average = 3.0 ms

Standard daation = 0.7 ms

The diference between the twencapsulation methodsawrather small, around 0.2
ms. Havever, the time it took tadecapsulate a paek was about the same as the
time to encapsulate it (Sectioh0.2.1). This seems reasonable, because the tw
operations are rather similar in comyptg.

Implementation and Analyses of the Mobile-IP Protocol 55

Analysis of the Mobile-IP pr otocol

10.2.3

10.3

10.3.1

Conclusions regar ding the dela y

In the limited eperiments that we ka done, we could see that the time to
administer a paak at the Home Agent and the foreign Agent constitutege lpart

of the total time to delier the packt to the Mobile Node. This share of the total
time will of course decrease when sending p&chkonger distancesubthere are

still time to sae by optimizing this part of the code. It can be a good idea to
incorporate support for tunnelling into the operating systemek to speed things
up, which has already been done in for instance Linux.

We also sa that there \as not much diérence between the dwencapsulation
methods that were used in our implementation.

Registration

Apart from the additional lategdhat the Mobile-IP protocol introduces, there are
another time alue of interest from the Mobile Nodepoint of viev. That is the
time to get a connection after it had booted, or after it hadedrrat a foreign
network. This time includes the time to get information about whimteign Agents
that are currentlywailable, and the time to set up the connection gistering with
the Home Agent (via thedfeign Agent).

The fir st registration

This experiment measured some timalues of interest when a Mobile Node first
gets started on a weforeign subnet. The setup is described in Fi@®eand it is
the same that we @ used in the pwous eperiments.

kista-gw

215

it-gw

explorer anxiety
(MN) (FA)

216

Figure 25. Registrations

First the Home Agent and theofeéign Agent were started. Then we started the
Mobile Node, and the folleing data were collected (see Fig@&for explanation):

* the time from the first solicitation sent by the Mobile Node until it got an agent
adwertisement (a)

e the number of solicitations sent by the Mobile Node before an agent
adwertisement \as receied

* the time from the first gistration request as sent by the Mobile Node until a
valid registration reply vas recaied (b)

Implementation and Anal yses of the Mobile-IP Pr otocol 56

Analysis of the Mobile-IP protocol

* the time between the first solicitation and the fiedidvregistration reply This
indicates hw long it tales for a Mobile Node to get aovking connection after
coming to a n& network (c).

e the number of mstration requests sent until thegistration process as
completed

Mobile Node Foreign Agent Home Agent

A A \
solicitation

(@)

(©

advertisement

registration request

registration request

(b) /
registration reply
V registration reply

Figure 26. Sequence diagram for making a connection

(Solicitations are sent by the Mobile Node when atnte to knw if there are an
agents wailable, for instance when a mobile computer is connected tova ne
network. Agent adertisements are sent by the Home Agents amdi§n Agents to
announce their presence.)

Implementation and Analyses of the Mobile-IP Protocol 57

Analysis of the Mobile-IP protocol

Each eperiment vas conducted 20 times, and the results aresiio Table13.

Thetime (ms) from | Thetime (ms) from | Thetime (ms) from |The number of The number of

first solicitation to |first request tofirst |first solicitation to |solicitations sent registration

first advertisement |valid reply (b) first valid beforean requestssent before

(@ registration reply |advertisement first valid reply.

©
mean 1015 11 1038 3.95 2
std. dev 396 2 396 1.54 0

min. 9 10 32 2 2
max. 1996 16 2017 6 2

Table 13: Rgistrations

10.3.2 Conclusions
The number of mgistration requests before alid reply is receied by the Mobile
Node desems a comment. Surprisingly thialue is alvays 2. The reason for this is
that when a Mobile Node first is started it has not yet agreed with the Home Agent
on which nonce alue to use. Therefore the firsigigration request is rejected
because the Home Agent did not rgegthe noncealue it epected.

It should also be noted thater 98% of the time trying to get a connection is spent
during the first phase where the Mobile Node is trying to contaoteidgh Agent.

This is unepected. Brt of the gplanation is that there are a number of géskhat

has to be sent before the firsgistration request can be transmitted. The order of
events is lile this; first the Mobile Node sends a Agent Solicitation (as a broadcast
message). When this patkas been recsd and processed by therEign Agent,

it sends an ARP request to get the Mobile Nodes ethernet address. The Mobile
Node answers with an ARP repljdown the Foreign Agent can send an Agent
Advertisement to the correct ethernet address. When the Mobile Node hasdecei
the Agent Adertisement it knes the IP address of thefeign Agent, bt then it

has to send an ARP request to get its ethernet address. FinallgréignFAgent
sends an ARP reply to the Mobile Node whiclwnman send its first géstration
request. Another part of th&m@anation probably has to do with thegamumber of
solicitations that has to be sent before an agerdgrase@ment is receed (a mean
value of approximately 4). Whthis happens has to be furtheamined, and it is
important to find out whether this is a fundamental problem with the Mobile IP
protocol itself or if it has to do with the particular implementation that we are using.

The etremely lav minimal value measured between the first solicitation and the
first adertisement s caused by thadt that during that particular test ther&gn
Agent sent a multicast Agent Aetisement aery short time after that the Mobile
Node had been started and thus thess mo need for the Mobile Node to seng an
Agent Solicitations at all.

10.4 Throughput

Another aspect of the Mobile-IP implementation that is of interest is what the
throughput is. The question isvaanary paclets per second we can send to the
Mobile Node when we are tunneling the petsik compared to the rate that a
stationary system could handleo et an idea of the fedfiency of the code four
different measurements were conducted.

Implementation and Analyses of the Mobile-IP Protocol 58

Analysis of the Mobile-IP protocol

10.4.1 Mobile-IP

In the first tvo experiments the setupas the same as in Figu2é4. The goal @&s to
see hw mary paclets would get through from artigonn to the Mobile Node with
different number of paekts per second. On artigonn a small prograas wn that
sent 10000 UDP packts of size D00 bytes to the Mobile Node (via the Home

Agent and the éreign Agent).

Mobile
Node

Home
Agent

Foreign

—>
Sender Agent

Figure 27. Throughput experiment

The «periments were performed éitimes each. The fifrence between the tw
experiments was the rate with which the pak were sent. In the firskgeriment
the 10000 packts were sentver a period of 200 seconds, and in the second
experiment 13 seconds (eesst as possible). The result is displayedahld14 and

in Tablel15.
packetsrecelved |# packetsreceived |# packetsreceived
by theHA by the FA by the MN
mear 10000 9997.8 9996.6
std. dev| 0 2.3 2.6
min. 10000 9995 9994
max. 10000 10000 10000

Table 14: Throughputxeriment 1

In the first @periment we see that all patk arrved at the Home Agent, and ery
small number w&s lost between the Home Agent and theelgn Agent.

packetsreceived |# packetsreceived |# packetsreceived
by theHA by the FA by the MN
mear 1987.0 1986.0 1985.8
std. dev 334.5 334.1 334.0
min. 1397 1397 1397
max. 2186 2185 2185

Table 15: Throughputxeriment 2

From Table15 we can see that a lot of patkwere lost at the Home Agent. This is
because the Home Agent did not manage te take of all incoming paeks. The
paclets that actually were tak care of were detkred almost without gnloss to
the Foreign Agent and then to the Mobile Node.
10.4.2 SunOS
In the nat two experiments (gperiment 3 and 4) the purposeasvto see if the
number of pacits lost vould be grater or smaller if we sent the UDP péskhe
same route using the neirk code in SunOS 4.1.4. The same computers were used
as in Figure4. On artigonn the same program asvabeas running which sent

Implementation and Analyses of the Mobile-IP Protocol 59

Analysis of the Mobile-IP protocol

10000 UDP packts of size D00 bytes. On dumivken, a simple program regei
the packts from artigonn and sent them on to anxi@ty anxiety the same program
sent the paalts to eplorer where the paeks were collected. Irkperiment number
three 10000 packts were sent during 200 seconds andkpegment number four
during 13 seconds. The result is mble16 and ablel7.

packetsreceived
by dumburken

packetsreceived
by anxiety

packetsreceived
by explorer

mearn

10000

9998.4

9998.4

std. dey|

0

0.5

0.5

min.

10000

9998

9998

max.

10000

9999

9999

Table 16: Throughputxeriment 3

These results are almost identical to the resultgperament one (@ble14), which
means that both the Mobile-IP code and the SunOS code does vweotalya
problems with receing the packts at the slo rate.

packetsreceived |# packetsreceived |# packetsreceived
by theHA by the FA by the MN
mear 23334 2288.4 2285.8
std. dev| 37.1 50.8 52.5
min. 2297 2235 2228
max. 2396 2360 2 360

Table 17: Throughputxeriment 4

10.4.3

10.5

In this xperiment we see quite a lot of packages are lagtnbt as may as in
experiment tvo (Tablel15).

Conclusion

When comparing »eriments one and three we see that there is no significant
difference between them. tWever between xperiment tvo and four there is a
noticeable dfierence. SunOS can handle about 300 @cknore than the Mobile-

IP implementation. The reason for this is that the Home Agent running the Mobile-
IP code must do some more processing of the incomingefsadlke to the Mobile-

IP protocol administration (forxample check the list of géstered Mobile Nodes
and encapsulate the pat&), lut also thedct that the Mobile-IP code runs in user
space and not in the operating systeamkl contrilite to the laver performance.
Incorporation of the Mobile-IP code into therkel would probably speed things

up.

Another vay of looking at the numbers is that when we are using the SunOS code
about 23% of the 1000 paclkts reach their destination, compared to 20% when
running the Mobile-IP code. This tBfence is not that big.

Summary

The measurements that wevbhadone on the Mobile-IP code Jga been
accomplished by using both owvie network management program (mipteher)

Implementation and Analyses of the Mobile-IP Protocol

60

Analysis of the Mobile-IP protocol

to get some alues, and by modifying the code itself to print otredugs. The time
intenvals that we were interested inveabeen measured bygistering the system
clock at diferent points in time.

There are seral factors that can ke influenced the correctness of our
measurements.of instance, when we are doing the pixgeximent, the time to
send a paait from one computer to another is of course dependentwonmuch
traffic there is on the netwk at the same time, and what the queues at the routers
look like. We tried to minimize the error by doing the sarrpeziment man times

and calculating the varage, ht there will still be diferences in the time
measurements depending on the time of the day whexpleeiment is done. This
means that there is not much point in looking at ttectewalues, it more at the
relations between the &fent time interals.

Another problem is that the computers where we are running the Mobile-IP code
are normal wrkstations, where a lot of #frent processes are running at the same
time. This maks it hard to measure foxample the time it tads to encapsulate or
decapsulate a paek

Implementation and Analyses of the Mobile-IP Protocol 61

Conclusions

11.0 Conclusions

This master thesis project has include¢ksal areas around the not yet standardized
Mobile-IP protocol, and has produced & fdifferent kinds of results.

First of all, a Management Information Base (MIBaswvritten for the Mobile-I1P
protocol, something which had not been done before. Support foronketw
management (SNMP) and this MIBa& implemented using the CMU snmp2.1.2
package and incorporated into Anders Klemets Mobile-IP code. At the end of our
thesis vork four Internet drafts ([31, 32, 33, 34]) describing a Mobile-IP MIB were
published by the Mobile-IP avking group of the Internet Engineeringsk force.

This oficial Mobile-IP MIB is based on our initial MIB, and we are mentioned in
the acknwledgements.

The net step vas to understand the Mobile-IP implementation made by Anders
Klemets for the SunOS operating system. Once this achieed, the vark on the

two ports of the implementation ¢mn. Porting the code from SunOS to Solardsw
not that dificult. The only part to changeas the lav level routines that is used for
reading ethernet frames from the netlw In the SunOS implementation this is
done by accessing something called the dtvinterface Rp, hut this interfce is

not supported in the Solaris operating system. Here we had to use anotheranterf
called the Data Link Pxader Interbice (DLPI) which of course is not compatible
with the Netvork Interface Bp.

Porting the code to the MINT ag a bit more diicult. Most of the time ws spent

trying to understand the MINT eimonment. There were also some initial problems
when we first tried to boot a MINTand later when we anted to transfer the
Mobile-IP program to the MINT The lack of documentation about the
programming evironment and the operating system for the MINT has resulted in
several documents written by us, which in detail describes what we did anaidno

did it. This should hopefully help a person that is interested welolgng other
applications for the MINT in the future. The port of the Mobile-IP code itself
resulted in one major and one minor change from the Sur@$r. The major
change \as the same as for the Solaris port; the part of the code that is reading and
writing ether frames. This could be done neither as in the SunOS implementation,
nor as in the Solaris port. Unfortunately it could not be done by using thel&erk
Paclet Filter eithersomething that we had hoped.fimstead we had to abandon the
pure Unix code and use some underlying MachOS system calls. Here we used
something called the Macha&ket Filter which is an etension of the Bewdey

Paclet Filter At last we got the MINT implementation to run.

To summarise the porting part we can say that there reallynst that much to
change between the fiifent \ersions that we made. When porting the SunOS code
to MachOS, we made modifications of a/feoutines in fie of the around 90 files
included in the implementation. Almost all important changas made in just one

of the files; the file containing the routines for reading and writing ethernet frames.
This should encourage people to port the implementation to other platforms as well.

Another part of our dgee project &s to test the Mobile-IP implementation and
analyse the protocol. The testing of the Mobile-IP cods done by running the
Mobile-IP code on wrkstations in our lab running SunOS or Solaris, and the tests
revealed tvo interesting results. The firstaw that the handling of pasts by the
Home Agent and thedfeign Agent vas a significant part of theverall delay
caused by the Mobile-IP protocol. The secoreswthat of the time spent by a
Mobile Node trying to establish aweconnection with its Home Agent almost all

Implementation and Analyses of the Mobile-IP Protocol 62

Conclusions

of it was spent getting a connection with tlerdign Agent. W& do not knur if this
problem is due to the specific implementation of the Mobile-IP protocol that we are
using, or if it is a fundamental problem with the protocol itseff.ahswer this
question, further tests with other implementations should be made. Unfortunately
there is hard to get another implementation to test at the moment, because the
vendors that h&e made their wn implementations of the protocol (forample

IBM, Sun and Motorola) are not willing to release their code rigit no

Finally we would like to thank all the people who has helped us during @rede
project, especially Chip Maguire who has been of great support.

/ Fredrik & Fredrik, February 1996

Implementation and Analyses of the Mobile-IP Protocol 63

The CMU-SNMP package

Appendix A The CMU-SNMP package

A.1 Introduction

The CMU-SNMP library is a public domain, no guarantee library of SNMP
functions from Carrgie Mellon Unversity. It is available via anoymous ftp and
written in the C language. Em though it is limited in its functionality it sexd our
purposes well since all we neededsma tool to create an SNMP agent.

Except the librarythe distrilution also contains seral applications which sesas
excellent e«éamples for using the library to create an SNMP manddpse include
applications for getting and settingriables, valking through an agestMIB, and

a couple of applications for getting sets afiables. These applications, although
somavhat useful in themsebs, are gry good sources and great starting points for
writing your avn applications. &r further instructions on koto use the library to
build a manageread the document “Using the CagieeMellon University (CMU)
SNMP Library © Build an SNMP Manager” [22].

The reason for including this appendix in our report is that we found that there w
little or no information on he to use the library to generate an SNMP agent.
Below, a fav pointers andxamples will be gien to sha how to use the package to
create an SNMP agent.

A.2 How to obtain the library

The library is &ailable from URL:
ftp://1 ancaster. andr ew. cnu. edu/ pub/ snnp-di st/
Do not foget the README file.

A.3 Writing an agent

Before you write your snmp agent, you firsvddo define a MIB (Management
Information Base). The folleing text assumes that this is already done. There are
plenty of good books on koto write a MIB, for &le “The Simple Book” by

M. T. Rose [11].

There is mainly one file in the package that is of interest when writing an agent, and
that is agent/snnp_vars.c. That file contains implementations of the
standard components for an agent aemgin RFC 1213 [24], which can seras
examples.

A.3.1 The data structures
Lets look at the data structures of interest. First there eeeadeliferent structures
called \ariableX, where X is an inger defining the length of the object identifier

struct variable2 {

u_char nagi c; /* passed to function as a hint */
char type; /* type of variable */

u_short acl ; /* access control list for variable */
u_char *(*findVar)();/* function that finds variable */
u_char nanel en; /* length of name bel ow */

oid nane[2] ; /* object identifier of variable */

H

The first field callednagic is a number that can help the programmer to identify the
requestedariable. Its function will be clear as we go along.

Implementation and Analyses of the Mobile-IP Protocol 64

The CMU-SNMP package

The typefield is one of the types that a MIEwable can h& according to RFC
1212 [23]. Though we found that the type SEENCE, which is similar to a struct
in C language, can not be used as an instantiaréable.

The acl field indicates the access rights of tlagiable. The dferent access rights
that are allwved are ®NLY, RWRITE and N@ACCESS.

When the agent recais an snmp request it mustba way of getting or setting the
value of the requestedanable. This functionality is supplied by the function
pointed to by thdind\ar variable. The implementation of findk/functions will be
discussed bela

Thenamefield is the only field that diér among the diérent \ariableX structures.

An older \ersion of the CMU package used the structurariable” defined in
snnp_var s. h, which resergs space for an object identifier (OID) with 32 sub-
ids. When writing this neer \ersion of CMU, the author afnnmp_vars. c
decided to create structures with less OID space, presumably ifodrtefeduce

the size of the compile-time data structures. Thus thidible2” structure is
identical to the “ariable” structure, with the only dérence that it has room for just

2 sub-ids. The system groupriables will need only 2 sub-ids for instance names,
e.g. “.3.0” forsysUpTme0. The tcp group needs 13 sub-ids, since after the tcp
group id (1.3.6.1.2.1.6) you can need up to 13 more sub-ids to specéljda v
instance. E.g., you need 3 more sub-ids to defineffi@onnStat@bject under the

tcp group, .13.1.1, and then 10 more sub-ids to specify an instance of this object:
A.B.C.D.X.E.EG.H.Y where A.B.C.D is the local IP address, X is the local port,
E.FG.H is the remote IP address, and Y is the remote port. So, when defining
variables, use aaviableX structure big enough to hold all the instance sub-ids in a
valid name.

All variables with a common OID prefix are put inaiable list. Ybu'll find plenty

of them in thesnnp_var s. ¢ file. For ekample the ariableat_variableis a list of
three ariable2 that all hae the prefix “1.3.6.1.2.1.3.1.1". The prefix itself is defined
in thesubtieestructure discussed balpwhile the last part of the oid that identifies
a\variable is put in the name field.

The second structure of interest is gubtee structure. It contains an OID prefix
which applies to all ariables in the associatedriable list. The &y the subtree is
used is rather selfvent if you look at he it is done in thesnnp_vars. ¢ file.
There is one ariable calledsubteeswhich is a list where all the subtrees are
defined. One thing to notice is that all the OID fields in the subtree listthabe
unique and no OID can be a prefix to another OID, e.g. it isaiint to hae one
OID prefix called “1.2” and another called “1.2.1".

struct subtree {

oid name[16] ; /* objid prefix of subtree */

u_char nanel en; /* nunber of sub-ids in nane above */
struct variable *variables; /* pointer to variables array */

i nt vari abl es_|I en; /* nunber of entries in above array */
i nt vari abl es_wi dt h; /* sizeof each variable entry */

A.3.2 The functions
There are tw kinds of functions that are of interefitid\ar andwrite\ar functions.
For every \ariable added to aaviable list there has to be a function that can
correctly retrige the \alue of that ariable. The find¥r field in the ariable struct
should point to the corresponding function.

Implementation and Analyses of the Mobile-IP Protocol 65

The CMU-SNMP package

As an gample of a finddr function thevar_system(junction is sharn belawv, with
comments inserted between the C-code lines.

u_char*
var_system (vp, hame, length, exact, var_len, write_method)
register struct variable *vp; /* IN - pointer to variable entry that
points here */

register oid *name; /* IN/JOUT - input name requested,
output name found */

register int *length; /* IN/OUT - length of input and output
oid’'s */

int exact; /* IN - TRUE if an exact match was
requested */

int *var_len; /* OUT - length of variable or O if

function returned */
int (**write_method)(); /* OUT - pointer to writeVar,
otherwise 0 */

{
extern int writeVersion(), writeSystem();
oid newname[MAX_NAME_LEN];
int result;

}

There are seeral input parameters to the function. Mpevariable is a pointer to the
variableX struct whose OID prefix in the subtree list plus the sub-id iratiegle X
struct matched the requested OID. Théedént fields in the vpariable is used to
identify which ariable is requested.

When the function is called, tmamevariable contains the OID thatas ask for by
the management program. When the function returns, the reaiable should hold
the OID of the ract \ariable found. It wrks like this; suppose the management
program asks for the ipAdEntAddr (1.3.6.1.2.1.4.20.1.4)iable. Since this
variable is a column in a table it is possible to answer wiyhome of the rars in
that column. When thear_ipAddrEntry()function that handles thipAdEntAddr
variable has decided which woto return, the nameaviable will be set to
1.3.6.1.2.1.4.20.1.1.A.B.C.D, where A.B.C.D is an IP-address.

Thelengthvariable is the length of the namariable gven as the number of sub-
ids. When theind\ar function is called, thdéength variable is the length of the
requested OID and when it returns it should be the length of the OID found.

Exactis true when the manager requests xacematch between the OID of the
requested ariable and a ariable in the agent. That is, ékactis true, the agent
should only return an answer if it finds ataet match between asiable it knevs

of and the requestednable. Br example ifnameis .1.3.6.1.2.1.4.2.0 which is the
ipDefaultTTLvariablevar_ip() should return the da@ilt TTL kut if namelooks like
.1.3.6.1.2.1.4.2 it should not. On the other hanekifct is false then thdindvar
function should return thealue whose OID is closest alothe requested one,
using thecompae function. Using the samexample as ab@ this means that if
nameis .1.3.6.1.2.1.4.2var_ip() should return the deflt TTL and set th@ame
variable to .1.3.6.1.2.1.4.2.0, since this is the instance whose OID is closest abo
the requested one (iradt it is the only one). lhameis .1.3.6.1.2.1.4.2.0 then
var_ip() should return NULL since there is no instancép@fefaultTTLthat has an
OID that is lager than the requested OID.

Var_lenis set by the function to the length of the retwaitug in bytes.

Implementation and Analyses of the Mobile-IP Protocol 66

The CMU-SNMP package

If the value can be written as well as read by a manaigefind\ar function must
supply a pointer to ariteVar function that correctly can write awevalue to the
variable. More about writef functions bela.

The return alue of thefind\ar function should either be NULL, if the request can
not be satisfied, or a char pointer to théue found.

bcopy((char *)vp->nanme, (char *)newnane, (int)vp->nanelen * sizeof(oid));
newnane[8] = 0;
result = conpare(nane, *length, newname, (int)vp->nanelen + 1);

This piece of code does the falling: First thevp->namefield is copied to a me
variablenevname The vp->nameariable contains the prefix in the subtree list plus
the sub-id in the ariableX struct that as a prefix to the requestedriable. or
example, if the a manager tries to fetch theiablesysContagtthevp->namefield

will contain 1.3.6.1.2.1.1 concatenated with .4 for a total of 1.3.6.1.2.1.1.4. After
the coyy operationnevname[8]is given the alue 0. Lets see witthat is done. The
vp->namevariable will alvays hae a length of 8 (since the prefix in the subtree list
is 7 ids long and the sub-ids in the systeaniables[] are all one id long), and if an
exact match is requested the ninth position in the naariable will be a zero (there
are no tables in the system group so there wilknbe ag key values added at the
end of the OID). The m line of code compares the namariable with the
newvname \ariable. If the nameariable is lager, then result = 1. If the meame is
larger, result = -1, and if theare equal, result = 0.

if ((exact && (result '=0)) || (!exact && (result >= 0)))
return NULL;

Now, if exactis true and result is not equal to 0, which means thakaet enatch
was requestedub name and wename were not equal, or araet match &s not
required lt the requested OID is longer thary gossible OID of a ariable this
function can handle, then return NULL.

bcopy((char *)newnane, (char *)nane, ((int)vp->nanelen + 1) *
si zeof (oi d));

*l ength = vp->nanelen + 1;

*wite_method = 0;

var _len = sizeof (long);/ default Iength */

When this peace of code is reached it means that we will be able to satisfy the
request. Firsthnewname which is the OID of theariable we will return, is copied

to name Then*lengthis set to the length of the OID in thamefield. Finally the
*write_methodand the*var_len variables are set to their respeely defult
values.

switch (vp->magic) {

case VERSI ON_DESCR:
*var _len = strlen(version_descr);
*write method = witeVersion;
return (u_char *)version_descr;

case VERSI O\ | D
*var _len = sizeof (version_id);
return (u_char *)version_id;

case UPTI ME:
(u_long)long_return = sysUpTi me();
return (u_char *)& ong return;

Implementation and Analyses of the Mobile-IP Protocol 67

The CMU-SNMP package

case IFNUMBER:

long_return = Interface_Scan_Get_Count();

return (u_char *) &long_return;
case SYSCONTACT:

*var_len = strlen(sysContact);

*write_method = writeSystem;

return (u_char *)sysContact;
case SYSNAME:

*var_len = strlen(sysName);

*write_method = writeSystem;

return (u_char *)sysName;
case SYSLOCATION:

*var_len = strlen(sysLocation);

*write_method = writeSystem;

return (u_char *)sysLocation;
case SYSSERVICES:

long_return = 72;

return (u_char *)&long_return;
default:

ERROR("™);

}
return NULL;

To find the &act \ariable requested, a switch is made onwufe magic number
The magic number is a user defined numbeergiin the wariableX structure for
each wariable. It is there for caenience. The same information could k&acted
from the name variable. Lets say thep->magic humber equals SYSCONCT.
The following lines of code will then bexecuted. Firstvar_len, which is the
length of the returned data, is set to the length ofsg€ontact string, which
contains the name of the system contact amdtbaet in touch with him. Secondly
the*write_method is set to thavriteSystem function that can handle a change to the
sysContact string. Lastly thesysContact string is returned.

Writing a writeVar function for a table is similabut there are a e differences
worth pointing out. Thear_atEntry function will sene as anxample.

u_char*
var_atEntry(vp, name, length, exact, var_len, write_method)
register struct variable *vp; /* IN - pointer to variable entry that
points here */
register oid *name; /* IN/JOUT - input name requested, output
name found */
register int *length; /* IN/OUT - length of input and output

oid’'s */

int exact; /* IN - TRUE if an exact match was
requested. */

int *var_len; /* OUT - length of variable or 0O if function

returned. */
int (**write_method)(); /* OUT - pointer to function to set
variable, otherwise 0 */
{
/*
* object identifier is of form:
*1.3.6.1.2.1.3.1.1.variable.interface.1.A.B.C.D, where A.B.C.D is IP
* address.

Implementation and Analyses of the Mobile-IP Protocol 68

The CMU-SNMP package

* Interface is at offset 10,

* IPADDR starts at offset 12.

*

u_char *cp;

oid *op;

oid lowest[16];

oid current[16];

static char PhysAddr[6], LowPhysAddr[6];
u_long Addr, LowAddr;

The aguments to the function are of course the same agalbbe main dference
between a function that handles a table and one that orly take of aariable is
the case when thexact variable is &lse. When anxact match is requested it is
quite straight fonard what to do; if therexésts a ley value in the table thatggs an
exact match, return the correspondingrigble. But whenexact if false the
algorithm is slightly diferent. There are geral cases to consider

* The requested OID looks &k1.3.6.1.2.1.3.1.1aviable, that is aariable in the
table is askd for lut no instance is specified. The function should return the first
instance of thatariable in the table if there is one, else NULL. The first instance
is the \ariable in the nv whose OID is the smallest (compared usiogpare).

* The requested OID looks 8k1.3.6.1.2.1.3.1.1aviable.interdce.1.A.B.C.D, that
is both a rav and a column in the table are specified. The function should return
the variable whose OID is closest aleothe requested OIDoF example, if the
requested OID has amact match in the table, return thariable whose OID is
the net OID, usingcompare. If there is no ¥act match just return theasiable
whose OID is closest abe the requested one. If there is natnariable, return
NULL.

The variables defined are the foNng:

* lowest[16], contains the OID found that is closestabthe requested OID sarf

e current[16], holds the OID which we are arking with and is compared to
lowest to see if this one is closer to the requested OID or not, whilersiag the
table.

e PhysAddr[6] and LowPhysAddr[6] are the current pisical address and the
physical address whose OID is thevlest so &r. Same fotowAddr.

/*fill in object part of name for current (less sizeof instance part) */
bcopy((char *)vp->name, (char *)current, (int)vp->namelen *sizeof(oid));

Copy vp->name to current to get the first part of ouravking OID.

LowAddr =-1; /* Don't have one yet */

LowAddr is initiated to -1 to indicate that we do notvhaa lavest address yet. If
LowAddr still is -1 when we hae completed our ti@rsal of the table it means that
we got no hit.

ARP_Scan_|Init();

ARP_Scan |nit initializes the table and places us at the first position in the table.

Implementation and Analyses of the Mobile-IP Protocol 69

The CMU-SNMP package

for (55) {
i f (ARP_Scan_Next (&Addr, PhysAddr) == 0) break;
current[10] 1;/* Iflndex == 1 (ethernet???) XXX */
current[11] 1;
cp = (u_char *)&Addr;
op = current + 12;

*op++ = *cp++,
*op++ = *cp++,
*op++ = *cp++,
*op++ = *cp++,
This is the main loop. First a call is made toARP_Scan Next function to get the
next entry in the table. Obserthat this is not a sorted tableAlRP_Scan Next just
returns the nd entry until the whole table has been returned. Secondigutinent
variable is updated with the intadenumber plus the address reedifrom the
ARP_Scan_Next call.
if (exact) {
if (conpare(current, 16, nane, *length) == 0) {
bcopy((char *)current, (char *)lowest, 16 * sizeof(0id));
LowAddr = Addr;
bcopy(PhysAddr, LowPhysAddr, sizeof (PhysAddr));
break; /* no need to search further */
}
Next a test is made to see if this is ata@ request. If it isgurrent andname are
compared. If thgare equal we & found a match and we can quit our search. The
LowAddr is set to the address found in tABP_Scan Next call. The same with
LowPhysAddr. If the compare fails, tale another trip through the loop and get the
next entry in the table.
} else {

if ((conpare(current, 16, nane, *length) > 0) && ((LowAddr ==
-1) || (compare(current, 16, lowest, 16) < 0))) {
bcopy((char *)current, (char *)lowest, 16 * sizeof(0id));
LowAddr = Addr;
bcopy(PhysAddr, LowPhysAddr, sizeof (PhysAddr));

}
If exact is filse we mad a test to see if thmirrent OID is laiger than the requested
OID and that it is smaller than the closest OID foundagolff so, lowest is set to
current and theLowAddr and theLowPhysAddr are updated accordinglfhen we
continue to go through the table to se if we can find an @D eloser taname.
}
}
i f (LowAddr == -1) return(NULL);

If this test is true it means that we did not find aacté match or that there is no
entry in the table that is ab® the requested OID.

bcopy((char *)l owest, (char *)nane, 16 * sizeof (0id));
*| ength = 16;

*wite_method = O;

swi t ch(vp->magic) {

Implementation and Analyses of the Mobile-IP Protocol 70

The CMU-SNMP package

case ATIFINDEX:
*var_len = sizeof long_return;
long_return = 1; /* XXX */
return (u_char *)&long_return;
case ATPHYSADDRESS:
*var_len = sizeof(LowPhysAddr);
return (u_char *)LowPhysAddr;
case ATNETADDRESS:
*var_len = sizeof long_return;
long_return = LowAddr;
return (u_char *)&long_return;
default:
ERROR(“);

}
return NULL;

This part is the same as for the non table casequsly described.

If a variable is writeable as well as readabley&eVar() function must be supplied
for that \ariable. When a write request is remel by the snmp agenhewriteVar()
function will be called three times for eachrbind in the paait. The first time
action will have the \alue RESERE1. During this pass the type andlue of the
variable should be chee# to see if theare correct, i. e. tlyeghare the correct type,
length etc. Also, if there are otheariables in the MIB that depends on this
variable, the n& value should be stored in a place where otirvéeVar () functions
can reach it. Note though, that during this first call, th& walue should not be
written to the ariable. Net, thewriteVar() is called with the actionariable set to
RESER/E2. If a wariable depends on otheanables, nw is the time to check if
ary of the dependants has stored itsvn@lue and retriee it so it can be used
during the commit phase. If no errorsvbabeen returned sauf from ary of the
writeVar() functions, the third call has the actioariable set to COMMITThe
writeVar should write the ng value to the ariable and free gnresources it has
used during the tav previous phases. If an erroras detected in either of thedw
first writeVar calls, the action ariable will hae the alue FREE. It gies the
writeVar a chance deallocate yamesources it has used in the RESER and
RESER/E2 phases. Of course, in this case, no changes should be made to the
variable.

As an eample, thenriteVersion function is shan.

int
writeVersion(action, var_val, var_val_type, var_val_len, statP, name,
name_len)

int action; /*IN - RESERVE1, RESERVE2, COMMIT, or FREE*/

u_char *var val; /[*IN - input or output buffer space*/

u_char var_val type;/*IN - type of input buffer*/

int var_val_len; /*IN - input and output buffer len*/

u_char *statP; /*IN - pointer to local statistic*/

oid *name; /*IN - pointer to name requested

int name_len; /*IN - number of sub-ids in the name*/

int bigsize = 1000;
u_char buf[sizeof(version_descr)], *cp;
int count, size;

Implementation and Analyses of the Mobile-IP Protocol 71

The CMU-SNMP package

There are a total of gen parameters towveriteVar() function. Theaction variable is
set during each call to thelues described abe. *var_val is a char pointer to a
buffer containing the ne value.var_val_typeis the type of the mevalue. It is there
to male it possible for the function to check that thevnalue has a correct type.
The type must be one of the types that a MdBiable can ha according to RFC
1212 [21].var_val_lenis of course the length in bytes of thee_val variable.name

is the OID of the requeste@nable andhame len is its length as the number of sub
OID’s.

if (var_val_type != STRING){
printf(“not string\n”);
return SNMP_ERR_WRONGTYPE;
}

Check the type of the mevalue.

if (var_val_len > sizeof(version_descr)-1){
printf(“bad length\n”);
return SNMP_ERR_WRONGLENGTH,;

}

Check the length of the wevalue.

size = sizeof(buf);
asn_parse_string(var_val, &bigsize, &var_val_type, buf, &size);
for(cp = buf, count = 0; count < size; count++, cp++){
if (lisprint(*cp))X{
printf(“not print %x\n”, *cp);
return SNMP_ERR_WRONGVALUE;
}
}

Check the mlue of the n& value.

buf[size] = 0;
if (action == COMMIT){
strcpy(version_descr, buf);

}

If action has the &lue COMMIT, write the nev value to theversion_descr variable.
return SNMP_ERR_NOERROR,;

Implementation and Analyses of the Mobile-IP Protocol 72

The SNMP code

Appendix B The SNMP code

This appendix includes the code added to the Mobile-1P deamon, the changes made
to theinternal structures of the Mobile-1P implementation, marked with sidebars, as
well as the code written on the snmp Agent side.

B.1 Changes to internal structures
The changes are marked with bars.

B.1.1 struct mobileip_host
struct mobileip_host {
[* The IP address of the MH in question */
uint32 addr;
[* The number of currently registered COA'’s is kept here.
* |t is zero if the host has deregisterred
*
int iCOACNt;
[* The Care-Of Addresses of this host are in the following field.
* An unused entry is set to INADDR_ANY.
*
uint32 coa[MOBILEIP_COA_ MAX];
[* The flags received in the registration */
uint8 flags[MOBILEIP_COA_MAX];
[* The registration timeout timer, one for each COA registration */
generic_timer_t timer[MOBILEIP_COA_ MAX];
[* The ID to expect in the next registration request */
uint64 nxtid;
mh_t next;

k

B.1.2 struct fa_deencap_entry
struct fa_deencap_entry {

uint32 addr; /* The address of the Mobile Host */

uint32 haaddr; /* The address of the MN’s HA */
uint32 reqTsS; [* The time when the regreq was received */
uint32 replTS; /* The time when the regrepl was received */

generic_iface_t gifp; /* The interface to forward packets to */
generic_timer_t timer; /* The registration timeout timer */
deencap_t next; [* Pointer to next entry in chain */

B.1.3 struct fa_saved_regstate
struct fa_saved_regstate {

uint64 id; /* ID that was used in registration request */
uint32 mh; /* IP address of MH that sent request */
uint32 coa; /* Care-Of Address in registration request */
uint32 ha; /* Home Agent in registration request */
uint32 source; [* IP source address of request message */
uintl6 port; /* UDP source port of request message */
uint32 reqTsS; /* The time when we got our first regreq */

generic_iface_t gifp; /* Interface request was received on */
generic_timer_t timer; /* Expiry timer for this state entry */

struct udp_cb *udp_chb; /* UDP control block, (transmit socket) */
regstate_t next; [* pointer to next in chain */

Implementation and Analyses of the Mobile-IP Protocol 73

The SNMP code

1

B.1.4 struct mobileip_agent

struct nobilei p_agent {

s

/* The | P address of the agent in question */
ui nt 32 addr;
/* The nunber of bits in the IP address that are used in forming the

* network nunber of the agent. A zero value neans that it is unknown.

*/

unsi gned char prefix_| ength;

/* A generic interface pointer to the interface on which we | earned
* about this agent. Typically the interface on which the the

* | CMP Router Advertisenent for this agent was received.

*/

generic_iface_t gifp;

/* The | P address of the honme agent. */

ui nt 32 haaddr;

/* The time when the first registration request was sent. */

ui nt 32 reqTsS;

/* The tinme when the first registration reply was received. */
uint32 repl TS;

/* The sequence nunber of the |ast router advertisenent

* that was received

*/

uintl6 seq;

[* The Care-Of Address to use with this agent */

ui nt 32 coa

/* The lifetine field in the |atest received agent advertisenment */
uint16 lifetime;

/* A copy of the flags bits in the |atest agent advertisenent */
uintl16 flags;

/* The | P address of the preferred router, according to this agent */
ui nt 32 router;

/* The registration or registration request retransnmt timer */
generic_timer_t tinmer;

agent _t next;

B.1.5 struct pending_request

struct pendi ng_request {

/* A pointer to the foreign agent that the request was sent to */
agent t fa;

/* A pointer to the honme agent that the request was sent to */
honeagent t ha;

/* The Care-Of Address to use with this registration */

ui nt 32 coa

/* The tinme when the first registration request was sent. */
ui nt 32 reqTsS;

/* The nunber of tinmes the registration request has been retransmtted */

int i RetransmtCnt;

/* The current time when the | atest agent advertisement was received */

uint 32 tinme_heard;

/* A copy of the ID that was used in the request */
ui nt 64 id;

/* The flags field that was used in the request */

Implementation and Analyses of the Mobile-IP Protocol

74

The SNMP code

unsigned char byFlags;
pending_req_t next; [* Next pending request in list */

g

B.2 Mobile-IP code

B.2.1 snmp_init.c
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include “targetdefs.h”
#include <stdio.h>
#include “statistics.h”

int SNMP_socket;
/**

* This is the socket on which we wait for requests form the*
* snmpd. *

**/

boolean_t SNMP_inited = FALSE;

/**

* SNMP_inited will be true when the socket has been opened.*

**/

u_short SNMP_port = Oxffd3;
/**

* snmp_port is the port on which we are waiting for *
* requests from the snmpd. It can be changed by *
* starting mipd with option -p n, where n is a new port. *

**/

/**

* SNMP_SOCKET_INIT *
**/
void

snmp_socket _init()

{

struct sockaddr_in sin;

SNMP_inited = TRUE;

bzero((char *)&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = SNMP_port;

debug_printf(“*Open snmp socket\n”);

if ((SNMP_socket = socket(PF_INET ,SOCK_DGRAM ,0))<0) {
perror(“Snmp socket”);
return;

}

if (bind(SNMP_socket, (struct sockaddr *)&sin, sizeof(sin))<0) {
perror(*Snmp bind”);
return;

Implementation and Analyses of the Mobile-IP Protocol

75

The SNMP code

debug_printf(“Done\n™);

/**
* MIPMIPSTAT_INIT *

**/

void
mipstat_init()

bzero((char *)&mipstat,sizeof(mipstat));

}

B.2.2 snmp_magic.h

/**

* MOBILE NODE MAGIC NUMBERS *

**/

#define MNHOMEAGENTLIST 1
#define MNADVADDR 2
#define MNADVSEQNO 3
#define MNADVFLAGS 4
#define MNADVTS 5

#define MNADVCOUNT 6
#define MNERRADDR 7
#define MNERRCODE 8
#define MNERRTS 9

#define MNERRCOUNT 10
#define MNAUTHCOUNT 11
#define MNINVREPLCOUNT 12
#define MNSOLTS 13

#define MNSOLCOUNT 14
#define MNDECAPS 15

#define MNDISCARDS 16

/**

* MOBILE NODE REGISTRATION TABLE MAGIC NUMBERS *

**/

#define MNREGHA 17
#define MNREGFA 18
#define MNREGREQTS 19
#define MNREGREPLTS 20
#define MNREGFLAGS 21
#define MNREGLIFETIME 22

/**

* MOBILE NODE PENDING REGISTRATION TABLE MAGIC NUMBERS *

**/

Implementation and Analyses of the Mobile-IP Protocol

The SNMP code

#defi ne MNPENDREGHA 23
#defi ne MNPENDREGFA 24
#defi ne MNPENDREGREQTS 25
#defi ne MNPENDRECREQS 26
#defi ne MNPENDREGFLAGS 27

/**

* FOREI GN AGENT MAG C NUMBERS *

**/

#def i ne FACOALI ST 30
#defi ne FAADVSEQNO 31
#def i ne FAADVFLAGS 32
#def i ne FAADVTS 33

#def i ne FAADVCOUNT 34
#def i ne FASOLADDR 35
#defi ne FASCLTS 36

#def i ne FASOLCOUNT 37
#def i ne FAERRRECADDR 38
#def i ne FAERRRECCODE 39
#def i ne FAERRRECTS 40
#def i ne FAERRRECCOUNT 41
#def i ne FAERRSENTADDR 42
#def i ne FAERRSENTCODE 43
#def i ne FAERRSENTTS 44
#def i ne FAERRSENTCOUNT 45
#defi ne FAAUTHCOUNT 46
#defi ne FAREGREQSREC 47
#def i ne FADECAPS 48
#def i ne FADI SCARDS 49

/**

* FOREI GN AGENT REQ STRATI ON TABLE MAG C NUMBERS *

**/

#defi ne FAREGW 50

#defi ne FAREGHA 51

#defi ne FAREGREQTS 52
#defi ne FAREGREPLTS 53
#defi ne FAREGLI FETI ME 54

/**

* FORElI GN AGENT PENDI NG REG STRATI ON TABLE MAG C NUMBERS *

**/

#defi ne FAPENDREGWN 55
#defi ne FAPENDREGHA 56

/**

* HOVE AGENT MAG C NUMBERS *

**/

#def i ne HAAUTHNODELI ST 60
#defi ne HAADVSEQNO 61

Implementation and Analyses of the Mobile-IP Protocol

77

The SNMP code

#define HAADVFLAGS 62

#define HAADVTS 63

#define HAADVCOUNT 64

#define HASOLADDR 65

#define HASOLTS 66

#define HASOLCOUNT 67

#define HAERRADDR 68

#define HAERRCODE 69

#define HAERRTS 70

#define HAERRCOUNT 71

#define HAAUTHCOUNT 72
#define HAREGREQSREC 73
#define HAENCAPS 74

#define HABROADSCASTSREC 75
#define HABROADCASTSSENT 76

/**

* HOME AGENT BINDING TABLE MAGIC NUMBERS

**/

#define HABINDINGMN 77
#define HABINDINGCOA 78
#define HABINDINGLIFETIME 79
#define HABINDINGFLAGS 80

/**

* MIP TYPE MAGIC NUMBERS *

**/

#define MIPTYPE 81

B.2.3 statistics.h
#include “targetdefs.h”

typedef uint32 TimeStamp;
typedef uint32 IPaddr;

struct MNstat {
IPaddr mnAdvAddr;
uint32 mnAdvSeqNo;
uintl6 mnAdvFlags;
TimeStamp mnAdvTS;
uint32 mnAdvCount;
TimeStamp mnAdvFirst;
IPaddr mnErrAddr;
uint32 mnErrCode;
TimeStamp mnErTS;
uint32 mnErrCount;
uint32 mnAuthCount;
uint32 mninvReplCount;
TimeStamp mnSolTS;
uint32 mnSolCount;
TimeStamp mnSolFirst;
uint32 mnDecaps;
uint32 mnDiscards;

k

*

Implementation and Analyses of the Mobile-IP Protocol

78

The SNMP code

struct FAstat {
ui nt 32 f aAdvSeqgNo;
uintl16 f aAdvFl ags;
Ti reSt anp faAdvTsS;
ui nt 32 f aAdvCount ;
| Paddr f aSol Addr;
Ti mreSt anp faSol TS;
ui nt 32 f aSol Count ;
| Paddr f aEr r RecAddr ;
ui nt 32 f aEr r RecCode;
Ti mreSt anp faErr RecTS;
ui nt 32 f aErr RecCount ;
| Paddr f aEr r Sent Addr ;
ui nt 32 f aEr r Sent Code;
Ti meStanp faErrSent TS;
ui nt 32 f aErr Sent Count ;
ui nt 32 f aAut hCount ;
ui nt 32 f aRegReqsRec;
ui nt 32 f aDecaps;
ui nt 32 faDi scards;

s

struct HAstat {
ui nt 32 haAdvSeqNo;
uintl16 haAdvFl ags;
Ti meSt anp haAdvTsS;
ui nt 32 haAdvCount ;
| Paddr haSol Addr;
Ti mreSt anp haSol TS;
ui nt 32 haSol Count ;
| Paddr haEr r Addr ;
ui nt 32 hakEr r Code;
Ti meStanp haErrTS;
ui nt 32 haEr r Count ;
ui nt 32 haAut hCount ;
ui nt 32 haRegReqsRec;
ui nt 32 haEncaps;
ui nt 32 haBr oadcast sRec;
ui nt 32 haBr oadcast sSent ;

s

struct mipstatstruct {
struct MN\stat mm;
struct FAstat fa;
struct HAstat ha;

#define MN 128

#defi ne FA 64

#defi ne HA 32

unsi gned char mi ptype;

};

extern struct mpstatstruct mpstat;

Implementation and Analyses of the Mobile-IP Protocol

The SNMP code

B.2.4 statistics.c
#include “statistics.h”
struct mipstatstruct mipstat;

B.2.5 snmp.h
#include <sys/types.h>

typedef u_long oid;

void mipstat_init();
void snmp_socket_init();
u_long get_timem();

B.2.6 snmp.c
#include “statistics.h”
#include “snmp_magic.h”

#include <sys/types.h>
#include <netinet/in.h>
#include “targetdefs.h”
#include “absiface.h”
#include “abstimer.h”
#include “mipiface.h”
#include “mbuf.h”
#include “io.h”
#include “packet.h”
#include “enet.h”
#include “internet.h”
#include “ip.h”
#include “arp.h”
#include “os.h”
#include “icmp.h”
#include “auth.h”
#include “mip.h”
#include “mh.h”
#include “mhagent.h”
#include “agent.h”
#include “rdiscovery.h”
#include “rdrouter.h”
#include “lowmisc.h”
#include “lowether.h”
#include “udp.h”
#include “ha.h”
#include “fa.h”
#include “snmp.h”

#include <stdio.h>
#include <sys/uio.h>
#include <sys/time.h>
#include <netinet/in.h>

int snmpHandleReadReq(struct sockaddr_in *sin, char *bp);

int snmpHandleWriteReq(struct sockaddr_in *sin, char *bp);

void snmpMakeReply(char error, uint32 vlength, void *value, u_char
olength, oid *oidfound, int *size, char *buf);

Implementation and Analyses of the Mobile-IP Protocol

The SNMP code

void snmpHandleReq();

int snmpSend(struct sockaddr_in *sin, uint32 vlength, void *value, u_char
olength, oid *oidfound);

int snrmpERROR(struct sockaddr_in *sin, char error);

extern mh_t MHlist;

extern deencap_t Deencap_list;

extern regstate_t Savedstate;

extern uint32 mylPaddr;

extern homeagent_t HomeAgents;

extern agent_t Registrations;

extern pending_req_t PendingRegistrations;

extern int SNMP_socket;

/**

* *
GET_TIMEM

**/

/**

* This function returns the number of microseconds elapsed *
* since January 1, 1970 (zero hour). 4 bytes are of cause *
* not enougth for this purpose but we don’t care since all *
* we want is a way of measuring the time between two *
* events. *
**/
u_long get_timem()
{
struct timeval tim;
gettimeofday(&tim, NULL); /* Ask the OS what the time is */
return (tim.tv_sec*1000000 + tim.tv_usec);

/**
* COMPARE *

**/

/**

* Compare() compares two OID’s. If the first OID is bigger *
* than the second one, 1 is return. If the first OID is *

* smaller than the second one, -1 is returned. If they are *

* equal, O is returned. An OID is bigger either ifitis *

* longer or if it is lexicographicly larger. *

**/

int

compare(namel, lenl, name2, len2)
register oid *namel, *name2;
register int lenl, len2;

{

register int len;

/* len = minimum of len1 and len2 */
if (lenl < len2)
len = leni;
else
len = len2;
[* find first non-matching byte */

Implementation and Analyses of the Mobile-IP Protocol

81

The SNMP code

while(len-- > 0){
if (*namel < *name2)
return -1;
if (*name2++ < *namel++)
return 1;
}
[* bytes match up to length of shorter string */
if (lenl < len2)
return -1; /* namel shorter, so it is “less” */
if (len2 < lenl)

return 1;
return O; [* both strings are equal */
/**
* SNMPMAKEREPLY *

**/

/**

* Ones we have decided which packet type and contents we *

* shall reply with snmpMakeReply is called to put the *

* different components into the right place in the packet. *
**/

void

snmpMakeReply(error ,vlength ,value ,olength , oidfound, size, buf)
char error; /*IN - The error code */

uint32 vlength; /* IN - Length of value in bytes */

void *value; /* IN - The value found */

u_char olength; /* IN - The lenght of the OID found */

oid *oidfound; /* IN - The OID of the variable found, if of interest */
int *size; /* OUT - The size of the packet */

char *buf; /* OUT - The packet to be sent */

{
char *cp;
inti;
cp = buf;

if (error == 0) {
size = 3 + vlength + olength; / error, vlength, value, olength,
oidfound */
[* Put data into packet */
cp = buf;
cp++ = error; / The first byte is the error code. */
cp++ = vlength; / The second byte is the length of the value feild.
*
for (i=0;i<vlength;i++) /* Put vlength bytes of data in the value
feild. */
*cp++ = ((char *)value)][i];
cp++ = olength; / Then we add the length of the found OID. */
if (olength !=0)
/*
* |f the found OID matters olength is not zero, and we put the OID
* at the end of the packet.
*/
for (i=0;i<olength / 4;i++)
/* Use put32 to get the OID’s in network byte order. */

Implementation and Analyses of the Mobile-IP Protocol

82

The SNMP code

cp = put32(cp, oidfound[i]);

else {
[* This is an error packet. It only contains the error code */
*size = 1;
[* Put the error code into the packet */
*cp = error;
return;
/**
* SNMPSEND *

**/

/**

* If we find a variable to return snmpSend is called. *

* First snhmpMakeReply is called to create the return packet*

* and then the packet is sent to the port and address from *

* which we got the request. *
**/

int

snmpSend(sin,vlength, value, olength, oidfound)

struct sockaddr_in *sin; /* IN - The address and port we are to send the

reply to. */
uint32 vlength; /* IN - Length of value in bytes */
void *value; /* IN - The value found */
u_char olength; /* IN - The lenght of the OID found */
oid *oidfound; /* IN - The OID of the variable returned */
{. .

int size;

char buf[200];

* Fill the return buffer */
snmpMakeReply(0, vlength, value, olength, oidfound, &size, buf);
[* Send the reply */
if (sendto(SNMP_socket,buf,size,0,(struct sockaddr *)sin, sizeof(struct
sockaddr_in))<=0) {
fprintf(stderr,”Failed to write to SNMP_socket.\n");
return -1,

}

return O;

}

/**

* *
SNMPERROR

**/

/**

* |f we do not find a value to return or some other error *

* occurs, SnmpERROR sends an error message to the snmpd. *
**/

int

snmpERROR(sin, error)

Implementation and Analyses of the Mobile-IP Protocol

83

The SNMP code

struct sockaddr_in *sin; /* IN - The address and port we are to send the
error to. */
char error; /* IN - The error code. */
{ . .
int size;
char buf[200];

[* Fill the return packet */
snmpMakeReply(error, 0, NULL, 0, NULL, &size, buf);
/* Send the error*/
if (sendto(SNMP_socket,buf,size,0,(struct sockaddr *)sin, sizeof(struct
sockaddr_in))<=0) {
fprintf(stderr,”Failed to write to SNMP_socket.\n");

return -1,
return O;
/**
* MNHOMEAGENTLIST *

**/

int

mnHomeAgentList(sin, exact, current, rlength, request)

struct sockaddr_in *sin; /* IN - The address and port we are to send the

reply to. */

u_char exact; /* IN - Is this an exact request or not? */
oid *current; /* IN - The hint from snmpd. */

u_char rlength; /* IN - The length of the request in OIDs. */
oid *request; /* IN - The requested OID. */

{

homeagent t ha;
homeagent_t lowestha;
oid lowest[16];
boolean_t found;
u_char *cp;

oid *op;

found = FALSE;
ha = HomeAgents;

while (ha != (homeagent_t) NULL) {
cp = (u_char *)&ha->addr;
op = current + 12;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
*op++ = *cp++;
/*
* Uppdate the current variable vith the found ha address.
*

if (exact) {
if (compare(current, 16, request, rlength) == 0) {
/* We got a hit */
lowestha = ha;

Implementation and Analyses of the Mobile-IP Protocol

84

The SNMP code

bcopy((char *)current, (char *)lowest, 16 * sizeof(0id));

f ound = TRUE;

/[* W found a hit and do not need to search any nore */

br eak;

}

} else {
if ((conpare(current, 16, request, rlength)>0) &&

(('found) || (conpare(current, 16, |lowest, 16)<0))){

/*

* W& have found an entry in the table whose O D is |arger
* than the requested O D and is eigther the first entry
* that is larger or it is smaller than any other O D that

* is larger than the requested O D found so far.
*/
| owest ha = ha;

bcopy((char *)current, (char *)lowest, 16 * sizeof(0id));

f ound = TRUE;

}
}
ha=ha- >next ;
}
if (!found) {
SnNpERROR(si n, -1);
return -1,
}

snnmpSend(si n, sizeof (I owest ha->addr), (void *)& owest ha->addr,
si zeof (oid), |owest);
return O;

}

/**

* MNREGTABLE *

**/
i nt
mRegTabl e(sin, magic, exact, current, rlength, request)

struct sockaddr_in *sin; /* IN- The address and port we are to send the

reply to. */

u_char nagic; /* IN - The requested variable. */

u_char exact; /* IN- Is this an exact request or not? */
oid *current; /* IN - The hint fromsnnpd. */

u_char rlength; /* IN - The length of the request in QO Ds.
oid *request; /* IN - The requested QA D. */

{

agent _t reg;

agent _t | owestreg;
oid | owest[20];
bool ean_t found;
u_char *cp;

oid *op;

uint 32 | onest | P;
int tinmeleft;

found = FALSE;
reg = Registrations;

Implementation and Analyses of the Mobile-IP Protocol

85

The SNMP code

while (reg !'= (agent_t) NULL) {
op = current + 12;
cp = (u_char *)®->haaddr

*op++ = *cp++,

*op++ = *cp++,

*op++ = *cp++,

*op++ = *cp++,

cp = (u_char *)®->addr
*op++ = *cp++,

*op++ = *cp++,

*op++ = *cp++,

*op++ = *cp++,

/*

* Uppdate the current variable vith the found agent address
* and the hone agent address.
*/

if (exact) {
if (conpare(current, 20, request, rlength) == 0) {
/[* W got a hit */
| owestreg = reg
bcopy((char *)current, (char *)lowest, 20 * sizeof(0id));
found = TRUE
/[* W found a hit and do not need to search any nore */
br eak;
}
} else {
if ((conpare(current, 20, request, rlength)>0) &&
(('found) || (conmpare(current, 20, lowest, 20)<0))){
/*
* W have found an entry in the table whose QD is |arger
* than the requested O D and is eigther the first entry
* that is larger or it is smaller than any other O D that
* is larger than the requested O D found so far.
*/
| owestreg = reg
bcopy((char *)current, (char *)lowest, 20 * sizeof(0id));
found = TRUE

}
}
reg=r eg- >next;
}
if (!found) {
SnNpERROR(si n, -1);
return -1,
}

switch (magic) {
case MNREGHA:
snnmpSend(si n, sizeof (I owestreg->haaddr), (void *)& owestreg->haaddr
20 * sizeof(oid), |owest);
return O;
case MNREGFA:
snnmpSend(si n, sizeof (I owestreg->addr), (void *)& owestreg->addr, 20 *
si zeof (oid), |owest);

Implementation and Analyses of the Mobile-IP Protocol 86

The SNMP code

return O;
case MNREGREQTS:
snnmpSend(si n, sizeof (I owestreg->reqTS), (void *) & owestreg->reqTS, 20
* sizeof (oid), |owest);
return O;
case MNREGREPLTS:
snnpSend(sin, sizeof(lowestreg->replTS), (void *)& owestreg->repl TS,
20 * sizeof(oid), |owest);
return O;
case MNREGFLAGS:
snnmpSend(si n, sizeof (I owestreg->flags), (void *) & owestreg->fl ags, 20
* sizeof (oid), |owest);
return O;
case MNREGLI FETI ME:
TI MER_DURATI ON(| owestreg->timer,tineleft)
snnpSend(sin, sizeof(tineleft),
(void *)&ineleft, 20 * sizeof(oid), |owest);
return O;
}
}

/**

* MNPENDREGTABLE *
**/

i nt

mPendRegTabl e(si n, nagic, exact, current, rlength, request)

struct sockaddr_in *sin; /* IN- The address and port we are to send the
reply to. */

u_char nagic; /* IN - The requested variable. */

u_char exact; /* IN- Is this an exact request or not? */
oid *current; /* IN - The hint fromsnnpd. */

u_char rlength; /* IN - The length of the request in ODs. */
oid *request; /* IN - The requested QO D. */

{

pendi ng_req_t preg;

pendi ng_req_t | owest preg;
oid | owest[20];

bool ean_t found;

u_char *cp;

oid *op;

int valid;

uint 32 | onest | P;

int tinmeleft;

found = FALSE;

preg = Pendi ngRegi strati ons;

while (preg !'= (pending_req_t) NULL) {
cp = (u_char *)&preg->ha->addr;
op = current + 12;
*op++ = *cp++t,

*op++ = *cp++t,
*op++ = *cp++t,
*op++ = *cp++t,
cp = (u_char *)&preg->fa->addr;
*op++ = *cp++t,

Implementation and Analyses of the Mobile-IP Protocol 87

The SNMP code

*op++ = *cp++,
*op++ = *cp++,
*op++ = *cp++,
/*

* Uppdate the current variable vith the found fa address
* and the ha address.
*/

if (exact) {
if (conpare(current, 20, request, rlength) == 0) {
/[* W got a hit */
| owest preg = preg
bcopy((char *)current, (char *)lowest, 20 * sizeof(0id));
found = TRUE
got o end_of search6;
/* W found a hit and do not need to search any nore */
/*
* | can not believe it! After years of program ng
experience

* and a Masters in conputer sience | still am useing
got o!
* VWhat will becone of ne
*/
}
} else {
if ((conpare(current, 20, request, rlength)>0) &&
(('found) || (conmpare(current, 20, lowest, 20)<0))){
/*
* W have found an entry in the table whose O D is |arger
* than the requested O D and is eigther the first entry
* that is larger or it is smaller than any other O D that
* is larger than the requested O D found so far.
*/
| owest preg = preg
bcopy((char *)current, (char *)lowest, 20 * sizeof(0id));
found = TRUE
}
}
pr eg=pr eg- >next;
}
end_of _searché6:
if (!found) {
SnNpPERROR(si n, -1);
return -1,
}

switch (magic) {
case MNPENDREGHA
snnpSend(sin, sizeof (| owest preg->ha->addr), (void *)& owest preg- >ha-
>addr, 20 * sizeof (oid), |owest);
return O;
case MNPENDREGFA
snnpSend(sin, sizeof (| owestpreg->fa->addr), (void *)& owest preg->fa-
>addr, 20 * sizeof (oid), |owest);
return O;
case MNPENDREGREQTS:

Implementation and Analyses of the Mobile-IP Protocol 88

The SNMP code

snnpSend(si n, sizeof (I owest preg->reqTS), (void *)& owestpreg->reqTs,
20 * sizeof(oid), |owest);
return O;
case MNPENDREGREQS:
snnmpSend(si n, sizeof (|l owestpreg->i RetransmtCnt), (void
*) & owest preg->i Retransmt Cnt,
20 * sizeof (oid), |owest);
return O;
case MNPENDREGFLAGS
snnpSend(sin, sizeof (| owestpreg->byFl ags), (void *)& owestpreg-
>byFl ags, 20 * sizeof(oid), |owest);
return O;
}
}

/**

* FACQALI ST *
**/

i nt

faCOALi st (sin, exact, current, rlength, request)

struct sockaddr_in *sin; /* IN- The address and port we are to send the

reply to. */

u_char exact; /* IN- Is this an exact request or not? */
oid *current; /* IN - The hint fromsnnpd. */

u_char rlength; /* IN - The length of the request in O Ds. */
oid *request; /* IN - The requested QO D. */

{

ui nt 32 | owest coa
oid | owest[16];
bool ean_t found;
u_char *cp;

oid *op;

found = FALSE;
cp (u_char *) &nyl Paddr

op = current + 12;
*op++ = *cp++,

*op++ = *cp++,
*op++ = *cp++,
*op++ = *cp++,
/*

* Uppdate the current variable vith the found nmh address
*/

if (exact) {
if (conpare(current, 16, request, rlength) == 0) {
/[* W got a hit */
| owest coa = nyl Paddr
bcopy((char *)current, (char *)lowest, 16 * sizeof(o0id));
found = TRUE;
}
} else {
i f (conpare(current, 16, request, rlength)>0) {
/*

Implementation and Analyses of the Mobile-IP Protocol

89

The SNMP code

* Qur COA is larger than the requested one.

*/

| owest coa = nyl Paddr;

bcopy((char *)current, (char *)lowest, 16 * sizeof(oid));
found = TRUE;

}
}

if (!found) {
snnMpERROR(sin, -1);
return -1,

}

snnmpSend(si n, sizeof (|l owestcoa), (void *)& owestcoa, 16 * sizeof (o0id),

| owest);
return O;
}

/**

* FAREGTABLE *

**/
i nt
faRegTal be(sin, nmagic, exact, current, rlength, request)

struct sockaddr_in *sin; /* IN- The address and port we are to send the

reply to. */

u_char nagic; /* IN - The requested variable. */

u_char exact; /* IN- Is this an exact request or not? */
oid *current; /* IN - The hint fromsnnpd. */

u_char rlength; /* IN - The length of the request in QO Ds.
oid *request; /* IN - The requested QO D. */

{

deencap_t dl;
deencap_t | owestdl;
oid | owest[20];
bool ean_t found;
int j;

u_char *cp;

oid *op;

int tinmeleft;

found = FALSE;
dl = Deencap_list;

while (dl != (deencap_t) NULL) {
cp = (u_char *)&dl ->addr;
op = current + 12;
*op++ = *cp++,

*op++ = *cp++,

*op++ = *cp++,

*op++ = *cp++t,

cp = (u_char *)&dl->haaddr;
*op++ = *cp++t,

*op++ = *cp++t,

*op++ = *cp++t,

*op++ = *cp++t,

/*

Implementation and Analyses of the Mobile-IP Protocol

90

The SNMP code

* Uppdate the current variable vith the found ha and
* mm addresses.
*/

if (exact) {
if (conpare(current, 20, request, rlength) == 0) {

/[* W got a hit */
| onestdl = dl;
bcopy((char *)current, (char *)lowest, 20 * sizeof(0id));
found = TRUE;
/* W found a hit and do not need to search any nore */
br eak;

} else {
if ((conpare(current, 20, request, rlength)>0) &&
(('found) || (conmpare(current, 20, lowest, 20)<0))){
/*
* W& have found an entry in the table whose O D is |arger
* than the requested O D and is eigther the first entry
* that is larger or it is smaller than any other O D that
* is larger than the requested O D found so far.
*/
l owestdl = dl;
bcopy((char *)current, (char *)lowest, 20 * sizeof(0id));
found = TRUE;

}
}
dl =dl - >next ;
}
if (!found) {
snnMpERROR(sin, -1);
return -1,
}

switch (magic) {
case FAREGWN
snmpSend(si n, sizeof (I owestdl ->addr), (void *)& owestdl ->addr, 20 *
si zeof (oid), |owest);
return O;
case FAREGHA:
snnmpSend(si n, sizeof (I owestdl ->haaddr), (void *) & owestdl - >haaddr, 20
* sizeof (oid), |owest);
return O;
case FAREGREQTS:
snnmpSend(si n, sizeof (I owestdl ->reqTS), (void *)& owestdl ->reqTS, 20 *
si zeof (oid), |owest);
return O;
case FAREGREPLTS:
snnpSend(si n, sizeof (lowestdl->repl TS), (void *) & owestdl ->repl TS, 20
* sizeof (oid), |owest);
return O;
case FAREGLI FETI ME:
TI MER_DURATI ON(| owestdl ->timer,tineleft)
snnpSend(sin, sizeof(tineleft),
(void *)&ineleft, 20 * sizeof(oid), |owest);
return O;

Implementation and Analyses of the Mobile-IP Protocol 91

The SNMP code

}
}

/**

*

FAPENDREGTABLE *

**/

i nt

f aRegPendTal be(si
struct sockaddr _i
reply to. */
u_char nagic;
u_char exact;

oid *current;
u_char rlength;
oid *request;

{

n, magic, exact, current, rlength, request)
n *sin; /* IN- The address and port we are to send the

/* IN - The requested variable. */

/* IN- Is this an exact request or not? */
/* IN - The hint fromsnnpd. */

/* IN - The length of the request in ODs. */
/* IN - The requested QA D. */

regstate_t state;
regstate_t |oweststate;

oid | owest[20];

bool ean_t found;

int j;

u_char *cp;
oid *op;

int tinmeleft;

FALSE;

f ound

state = Savedst at €;

while (state !'= (regstate_ t) NULL) {

cp = (u_char
op = current

*) &st at e- >nh;
+ 12;

*op++ = *cp++,

*op++ = *cp++,

*op++ = *cp++,

*op++ = *cp++,

cp = (u_char *)&state->ha

*op++ = *cp++,

*op++ = *cp++,

*op++ = *cp++,

*op++ = *cp++,

/*

* Uppdate the current variable vith the found ha and

* mm addresses.

*/

if (exact) {

if (conpare(current, 20, request, rlength) == 0) {
/[* W got a hit */
| oweststate = state;
bcopy((char *)current, (char *)lowest, 20 * sizeof (0id));
found = TRUE
/* We found a hit and do not need to search any nore */
br eak;
}
} else {

Implementation and Analyses of the Mobile-IP Protocol 92

The SNMP code

if ((conpare(current, 20, request, rlength)>0) &&
(('found) || (conpare(current, 20, lowest, 20)<0))){
/
We have found an entry in the table whose O D is |arger
than the requested O D and is eigther the first entry
that is larger or it is smaller than any other O D that
is larger than the requested O D found so far.
/
| oweststate = state;
bcopy((char *)current, (char *)lowest, 20 * sizeof(0id));
found = TRUE

EREE T S

}
}
st at e=st at e- >next ;
}
if (!found) {
snnMpERROR(sin, -1);
return -1,
}

switch (magic) {
case FAPENDREGWN
snnmpSend(si n, sizeof (I oweststate->nmh), (void *)& owest state->mh, 20 *
si zeof (oid), |owest);
return O;
case FAPENDREGHA
snnmpSend(si n, sizeof (I oweststate->ha), (void *)& owest state->ha, 20 *
si zeof (oid), |owest);
return O;
}

}

/**

* HABI NDI NGTABLE *
**/

i nt

haBi ndi ngTabl e(si n, magic, exact, current, rlength, request)

struct sockaddr_in *sin; /* IN- The address and port we are to send the
reply to. */

u_char nagic; /* IN - The requested variable. */
u_char exact; /* IN- Is this an exact request or not? */
oid *current; /* IN - The hint fromsnnpd. */
u_char rlength; /* IN- The length of the request in ODs. */
oid *request; /* IN - The requested QA D. */
{

nmh_t mh;

mh_t | owest nh;
oid | owest[20];
i nt coaddri ndex;
bool ean_t found;
int j;

u_char *cp;

oid *op;

int tinmeleft;

found = FALSE;

Implementation and Analyses of the Mobile-IP Protocol 93

The SNMP code

mh = MH i st;

while (nmh !'= (mh_t) NULL) {
for (j=0; j<MOBILEIP_COA MAX; j++) {
if (mh->coa[j] != | NADDR_ANY) {
cp = (u_char *)&mh->addr
op = current + 12

*op++ = *cpt++,

*op++ = *cpt++,

*op++ = *cpt++,

*op++ = *cpt++,

cp = (u_char *)&mh->coalj];

*op++ = *cpt++,

*op++ = *cpt++,

*op++ = *cpt++,

*op++ = *cpt++,

/*

* Uppdate the current variable vith the found nmh address
and

* the care of address.

*/

if (exact) {

if (conpare(current, 20, request, rlength) == 0) {

/* W got a hit */

| owest mh = nh;

coaddrindex = j;

bcopy((char *)current, (char *)Ilowest, 20 *
si zeof (oi d));

found = TRUE;

goto end_of search

/* We found a hit and do not need to search any
nore */

/*

* | can not believe it! After years of prograning
experience

* and a Masters in computer sience | still am
usei ng got o!
* \What will beconme of ne
*/
}
} else {
if ((conpare(current, 20, request, rlength)>0) &&
(('found) || (conpare(current, 20, |owest,
20) <0))){ /
* W have found an entry in the table whose QODis
| ar ger
* than the requested O D and is eigther the first
entry
* that is larger or it is smaller than any other
A D that
* is larger than the requested O D found so far
*/
| owest mh = nh;

Implementation and Analyses of the Mobile-IP Protocol 94

The SNMP code

coaddri ndex =j;

bcopy((char *)current, (char *)Ilowest, 20 *
si zeof (oi d));

found = TRUE;

}
}
}

}
mh=mh- >next ;

}

end_of _search:

if (!found) {
snMpERROR(sin, -1);
return -1,

}

switch (magic) {
case HABI NDI NGWN:
snnpSend(sin, sizeof (| owestnh->addr), (void *)& owestmh->addr, 20 *
si zeof (oid), |owest);
return O;
case HABI NDI NGCQA:
snnmpSend(si n, sizeof (I owest mh->coa[coaddri ndex]), (void *)& owest mh-
>coa[coaddri ndex],
20 * sizeof(oid), |owest);
return O;
case HABI NDI NGLI FETI MVE
TI MER_DURATI ON(| owest mh- >t i ner [coaddri ndex], timeleft);
snnpSend(sin, sizeof(tineleft),
(void *)&ineleft, 20 * sizeof(oid), |owest);
return O;
case HABI NDI NGFLAGS
snnpSend(si n, sizeof (I owest mh->fl ags[coaddri ndex]), (void
*) & owest mh- >f | ags[coaddri ndex], 20 * sizeof(oid), |owest);
return O;
}

}

/**

* HAAUTHNCDEL | ST *
**/

i nt

haAut hNodelLi st (si n, nagic, exact, current, rlength, request)

struct sockaddr_in *sin; /* IN- The address and port we are to send the
reply to. */

u_char nagic; /* IN - The requested variable. */
u_char exact; /* IN- Is this an exact request or not? */
oid *current; /* IN - The hint fromsnnpd. */
u_char rlength; /* IN- The length of the request in ODs. */
oid *request; /* IN - The requested QA D. */
{

nmh_t mh;

mh_t | owest nh;
oid | owest[20];
bool ean_t found;
u_char *cp;

Implementation and Analyses of the Mobile-IP Protocol 95

The SNMP code

oid *op;

found = FALSE;
mh = MH i st;

while (nh !'= (nh_t) NULL) {

}
i f

}

cp = (u_char *)&mrh->addr
op = current + 12;
*op++ = *cp++,

*op++ = *cp++,
*op++ = *cp++,
*op++ = *cp++,
/*

* Uppdate the current variable vith the found nmh address.
*/

if (exact) {
if (conpare(current, 16, request, rlength) == 0) {
/[* W got a hit */
| onest mh = nh;

bcopy((char *)current, (char *)lowest, 16 * sizeof(0id));
found = TRUE

/[* W found a hit and do not need to search any nore */
br eak;

} else {
if ((conpare(current, 16, request, rlength)>0) &&
(('found) || (conmpare(current, 16, lowest, 16)<0))){
/*
* W& have found an entry in the table whose O D is |arger
* than the requested O D and is eigther the first entry
* that is larger or it is smaller than any other O D that
* is larger than the requested O D found so far.
*/
| owest mh = nh;
bcopy((char *)current, (char *)lowest, 16 * sizeof(0id));
found = TRUE
}
}
mh=nh- >next ;

('found) {
snnMpERROR(sin, -1);
return -1,

snmpSend(si n, sizeof (I owestmh->addr), (void *)& owestnh->addr, 16 *
si zeof (oid), |owest);
return O;

}

/**

*

SNIVPHANDL EREQ *

**/

/**

* When we receive sonet hing on the SNWP_socket *

Implementation and Analyses of the Mobile-IP Protocol 96

The SNMP code

* snmpHandleReq is called to take care of the incoming *
* request. First it reads the packet from the SNMP_socket. *
* Then it determines whether this is a read or a write *

* request and calls the corresponding routine. *
**/
void
snmpHandleReq()
{

u_char rd;

char buf[200];

struct sockaddr_in sin;

int sinlen = sizeof(sin);

/*
* Read the request from SNMP_socket. The address and the port of the
* sender is put in the sin struct.
*/
if (recvfrom(SNMP_socket,buf,sizeof(buf),0,&sin,&sinlen)<0) {
fprintf(stderr,”Failed to read from SNMP_socket.\n");
return;

}

rd = buf[0];
if (rd == 1) /* Read request */
snmpHandleReadReq(&sin,&buf[1]);
else if (rd == 2) /* Write request */
snmpHandleWriteReq(&sin,&buf[1]);
else {
snmpERROR(&sin, -1);
return;
}
}

/**

* SNMPHANDLEWRITEREQ *
**/
/**

* So far no write request are handled. *
**/
int

snmpHandleWriteReq(sin, bp)

struct sockaddr_in *sin;

char *bp;

{

}

/**
* SNMPHANDLEREADREQ *

**/

/**

* We have received a read request. First, extract the magic*
* value (the request) and the exact value from the packet. *
* |f the OID supplied by the vp->name variable, in the

* snmpd, is contained in the packet then clength is larger *
* than zero and the OID is put in current. Likewise if the *

* requested OID is in the packet then rlength is larger *

Implementation and Analyses of the Mobile-IP Protocol

97

The SNMP code

* than zero and the O D is put in request
**/

i nt

snnpHandl eReadReq(si n, bp)

struct sockaddr_in *sin; /* IN- The address and port we are to send the

reply to. */

char *bp; /* IN- A pointer to the request packet. */

{

int i,j;

u_char nagic;

u_char exact;

u_char cl ength;

oid current[20];

u_char rlength;

oid request[40]; /* Lets hope that no snnp nanager sends a | arger
request. */

oid test; /* Used to convert oid fromnetwork byte order to host byte
order */

char *testp;

magi ¢ *bp++; /* Get nagic fromthe request. */
exact = *bp++; /* Get exact fromthe request. */
if ((clength = *bp++) '=0) { /* If clength '= 0, get the current hint.
*/
clength /= sizeof (oid); /* Convert clength frombytes to the nunber of
oids */
for (i=0; i<clength; i++) {
testp = (char *)&test;
for (j=0; j<4; j++)
*test p++ = *bp++;
current[i] = ntohl (test);
}
if ((rlength = *bp++) I=0) { /* If rlength != 0, get the requested
ab */
rlength /= sizeof (oid); /* Convert rlength frombytes to the nunber
of oids */
for (i=0; i<rlength; i++) {
testp = (char *)&test;
for (j=0; j<4; j++)
*test p++ = *bp++;
request[i] = ntohl (test);
}
}
}

/* This is a horrid case grid. */
switch ((int)magic) {

/**

* MOBI LE NCDE *
**/
case MNHOVEAGENTLI ST:
return mHoneAgent Li st(sin, exact, current, rlength, request);
br eak;
case MNREGHA:
case MNREGFA:

Implementation and Analyses of the Mobile-IP Protocol

98

The SNMP code

case MNREGREQTS:
case MNREGREPLTS:
case MNREGFLAGS:
case MNREGLI FETI ME:
return mRegTabl e(sin, nmagic, exact, current, rlength, request);
br eak;
case MNPENDREGHA:
case MNPENDREGFA:
case MNPENDREGREQTS:
case MNPENDREGREQS:
case MNPENDREGFLAGS:
return mPendRegTabl e(sin, nmagic, exact, current, rlength, request);
br eak;
case MNADVADDR:
snnpSend(si n, sizeof (m pstat.m. mAdvAddr), (void
*) &m pstat. m. nmAdvAddr, 0, NULL);
br eak;
case MNADVSEQNG
snnmpSend(si n, sizeof (m pstat.m. mAdvSegNo), (void
*) &m pstat. nm. mAdvSeqNo, 0, NULL);
br eak;
case MNADVFLAGS:
snnmpSend(si n, sizeof (m pstat.m. mAdvFl ags), (void
*) &mi pst at. mm. mAdvFl ags, 0, NULL);
br eak;
case MNADVTS:
snnmpSend(si n, sizeof (m pstat. m. mAdvTS), (void
*)&m pstat. m. mAdvTS, 0, NULL);
br eak;
case MNADVCOUNT:
snnmpSend(si n, sizeof (m pstat.m. mAdvCount), (void
*)&m pstat. nmm. mAdvCount, 0, NULL);
br eak;
case MNERRADDR:
snnpSend(sin, sizeof (mpstat. m. mErrAddr), (void
*)&m pstat. m. mErrAddr, 0, NULL);
br eak;
case MNERRCODE:
snnpSend(si n, sizeof (m pstat.m. mErrCode), (void
*)&m pstat. m. mErr Code, 0, NULL);
br eak;
case MNERRTS:
snnmpSend(si n, sizeof (mpstat.Mm.mErrTS), (void
*)&m pstat. mMm. mErr TS, 0, NULL);
br eak;
case MNERRCOUNT:
snnmpSend(si n, sizeof (m pstat.m. mErrCount), (void
*)&m pstat. nm. mErr Count, 0, NULL);
br eak;
case MNAUTHCOUNT:
snnmpSend(si n, sizeof (m pstat.m. mAuthCount), (void
*)&m pst at. nmm. mAut hCount, 0, NULL);
br eak;
case MNI NVREPLCOUNT:

Implementation and Analyses of the Mobile-IP Protocol 99

The SNMP code

snnpSend(si n, sizeof (m pstat.m. mlnvRepl Count), (void
*) &mi pst at . . ml nvRepl Count, 0, NULL);
br eak;
case MNSCOLTS:
snnpSend(si n, sizeof (mpstat. m. mSolTS), (void
*)&m pstat. mMm. mSol TS, 0, NULL);
br eak;
case MNSOLCOUNT:
snnmpSend(si n, sizeof (m pstat.m. mSol Count), (void
*)&m pstat. nmm. mSol Count, 0, NULL);
br eak;
case M\DECAPS:
snnmpSend(si n, sizeof (m pstat.m. mbDecaps), (void
*)&m pstat. m. nmDecaps, 0, NULL);
br eak;
case M\DI SCARDS:
snnmpSend(si n, sizeof (m pstat.m. mbi scards), (void
*)&m pstat. m. mbDi scards, 0, NULL);
br eak;

/**

* FOREI GN AGENT *
**/
case FACOALI ST:
return faCOALi st(sin, exact, current, rlength, request);
br eak;
case FAREGWN
case FAREGHA:
case FAREGREQTS:
case FAREGREPLTS:
case FAREGLI FETI ME:
return faRegTal be(sin, nmagic, exact, current, rlength, request);
br eak;
case FAPENDREGWN:
case FAPENDREGHA:
return faRegPendTal be(sin, nmagic, exact, current, rlength, request);
br eak;
case FAADVSEQNG
snnmpSend(si n, sizeof (mpstat.fa.faAdvSegNo), (void
*) &nmi pstat. fa. faAdvSeqNo, 0, NULL);
br eak;
case FAADVFLAGS:
snnmpSend(si n, sizeof (mpstat.fa.faAdvFl ags), (void
*)&m pstat. fa.faAdvFl ags, 0, NULL);
br eak;
case FAADVTS:
snnpSend(si n, sizeof (mpstat.fa.faAdvTS), (void
*)&m pstat. fa. faAdvTS, 0, NULL);
br eak;
case FAADVCOUNT:
snnmpSend(si n, sizeof (mpstat.fa.faAdvCount), (void
*)&m pstat. fa. faAdvCount, 0, NULL);
br eak;
case FASOLADDR:
snnpSend(si n, sizeof (mpstat.fa.faSol Addr), (void
*)&m pstat. fa.faSol Addr, 0, NULL);

Implementation and Analyses of the Mobile-IP Protocol 100

The SNMP code

br eak;
case FASOLTS:
snnmpSend(si n, sizeof(mpstat.fa.faSolTS), (void
*)&m pstat.fa.faSol TS, 0, NULL);
br eak;
case FASOLCOUNT:
snnmpSend(si n, sizeof (mpstat.fa.faSol Count), (void
*)&m pstat. fa.faSol Count, 0, NULL);
br eak;
case FAERRRECADDR:
snnmpSend(sin, sizeof (mpstat.fa.faErrRecAddr), (void
*)&m pstat. fa.faErrRecAddr, 0, NULL);
br eak;
case FAERRRECCODE:
snnmpSend(si n, sizeof (mpstat.fa.faErrRecCode), (void
*)&m pstat. fa.faErrRecCode, 0, NULL);
br eak;
case FAERRRECTS:
snnmpSend(sin, sizeof (mpstat.fa.faErrRecTS), (void
*)&m pstat.fa.faErrRecTS, 0, NULL);
br eak;
case FAERRRECCOUNT:
snnmpSend(si n, sizeof (mpstat.fa.faErrRecCount), (void
*)&m pstat. fa.faErrRecCount, 0, NULL);
br eak;
case FAERRSENTADDR:
snnmpSend(sin, sizeof (mpstat.fa.faErrSentAddr), (void
*)&m pstat. fa.faErrSent Addr, 0, NULL);
br eak;
case FAERRSENTCODE:
snnmpSend(si n, sizeof (mpstat.fa.faErrSentCode), (void
*)&m pstat. fa.faErrSent Code, 0, NULL);
br eak;
case FAERRSENTTS:
snnmpSend(sin, sizeof(mpstat.fa.faErrSentTS), (void
*)&m pstat.fa.faErrSent TS, 0, NULL);
br eak;
case FAERRSENTCOUNT:
snnmpSend(si n, sizeof (mpstat.fa.faErrSentCount), (void
*)&m pstat. fa.faErrSent Count, 0, NULL);
br eak;
case FAAUTHCOUNT:
snmpSend(si n, sizeof (mpstat.fa.faAuthCount), (void
*)&m pstat. fa. faAut hCount, 0, NULL);
br eak;
case FAREGREQSREC:
snnmpSend(si n, sizeof (mpstat.fa.faRegReqsRec), (void
*)&m pstat. fa.faRegReqsRec, 0, NULL);
br eak;
case FADECAPS:
snnmpSend(si n, sizeof (mpstat.fa.faDecaps), (void
*)&m pstat. fa.faDecaps, 0, NULL);
br eak;
case FADI SCARDS:

Implementation and Analyses of the Mobile-IP Protocol 101

The SNMP code

snnmpSend(si n, sizeof (mpstat.fa.fabiscards), (void
*)&m pstat.fa.fabDi scards, 0, NULL);
br eak;

/**

* HOVE AGENT *
**/
case HABI NDI NGWN:
case HABI NDI NGCQA:
case HABI NDI NGLI FETI ME:
case HABI NDI NGFLAGS:
return haBi ndi ngTabl e(sin, nmagic, exact, current, rlength, request);
br eak;
case HAAUTHNODELI ST:
return haAut hNodelLi st (sin, magic, exact, current, rlength, request);
br eak;
case HAADVSEQNG
snnmpSend(si n, sizeof (m pstat. ha. haAdvSegNo), (void
*) &mi pst at . ha. haAdvSeqNo, 0, NULL);
br eak;
case HAADVFLAGS:
snnmpSend(si n, sizeof (m pstat. ha. haAdvFl ags), (void
*) &m pst at . ha. haAdvFl ags, 0, NULL);
br eak;
case HAADVTS:
snnpSend(si n, sizeof (m pstat. ha. haAdvTS), (void
*)&m pst at. ha. haAdvTS, 0, NULL);
br eak;
case HAADVCOUNT:
snnmpSend(si n, sizeof (m pstat. ha. haAdvCount), (void
*) &m pst at . ha. haAdvCount, 0, NULL);
br eak;
case HASOLADDR:
snnpSend(si n, sizeof (m pstat.ha. haSol Addr), (void
*) &m pst at . ha. haSol Addr, 0, NULL);
br eak;
case HASCOLTS:
snnpSend(si n, sizeof (m pstat.ha. haSolTS), (void
*)&m pstat. ha. haSol TS, 0, NULL);
br eak;
case HASOLCOUNT:
snnmpSend(si n, sizeof (m pstat. ha. haSol Count), (void
*) &m pst at . ha. haSol Count, 0, NULL);
br eak;
case HAERRADDR:
snnpSend(si n, sizeof (m pstat.ha. haErrAddr), (void
*)&m pstat. ha. haErr Addr, 0, NULL);
br eak;
case HAERRCODE:
snnpSend(si n, sizeof (m pstat. ha. haErrCode), (void
*) &m pst at . ha. haErr Code, 0, NULL);
br eak;
case HAERRTS:
snnmpSend(si n, sizeof (mpstat.ha. haErrTS), (void
*)&m pstat. ha. habErr TS, 0, NULL);
br eak;

Implementation and Analyses of the Mobile-IP Protocol 102

The SNMP code

case HAERRCOUNT:
snmpSend(sin, sizeof(mipstat.ha.haErrCount), (void
*)&mipstat.ha.haErrCount, 0, NULL);
break;
case HAAUTHCOUNT:
snmpSend(sin, sizeof(mipstat.ha.haAuthCount), (void
*)&mipstat.ha.haAuthCount, 0, NULL);
break;
case HAREGREQSREC:
snmpSend(sin, sizeof(mipstat.ha.haRegRegsRec), (void
*)&mipstat.ha.haRegReqgsRec, 0, NULL);
break;
case HAENCAPS:
snmpSend(sin, sizeof(mipstat.ha.haEncaps), (void
*)&mipstat.ha.haEncaps, 0, NULL);
break;
case HABROADSCASTSREC:
snmpSend(sin, sizeof(mipstat.ha.haBroadcastsRec), (void
*)&mipstat.ha.haBroadcastsRec, 0, NULL);
break;
case HABROADCASTSSENT:
snmpSend(sin, sizeof(mipstat.ha.haBroadcastsSent), (void
*)&mipstat.ha.haBroadcastsSent, 0, NULL);
break;

/**

* MIPTYPE *
**/
case MIPTYPE:
snmpSend(sin, sizeof(mipstat.miptype), (void *)&mipstat.miptype, 0,
NULL);
break;
default:
fprintf(stderr,”Ush\n”);
snmpERROR(sin, -1);

B.3 SNMP Agent code

Not al of the code in snmp_vars.c was included but only the part that is of interest
to the Mobile-IP MIB.

B.3.1 snmp_vars.c
/**

* MOBILE NODE VARIABLE *

**/

struct variable20 mn_variables[] = {
{MNHOMEAGENTLIST, IPADDRESS, RONLY, var_mipEntry, 3, {1, 1, 1}},
{MNREGHA, IPADDRESS, RONLY, var_mipEntry, 3, {2, 1, 1}},
{MNREGFA, IPADDRESS, RONLY, var_mipEntry, 3, {2, 1, 2}},
{MNREGREQTS, INTEGER, RONLY, var_mipEntry, 3, {2, 1, 3}},
{MNREGREPLTS, INTEGER, RONLY, var_mipEntry, 3, {2, 1, 4}},
{MNREGFLAGS, BITSTRING, RONLY, var_mipEntry, 3, {2, 1, 5}},
{MNREGLIFETIME, INTEGER, RONLY, var_mipEntry, 3, {2, 1, 6}},
{MNPENDREGHA, IPADDRESS, RONLY, var_mipEntry, 3, {3, 1, 1}},

Implementation and Analyses of the Mobile-IP Protocol 103

The SNMP code

{ MNPENDREGFA, | PADDRESS, RONLY, var _nmipEntry, 3, {3, 1, 2}},
{ MNPENDREGREQTS, | NTEGER, RONLY, var_m pEntry, 3, {3, 1, 3}},
{ MNPENDREGREQS, | NTEGER, RONLY, var_nmipEntry, 3, {3, 1, 4}},
{ MNPENDREGFLAGS, BI TSTRING RONLY, var_mpEntry, 3, {3, 1, 5}},
{ MNADVADDR, | PADDRESS, RONLY, var_mip, 1, {4}},
{ MNADVSEQNO, | NTEGER, RONLY, var_mip, 1, {5}},
{ MNADVFLAGS, BI TSTRING, RONLY, var_mip, 1, {6}}
{ MNADVTS, | NTEGER, RONLY, var _mip, 1, {7}},
{ MNADVCOUNT, COUNTER, RONLY, var _mip, 1, {8}},
{ MNERRADDR, | PADDRESS, RONLY, var_nip, 1, {9}},
{ MNERRCODE, | NTEGER, RONLY, var_mip, 1, {10}},
{ MNERRTS, | NTEGER, RONLY, var_mp, 1, {11}},
{ MMERRCOUNT, COUNTER, RONLY, var_mip, 1, {12}},
{ MNAUTHCOUNT, COUNTER, RONLY, var_mp, 1, {13}},
{ M\l N\VREPLCOUNT, COUNTER, RONLY, var_mip, 1, {14}},
{MNSOLTS, | NTEGER, RONLY, var_mp, 1, {15}},
{ MNSOLCOUNT, COUNTER, RONLY, var_mp, 1, {16}},
{ MNDECAPS, COUNTER, RONLY, var_mp, 1, {17}},
{ M\DI SCARDS, COUNTER, RONLY, var_mp, 1, {18}}
}

/**

* FORElI GN AGENT VARI ABLE *

**/

struct variable20 fa_variables[] = {
{ FACQALI ST, | PADDRESS, RONLY, var_m pEntry, 3, {1, 1, 1}},
{FAREGW\, | PADDRESS, RONLY, var_nipEntry, 3, {2, 1, 1}},
{FAREGHA, | PADDRESS , RONLY, var_mipEntry, 3, {2, 1, 2}},
{FAREGREQTS, | NTEGER, RONLY, var_nmipEntry, 3, {2, 1, 3}},
{FAREGREPLTS, | NTECER, RONLY, var_mpEntry, 3, {2, 1, 4}},
{FAREGLI FETI ME, | NTEGER, RONLY, var_nmipEntry, 3, {2, 1, 5}},
{ FAPENDREGWN, | PADDRESS, RONLY, var_m pEntry, 3, {3, 1, 1}},
{ FAPENDREGHA, | PADDRESS , RONLY, var _nmipEntry, 3, {3, 1, 2}},
{ FAADVSEQNO, | NTEGER, RONLY, var _mip, 1, {4}},
{ FAADVFLAGS, BITSTRING RONLY, var _nmip, 1, {5}},
{ FAADVTS, | NTEGER, RONLY, var _mip, 1, {6}}
{ FAADVCOUNT, COUNTER, RONLY, var_mip, 1, {7}},
{ FASOLADDR, | PADDRESS, RONLY, var_nip, 1, {8}},
{FASOLTS, | NTEGER, RONLY, var_mp, 1, {9}},
{ FASOLCOUNT, COUNTER, RONLY, var_mp, 1, {10}},
{ FAERRRECADDR, | PADDRESS, RONLY, var _nip, 1, {11}},
{ FAERRRECCODE, | NTEGER, RONLY, var_mp, 1, {12}},
{ FAERRRECTS, | NTEGER, RONLY, var_nip, 1, {13}},
{ FAERRRECCOUNT, COUNTER, RONLY, var _mip, 1, {14}},
{ FAERRSENTADDR, | PADDRESS, RONLY, var_nip, 1, {15}},
{ FAERRSENTCODE, | NTEGER, RONLY, var_mip, 1, {16}},
{ FAERRSENTTS, | NTEGER, RONLY, var _nip, 1, {17}},
{ FAERRSENTCOUNT, COUNTER, RONLY, var_nmip, 1, {18}},
{ FAAUTHCOUNT, COUNTER, RONLY, var_mp, 1, {19}},
{ FAREGREQSREC, COUNTER, RONLY, var _nmip, 1, {20}},
{ FADECAPS, COUNTER, RONLY, var_nip, 1, {21}},
{ FADI SCARDS, COUNTER, RONLY, var _mip, 1, {22}}

Implementation and Analyses of the Mobile-IP Protocol 104

The SNMP code

/**

* HOVE AGENT VARI ABLE *

**/

struct variabl e20 ha_variables[] = {
{HABI NDI NGWN, | PADDRESS, RONLY, var_nmipEntry, 3, {1, 1, 1}},
{HABI NDI NGCOA, | PADDRESS, RONLY, var_mpEntry, 3, {1, 1, 2}},
{ HABI NDI NGLI FETI ME, | NTEGER, RONLY, var_mipEntry, 3, {1, 1, 3}},
{ HABI NDI NGFLAGS, BITSTRING RONLY, var_mipEntry, 3, {1, 1, 4}},
{ HAAUTHNCDELI ST, | PADDRESS, RONLY, var_nipEntry, 3, {2, 1, 1}},
{ HAADVSEQNO, | NTEGER, RONLY, var _nmip, 1, {3}},
{ HAADVFLAGS, BITSTRING, RONLY, var_mip, 1, {4}},
{HAADVTS, | NTEGER, RONLY, var_mp, 1, {5}},
{HAADVCOUNT, COUNTER, RONLY, var _mip, 1, {6}},
{ HASOLADDR, | PADDRESS, RONLY, var_nip, 1, {7}},
{HASOLTS, | NTEGER, RONLY, var_mp, 1, {8}},
{HASOLCOUNT, COUNTER, RONLY, var _mip, 1, {9}},
{ HAERRADDR, | PADDRESS, RONLY, var _mip, 1, {10}},
{ HAERRCODE, | NTEGER, RONLY, var_mip, 1, {11}},
{HAERRTS, | NTEGER, RONLY, var_mip, 1, {12}},
{ HAERRCOUNT, COUNTER, RONLY, var_nip, 1, {13}},
{ HAAUTHCOUNT, COUNTER, RONLY, var_mip, 1, {14}},
{ HAREGREQSREC, COUNTER, RONLY, var _nip, 1, {15}},
{HAENCAPS, COUNTER, RONLY, var_mp, 1, {16}},
{ HABROADSCASTSREC, COUNTER, RONLY, var_mp, 1, {17}},
{ HABROADCASTSSENT, COUNTER, RONLY, var_nmip, 1, {18}}

}1
/**

* M P TYPE VARI ABLE *
**/
struct variablell niptype variables[] = {

{M PTYPE, BITSTRING RONLY, var_miptype, 0, {1}}

/*
* Sorry about the bad code but | hade to set a 0 length
* feild to be able to construct the subtree in a correct
* manner
* [

s

struct subtree subtrees[] = {

{{MOBI LENODE}, 9, (struct variable *)mm_vari abl es,
si zeof (Mm_vari abl es)/ si zeof (*m_vari abl es),
si zeof (*rm_vari abl es) },

{{FOREI GNACGENT}, 9, (struct variable *)fa vari abl es,
si zeof (fa_vari abl es)/si zeof (*fa_vari abl es),
si zeof (*fa_variabl es)},

{{HOVEAGENT}, 9, (struct variable *)ha vari abl es,
si zeof (ha_vari abl es)/si zeof (*ha_vari abl es) ,
si zeof (*ha_vari abl es) },

{{MP_MB, 4}, 9, (struct variable *)m ptype_vari abl es,
si zeof (m ptype_vari abl es)/si zeof (*ni pt ype_vari abl es),
si zeof (*m ptype_vari abl es)}

Implementation and Analyses of the Mobile-IP Protocol 105

The SNMP code

B.3.2 mipmib.c
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <errno.h>
#include <sys/uio.h>

#include “asnl.h”
#include “mipmib.h”
#include “snmp_impl.h”
#include “snmp_vars.h”

#define TIMEOUT -133

/**

* CONNECT_MIPD *

**/

int connect_mipd();

/**

* snmp_addr is the IP address to which snmpd should send *
* it's requests to the mipd. The default value is loopback.*

* |t can be changed by running snmpd with the switch *
*-ma A.B.C.D. *

**/

u_long snmp_addr = htonl(INADDR_LOOPBACK);

/**

* snmp_port is the port on which the mipd is waiting for a *
* connection request from us. It can be changed by *
* starting snmpd with option -mp n, where n is a new port. *

**/

u_short snmp_port = htons(0xffd3); /* 65491 */

/**

* The socket to the mipd. *

**/

static int MIPsock = -1;

/**

* The number of seconds between retransmits. The default *
* value is 1. *

**/

int TimeOutTime = 1;

/**

* The number of times a request is retransmitted to the *
* mipd. The default value is 1. Note that the manager *
* might retransmitting it's requests to us which will make *
* us send another packet to the mipd. *

**/

int NumOfRetrans = 1;

Implementation and Analyses of the Mobile-IP Protocol 106

The SNMP code

static u_long longreturn;

/**

* LOOKUP FUNCTIONS *

**/

/**

* VAR_MIP *

**/

u_char *var_mip(vp, name, length, exact, var_len, write_method)
register struct variable *vp; /*IN - pointer to variable entry that

points here */

register oid *name; /* IN/OUT - input name requested, output name
found */
register int *length; /* IN/OUT - length of input and output oid’s */
int exact; /* IN - TRUE if an exact match was
requested. */
int *var_len; /* OUT - length of variable or O if
function returned. */
int (**write_method)(); /* OUT - pointer to function
to set variable, otherwise 0 */
{
oid newname[MAX_NAME_LEN];
int result;

int ret,retransmits;
unsigned char flagsret[3];

retransmits = 0;

/*

* Copy the name from the variable (vp->name) to newname.

* Set the last id to zero (get the instance).

* |f an exact match is required and not found or if the requested
* 0id id longer than any we no of return NULL.

* Else copy newname (including the trailing zero) to name,

* set the right length and switch on the magic number to fetch

* the correct value for the requested variable

*

bcopy((char *)vp->name, (char *)newname, (int)vp->namelen *
sizeof(oid));

newname[10] = 0;

result = compare(name, *length, newname, (int)vp->namelen + 1);

if ((exact && (result '=0)) || (‘fexact && (result >= 0)))

return NULL;

bcopy((char *)newname, (char *)name, ((int)vp->namelen + 1) *
sizeof(oid));

*length = vp->namelen + 1,

write_method = 0; / There is no write_method() for the mip_vars */

/*

* Send an request to the mipd and await a response. If GetResp timesout
* retransmit NumOfRetrans times and then give up.

*

Implementation and Analyses of the Mobile-IP Protocol 107

The SNMP code

do {
if (SendReq(1, vp->magic, exact, 0, NULL, NULL, NULL)<O0)
/* Failed to send a read request to the mipd */
return NULL;
switch (vp->magic) {
case MNADVFLAGS:
case FAADVFLAGS:
case HAADVFLAGS:
if ((ret = GetResp(NULL, &flagsret[1], 0, NULL)) == 0){
*var_len = sizeof(flagsret);
/* Return the received value */
return flagsret;
}
else
retransmits++;
break;
default:
if ((ret = GetResp(NULL, &longreturn, 0, NULL)) == 0) {
*var_len = sizeof(longreturn);
longreturn = ntohl(longreturn);
/* Return the received value */
return (u_char *)&longreturn;
}
else
retransmits++;
}
} while ((retransmits < NumOfRetrans) && (ret == TIMEOUT));
if (ret < 0)
/* We didn't get a response from mipd. */
return NULL,;
3
/**
* VAR_MIPTYPE *

**/

u_char *var_miptype(vp, name, length, exact, var_len, write_method)
register struct variable *vp; /*IN - pointer to variable entry that

points here */

register oid *name; /* IN/OUT - input name requested, output name
found */
register int *length; /* IN/OUT - length of input and output oid’s */
int exact; /* IN - TRUE if an exact match was
requested. */
int *var_len; /* OUT - length of variable or O if
function returned. */
int (**write_method)(); /* OUT - pointer to function
to set variable, otherwise 0 */
{
oid newname[MAX_NAME_LEN];
int result;

u_char typeret[2];
int ret,retransmits;
retransmits = 0;

Implementation and Analyses of the Mobile-IP Protocol

108

The SNMP code

bcopy((char *)vp->name, (char *)newname, (int)vp->namelen *
sizeof(oid));

newname[9] = 0;

result = compare(name, *length, newname, (int)vp->namelen + 1);

if ((exact && (result '=0)) || (‘fexact && (result >= 0)))

return NULL;

bcopy((char *)newname, (char *)name, ((int)vp->namelen + 1) *
sizeof(oid));

*length = vp->namelen + 1,

*write_method = 0;

if (SendReq(1, vp->magic, exact, 0, NULL, NULL, NULL)<0)
/* Failed to send data to mipd. */
return NULL;
if (GetResp(NULL, &typeret[1], NULL, NULL)<O0)
[* mipd sent an error */
return NULL;
*var_len = sizeof(typeret);
return typeret;

}1
/**
* VAR_MIPENTRY *

**/

u_char *var_mipEntry(vp, name, length, exact, var_len, write_method)
register struct variable *vp; /*IN - pointer to variable entry that
points here */

register oid *name; /* IN/OUT - input name requested, output name
found */

register int *length; /* IN/OUT - length of input and output oid’s */

int exact; /* IN - TRUE if an exact match was

requested. */

int *var_len; /* OUT - length of variable or O if

function returned. */

int (**write_method)(); /* OUT - pointer to function

to set variable, otherwise 0 */
{

int ret,retransmits;

unsigned char flagsret[2];

retransmits = 0;
write_method = 0;

do {
if (SendReq(1, vp->magic, exact, vp->namelen, vp->name, *length,
name)<0)
/* Failed to send a read request to the mipd */
return NULL;
switch (vp->magic) {
case MNREGFLAGS:
case MNPENDREGFLAGS:
case HABINDINGFLAGS:
if ((ret = GetResp(NULL, &flagsret[1], length, name)) == 0){
*var_len = sizeof(flagsret);
/* Return the received value */

Implementation and Analyses of the Mobile-IP Protocol

109

The SNMP code

return flagsret;

}

else
retransmits++;

break;

default:

if ((ret = GetResp(NULL, &longreturn, length, name)) == 0) {
*var_len = sizeof(longreturn);
longreturn = ntohl(longreturn);
/* Return the received value */
return (u_char *)&longreturn;

}
else
retransmits++;
}
} while ((retransmits < NumOfRetrans) && (ret == TIMEOUT));
if (ret < 0)

/* We didn't get a response from mipd. */
return NULL;

/**

* *
CONNECT_MIPD

**/

/**

* This function is called in snmpd.c and opens a UDP socket*
* for the communikation with the mipd. The address to the *
* mipd is given by snmp_addr, and the post number by *
* snmp_port. *
**/
int
connect_mipd()
{ .

int test;

struct sockaddr_in sin;

fprintf(stderr,"\nOpening mipd socket ...\n");

if (MIPsock = socket(PF_INET, SOCK_DGRAM, 0)) < 0) {
fprintf(stderr,”Can’t create socket\n");
return -1,

}

bzero((char *)&sin, sizeof(sin));

sin.sin_addr.s_addr = snmp_addr;

sin.sin_family = AF_INET;

sin.sin_port = snmp_port;

if (connect(MIPsock,(struct sockaddr *)&sin, sizeof(sin))<0) {
fprintf(stderr,”Couldn’t connect to mipd\n”);
return -1,

}

fprintf(stderr,”"Done\n”);

return O;

g

/**

Implementation and Analyses of the Mobile-IP Protocol

110

The SNMP code

* SENDREQ *

**/

/**

* First, build a readpacket containing (in order) the RIW *
* value, the magic value, the exact value and the clength *
* value. If current = NULL include it next in the packet. *
* If current is not NULL also put in the rlength and the *
* requested OID (request). *

* When the packet is done, send it to MIPsock. *
**/
int
SendReq(rw, magic, exact, clength, current, rlength, request)
u_charrw; /*Read =1, Write =2*/
u_char magic;
u_char exact;
u_char clength; /* Lenght of current */
oid *current; /* The vp->name value */
u_char rlength; /* Length of the request OID */
oid *request; /* The requested oid */
{

char buf[150];

char *bufp,*cp;

struct iovec iov[6];

inti,j,len;

oid temp;

bufp = buf;
bufp[0] = rw;
bufp[1] = magic;
bufp[2] = exact;
bufp[3] = clength * sizeof(oid);
bufp += 4;
len = 4;
if (current '= NULL) {
for (i=0;i<clength;i++) {
(long)temp = htonl((long)current[i]);
cp = (char *)&temp;
for (j=0;j<4;j++) {
*bufp++ = *cp++;
}
}
len += (clength * sizeof(oid));
*bufp++ = rlength * sizeof(oid);
len++;
for (i=0;i<rlength;i++) {
temp = htonl(request][i]);
cp = (char *)&temp;
for (j=0;j<4;j++) {
*bufp++ = *cp++;
}
}
len += (rlength * sizeof(oid));
}
if (write(MIPsock,buf,len)<=0) {
/* Couldn’t write to MIPsock. */

Implementation and Analyses of the Mobile-IP Protocol 111

The SNMP code

return -1,
/* Successful write */
return O;
/**
* GETRESP *

**/

/**

* Wait TimeOutTime seconds for an answer from mipd. If non *
* is received, return TIMEOUT. If a packet is returned form*
* mipd, first check the error value. If error is not zero *
* the packet will only contain the error value, there fore *
* just return the error. If on the other hand erroris *
* zero, get the length feild of the returned value is read.*
* If the caller of GetResp is interested in the length of *
* the return value uppdate *vlength. Then read valuelength *
* bytes from the packet into *value. Get the found OID *
* length. If it is non zero get the OID and uppdate *
* olength and oidfound. *
**/
int
GetResp(vlength, value, olength, oidfound)
u_char *vlength; /* OUT--The lenght of the value feild in bytes */
void *value; /* OUT--The variable requested */
int *olength; /* OUT--The length of the returned oid */
oid *oidfound; /* OUT--The oid returned */
{
u_char buf[150]; /* This means that value can not be bigger than 64 bytes
*
char error;
u_char valuelength;
u_char oidlength;
u_char *bufp;
int len,i; /* Debug */
fd_set readfds;
struct timeval timeout;

FD_ZERO(&readfds);
FD_SET(MIPsock,&readfds);
timeout.tv_sec = TimeOutTime;
timeout.tv_usec = 0;

if (select(FD_SETSIZE, &readfds, NULL, NULL, &timeout)>0) {
if (len =read(MIPsock, buf, sizeof(buf)))<=0) {
/* Couldn’t read from MIPsock. */
perror(“GetResp”);
return -1;
}
bufp = buf;
if ((error = (int)bufp[0])<0) {
return (int)error;

}

else {

Implementation and Analyses of the Mobile-IP Protocol

112

The SNMP code

val uel ength = buf p[1]
if (vlength !'= NULL)
vlength = valuelength; / If the length of the return
value is of interest */
bufp += 2;
bcopy((char *)bufp, (char *)val ue, val uel ength);

buf p += val uel engt h;
oi dl ength = bufp[0];
if (oidlength I'=0) {
*ol ength = oi dl engt h/ 4;
bufp += 1;
bcopy((char *)bufp, (char *)oidfound, oidlength);
}
}

/* Successful read */

return O;
}
/* Eighter an error on the socker or a tineout */
return TI MEQUT

}

Implementation and Analyses of the Mobile-IP Protocol 113

The Solaris Code

Appendix C The Solaris Code

In this appendix the important changes to the Maobile-IP code done for the Solaris
port isincluded.

C.1 dlpi.c

#include “targetdefs.h”
#include “absiface.h”
#include “absmem.h”
#include “abstimer.h”
#include “dlpi.h”
#include “mbuf.h”
#include “packet.h”
#include “enet.h”
#include <stdio.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/stropts.h>
#include <sys/file.h>
#include <sysl/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <sys/dlpi.h>
#include <sys/pfmod.h>
#include “dltest.h”
#include “internet.h”
#include “ip.h”

#include “arp.h”
#include “o0s.h”

#include <sys/fcntl.h>

#define EADDR_LENS
#define ETHERLEN 14
#define DLPI_DEVDIR “/dev/”

extern int SNMP_socket;
extern void snmpHandleReq();

static char Ether_bdcst[] = { 0xff, Oxff, Oxff, Oxff, Oxff, Oxff };

dipiAttach(unsigned char *hwaddr, generic_iface_t gifp)
{

struct strioctl si;

struct ifreq ifr;

int fd,i;

struct dlpi_if *dlIpip;

struct iface_os *os;

long buf[MAXDLBUF]; /* aligned on long */
int ppa;

int sap;

union DL_primitives *dIp;

struct packetffilt pf;

Implementation and Analyses of the Mobile-IP Protocol 114

The Solaris Code

register u_short *fwp = pf.Pf_Filter;
struct strbuf data;

int flags;

char *p, devname[512], *device;

sap = 0;
device = gifp->szName;

/*

* Split the device name into type and unit number.

* Won't work for devicenumbers larger than 9.

*/

if ((p = (char *)strpbrk(device, “0123456789")) == NULL) {
fprintf(stderr,”"No such device: %s\n”,device);
exit(1);

}

strcpy(devname, DLPI_DEVDIR);
strncat(devname, device, p - device);

ppa = atoi(p);

if((fd = open(devname, O_RDWR)) ==-1) {
fprintf(stderr,”Can’t open %s\n”,devname);
exit(1);

}

* Init all datastructures. */

os = (struct iface_os *) gifp->0s;

0s->link = LINK_ETHER,;

dIpip = (struct dlpi_if *) DALLOC(sizeof(struct dlpi_if));

bcopy(hwaddr, os->hwaddr, EADDR_LEN);
dlpip->sock = fd;
os->low_os = (void *) dlpip;

[* Attach. */
dlattachreq(fd, ppa);
dlokack(fd, buf);

/* Receive all SAP’s */

dipromisconreq(fd, DL_PROMISC_SAP);
dlokack(fd, buf);

/* Receive all ether-addresses */
dipromisconreq(fd, DL_PROMISC_PHYS);
dlokack(fd, buf);

[* Bind. */
dibindreq(fd, sap, 0, DL_CLDLS, 0, 0);
dibindack(fd, buf);

#ifdef O
/* Couldn’t get the filter working. */

Implementation and Analyses of the Mobile-IP Protocol 115

The Solaris Code

[* Build filter. */
for (i=0; i<kEADDR_LEN; i +=2){ /* EADDR_LEN == 6 */
/* Check for own address */
*fwp++ = ENF_PUSHWORD + i/2;
*fwp++ = ENF_PUSHLIT | ENF_CAND ;
*fwp++ = *((u_short *) &hwaddr[i]);

}
pf.Pf_FilterLen = fwp - &pf.Pf_Filter[0];
if (strioctl(fd, PFIOCSETF, -1, sizeof(struct packetfilt), (char
*)&pf)<0){
perror(“packetfilter”);
exit(1);
}
#endif
/* Raw mode. */
if (strioctl(fd, DLIOCRAW, -1, 0, NULL)<O0)
syserr(“DLIOCRAW");

/* Join all-hosts multicast group */
osJoinGroup(gifp, INADDR_ALLHOSTS);

/* Flush the read side of the Stream. */

if (ioctl(fd, |_FLUSH, FLUSHR) < 0)
syserr(“l_FLUSH");

return fd;

}

int
dipilnput(generic_iface_t *gifpp, unsigned char *buf, int len, int
timeout)
{
struct strbuf data;
struct dlpi_if *dlpip;
struct iface_os *os;
mcast_t mcast;
fd_set readfds;
generic_iface_t gifp;
int res, flags,i;
struct timeval tim, *tp;

if(timeout > 0) {
tim.tv_sec = timeout;
tim.tv_usec = 0;
tp = &tim;
} else
tp = (struct timeval *) NULL;

FD_ZERO (&readfds);

/* Add all DLPI descriptors to the file descriptor set */
gifp = get_first_iface();
while(gifp != (generic_iface_t) NULL) {

os = (struct iface_os *) gifp->0s;

if(os->low_os != NULL) {

Implementation and Analyses of the Mobile-IP Protocol 116

The Solaris Code

dlpip = (struct dlpi_if *) os->low_os;
FD_SET(dIpip->sock, &readfds);
}
gifp = get_next_iface(gifp);
}

/* Add the SNMP_socket to the file descriptor set */
FD_SET(SNMP_socket, &readfds);

[* wait for an incoming packet */
if(select(FD_SETSIZE, &readfds, NULL, NULL, tp) > 0) {
/* find which on which file descriptor there is an available packet */
gifp = get_first_iface();
while(gifp != (generic_iface_t) NULL) {
os = (struct iface_os *) gifp->0s;
if(os->low_os != NULL) {
dlpip = (struct dlpi_if *) os->low_os;
if(FD_ISSET(dIpip->sock, &readfds)) {
data.buf = buf;
data.maxlen = len;
data.len = 0;
flags = 0;
res = getmsg(dlpip->sock, NULL, &data, &flags);
if (res ==-1)
perror(“getmsg”);

[* Process the packet. */

/* Since | didn’t manage to get the filter working,

* we must check the destination address.

*

if ((bcmp(data.buf,0s->hwaddr, EADDR_LEN)==0) || (data.buf[0] & 1))

*gifpp = gifp;
return data.len;
}
}
}
gifp = get_next_iface(gifp);
}
if(FD_ISSET(SNMP_socket, &readfds))
/* Received something on the SNMP_socket */
snmpHandleReq();

/* Received something else? */

return O;
}
[* We were interrupted, probably by SIGALRM */
return -1,

}

/* Send raw packet (caller provides header) */
void
dipiSendRaw(generic_iface_t gifp, unsigned char *pbuf, int len)

{

struct strbuf proto, data;

Implementation and Analyses of the Mobile-IP Protocol

117

The Solaris Code

struct sockaddr sock;
struct dlpi_if *dlpip;
struct iface_os *os;

os = (struct iface_os *) gifp->0s;
dlpip = (struct dlpi_if *) os->low_os;

if (write(dIpip->sock, pbuf, len)<0)
perror(“write”);

}

Implementation and Analyses of the Mobile-IP Protocol 118

The MINT Code

Appendix D The MINT Code

In this appendix the important changes to the Mobile-1P code done for the MINT

port isincluded.

D.1 lowbpf.c

#include <stdio.h>
#include <mach.h>
#include <cthreads.h>
#include <errno.h>
#include <mach_init.h>
#include <mach_error.h>
#include <device/device.h>
#include <device/bpf.h>
#include <sys/file.h>
#include <sysl/ioctl.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/udp.h>
#include <netinet/if_ether.h>
#include <arpalinet.h>
#include <netdb.h>
#include “absiface.h”
#include “absmem.h”
#include “abstimer.h”
#include “lowbpf.h”
#include “targetdefs.h”
#include “mbuf.h”
#include “enet.h”
#include “internet.h”
#include “ip.h”

#include “arp.h”
#include “os.h”

* Link level protocol identifiers for use in the packet header */

#define LINK_NONE 0 /* No link level header, assuming IP */
#define LINK_ETHER 1 [* 14 byte Ethernet header */

#define LINK_INTERNAL 2 /* Internal Ethernet link to upper engine
*

#ifndef BUFSIZE

#define BUFSIZE 1024

#endif

#define MSG_TIMEOUT 500
#tdefine MAX_NUM_IFACES 16

#define TURN_PROMISC_OFF 0
#define TURN_PROMISC_ON 1

Implementation and Analyses of the Mobile-IP Protocol

119

The MINT Code

extern int SNMP_socket;

struct iface

{

char name[IFNAMSIZ];
struct in_addr ip_addr;
char *mac_addr;

g

struct iface_pipe

{

mach_port t input_port;
mach_port t output_port;

g

struct iface *get_iface_info();
void hex_dump();
/*
* bpfAttach
*/
bpfAttach(unsigned char *hwaddr, generic_iface_t gifp)
{
mach_port_t filter_port;
mach_port_t if_port = MACH_PORT_NULL;
struct iface_pipe *if_pipe;
char *ip_addr_str;
kern_return_t rc;

char *if_name;
struct iface_os *os;

if_name = gifp->szName;
if (open_interface(if_name, &if port))

fprintf(stderr, “Unable to open interface <%s>, aborting...\n”,
if_name);
exit(1);
}

if (config_interface(if_name, if_port, TURN_PROMISC_ON))

fprintf(stderr, “Unable to configure interface <%s>.\n",
if_name);
exit(1);
}

if (config_filter(if_port, &filter_port, hwaddr))
{
fprintf(stderr, “Unable to configure filter for port 1 (%s).\n",
if_name);
exit(1);
}

os = (struct iface_os *)gifp->0s;
0s->link = LINK_ETHER,;

Implementation and Analyses of the Mobile-IP Protocol 120

The MINT Code

bcopy(hwaddr, os->hwaddr, EADDR_LEN);

if pipe = (struct iface_pipe *)DALLOC(sizeof(struct iface_pipe));
if_pipe->input_port = filter_port;

if pipe->output_port = if_port;

os->low_os = (void *) if_pipe;

osJoinGroup(gifp, INADDR_ALLHOSTS);

}

/*

* open_interface

*/

int open_interface(char *if_name, mach_port_t *if port)
{

struct iface *if 1,

struct net_status if_stat;
natural_tif stat _count;
mach_port_t device_port;
kern_return_t rc;

if ((if_1 = get_iface_info((struct in_addr *)NULL, if_name, 1)) ==
(struct iface *)NULL)
{
fprintf(stderr, “open_interfaces(): Unable to get interface info
for <%s>\n", if _name);
return(1);

}

device port = mach_master_device_port();

rc = device_open(device_port, D_READ, if _1->name, if_port);
fprintf(stderr,”Opened interface if_name = %s, if_1->name =
%s\n",if_name, if _1->name);

if (rc '= D_SUCCESS)
{
fprintf(stderr, “open_interfaces(): device_open(%s) returned <0x%oX,
%d>\n",
if 1->name, rc, rc);
return(1);

}

/*
* Get status and address from interface.
*/

if stat count=NET_STATUS_ COUNT;

rc = device_get_status(*if_port,
NET_STATUS,
(dev_status_t)&if stat,
&if_stat_count);

if (rc I= D_SUCCESS)

fprintf(stderr, “open_interfaces(): device_get_status(%s) failed,
rc is <0x%yx, %d>\n",
if_1->name, rc, rc);

Implementation and Analyses of the Mobile-IP Protocol 121

The MINT Code

(void) device_close(*if_port);
(void) mach_port_deallocate(mach_task_self(), *if _port);
return (1);

}

return(0);
}
/*
* config_filter
*/
int config_filter(mach_port_tif_port, mach_port_t *filter_port, unsigned
char *hwaddr)
{
kern_return_t rc;
struct bpf_insn bpfilter[NET_MAX_BPF];
bpf_insn_t bpfp = bpfilter;

int idx = 0;

static priority = 1,
/*

* The filter

*/

/*

* Allocate a new port with a send right and receive right.

* Keep the send right and send the receive right to the proxy task.

*/

rc = mach_port_allocate(mach_task_self(),
MACH_PORT_RIGHT _RECEIVE,
filter_port);

if (rc '= KERN_SUCCESS)
{
fprintf(stderr, “config_null_filter(): mach_port_allocate():", rc);
(void)device_close(if_port);
return();

}

rc = mach_port_insert_right(mach_task_self(),
*filter_port,
*filter_port,

MACH_MSG_TYPE_MAKE_SEND);
if (rc I= KERN_SUCCESS)
{
fprintf(“config_null_filter(): mach_port_insert_right():”, rc);
(void) mach_port_destroy(mach_task_self(), *filter_port);
(void) device_close(if_port);
return(1);

}

/*

* Build the filter
*/

idx = 0;

Implementation and Analyses of the Mobile-IP Protocol 122

The MINT Code

/*

* XXX BPF type tag for kernel.

*/

/* Since the interface fore som reason does not enter
* promiscius mode, the below filter has not been tested
* properly.

*/

idx++;

BPF_INSN_STMT(bpfp, BPF_BEGIN, 0);

/*

idx++;

BPF_INSN_STMT(bpfp, BPF_LD+BPF_B+BPF_ABS, 0);

idx++;

BPF_INSN_JUMP(bpfp, BPF_JMP+BPF_JSET+BPF_K, 0x1, 4, 0);

idx++;

BPF_INSN_STMT(bpfp, BPF_LD+BPF_W+BPF_ABS, 2);

idx++;

BPF_INSN_JUMP(bpfp, BPF_JMP+BPF_JEQ+BPF_K, 0x0, 0, 3);

idx++;

BPF_INSN_STMT(bpfp, BPF_LD+BPF_H+BPF_ABS, 0);

idx++;

BPF_INSN_JUMP(bpfp, BPF_JMP+BPF_JEQ+BPF_K, 0x0, 0, 1);

*

idx++;

BPF_INSN_STMT(bpfp, BPF_RET+BPF_K, -1);

/*

idx++;

BPF_INSN_STMT(bpfp, BPF_RET+BPF_K, 0);

*

[* Patch */

[* Insert our ethernet address into the right place

* in the filter.

*

/*

bcopy((char *)&hwaddr[2],(char *)&bpfilter[4].k,4);

bcopy((char *)hwaddr,(char *)&bpfilter[6].k,2);

*

rc = device_set _filter(if_port,
*filter_port,
MACH_MSG_TYPE_MAKE_SEND,
(priority++ %

NET_HI_PRI), [* priority */

(filter_array_t)bpfilter,
(idx*sizeof(struct
bpf_insn))/sizeof(filter_t));
if (rc I= D_SUCCESS)
{
fprintf(stderr, “config_filter(): device_set_filter failed, rc is
<0x%x, %d>.\n", rc, rc);
return(rc);

}

return(0);

}
/*

Implementation and Analyses of the Mobile-IP Protocol 123

The MINT Code

* get_interface_info

*/

struct iface *get_iface_info(iface_ip_addr, iface_name_str, how)
struct in_addr *iface_ip_addr;

char *iface_name_str;

int how;

{
struct ifconf ifc;
struct ifreq *ifr;
struct iface *ifp;

struct sockaddr_in netaddr;
struct sockaddr_in *saddr;
int s, i

if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)

fprintf(stderr, “get_iface_info(): Error, socket() returned
<%d>.\n", s);
return((struct iface *)NULL);
}

if ((ifc.ifc_buf = (caddr_t)malloc(MAX_NUM_IFACES * sizeof(struct
ifreq))) == (caddr_t)NULL)
{
fprintf(stderr, “get_iface_info(): Error, malloc(%d) failed\n”,
(MAX_NUM_IFACES * sizeof(struct ifreq)));
return((struct iface *)NULL);

}

ifc.ifc_len = MAX_NUM_IFACES * sizeof(struct ifreq);

if (ioctl(s, SIOCGIFCONF, (caddr_t)&ifc) < 0)
{
fprintf(stderr, “get_iface_info(): ioctl(%d, SIOCGIFCONF) failed,
erro is <%d>\n",
S, errno);
return((struct iface *)NULL);
}

ifr = ifc.ifc_req;

for (i=0; i < MAX_NUM_IFACES; i++)
if (Istrncmp(iface_name_str, ifr[i].ifr_name, IFNAMSIZ))
break;

if (i == MAX_NUM _IFACES)
{
fprintf(stderr, “get_iface_info(): ran out of interfaces...\n");
return((struct iface *)NULL);

}

if ((ifp = (struct iface *)malloc(sizeof(struct iface))) == (struct
iface *)NULL)
{

Implementation and Analyses of the Mobile-IP Protocol

124

The MINT Code

fprintf(stderr, “get_iface_info(): Error, malloc(%d) failed\n”",
sizeof(struct iface));
return((struct iface *)NULL);

}
strncpy(ifp->name, ifr[i].ifr_name, IFNAMSIZ);

saddr = (struct sockaddr_in *)&(ifr[i].ifr_addr);
bcopy((char *)&(saddr->sin_addr), (char *)&(ifp->ip_addr), sizeof(struct
in_addr));

return(ifp);
}
/-k
* config_interface
*/
int config_interface(char *iface, mach_port_t iport, int promisc_flag)
{
ints;
struct ifreq ifr;

/*

* turn on promiscuous mode...

*

{
struct net_status if_stat;
natural_tif stat _count;
kern_return_t rc;

if stat count=NET_STATUS_COUNT;

rc = device_get_status(iport,
NET_STATUS,
(dev_status_t)&if stat,
&if_stat_count);

if (rc '= D_SUCCESS)

{
fprintf(stderr, “config_interface(): Oops,
device get_status(%s) failed, rc is <Ox%x, %d>\n",

iface, rc, rc);
return (1);
}
if (I(if_stat.flags & IFF_UP))
{

fprintf(stderr, “config_interface(): Interface <%s>isn’t
up, aborting.\n”,
iface);
return(1);

}

printf(“Interface status = <Ox%x>\n", if _stat.flags);
printf(“Setting promiscuous mode...\n");

if (promisc_flag)
if_stat.flags |= IFF_PROMISC;

Implementation and Analyses of the Mobile-IP Protocol 125

The MINT Code

else
if_stat.flags &= ~IFF_PROMISC;

printf(“*Setting Interface status = <Ox%x>\n",if_stat.flags);

if stat count=NET_STATUS_COUNT;
rc = device_set_status(iport,
NET_STATUS,
(dev_status_t)&if_stat,
if_stat_count);
if (rc '= D_SUCCESS)
{
fprintf(stderr, “config_interface():
device_get_status(%s) failed, rc is <Ox%x, %d>\n",
iface, rc, rc);
return (1);

}

if stat count=NET_STATUS_COUNT;
rc = device_get_status(iport,
NET_STATUS,
(dev_status_t)&if stat,
&if_stat_count);
if (rc I= D_SUCCESS)
{

<0x%x, %d>\n",

fprintf(stderr, “device_get_status(%s) failed, rc is

iface, rc, rc);
return (1);
}
printf(“Interface status = <0x%x>\n",if _stat.flags);

}

return(0);
}
/*

* bpflinput

*/
int bpflnput(generic_iface_t *gifpp, unsigned char *buf, int timeout)
{

struct bpf_if *bpfp;

struct iface_os *os;
generic_iface_t gifp;

int res;

struct timeval tim, *tp;

mcast_t mcast;

struct iface_pipe *if_pipe;

static struct net_rcv_msg msg_buf;
register net_rcv_msg_t msg;
mach_msg_size_t max_msg_size = NET_RCV_MAX;
kern_return_t kr;

int len, data_len;

u_char *header;

msg = &msg_buf;

Implementation and Analyses of the Mobile-IP Protocol 126

The MINT Code

gifp = get_first_iface();
while (gifp != (generic_iface_t)NULL) {
os = (struct iface_os *)gifp->0s;
if (0s->low_os = NULL) {
if pipe = (struct iface_pipe *)os->low_os;
kr = mach_msg(&msg->msg_hdr, (MACH_RCV_MSG | MACH_RCV_TIMEOUT),
0, max_msg_size,
if_pipe->input_port,
timeout, MACH_PORT_NULL);
if (kr == MACH_MSG_SUCCESS) {
[* copy packet header to buf */
bcopy((char *)msg->header, buf, ETHERLEN);

[* copy packet data to buf */

data_len = msg->packet_type.msgt_number - sizeof(struct
packet_header);

bcopy((char *)msg->packet+sizeof(struct packet_header),
buf+ETHERLEN, data_len);

len = ETHERLEN+data_len;

if (*(char *)buf & Ox1) {

/* broadcast or multicast */

if(lbcmp(Ether_bdcst, buf, EADDR_LEN)) {
[* accept broaddcast packets */
*gifpp = gifp;
fprintf(stderr,”Broadcast\n”);
return len;

}

mcast = 0s->groups;

while(mcast != (mcast_t) NULL) {
[* accept multicast packet, if we are member */
if(lbcmp(mcast->hwaddr, buf, EADDR_LEN)) {

*gifpp = gifp;
return len;
}
mcast = mcast->next;
}
}else {
/* Accept packet addressed to unicast address */
*gifpp = gifp;
fprintf(stderr,”Unicast\n”);
return len;
}
} else
return O;
}
gifp = get_next_iface(gifp);
}
}
/*
* bpfSendRaw
*/

void bpfSendRaw(generic_iface_t gifp, unsigned char *pbuf, int len)

{

Implementation and Analyses of the Mobile-IP Protocol

127

The MINT Code

struct iface_os *os;
struct iface_pipe *if_pipe;
kern_return_t kr;

fprintf(stderr,”bpfSendRaw() on iface %s\n”,gifp->szName);

hex_dump(pbuf,len);

os = (struct iface_os *)gifp->0s;

if _pipe = (struct iface_pipe *)os->low_os;

kr = device_write_request(if pipe->output_port, MACH_PORT_NULL,
0,0,
(char *)pbuf,
len);

if (kr I= KERN_SUCCESS)

fprintf(stderr, “bpfSendRaw(): Warning, device_write_request failed,
kr is <0x%x>\n", kr);

}

int
check_snmp(int timeout)
{

fd_set readfds;

int res, flags;

struct timeval tim, *tp;

if(timeout > 0) {
tim.tv_sec = 0;
tim.tv_usec = timeout;
tp = &tim;
} else
tp = (struct timeval *) NULL;
FD_ZERO (&readfds);
/* Add the SNMP_socket to the file descriptor set */
FD_SET(SNMP_socket, &readfds);
[* wait for an incoming packet */
if(select(FD_SETSIZE, &readfds, NULL, NULL, tp) > 0) {
if(FD_ISSET(SNMP_socket, &readfds)) /* Not needed but... */
/* Received something on the SNMP_socket */
snmpHandleReq();
return O;
}
[* We were interrupted, probably by SIGALRM */
return -1,

}

Implementation and Analyses of the Mobile-IP Protocol 128

State diagrams

Appendix E State diagrams

This appendix includes the state machines of tHerdifit entities in the Mobile-1P
specification giing a more complete we of how the protocol wrks. In the
diagrams only messages that results in a state change are present. dather le
transitions are possibleybthey would not efect the state of the system.

The folloving definitions are used: rec() means that the entityvesa message,
send() that it sends one and forw() that it fargs the message to another entity
State transitions with other types of labels are transitions where no messages are
sent. The types of messages are:

adv - agent adutisement

sol - agent solicitation

req - rgistration request

rep - reply (positie or ngative)

PosRep - posite reply

NegRep - ngative reply

DeReay - der@gistration request

pckt - ary paclet that is not directly part of the protocol
Breq - broadcast gistration request

Bcast - broadcast/multicast patk

E.1 The Home Agent
This is the state diagram describing the ba&ha of the Home Agent.

send(adv)

rec(msg) rec(sol)

0] Sent all
messages

rec(req) rec(Bcast)

send(pckt)

Figure 28. State diagram describing the Home Agent

Implementation and Analyses of the Mobile-IP Protocol 129

State diagrams

State |State description

0 |The Home Agent is waiting for messages to respond to, or it can send
agent advertisements.

1 |The HA received a registration request, decides whether to accept the
request or not and sends the corresponding reply to the FA or MN.

2 |A broadcast packet is received on the home network. The HA
encapsulates the packet and sends it to all MNs that has requested that
service.

3 |A packet is received that has to be encapsulated and sent to one pf the
Home Agent’s Mobile Nodes.

4 |An agent solicitation is received, and an agent advertisement is sent.

Table 18: State description of the Home Agent
The transition between 2 and 0 callgsht all messages indicates that the Home
Agent has sent the broadcast message to all Mobile Nodes that requested broadcast

messages in their gestration as described in section 8.6 of the Mobile-IP
specification [5].

E.2 The Foreign Agent

Figure29 shavs the state diagram for theréign Agent.

send(adv)

rec(rep) rec(req)

forw(rep) forw(req)

.1

g
Silent discard send(NegRep)

0
rec(ICMP-error) rec(pckt)
forw(pckt) 2
\

send(NegRep) Unknown ID

S\ =

g |2

E 2

Q

0

Figure 29. Statediagram describing the Foreign Agent

Implementation and Analyses of the Mobile-IP Protocol 130

State diagrams

State |State description

0 |TheForeign Agent iswaiting for messages to respond to, or it can send
agent advertisements.

1 |TheFA hasreceived aregistration request from aMN and hasto decide
whether to accept the request or not. In the former case it forwards the
request to the HA and in the latter case it sends a negative reply to the
MN.

2 |TheFA hasreceived a packet that has to be encapsulated and forwarded
toaMN. If the FA knows of the MN it sends the packet there, otherwise
it silently discards the packet.

3 |A registration reply isreceived. If the reply does not match the
registration identification of its most recent registration request to the
sender the message is silently discarded. Otherwise the reply is
forwarded to the correct MN.

4 |Asaresult of aregistration request sent to aHA an ICMP-error is
received. A reply with code 40 (unknown home agent address) is sent to
the corresponding MN.

5 |TheFA receives an agent solicitation and responds with an agent
advertisement.

Table 19: State description of the Foreign Agent

Implementation and Analyses of the Mobile-IP Protocol 131

State diagrams

E.3 The Mobile Node

Here is the state diagram for the Mobile Node.

send(sol) send(Breq)

Known
Care-of Addr

send(Breq)
6
= send(DeReg)
o
]
o rec(NegRep)
Keep old
binding —
send(req) 5%
i H
a

send(pckt)

rec(PosRe
Reply not
accepted

Change/add FA
(handover)

Reply
accepted

rec(pckt)

Figure 30. Statediagram describing the M obile Node

State |State description

0 [In this state the MN begins the process of registration. It can do one of
several things. If the MN is at its home network and doesn’t know the
address of any of its Home Agents it can send a registration request to the
directed broadcast address (and go to state 6). If the MN is visiting a
foreign network and already has obtained a care-of address it can proceed
directly to state 2. Else it waits for an agent advertisement (from a foreign
agent) or tries to get one by sending agent solicitations.

1 |The MN now knows its care-of address and sends a registration request
to one of its Home Agents.

Table 20: State description of the Mobile Node

Implementation and Analyses of the Mobile-IP Protocol 132

State diagrams

State |State description

2 |The MN isnow waiting for aregistration reply. If it receives a negative
reply the registration process starts all over. Else it keeps sending
requests until it gets a positive reply.

3 |When apositivereply isreceived, the MN determines whether the reply
matches the registration identification of its most recently sent
registration request to that HA. If not, thereply is silently discarded.

4 |Inthisstatethe MN has got avalid registration with aHA and can send
and receive packets asusual . The send(pckt) and rec(pckt) are not part of
the Mobile-1P specification but rather there to indicate that the MN is
working.

5 |For some reason the MN wants to register with anew FA. It can either
deregister with its old FA or add the new FA.

6 |[Whenthe MN receivesareply from an Agent that is prepared to act asa
HA for the MN, then, since the MN must be on its home network, it can
go directly to state 4.

Table 20: State description of the Mobile Node

Implementation and Analyses of the Mobile-IP Protocol 133

Mobile-IP Watcher

Appendix F Mobile-IP Watcher

#!/usr/local/bin/wish -f

Check that the environment variable MIBFILE is set

if {{regexp MIBFILE [array hames env]] == 0} {
puts “Error: You must set the environment variable MIBFILE”
exit

}

#**

Globala variabler
#**
set g(snmpwalk) “./snmpwalk”

#set g(snmpwalk) /afs/it.kth.se/home/d91/d91-fbr/mobile-ip/mib/cmu-snmp2/apps/
snmpwalk

The delay in milliseconds

set g(delay) 5000

set g(ipaddress) dumburken

set g(mnID) “.1.3.6.1.4.1.933.3.1"

set g(falD) “.1.3.6.1.4.1.933.3.2"

set g(halD) “.1.3.6.1.4.1.933.3.3"

#**

textFrame
Creates a labelled textwidget with scrollbar
Input: win - path name to a frame
title - the label above the text widget
ncols - the width of the text widget
nrows - the height of the text widget
Output: a pointer to the text widget
#**
proc textFrame {win title ncols nrows} {
label $win.| -text $title
pack $win.| -side top -fill x
frame $win.f
text $win.f.t -height $nrows -width $ncols -relief sunken -bd 2 -
yscrollcommand “$win.f.sb set”
scrollbar $win.f.sb -orient vertical -relief sunken -command “$win.f.t
yview”
pack $win.f.t -side left fill y
pack $win.f.sb -side right -fill y
pack $win.f -side left -fill x -fill y
return $win.f.t

#**

Mobile Node
#**
proc mobileNode {} {

global g

wm title . “Mobile Node: $g(ipaddress)”

Implementation and Analyses of the Mobile-IP Protocol

134

Mobile-IP Watcher

vars

frame .f

frame .f.f1

frame .f.fl.a

set varT [textFrame .f.fl.a “Variables” 40 15]
pack .f.f1.a -side top -fill y

frame .f.f1.b
set halT [textFrame .f.f1.b “Home Agent List” 40 5]
pack .f.f1.b -side top -fill y

pack .f.f1 -side left -fill y

frame .f.f2
set regT [textFrame .f.f2 “Registration Table” 40 20]
pack .f.f2 -side left -fill y

frame .f.f3
set pendRegT [textFrame .f.f3 “Pending Registration Table” 40 12]
pack .f.f3 -side left -fill y

pack .f

button .b -text Quit -pady 5 -command exit
pack .b -side bottom -fill x

update

Parsa inmatningen och skriv till de olika fonstren
while 1 {

Sudda fonster

$varT delete 0.0 end

$halT delete 0.0 end

$regT delete 0.0 end

$pendRegT delete 0.0 end

Anropa snmpwalk
catch {set vars [exec $g(snmpwalk) $g(ipaddress) noAuth $g(mnID)]}

Dela upp resultatet i rader
set rowlist [split $vars \n]
foreach row $rowlist {
if {[regexp mipMN.* $row tmp]} {
set tmp [string range $tmp 6 end]
set wordlist [split $tmp .]
set key [lindex $wordlist 0]
if {$key == “mnHomeAgentList"} {
$halT insert end “[lindex $tmp 3]\n”
} elseif {$key == “mnRegTable"} {
regexp =.* $tmp tmp
$regT insert end “[lindex $wordlist 2] $tmp\n”
} elseif {$key == “mnPendRegTable"} {
regexp =.* $tmp tmp

$pendRegT insert end “[lindex $wordlist 2] $tmp\n”

}else {

Implementation and Analyses of the Mobile-IP Protocol

135

Mobile-IP Watcher

$varT insert end “$tmp\n”
}
}else {
$varT insert end “Srow\n”
}

}
update

after $g(delay)

#**

Foreign Agent
#**
proc foreignAgent {} {

global g

wm title . “Foreign Agent: $g(ipaddress)”

Make windows

frame .f

frame .f.f1

frame .f.fl.a

set varT [textFrame .f.f1.a “Variables” 44 19]
pack .f.f1.a -side top -fill y

frame .f.f1.b

set coaT [textFrame .f.f1.b “Care-Of Address List” 44 5]
pack .f.f1.b -side top -fill y

pack .f.f1 -side left -fill y

frame .f.f2
set regT [textFrame .f.f2 “Registration Table” 40 0]
pack .f.f2 -side left -fill y

frame .f.f3
set pendRegT [textFrame .f.f3 “Pending Registration Table” 40 0]
pack .f.f3 -side left -fill y

pack .f

Quit-button
button .b -text Quit -command exit
pack .b -side bottom -fill x

update

while 1 {
Sudda fonster
$varT delete 0.0 end
$coaT delete 0.0 end
$regT delete 0.0 end
$pendRegT delete 0.0 end

Anropa snmpwalk

Implementation and Analyses of the Mobile-IP Protocol

136

Mobile-IP Watcher

vars

}

catch {set vars [exec $g(snmpwalk) $g(ipaddress) noAuth $g(falD)]}

Parsa inmatningen och skriv till de olika fonstren
set rowlist [split $vars \n]
foreach row $rowlist {
if {[regexp mipFA.* $row tmp]} {
set tmp [string range $tmp 6 end]
set wordlist [split $tmp .]
set key [lindex $wordlist 0]
if {$key == “faCOAList"} {
$coaT insert end “[lindex $tmp 3]\n”
} elseif {$key == “faRegTable"} {
regexp =.* $tmp tmp
$regT insert end “[lindex $wordlist 2] $tmp\n”
} elseif {$key == “faPendRegTable"} {
regexp =.* $tmp tmp
$pendRegT insert end “[lindex $wordlist 2] $tmp\n”
}else {
$varT insert end “Stmp\n”
}
}else {
$varT insert end “$row\n”
}
}
update
after $g(delay)
}

#**

Home Agent

#**

proc homeAgent {} {

global g
wm title . “Home Agent: $g(ipaddress)”

frame .f

frame .f.f1

set varT [textFrame .f.f1 “Variables” 40 O]
pack .f.f1 -side left -fill y

frame .f.f2
frame .f.f2.a

set bindT [textFrame .f.f2.a “Mobility Binding Table” 44 16]

pack .f.f2.a -side top

frame .f.f2.b

set authT [textFrame .f.f2.b “Authorized Node List” 44 4]
pack .f.f2.b -side bottom

pack .f.f2 -side right -fill y

pack .f

button .b -text Quit -command exit

Implementation and Analyses of the Mobile-IP Protocol

137

Mobile-IP Watcher

pack .b -side bottom -fill x

update

set a [exec Is]

while 1 {
$varT delete 0.0 end
$bindT delete 0.0 end
$authT delete 0.0 end

Anropa snmpwalk
catch {set vars [exec $g(snmpwalk) $g(ipaddress) noAuth $g(halD)]}

vars
Parsa inmatningen och skriv till de olika fonstren
set rowlist [split $vars \n]
foreach row $rowlist {
if {[regexp mipHA.* $row tmp]} {
set tmp [string range $tmp 6 end]
set wordlist [split $tmp .]
if {[lindex $wordlist 0] == “haBindingTable} {
regexp =.* $tmp tmp
$bindT insert end “[lindex $wordlist 2] $tmp\n”
} elseif {[lindex $wordlist 0] == “haAuthNodeList"} {
$authT insert end “[lindex $tmp 3]\n”
}else {
$varT insert end “Stmp\n”
}
}else {
$varT insert end “$row\n”
}
}
update
after $g(delay)
}
}

#**

inputAddress
Asks for the IP-address where the snmp daemon is running, and sets
the global variable g(ipaddress) to that value
#**
proc inputAddress {} {

global g

frame .t
label .t.I -text “IP Address:”
entry .t.e -width 15 -relief sunken -textvariable g(ipaddress)
bind .t.e <Return> {
destroy .t

}

pack .t.l .t.e -side left

Implementation and Analyses of the Mobile-IP Protocol 138

Mobile-IP Watcher

pack .t -padx 10 -pady 10

focus .t.e
tkwait window .t

#**

First menu
From here you choose witch entity you will monitor

#**

wm title . “Mobile-IP Watcher”
. configure -bd 2

frame .m1

label .m1.I1 -text “Mobile-IP Watcher” -font -*-Helvetica-Bold-R-Normal-*-180-*

label .m1.12 -text “Choose an entity to monitor”
pack .m1.11 .m1.12 -side top -fill x
pack .m1

frame .m2
button .m2.b1 -text “Mobile Node” -padx 5 -pady 5 -command {
destroy .m1.m2
set g(ipaddress) explorer
inputAddress
mobileNode
}
button .m2.b2 -text “Home Agent” -padx 5 -pady 5 -command {
destroy .m1.m2
set g(ipaddress) dumburken
inputAddress
homeAgent
}
button .m2.b3 -text “Foreign Agent” -padx 5 -pady 5 -command {
destroy .m1.m2
set g(ipaddress) anxiety
inputAddress
foreignAgent

}

button .m2.b4 -text “Quit” -padx 5 -pady 5 -command exit
pack .m2.b1 .m2.b3 .m2.b2 .m2.b4 -side left
pack .m2

Implementation and Analyses of the Mobile-IP Protocol

139

The Mobile-IP MIB

Appendix G The Mobile-IP MIB

-- Mbile IP MB

-- version 0.79

-- by Fredrik Tarberg and Fredri k Broman, KTH
-- 1995-11-17

-- H STORY

-- v 0.79 Changed all tinmestanps from | NTEGER t o COUNTER

-- v 0.78 Corrected the flags field for advertisements

-- v 0.77 Changed the datatype for mmRegFl ags and mPendRegFl ags from
-- I NTEGER to BI T STRI NG

-- Added mmAdvFl ags, faAdvFl ags, haAdvFl ags and haBi ndi ngFl ags.
-- v 0.75 Replaced all TinmeStanp with | NTEGER

-- v 0.71 Introduced version nunber

RFC1155-SM DEFINI TIONS :: = BEGQ N;
nul 1A D OBJECT IDENTIFIER ::= { ccitt O }
i nt ernet OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1}
directory OBJECT IDENTIFIER ::= { internet 1}
nmgnt OBJECT IDENTIFIER ::= { internet 2}
experimental OBJECT IDENTIFIER ::= { internet 3}
private OBJECT IDENTIFIER ::= { internet 4}
enterprises OBJECT IDENTIFIER ::= { private 1 }
END
CMJM B DEFINITIONS ::= BEG N
Proteon OBJECT IDENTIFIER ::= { enterprises 1 }

| BM OBJECT IDENTIFIER ::= { enterprises 2}
cmu OBJECT IDENTIFIER ::= { enterprises 3}
Uni x OBJECT IDENTIFIER ::= { enterprises 4}
ACC OBJECT IDENTIFIER ::= { enterprises 5}
TWG OBJECT IDENTIFIER ::= { enterprises 6 }

Cayman OBJECT IDENTIFIER ::= { enterprises 7 }
PSI OBJECT IDENTIFIER ::= { enterprises 8 }

Cisco OBJECT IDENTIFIER ::= { enterprises 9 }

NSC OBJECT IDENTIFIER ::= { enterprises 10 }

HP OBJECT IDENTIFIER ::= { enterprises 11 }
Epi | ogue OBJECT IDENTIFIER ::= { enterprises 12 }
UTK OBJECT IDENTIFIER ::= { enterprises 13 }

BBN OBJECT IDENTIFIER ::= { enterprises 14 }

Xyl ogi cs OBJECT IDENTIFIER ::= { enterprises 15 }
Ti mepl ex OBJECT IDENTIFIER ::= { enterprises 16 }
Canstar OBJECT IDENTIFIER ::= { enterprises 17 }
Wel [fleet OBJECT IDENTIFIER ::= { enterprises 18 }

TRW OBJECT | DENTI FI ER :
M T OBJECT | DENTI FI ER ::
EON OBJECT | DENTI FI ER :

{ enterprises 19 }
{ enterprises 20 }
{ enterprises 21 }

Spartacus OBJECT IDENTIFIER ::= { enterprises 22 }
Excel an OBJECT IDENTIFIER ::= { enterprises 23}
Spi der OBJECT IDENTIFIER ::= { enterprises 24 }
NSFNET OBJECT IDENTIFIER ::= { enterprises 25 }
HLS OBJECT IDENTIFIER ::= { enterprises 26 }
Xypl ex OBJECT IDENTIFIER ::= { enterprises 33}
Cray OBJECT IDENTIFIER ::= { enterprises 34 }

Implementation and Analyses of the Mobile-IP Protocol

140

The Mobile-IP MIB

Sun OBJECT IDENTIFIER ::= { enterprises 42 }

Synoptics OBJECT IDENTIFIER ::={ enterprises 45 }

DEC OBJECT IDENTIFIER ::= { enterprises 36 }

TGV OBJECT IDENTIFIER ::={ enterprises 58 }

Apple OBJECT IDENTIFIER ::= { enterprises 63 }

NAT OBJECT IDENTIFIER ::= { enterprises 86 }

SNMP-Research OBJECT IDENTIFIER ::= { enterprises 99 }

FTP OBJECT IDENTIFIER ::= { enterprises 121}

Shiva OBJECT IDENTIFIER ::= { enterprises 166 }

Transarc OBJECT IDENTIFIER ::={ enterprises 257 }

Lexcel OBJECT IDENTIFIER ::={ enterprises 379 }

Teleinformatics_Lab OBJECT IDENTIFIER ::= {enterprises 933}
END

-- MOBILE-IP MIB --

MOBILE-IP-MIB DEFINITIONS ::= BEGIN

IMPORTS
mgmt, NetworkAddress, IpAddress, Counter, Gauge, TimeTicks
FROM RFC1155-SMI
OBJECT-TYPE
FROM RFC-1212
PhysAddress
FROM RFC1213-MIB;

mip OBJECT IDENTIFIER ::= {Teleinformatics_Lab 3}
mipMN OBJECT IDENTIFIER = {mip 1}
mipFA OBJECT IDENTIFIER ::= { mip 2 }
mipHA OBJECT IDENTIFIER ::= { mip 3 }

mipType OBJECT-TYPE
SYNTAX BIT STRING {

mobileNode(0), -- acting as a Mobile Node
foreignAgent(1), -- acting as a Foreign Agent
homeAgent(2) -- acting as a Home Agent

ACCESS read-write
STATUS mandatory
DESCRIPTION
“The indication of whether this entity is acting as a
Mobile node, a Home Agent and/or a Foreign Agent.”
w={mip4}

-- The Mobile Node

Implementation and Analyses of the Mobile-IP Protocol 141

The Mobile-IP MIB

-- Mobile Node Home Agent List

mnHomeAgentList OBJECT-TYPE
SYNTAX SEQUENCE OF MnHAEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“The Mobile Node'’s list of Home Agents”
m={mipMN 1}

mnHAEntry OBJECT-TYPE
SYNTAX MnHAEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“Information about one of the Home Agents”
INDEX { mnHALAddr }
:={ mnHomeAgentList 1 }

MnHAEnNtry ::=
SEQUENCE {
mnHALAddr
IpAddress

}

mnHALAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The IP address of a Home Agent”
m={mnHAEntry 1}

-- Mobile Node Registration Table

mnRegTable OBJECT-TYPE
SYNTAX SEQUENCE OF MnRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“The Mobile Node'’s registration table”
m={mipMN 2}

mnRegEntry OBJECT-TYPE
SYNTAX MnRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“Information about a registration”
INDEX { mnRegHA, mnRegFA }
m={mnRegTable 1}

Implementation and Analyses of the Mobile-IP Protocol 142

The Mobile-IP MIB

MnRegEntry ::=
SEQUENCE {
mnRegHA
IpAddress,
mnRegFA
IpAddress,
mnRegReqTS
TimeTicks,
mnRegRepITS
COUNTER,
mnRegFlags
BIT STRING,
mnRegLifetime
INTEGER

}

mnRegHA OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The IP-address of the Home Agent”
m={mnRegEntry 1}

mnRegFA OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The IP-address of the Foreign Agent”
m={mnRegEntry 2 }

mnRegReqTS OBJECT-TYPE

SYNTAX COUNTER

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The time when the first registration request was
sent”

={mnRegEntry 3}

mnRegRepITS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The time when the registration reply was received”
m={mnRegEntry 4}

mnRegFlags OBJECT-TYPE
SYNTAX BIT STRING {

S(0), -- retain prior mobility bindings
B(1), -- forward broadcasts

D(2), -- mn decapsulates itself
M(3), -- minimal encapsulation

Implementation and Analyses of the Mobile-IP Protocol 143

The Mobile-IP MIB

G(4) -- GRE encapsulation
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The flags field that was used in the request”
»={mnRegEntry 5}

mnRegLifetime OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The remaining lifetime for this registration”
={mnRegEntry 6 }

-- Mobile Node Pending Registration Table

mnPendRegTable OBJECT-TYPE
SYNTAX SEQUENCE OF MnPendRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“The Mobile Node’s pending registration table”
m={mipMN 3}

mnPendRegEntry OBJECT-TYPE
SYNTAX MnPendRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“Information about a pending registration”
INDEX {mnPendRegHA, mnPendRegFA }
:={mnPendRegTable 1}

MnPendRegEntry ::=
SEQUENCE {
mnPendRegHA
IpAddress,
mnPendRegFA
IpAddress,
mnPendRegReqTS
COUNTER,
mnPendRegReqs
INTEGER,
mnPendRegFlags
BIT STRING

}

mnPendRegHA OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory

Implementation and Analyses of the Mobile-IP Protocol

144

The Mobile-IP MIB

DESCRIPTION
“The IP-address of the Home Agent”
= {mnPendRegEntry 1}

mnPendRegFA OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The IP-address of the Foreign Agent”
= { mnPendRegEntry 2 }

mnPendRegReqTS OBJECT-TYPE

SYNTAX COUNTER

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The time when the first registration request was
sent”

= { mnPendRegEntry 3}

mnPendRegReqs OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The total number of registration requests sent”
= { mnPendRegEntry 4 }

mnPendRegFlags OBJECT-TYPE
SYNTAX BIT STRING {

S(0), -- retain prior mobility bindings
B(1), -- forward broadcasts

D(2), -- mn decapsulates itself
M(3), -- minimal encapsulation

G(4) -- GRE encapsulation

}
ACCESS read-only

STATUS mandatory
DESCRIPTION

“The flags field that was used in the request”
= {mnPendRegEntry 5}

-- MN Advertisement

mnAdvAddr OBJECT-TYPE

SYNTAX IpAddress

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The IP address in the last received agent
advertisement”

»={mipMN 4}

Implementation and Analyses of the Mobile-IP Protocol 145

The Mobile-IP MIB

mnAdvSegNo OBJECT-TYPE

SYNTAX INTEGER (0..65535)

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The sequence number in the last received agent
advertisement”

m={mipMN 5}

mnAdvFlags OBJECT-TYPE
SYNTAX BIT STRING {

R(0), -- Foreign agent registration required
B(1), -- Busy bit

H(2), -- Offers service as Home Agent
F(3), -- Offers service as Foreign Agent
M(4), -- Offers minimal encapsulation

G(5) -- Offers GRE encapsulation

}
ACCESS read-only

STATUS mandatory
DESCRIPTION

“The flags in the last received agent advertisement”
m={mipMN 6 }

mnAdvTS OBJECT-TYPE

SYNTAX COUNTER

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The time when the last agent advertisement was
received”

m={mipMN 7}

mnAdvCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The total number of agent advertisements received”
m={mipMN 8}

-- MN Error

mnErrAddr OBJECT-TYPE

SYNTAX IpAddress

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The IP address from which the last error message was
received”

m={mipMN 9}

Implementation and Analyses of the Mobile-IP Protocol

146

The Mobile-IP MIB

mnErrCode OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The error code in the last received error message”
={mipMN 10}

mnEnTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The time when the last error message was received”
»={mipMN 11}

mnErrCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The total number of error messages received”
= {mipMN 12}

mnAuthCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The total number of authentication exceptions”
m={mipMN 13}

mninvReplCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The total number of invalid replies”
= {mipMN 14}

-- MN Solicitation

mnSolTS OBJECT-TYPE

SYNTAX COUNTER

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The time when the last agent solicitation message was
sent”

m={mipMN 15}

Implementation and Analyses of the Mobile-IP Protocol 147

The Mobile-IP MIB

mnSolCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The total number of agent solicitations sent”
={mipMN 16 }

mnDecaps OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The number of IP-packets decapsulated at the Mobile
Node”

= {mipMN 17}

mnDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The number of IP-packets discarded at the Mobile Node”
={mipMN 18}

-- The Foreign Agent

-- Foreign Agent Care-Of-Address List

faCOAList OBJECT-TYPE
SYNTAX SEQUENCE OF FaCOAEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“The Foreign Agents’s list of care-of address, if any”
m={mipFA 1}

faCOAEnNtry OBJECT-TYPE
SYNTAX FaCOAEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“Information about a COA Address”
INDEX {faCOAddr}
:={faCOAList 1}

FaCOAEntry ::=

Implementation and Analyses of the Mobile-IP Protocol

148

The Mobile-IP MIB

SEQUENCE {
faCOAddr
IpAddress
}

faCOAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The Care-of address”
:={faCOAEntry 1}

-- Foreign Agent Registration Table

faRegTable OBJECT-TYPE
SYNTAX SEQUENCE OF FaRegEnNtry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“The Foreign Agent’s registration table”
m={mipFA 2}

faRegEntry OBJECT-TYPE
SYNTAX FaRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“Information about a visiting Mobile Node”
INDEX {faRegMN, faRegHA }
:={faRegTable 1}

FaRegEnNtry ::=
SEQUENCE {
faRegMN
IpAddress
faRegHA
IpAddress,
faRegReqTS
COUNTER,
faRegRepITS
COUNTER,
faRegLifetime
INTEGER (0..65535)
}

faRegMN OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The home IP-address of the visiting Mobile Node”
:={faRegEntry 1}

Implementation and Analyses of the Mobile-IP Protocol

149

The Mobile-IP MIB

faRegHA OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The IP-address of the Home Agent”
:={faRegEntry 2 }

faRegReqTS OBJECT-TYPE

SYNTAX COUNTER

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The time when the first registration request was
sent”

:={faRegEntry 3}

faRegRepITS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The time when the registration reply was received”

:={faRegEntry 4 }

faRegLifetime OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The remaining lifetime for this registration”
:={faRegEntry 5}

-- Foreign Agent Pending Registration Table

faPendRegTable OBJECT-TYPE
SYNTAX SEQUENCE OF FaPendRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“The Foreign Agent’s pending registration table”
m={mipFA3}

faPendRegEntry OBJECT-TYPE
SYNTAX FaPendRegEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“Information about a pending registration”
INDEX {faPendRegMN, faPendRegHA }
:={faPendRegTable 1}

Implementation and Analyses of the Mobile-IP Protocol

150

The Mobile-IP MIB

FaPendRegEntry ::=
SEQUENCE {
faPendRegMN
IpAddress,
faPendRegHA
IpAddress

}

faPendRegMN OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The home IP-address of a visiting Mobile Node”
:={faPendRegEntry 1}

faPendRegHA OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The IP-address of the Home Agent”
:={faPendRegEntry 2 }

-- FA Advertisement

faAdvSeqNo OBJECT-TYPE

SYNTAX INTEGER (0..65535)

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The sequence number in the last sent agent
advertisement”

m={mipFA 4}

faAdvFlags OBJECT-TYPE
SYNTAX BIT STRING {

R(0), -- Foreign agent registration required
B(1), -- Busy bit

H(2), -- Offers service as Home Agent
F(3), -- Offers service as Foreign Agent
M(4), -- Offers minimal encapsulation

G(5) -- Offers GRE encapsulation

}
ACCESS read-only

STATUS mandatory

DESCRIPTION
“The sequence number in the last sent agent
advertisement”

m={mipFA5}

faAdvTS OBJECT-TYPE
SYNTAX COUNTER

Implementation and Analyses of the Mobile-IP Protocol 151

The Mobile-IP MIB

ACCESS read-only
STATUS mandatory
DESCRIPTION

“The sequence number in the last sent agent

advertisement”
m={mipFA 6}

faAdvCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The sequence number in the last sent agent

advertisement”
m={mipFA 7}

-- FA Solicitation

faSolAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The IP address in the last received agent

solicitation message”
m={mipFA 8}

faSolTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The time when the last agent solicitation message was

received”
m={mipFA9}

faSolCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The total number of agent solicitation messages

received”
m={mipFA 10}

-- FA Error messages received

faErrRecAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory

Implementation and Analyses of the Mobile-IP Protocol

152

The Mobile-IP MIB

DESCRIPTION
“The IP address from which the last error message was
received”

m={mipFA 11}

faErrRecCode OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The error code in the last received error message”
m={mipFA 12}

faErrRecTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The time when the last error message was received”
m={mipFA 13}

faErrRecCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The total number of error messages received”
m={mipFA 14}

-- FA Error messages sent

faErrSentAddr OBJECT-TYPE

SYNTAX IpAddress

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The IP address to which the last error message was
sent”

m={mipFA 15}

faErrSentCode OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The error code in the last sent error message”
m={mipFA 16}

faErrSentTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION

Implementation and Analyses of the Mobile-IP Protocol 153

The Mobile-IP MIB

“The time when the last error message was sent”
m={mipFA 17}

faErrSentCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The total number of error messages sent”
m={mipFA 18}

faAuthCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The total number of authentication exceptions”
m={mipFA 19}

faRegReqsRec OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The number of registration requests received at the
Foreign Agent”

m={mipFA 20}

faDecaps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The number of IP-packets decapsulated at the Foreign
Agent”
m={mipFA 21}

faDiscards OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The number of IP-packets discarded”
m={mipFA 22}

-- The Home Agent

Implementation and Analyses of the Mobile-IP Protocol 154

The Mobile-IP MIB

-- Home Agent Mobility Binding Table

haBindingTable OBJECT-TYPE
SYNTAX SEQUENCE OF HaBindingEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“The Home Agent’s mobility binding table”
m={mipHA 1}

haBindingEntry OBJECT-TYPE
SYNTAX HaBindingEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“Information about a mobility binding”
INDEX { haBindingMN, haBindingCOA }
::={ haBindingTable 1}

HaBindingEntry ::=
SEQUENCE {
haBindingMN
IpAddress,
haBindingCOA
IpAddress,
haBindingLifetime
INTEGER (0..65535),
haBindingFlags
BIT STRING
}

haBindingMN OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The Mobile Node’s home IP-address”
::={ haBindingEntry 1}

haBindingCOA OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The Mobile Node’s care-of address”
::={ haBindingEntry 2 }

haBindingLifetime OBJECT-TYPE
SYNTAX INTEGER (0..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The lifetime for the registration”
::={ haBindingEntry 3}

Implementation and Analyses of the Mobile-IP Protocol

155

The Mobile-IP MIB

haBindingFlags OBJECT-TYPE
SYNTAX BIT STRING {

S(0), -- retain prior mobility bindings
B(1), -- forward broadcasts

D(2), -- mn decapsulates itself
M(3), -- minimal encapsulation

G(4) -- GRE encapsulation

}
ACCESS read-only

STATUS mandatory
DESCRIPTION

“The flags field for this registration”
::={ haBindingEntry 4}

-- Authorized Node List

haAuthNodeList OBJECT-TYPE
SYNTAX SEQUENCE OF HaANEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“The Home Agent’s list of authorized mobile nodes”
m={mipHA 2}

haANEntry OBJECT-TYPE
SYNTAX HaANEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
“Information about an authorized mobile node”
INDEX {haANAddr}
::={ haAuthNodelList 1}

HaANEnNtry ::=
SEQUENCE {
haANAddr
IpAddress

}

haANAddr OBJECT-TYPE
SYNTAX IpAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The IP address of an authorized mobile node”
:={haANEntry 1}

-- HA Advertisement

haAdvSegNo OBJECT-TYPE

Implementation and Analyses of the Mobile-IP Protocol 156

The Mobile-IP MIB

SYNTAX INTEGER (0..65535)

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The sequence number in the last sent agent
advertisement”

m={mipHA 3}

haAdvFlags OBJECT-TYPE
SYNTAX BIT STRING {

R(0), -- Foreign agent registration required
B(1), -- Busy bit

H(2), -- Offers service as Home Agent
F(3), -- Offers service as Foreign Agent
M(4), -- Offers minimal encapsulation

G(5) -- Offers GRE encapsulation

}
ACCESS read-only

STATUS mandatory
DESCRIPTION

“The flags in the last sent agent advertisement”
m={mipHA 4}

haAdvTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The time when the last agent advertisement was sent”
m={mipHA 5}

haAdvCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The total number of agent advertisements sent”
m={mipHA 6}

-- HA Solicitation

haSolAddr OBJECT-TYPE

SYNTAX IpAddress

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The IP address from which the last agent solicitation
message was received”

m={mipHA 7}

haSolTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only

Implementation and Analyses of the Mobile-IP Protocol

157

The Mobile-IP MIB

STATUS mandatory

DESCRIPTION
“The time when the last agent solicitation message was
received”

m={mipHA 8}

haSolCount OBJECT-TYPE

SYNTAX Counter

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The total number of agent solicitation messages
received”

m={mipHA 9}

-- HA Error

haErrAddr OBJECT-TYPE

SYNTAX IpAddress

ACCESS read-only

STATUS mandatory

DESCRIPTION
“The IP address from which the last error message was
received”

m={mipHA 10}

haErrCode OBJECT-TYPE
SYNTAX INTEGER (0..255)
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The error code in the last received error message”
m={mipHA 11}

haErTS OBJECT-TYPE
SYNTAX COUNTER
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The time when the last error message was received”
m={mipHA 12}

haErrCount OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The total number of error messages received”
m={mipHA 13}

haAuthCount OBJECT-TYPE

Implementation and Analyses of the Mobile-IP Protocol 158

The Mobile-IP MIB

SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The total number of authentication exceptions”
m={mipHA 14}

haRegReqsRec OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The number of registration requests received”
m={mipHA 15}

haEncaps OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The number of IP-packets encapsulated”
m={mipHA 16 }

haBroadcastsRec OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
“The number of broadcast packets received”
m={mipHA 17}

haBroadcastsSent OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

“The number of broadcast packets forwarded to Mobile Nodes”

m={mipHA 18}
END

Implementation and Analyses of the Mobile-IP Protocol

159

References

References

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]
[14]
[15]

[16]

[17]
[18]

[19]
[20]

[21]

[22]

A. Klemets’ latest ersion of the Mobile-IP implementatiomalable from
ftp://ftp.it.kth.se/pub/klenets/

G. Q. Maguire Jr M. T. Smith, T Ohsava, “Walkstation Il project”, 2nd
International Vdrkshop on Mobile Multi-Media Communications ovishop,
Bristol, England, April 1-13, 1995.

C. Perkins, “IP Mobility Support, draft-ietf-mobileip-protocol-14.txt”, Internet
Draft, December 1995.

G. Maguire, F Reichert, M. Smith, A Multiport Mobile Internet Router”,
Proceedings of the 44th IEEEeMcular Bchnology Conference ‘94,0\ume 3,
pages 1435-1439, Stockholm, Sweden, June 1994.

A. Klemets, G. Q. Maguire JrE Reichert, M. T Smith. “MINT - A Mobile
Internet Router”, First IEEE International Symposium on Global Data dtking,

pages 70-74, Institute of Electrical and Electronics Engineers, Cairo, Egypt,
December 13-15, 1993. Note: Although this paper has the same title as the
following one, thg are quite diierent.

R. Hager A. Klemets, G. Q. Maguire JrM. T. Smith, F Reichert, “MINT - A
Mobile Internet Router”, Proceedings of the IEEEehWular Echnology
Conference ‘93, pages 318-321. Institute of Electrical and Electronics Engineers,
May 18-20, 1993.

J. loannidis and G. Q. Maguire,JfThe Design and Implementation of a Mobile
Internetworking Architecture”. USENIX Whter 1993 Echnical Conference, pages
491-502. USENIX Association, January 1993.

J. loannidis, D. Duchamp, G. Q. Maguire &. Deering, “Protocols for supporting
Mobile IP hosts”, Internet Draft, June 1992Zafable from:
ftp://parcftp.xerox.confpub/ nobil e-ip/ col unbi a-draft-

j une-92

M. T. Rose, “The Simple Book: An Introduction to Internet Management”, 1994,

D. Duchamp, S. FeineG. Q. Maguire Jr “Software Technology for Wfeless
Mobile Computing”, IEEE Netark 5(6):12-18, Neember 1991.

R. Droms, “Dynamic Host Configuration Protocol”, RFC 1541, October 1993.
J. Postel, “User Datagram Protocol”, RFC 768, August 1980.

C. Perkins, “IP Encapsulation within, IBraft-ietf-ip4inip4-01.txt”", Internet Dratft,
October 1995.

S. M. Bellorin, “Security Problems in the TCP/IP Protocol SuiteGM Computer
Communications Reew, 19(2), March 1989.

R. Rivest. “The MD5 Message-Digest Algorithm”, RFC 1321, April 1992.

A. Klemets, “Mach 3.0 as an Operating System for the MINT”, October 1994,
TRITA-IT R 94:20.

J. Case, M. Fedpm. Schofstall, J. Dain, “A Simple Netvork Management
Protocol (SNMP)”, RFC 1157, May 1990.

W. R. Steens, “TCP/IP lllustrated,dfume 1", Addison-\&sley, 1994.

M. Oelhafen, “SNMP Application for the MINT Router”, June 1994., URL:
ftp://ftp.it.kth.se/ ww document s/ | abs/ ccs/ W5/ paper s/
940630- Cel haf en- A4. ps

Thomas L. Geaes, "Using the Carigge Mellon Unversity (CMU) SNMP Library

Implementation and Analyses of the Mobile-IP Protocol 160

References

To Build an SNMP Manager”, March 1993, URL:
http://neptune. corp. harris. confuniforumhtm

[23] M. Rose, K. McCloghrie, “Concise MIB Definitions”, RFC 1212, March 1991.

[24] K. McCloghrie, M. Rose, “Management Information Base for Nekw
Management of TCP/IP-based internets: MIB-1I", RFC 1213, March 1991.

[25] K. Sollins, “THE TFTP PRTOCOL (REVISION 2)", RFC 1350, July 1992.

[26] B. Croft, J. Gilmore, “BOOSTRAP PROTOCOL (BOOIP)’, RFC 951,
September 1985.

[27] P. Guerin, “RadioNet Drier Implementation for the Mobile INfhet Router”,
1994, URL:
ftp://ftp.it.kth.se/ww docunents/| abs/ ccs/ W&/ paper s/
940630- Gueri n- A4. ps

[28] N. Nuclolls, “How to Use DLPI”, June 1992, URL:
ftp://opcomsun. ca:/pub/drivers/dlitest.tar.gz

[29] S. McCanne, VJacobson, “The BSDakket Filter: A Nev Architecture for User
level Packet Capture”, December 1992, URL:
ftp://ftp.ee.lbl.gov/papers/bpf-useni x93.ps.Z

[30] G. R. Wright, W R. Steens, “TCP/IP lllustrated, flume 2", Addison-\W¥sley,
1995.

[31] D. Cong, M. Hamlen, C. Perkins, “The Definitions of Managed Objects for the
Home Agent function of IP Mobililty Support”, Internet Draft, December 1995.

[32] D. Cong, M. Hamlen, C. Perkins, “The Definitions of Managed Objects for the
Foreign Agent function of IP Mobililty Support”, Internet Draft, December 1995.

[33] D. Cong, M. Hamlen, C. Perkins, “The Definitions of Managed Objects for the
Mobile Node function of IP Mobililty Support”, Internet Draft, December 1995.

[34] D. Cong, M. Hamlen, C. Perkins, “The Definitions of Managed Objects for the
Security function of IP Mobililty Support”, Internet Draft, December 1995.

Implementation and Analyses of the Mobile-IP Protocol 161

